EP1084481A1 - Procede de fabrication d'un dispositif electronique portable comportant au moins une puce de circuit integre - Google Patents

Procede de fabrication d'un dispositif electronique portable comportant au moins une puce de circuit integre

Info

Publication number
EP1084481A1
EP1084481A1 EP99920924A EP99920924A EP1084481A1 EP 1084481 A1 EP1084481 A1 EP 1084481A1 EP 99920924 A EP99920924 A EP 99920924A EP 99920924 A EP99920924 A EP 99920924A EP 1084481 A1 EP1084481 A1 EP 1084481A1
Authority
EP
European Patent Office
Prior art keywords
cavity
chip
card
conductive
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99920924A
Other languages
German (de)
English (en)
Inventor
Jean Christophe Fidalgo
Olivier Brunet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gemplus SA
Original Assignee
Gemplus Card International SA
Gemplus SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gemplus Card International SA, Gemplus SA filed Critical Gemplus Card International SA
Publication of EP1084481A1 publication Critical patent/EP1084481A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07766Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement
    • G06K19/07769Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement the further communication means being a galvanic interface, e.g. hybrid or mixed smart cards having a contact and a non-contact interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07743External electrical contacts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48228Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad being disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate

Definitions

  • the present invention relates to the manufacture of a portable electronic device, comprising at least one integrated circuit chip which is embedded in a support and electrically connected to interface elements constituted by a connection terminal block and / or an antenna.
  • portable electronic devices constitute, for example, smart cards with and / or contactless, or even electronic labels.
  • Contact and / or contactless smart cards are intended for carrying out various operations, such as, for example, banking operations, telephone communications, various identification operations, or teleticketing operations.
  • Contact cards include metallizations flush with the surface of the card, arranged at a precise location on the card body, defined by the usual standard ISO 7816. These metallizations are intended to come into contact with a read head of a reader for electrical data transmission.
  • Contactless cards on the other hand, have an antenna that allows information to be exchanged with the outside world thanks to an electromagnetic coupling between the card's electronics and a receiving or reading device. This coupling is carried out in read mode or in read / write mode and the data transmission takes place by radio frequency or microwave.
  • hybrid cards comprising both metallizations flush with the surface of the card and an antenna embedded in the card body. This type of card can therefore exchange data with the outside either in contact mode or in contactless mode.
  • contactless cards are, like contact cards, thin portable objects whose dimensions are standardized.
  • ISO 7810 standard corresponds to a standard format card 85 mm long, 54 mm wide and 0.76 mm thick.
  • micromodule The majority of chip card manufacturing methods are based on the assembly of the integrated circuit chip in a subassembly called a micromodule which is then inserted using traditional methods.
  • a conventional method illustrated in FIG. 1, consists in bonding an integrated circuit chip 20 by placing its active face with its contact pads 22 upwards, and by bonding the opposite face to a dielectric support sheet 28.
  • the dielectric sheet 28 is itself arranged on a contact grid 24 of a metallic plate of nickel-plated and gilded copper.
  • Connection wells 21 are formed in the dielectric sheet 28 and connection wires 26 connect the contact pads 22 of the chip 20 to the contact pads of the grid 24 via its connection wells 21.
  • a encapsulation resin 30, based on epoxy protects the chip 20 and the connection wires 26 welded.
  • the module is then cut and then inserted into the cavity of a card body previously decorated.
  • the present invention therefore aims to eliminate the intermediate stages of manufacturing a micromodule so as to increase the yield and reduce the manufacturing cost.
  • a first solution described in patent applications FR2671416, FR2671417 and FR 2671418, consists in inserting an integrated circuit chip directly into a card body. For this, the card holder is locally softened and the chip is pressed in the softened area. No cavity is therefore formed in the card body.
  • a card obtained using this technology is shown diagrammatically in plan view in FIG. 2.
  • the chip 20 is arranged so that its contact pads 22 are flush with the surface of the card 10. Screen printing operations then make it possible to print, on the same plane, contact pads 25 and conductive tracks 27 making it possible to connect the contact pads 25 to the contact pads 22 of the chip 20.
  • a protective varnish is then applied to the chip 20.
  • This first solution however has several disadvantages. First of all, since no cavity is made in the card holder, this method can only be adapted to very small chips. In addition, the operation of serigraphy of the contact pads 25 and of the interconnection tracks 27 is difficult to implement because the positioning of the tracks 27 on the contact pads 22 of the chip 20 requires very high indexing precision which must be checked by VAO ( Computer Aided Vision). This constraint affects the rate and efficiency of the manufacturing process.
  • VAO Computer Aided Vision
  • the chip must also be perfectly positioned, so that its contact pads 22 are arranged parallel to the lateral edges of the card, in order to be able to produce the contact pads 25 parallel to the lateral edges of the card.
  • the chip being placed in a locally softened area, it is not easy to position it correctly, and the chip cards whose contact pads are arranged slightly at an angle are intended for scrap.
  • the application of the conductive tracks in the housing can be carried out in three different ways.
  • a first way is to carry out hot stamping.
  • a sheet comprising metallizations of copper, optionally covered with tin or nickel, and provided with a hot-activatable glue, is cut and then glued hot in the housing.
  • a second way consists in applying, by means of a pad, a lacquer containing a palladium catalyst, to the places intended to be metallized; heating the lacquer; then metallizing, by depositing copper and / or nickel, using an electrochemical process of autocatalysis.
  • a third way is to make a lithogravure from laser holograms. This lithography allows three-dimensional metallization deposits to be produced with very high precision and high resolution.
  • the invention provides a method of manufacturing a portable electronic device, such as a smart card, according to which the steps for manufacturing a micromodule are eliminated. For this, conductive tracks and interface elements are produced by printing, in three dimensions, a conductive substance. The chip is then connected to the interface elements, via the conductive tracks.
  • the invention more particularly relates to a method of manufacturing an electronic device, such as a smart card, comprising at least one integrated circuit chip which is embedded in a card holder and which comprises connected contact pads , via conductive tracks, to interface elements constituted by a connection terminal block and / or an antenna, characterized in that it consists of:
  • the chip in a protective resin.
  • the shape of the inclined-wall cavity facilitates the deposition of conductive ink by a printing technique.
  • the conductive ink has an advantageous cost compared to copper or nickel used in the case of deposition of metallizations.
  • the interface elements being printed they have a negligible thickness.
  • the method according to the invention also has the advantage of being rapid and inexpensive. This advantage is notably due to the fact that the interface elements as well as the conductive tracks are formed in a single step consisting of a simple technique of printing conductive ink.
  • FIG. 1 already described, a diagram in cross section which illustrates a traditional method of manufacturing a smart card with contacts
  • FIGS. 4A and 4B respectively a top view and a sectional view of a smart card with contacts according to the invention, in which the chip is transferred in a "flip chip" arrangement,
  • FIGS. 5A and 5B respectively a top view and a sectional view of a smart card with contacts according to the invention, in which the chip is transferred according to another type of assembly, - Figures 5C and 5D, two top views of a smart card with contacts according to the invention, in which the chip is respectively transferred and then connected according to another type of assembly, - Figures 6A and 6B, respectively a view from above of two electronic labels during their manufacture,
  • FIG. 7A and 7B a top view of two hybrid cards, produced according to the method of the invention.
  • FIG. 3 shows schematically a smart card with contacts obtained according to an embodiment of a method according to the invention.
  • the card body, referenced 100 is obtained according to a conventional manufacturing process, for example by injecting plastic material into a mold.
  • This card support 100 comprises, at a location defined by the ISO standard, an interface element constituted, in the example of FIG. 3, by a terminal block of connections 110 provided with contact pads 111 flush with the surface.
  • These contact pads 111 are positioned around a cavity 120 formed in the card body.
  • This cavity is made either by milling or during the injection of the card, which is more economical. It is preferably circular and has inclined walls. However, it can just as well be rectangular, lozenge or octagonal etc.
  • Conductive tracks 112, attached to the contact pads 111 also line the bottom and the walls of the cavity 120.
  • the contact pads 111 and the conductive tracks 112 form a single pattern obtained in a single step, by printing, in three dimensions, conductive ink.
  • the contact pads 111 consist of conductive ink, deposited by printing on the surface 100 of the card, and are extended by conductive tracks 112, along the inclined walls of the cavity, as far as the bottom of the latter. this .
  • the inclined shape of the cavity 120 is important because it facilitates the printing of conductive ink.
  • the cavity has two planes: the first plane is horizontal and defined inside a first circle 121 forming the bottom of the cavity; the second plane, forming the walls of the cavity 120, is inclined and defined inside a second circle 122.
  • the depth of the cavity must be sufficiently small to facilitate the printing of the pattern. Thus, it is preferably between 100 and 600 ⁇ m, for example of the order of 300 ⁇ m.
  • the cavity can however be of any other shape, for example rectangular, lozenge or octagonal.
  • An integrated circuit chip 200 is transferred to the bottom of the cavity 120 and connected, via the conductive tracks 112, to the contact pads 111.
  • the three-dimensional printing of conductive ink to form the interface element 110 and the conductive tracks 112 can be carried out using different techniques.
  • the printing of conductive ink is obtained by a pad printing technique.
  • an ink pad allows to transfer the conductive ink, according to the desired pattern, on the surface of the card and in the cavity.
  • the tampon is made of deformable material, for example silicone material, in order to adapt to the shape of the cavity.
  • the shape and the material of the stamp are defined as a function not only of the shape of the cavity but also of the desired resolution for the pattern to be printed.
  • the printing of conductive ink is obtained by an offset printing technique using a compressible roller and of low hardness of the blanket type for the transfer of the ink onto the card. Except for the constraints on the blanket type roller, the rest of the printing parameters are similar to conventional printing techniques, that is to say the use of an inkwell, of a polymer or metallic plate, comprising the pattern to be printed hollow or embossed, and an ink transfer roller.
  • the depth of the cavity should not be too great compared to the flexibility of the roller or pad used.
  • the depth of the cavity is between 100 ⁇ m and 600 ⁇ m.
  • a third embodiment, for printing conductive ink in three dimensions consists in using an ink jet printing technique.
  • the inkjet printing technique can be carried out in two different and well-known ways: either by a so-called drop-on-demand method, or by deviated continuous inkjet.
  • This last inkjet printing technique consists in projecting drops charged with static electricity along a defined trajectory. During printing, the trajectory of these drops can be modified by applying a different polarization to deflection plates.
  • the cavity In order to be able to produce a good quality three-dimensional printing and correctly print the pattern comprising interface elements and conductive tracks, the cavity must not have a plane close to the vertical, but only horizontal or inclined planes according to a tilt angle between 5 and 30 °, preferably between 15 and 20 °.
  • the conductive ink can be constituted by a solvent ink, comprising a polymer resin dissolved in a solvent with conductive fillers (metal particles), which hardens by evaporation of the solvent.
  • the ink can also be a one-component or two-component thermosetting ink, an UV polymerization ink, a solder paste type compound or a metal alloy.
  • the chip can, in turn, be transferred to the bottom of the cavity according to three different types of mounting.
  • a first method consists in transferring the chip according to a “flip chip” type of assembly. This type of assembly is already well known and is shown in the diagrams in top view and in section of FIGS. 4A and 4B.
  • the contact pads 111 of the connection terminal block 110 and the conductive tracks 112 are represented by a thick black line to facilitate understanding. However, since they are obtained by printing conductive ink, their thickness is in reality negligible.
  • the chip is transferred by turning it over, the active face comprising the contact pads 220 oriented towards the bottom of the cavity 120.
  • the chip 200 is then connected by applying its contact pads 220 to the conductive pads 112 previously printed, without the use of conductive wires.
  • the interconnection tracks 112 must be printed with precision and they are brought to the exact location of the contact pads 220 of the integrated circuit chip 200.
  • the chip 200 is connected to the conductive tracks 112 by means of an adhesive 350 with anisotropic electrical conduction which is well known and often used for mounting passive components on the surface.
  • This glue 350 in fact contains elastically deformable conductive particles, which make it possible to establish an electrical conduction along the z axis (that is to say along the thickness) when they are pressed between the contact pads 220 and the tracks.
  • conductive 112 while ensuring insulation in the other directions
  • the electrical connection can be established by means of protrusions formed by a conductive adhesive, previously deposited on the contact pads 220 of the chip and reactivated hot when the chip is transferred.
  • Another way of establishing the electrical connection between the chip 200 and the conductive tracks 112 consists in making, on the contact pads 220 of the chip 200, bosses in conductive material, intended to improve the electrical contact, then in applying the chip on the previously printed pattern, before complete polymerization of the conductive ink used for printing the pattern. The fixing and the connection of the chip are then carried out simultaneously, during the polymerization of the conductive ink of the printed pattern. Finally, in the case where the conductive tracks 112 are produced by printing by ink jet, of a metal alloy, it is possible to fix and connect the chip in a single welding step. For this, bosses of metal alloy with a low melting point are produced on the contact pads 220 of the chip 200 and are remelted when the chip is transferred in order to weld them to the conductive tracks 112.
  • a final step in the manufacture of the chip card with flush contacts illustrated in FIG. 4B then consists in coating the chip with a protective resin 300.
  • a drop of resin is deposited in the cavity 120.
  • a resin of very low viscosity is preferably used.
  • the protective resin must be chosen so that it is compatible with this adhesive.
  • a second method for carrying out the transfer of the chip consists in sticking the chip in the place with its active face, comprising the contact pads, facing upwards, that is to say towards the opening of the cavity 120 This type of assembly is illustrated by FIGS. 5A and 5B which show respectively a top view and a sectional view of a smart card with flush contact.
  • the interconnection tracks 112 are brought close to the location provided for the chip 200.
  • the chip 200 is bonded to the bottom of the cavity 120, by the face opposite to the active face, using an adhesive. 500 insulating.
  • the adhesive 500 used can for example be a crosslinking adhesive under the effect of exposure to ultraviolet radiation.
  • the rate of this bonding operation can be particularly high, since it is possible, for example, to bond five to six thousand chips per hour.
  • the electrical connections are made between the contact pads 220 of the chip 200 and the conductive tracks 112. These connections are made by dispensing a conductive resin 400 on the contact pads 220 of the chip and the tracks 112.
  • the conductive resin 400 may for example be a polymerizable adhesive loaded with conductive particles such as silver particles.
  • This second connection step can be carried out at the same high rate as the bonding step of the chip. In addition, these two bonding and connection steps can be carried out using the same equipment.
  • the chip 200 is then coated with a protective resin 300 which is deposited in the cavity 120 and is flush with the surface of the card support 100.
  • a protective resin 300 which is deposited in the cavity 120 and is flush with the surface of the card support 100.
  • This encapsulation resin thus makes it possible to protect the integrated circuit chip from climatic and mechanical constraints. It must also be compatible with the insulating adhesive 500 and with the conductive resin 400 used.
  • FIGS. 5A and 5B which have just been described show diagrammatically a configuration for which each contact pad is located opposite a pad of the chip which is associated with it.
  • the chip is mounted according to a third method consisting of conventional wired cabling, it will be necessary to use an interdigitated pattern as shown diagrammatically in FIGS. 5C and 5D and as described in patent application EP-A-0 753 827.
  • This interdigitated pattern thus makes it possible to bring the connection tracks 112 of each contact pad 111, associated with a contact pad 220 of the chip 200, close to this pad, and thus to avoid entanglement of the connection wires 260
  • FIG. 5C represents more particularly the interdigitated pattern on which a chip 200 is transferred.
  • FIG. 5D also represents the wire connections 260 between the connection tracks 112 and the contact pads of the chip.
  • the interface elements consist of an antenna, the turns of which can be printed on the surface of the card and / or in the cavity. However, whatever the location of the turns, the ends of the antenna must always be positioned in the bottom of the cavity, in order to be able to connect them to the contact pads of the chip.
  • FIGS. 6A and 6B diagrammatically show two electronic labels seen from above, during their manufacture. These two labels can possibly be used as a basis for the manufacture of contactless smart cards or else be used as such. They are referenced 100. They comprise a cavity 120 and an antenna 140.
  • the antenna 140 is obtained by printing conductive ink using one of the printing techniques mentioned above, namely pad printing, offset printing or the inkjet.
  • the label of Figure 6A has an antenna
  • a chip not shown in this figure, is then transferred to the bottom of the cavity and connected to the ends 141, 142 of the antenna.
  • the transfer of the chip can be done in the two ways described above. However, in the case of a "flip chip" assembly, it is preferable to avoid the use of an anisotropic conductive adhesive in order to avoid short circuits liable to occur due to the presence of the antenna turns in the bottom. of the cavity.
  • the antenna 140 of the label shown in Figure 6B differs from the antenna shown in Figure 6A in that the turns are fully printed on the surface of the card holder 100 and only the antenna ends 141, 142 , forming conductive tracks associated with the antenna, terminate in the bottom of the cavity.
  • This embodiment facilitates the transfer of the chip into the bottom of the cavity.
  • the antenna turns overlap at at least one point C of the surface of the card. It is therefore necessary to apply an insulating varnish to this overlap point (s) in order to avoid the appearance of a short circuit.
  • a subsequent step consists in applying an insulating protective varnish to its turns.
  • An encapsulation resin is also deposited in the cavity 120 in order to protect the chip, and the antenna when the latter is located in the cavity.
  • a hybrid card can also be produced in accordance with the method according to the invention.
  • Figures 7A and 7B show schematically such a card.
  • the interface elements consist of a connection terminal 110 and an antenna 140.
  • the printed pattern by printing of conductive ink, comprises on the one hand the connection terminal 110 which is extended by conductive tracks 112 ending in the bottom of the cavity, and on the other hand the antenna 140 whose ends 141,
  • a chip is then transferred to the bottom of the cavity 120 so that its contact pads are connected on the one hand to the ends 141, 142 of the antenna and on the other share to the conductive tracks 112 associated with the contact pads 111 of the connection terminal block 110.
  • FIG. 7A illustrates a preferred embodiment, according to which the antenna 140 is entirely produced in the cavity 120 so that only the contact pads 111 of the connection terminal block 110 are visible on the surface of the card support 100.
  • the antenna tracks overlap and an insulating varnish
  • the antenna turns 140 with an insulating varnish, before the transfer of the chip, in order to avoid the appearance of short circuits.
  • the chip can be transferred using the different methods described above. However, we prefer to postpone it according to the second method, i.e. the active side facing upwards and the contact pads connected by means of a resin. conductive, like silver glue for example.
  • This mode of transfer indeed requires less precision concerning the position of the conductive tracks formed by the ends 141, 142 of the antenna, and of the conductive tracks 112 associated with the terminal block 110, relative to the contact pads of the chip; and it makes it possible to avoid possible short circuits by bonding, in the bottom of the cavity and on the antenna turns 140, the inactive face of the chip by means of an insulating adhesive. Thanks to the method according to the invention, it is possible to manufacture smart cards in large mass because the production rate is considerably increased. Indeed, the intermediate steps of manufacturing a micromodule are eliminated and the realization of the connection terminal block, and / or the antenna, and the interconnection tracks is done in a single and same step consisting of an impression of conductive ink. This results in a significant reduction in the cost price.
  • the method according to the invention is inexpensive because the conductive ink is less expensive than copper, nickel and gold which are used in conventional methods for producing metallizations and connections.
  • the invention does not use expensive equipment which reduces manufacturing costs.
  • the cavity being produced at a sufficiently shallow depth to allow a printing of good quality conductive ink on the inclined walls and on the bottom (typically on a depth less than 400 ⁇ m), it remains on the back of the chip, that is to say in the lower part of the card located under the cavity, a greater amount of material than in traditional smart cards.
  • the thickness remaining under the cavity is indeed between 350 and 500 ⁇ m. This remaining thickness makes it possible to considerably reduce the risks of formation of cracks likely to occur.
  • the mechanical strength of the chip in the card body is therefore improved.
  • this geometry is extremely easy to manufacture by injection molding with a fixed core of simple design.

Abstract

L'invention se rapporte à un procédé de fabrication d'un dispositif électronique, tel qu'une carte à puce, comprenant au moins une puce de circuit intégré (200), qui est logée dans une cavité (120) du corps de carte (100). La puce (200) est connectée, par l'intermédiaire de pistes conductrices (112), à des éléments d'interface (110). La cavité (120) présente des parois inclinées. Les pistes conductrices (112) et les éléments d'interface (110) forment un motif qui est obtenu par impression d'encre conductrice en trois dimensions. Le motif s'étend de la surface du support de carte (100), le long des parois inclinées de la cavité (120) jusque dans le fond de celle-ci. Ce procédé permet d'augmenter la cadence de fabrication des cartes à puce et de réduire leur prix de revient.

Description

PROCEDE DE FABRICATION D'UN DISPOSITIF ELECTRONIQUE PORTABLE COMPORTANT AU MOINS UNE PUCE DE CIRCUIT
INTÉGRÉ
La présente invention concerne la fabrication d'un dispositif électronique portable, comportant au moins une puce de circuit intégré qui est noyée dans un support et électriquement reliée à des éléments d'interface constitués par un bornier de connexion et/ou une antenne. Ces dispositifs électroniques portables constituent par exemple des cartes à puce avec et/ou sans contact ou encore des étiquettes électroniques . Les cartes à puce avec et/ ou sans contact sont destinées à la réalisation de diverses opérations, telles que, par exemple, des opérations bancaires, des communications téléphoniques, diverses opérations d'identification, ou des opérations de type télébillétique.
Les cartes à contact comportent des métallisations affleurant la surface de la carte, disposées à un endroit précis du corps de carte, défini par la norme usuelle ISO 7816. Ces métallisations sont destinées à venir au contact d'une tête de lecture d'un lecteur en vue d'une transmission électrique de données.
Les cartes sans contact, quant à elles, comportent une antenne qui permet d'échanger des informations avec l'extérieur grâce à un couplage électromagnétique entre l'électronique de la carte et un appareil récepteur ou lecteur. Ce couplage est réalisé en mode lecture ou en mode lecture/écriture et la transmission des données s'effectue par radiofréquence ou hyperfréquence .
Il existe également des cartes hybrides ( "combicards" ) comportant à la fois des métallisations affleurant la surface de la carte et une antenne noyée dans le corps de carte. Ce type de carte peut donc échanger des données avec l'extérieur soit en mode à contacts, soit en mode sans contact. Telles qu'elles sont réalisées actuellement, les cartes sans contact sont, de même que les cartes à contacts, des objets portables de faible épaisseur dont les dimensions sont normalisées. La norme usuelle ISO 7810 correspond à une carte de format standard de 85 mm de longueur, de 54 mm de largeur et de 0,76 mm d' épaisseur.
La majorité des procédés de fabrication de cartes à puce est basée sur l'assemblage de la puce de circuit intégré dans un sous-ensemble appelé micromodule qui est ensuite encarté en utilisant des procédés traditionnels.
Un procédé classique, illustré sur la figure 1, consiste à coller une puce de circuit intégré 20 en disposant sa face active avec ses plots de contact 22 vers le haut, et en collant la face opposée sur une feuille support diélectrique 28. La feuille diélectrique 28 est elle-même disposée sur une grille de contacts 24 d'une plaque métallique en cuivre nickelé et doré. Des puits de connexion 21 sont pratiqués dans la feuille diélectrique 28 et des fils de connexion 26 relient les plots de contact 22 de la puce 20 aux plages de contacts de la grille 24 par l'intermédiaire de ses puits de connexion 21. Enfin, une résine d' encapsulation 30, à base d'époxy, protège la puce 20 et les fils de connexion 26 soudés. Le module est ensuite découpé puis encarté dans la cavité d'un corps de carte préalablement décoré.
Ce procédé présente cependant l'inconvénient d'être coûteux. En effet, étant donné que le micromodule est fabriqué séparément du support de carte, les étapes de fabrication d'une carte à puce sont très nombreuses et contribuent à accroître le coût de fabrication. De plus, la plaque support métallique en elle-même reste un élément très cher car la connexion, par fils notamment, nécessite des métallisations en nickel et or.
La présente invention a donc pour but de supprimer les étapes intermédiaires de fabrication d'un micromodule de manière à augmenter le rendement et à réduire le coût de fabrication.
Des procédés de fabrication de cartes à puce, sans étape intermédiaire de réalisation d'un micromodule, ont déjà été étudiés. Une première solution, décrite dans les demandes de brevet FR2671416, FR2671417 et FR 2671418, consiste à encarter une puce de circuit intégré directement dans un corps de carte. Pour cela, le support de carte est localement ramolli et la puce est pressée dans la zone ramollie. Aucune cavité n'est donc pratiquée dans le corps de carte. Une carte obtenue selon cette technologie est schématisée en vue de dessus sur la figure 2. La puce 20 est disposée de telle sorte que ses plots de contact 22 affleurent la surface de la carte 10. Des opérations de sérigraphie permettent ensuite d'imprimer, sur un même plan, des plages de contact 25 et des pistes conductrices 27 permettant de relier les plages de contact 25 aux plots de contact 22 de la puce 20. Un vernis de protection est ensuite appliqué sur la puce 20. Cette première solution présente cependant plusieurs inconvénients. Tout d'abord, étant donné qu'aucune cavité n'est pratiquée dans le support de carte, ce procédé ne peut être adapté qu'à des puces de très petites dimensions. De plus, l'opération de sérigraphie des plages de contacts 25 et des pistes d'interconnexion 27 est délicate à mettre en oeuvre car le positionnement des pistes 27 sur les plots de contact 22 de la puce 20 nécessite une très grande précision d'indexation qui doit être contrôlée par VAO (Vision Assistée par Ordinateur) . Cette contrainte nuit à la cadence et au rendement du procédé de fabrication.
La puce doit par ailleurs être parfaitement positionnée, pour que ses plots de contact 22 soient disposés parallèlement aux bords latéraux de la carte, afin de pouvoir réaliser les plages de contact 25 parallèles aux bords latéraux de la carte. Or, la puce étant disposée dans une zone localement ramollie, il n'est pas facile de la positionner correctement, et les cartes à puce dont les plages de contact sont disposées légèrement de biais sont destinées au rebut.
Ce procédé est par conséquent trop délicat à mettre en oeuvre pour être adapté à une production industrielle. De plus, le pourcentage de cartes destinées au rebut reste important si bien que le coût de fabrication est très élevé.
Une autre solution ayant été envisagée utilise la technologie "Chrysalide". Cette technologie repose sur l'application de pistes électriquement conductrices par un procédé de type MID ("Moulded Interconnection Device" en littérature anglo-saxonne) . Plusieurs procédés associés à cette technologie ont déjà fait l'objet de dépôts de demandes de brevet. Les demandes de brevet EP-A-0 753 827, EP-A-0 688 050, et EP-A- 0 688 051, notamment, décrivent des procédés de fabrication et d'assemblage d'une carte à circuit intégré. La carte comporte un logement pour recevoir le circuit intégré, et des pistes électriquement conductrices sont disposées contre le fond et les parois latérales du logement et sont reliées à des plages métalliques de contact formées sur la surface du support de carte.
L'application des pistes conductrices dans le logement peut être effectuée de trois manières différentes .
Une première manière consiste à réaliser de l'estampage à chaud. Pour cela, une feuille comportant des métallisations en cuivre, recouvertes éventuellement d'étain ou de nickel, et munie d'une colle activable à chaud, est découpée puis collée à chaud dans le logement.
Une deuxième manière consiste à appliquer, au moyen d'un tampon, une laque contenant un catalyseur au Palladium, aux endroits destinés à être métallisés; à chauffer la laque; puis à réaliser une métallisation, par dépôt de cuivre et/ou de nickel, en utilisant un procédé électrochimique d' autocatalyse .
Une troisième manière consiste à réaliser une lithogravure à partir d'hologrammes laser. Cette lithogravure permet de réaliser des dépôts de métallisations en trois dimensions avec une très grande précision et une haute résolution.
Tous ces procédés d'application de métallisations sont cependant complexes à mettre en oeuvre et donc coûteux. Ils nécessitent souvent l'utilisation d'un outillage spécifique et de plusieurs étapes supplémentaires. Or, le but de l'invention étant de supprimer des étapes de fabrication du micromodule, ce n'est pas pour en rajouter d'autres au moment de l'application des pistes conductrices.
De plus, les métallisations étant réalisées en cuivre et/ou en nickel, elles restent coûteuses et contribuent à augmenter le prix de revient des cartes. La technologie "Chrysalide" fait donc appel à des procédés trop complexes, coûteux et nuisibles au rendement de fabrication, pour être adaptée à une production industrielle en grande masse. Pour pallier les inconvénients précités, l'invention propose un procédé de fabrication d'un dispositif électronique portable, tel qu'une carte à puce, selon lequel les étapes de fabrication d'un micromodule sont supprimées. Pour cela, des pistes conductrices et des éléments d'interface sont réalisés par impression, en trois dimensions, d'une substance conductrice. La puce est ensuite connectée aux éléments d'interface, par l'intermédiaire des pistes conductrices . L'invention a plus particulièrement pour objet un procédé de fabrication d'un dispositif électronique, tel qu'une carte à puce, comprenant au moins une puce de circuit intégré qui est noyée dans un support de carte et qui comporte des plots de contact reliés, par l'intermédiaire de pistes conductrices, à des éléments d'interface constitués par un bornier de connexion et/ou une antenne, caractérisé en ce qu'il consiste à :
- réaliser, dans le support carte, une cavité présentant des parois inclinées, - réaliser une impression d'encre conductrice, en trois dimensions, pour former un motif comprenant les éléments d'interface et les pistes conductrices, ledit motif s 'étendant de la surface du support de carte, le long des parois inclinées de la cavité jusque dans le fond de celle-ci,
- reporter et connecter la puce dans le fond de la cavité,
- enrober la puce dans une résine de protection. La forme de la cavité à parois inclinées permet de faciliter le dépôt d'encre conductrice par une technique d'impression. De plus, l'encre conductrice présente un coût avantageux par rapport au cuivre ou au nickel utilisés dans le cas de dépôt de métallisations. Par ailleurs, les éléments d'interface étant imprimés, ils présentent une épaisseur négligeable.
Le procédé selon l'invention présente en outre l'avantage d'être rapide et peu coûteux. Cet avantage est notamment dû au fait que les éléments d'interface ainsi que les pistes conductrices sont formés en une seule étape consistant en une technique simple d'impression d'encre conductrice.
D'autres particularités et avantages de l'invention apparaîtront à la lecture de la description donnée à titre d'exemple illustratif et non limitatif, et faite en référence aux figures annexées qui représentent :
- la figure 1, déjà décrite, un schéma en section transversale qui illustre un procédé traditionnel de fabrication de carte à puce à contacts,
- la figure 2, déjà décrite, un schéma en vue de dessus, d'une carte à puce fabriquée selon une technologie connue, - la figure 3, un schéma d'une carte à puce à contacts obtenue selon un procédé de l'invention;
- les figures 4A et 4B, respectivement une vue de dessus et une vue en coupe d'une carte à puce à contacts selon l'invention, dans laquelle la puce est reportée selon un montage "flip chip",
- les figures 5A et 5B, respectivement une vue de dessus et une vue en coupe d'une carte à puce à contacts selon l'invention, dans laquelle la puce est reportée selon un autre type de montage, - les figures 5C et 5D, deux vues de dessus d'une carte à puce à contacts selon l'invention, dans laquelle la puce est respectivement reportée puis connectée selon un autre type de montage, - les figures 6A et 6B, respectivement une vue de dessus de deux étiquettes électroniques au cours de leur fabrication,
- les figures 7A et 7B, une vue de dessus de deux cartes hybrides, réalisées selon le procédé de l'invention.
La figure 3 schématise une carte à puce à contacts obtenue selon un mode de réalisation d'un procédé selon l'invention. Le corps de carte, référencé 100, est obtenu selon un procédé classique de fabrication, par exemple par injection de matière plastique dans un moule. Ce support de carte 100 comporte, à un emplacement défini par la norme ISO, un élément d'interface constitué, dans l'exemple de la figure 3, par un bornier de connexions 110 muni de plages de contact 111 affleurant la surface. Ces plages de contact 111 sont positionnées autour d'une cavité 120 pratiquée dans le corps de carte. Cette cavité est pratiquée soit par fraisage, soit lors de l'injection de la carte, ce qui est plus économique. Elle est de préférence circulaire et présente des parois inclinées. Cependant, elle peut tout aussi bien être rectangulaire, losangique ou octogonale etc. Des pistes conductrices 112, rattachées aux plages de contact 111, tapissent par ailleurs le fond et les parois de la cavité 120.
En fait, les plages de contact 111 et les pistes conductrices 112 forment un seul motif obtenu en une seule étape, par impression, en trois dimensions, d'encre conductrice. Ainsi, les plages de contact 111 sont constituées d'encre conductrice, déposée par impression sur la surface 100 de la carte, et se prolongent par des pistes conductrices 112, le long des parois inclinées de la cavité, jusque dans le fond de celle-ci .
La forme inclinée de la cavité 120 est importante car elle permet de faciliter l'impression d'encre conductrice. Dans l'exemple schématisé sur la figure 3, la cavité possède deux plans : le premier plan est horizontal et défini à l'intérieur d'un premier cercle 121 formant le fond de la cavité; le deuxième plan, formant les parois de la cavité 120, est incliné et défini à l'intérieur d'un deuxième cercle 122. La profondeur de la cavité doit être suffisamment faible pour faciliter l'impression du motif. Ainsi, elle est de préférence comprise entre 100 et 600 μm, par exemple de l'ordre de 300 μm.
La cavité peut cependant être de toute autre forme, par exemple rectangulaire, losangique ou octogonale.
Une puce de circuit intégré 200 est reportée dans le fond de la cavité 120 et connectée, par l'intermédiaire des pistes conductrices 112, aux plages de contact 111.
L'impression, en trois dimensions, -d'encre conductrice pour former l'élément d'interface 110 et les pistes conductrices 112 peut être réalisée selon différentes techniques. Dans un premier mode de réalisation, l'impression d'encre conductrice est obtenue par une technique de tampographie. Pour cela, un tampon encreur permet de reporter l'encre conductrice, selon le motif désiré, sur la surface de la carte et dans la cavité. De préférence, le tampon est réalisé en matière déformable, par exemple en matière silicone, afin de s'adapter à la forme de la cavité. En fait, la forme et la matière du tampon sont définies en fonction non seulement de la forme de la cavité mais aussi de la résolution souhaitée pour le motif à imprimer.
Cette technique peut être mise en oeuvre soit avec un tampon à déplacement vertical vers la carte, soit avec un tampon rotatif. Dans un deuxième mode de réalisation, l'impression d'encre conductrice est obtenue par une technique d'impression offset utilisant un rouleau compressible et de faible dureté de type blanchet pour le transfert de l'encre sur la carte. Excepté les contraintes sur le rouleau de type blanchet, le reste des paramètres d'impression est similaire aux techniques classiques d'impression, c'est-à-dire l'utilisation d'un encrier, d'une plaque polymère ou métallique, comportant le motif à imprimer creux ou en relief, et d'un rouleau de transfert d' encre.
Dans les deux techniques de tampographie et d'impression offset la profondeur de la cavité ne doit pas être trop importante en regard de la souplesse du rouleau ou du tampon utilisé. Typiquement, la profondeur de la cavité est comprise entre 100 μm et 600 μm.
Un troisième mode de réalisation, pour l'impression d'encre conductrice en trois dimensions, consiste à utiliser une technique d'impression par jet d'encre. Traditionnellement, la technique d'impression par jet d'encre peut être réalisée de deux manières différentes et bien connues : soit par une méthode dite de goutte à la demande, soit par jet d'encre continu dévié. Cette dernière technique d'impression par jet d'encre consiste à projeter des gouttes chargées en électricité statique suivant une trajectoire définie. Au cours de l'impression, la trajectoire de ces gouttes peut être modifiée en appliquant une polarisation différente à des plaques de déviation.
Afin de pouvoir réaliser une impression en trois dimensions de bonne qualité et imprimer correctement le motif comprenant des éléments d'interface et des pistes conductrices, la cavité ne doit pas comporter de plan proche de la verticale, mais uniquement des plans horizontaux ou inclinés selon un angle d'inclinaison compris entre 5 et 30°, de préférence entre 15 et 20°.
Grâce à ces techniques d'impression d'encre conductrice en trois dimensions, il est possible d'imprimer, en une seule étape, à la fois des éléments d'interface constitués par un bornier de connexion et/ou une antenne, et des pistes conductrices destinées à permettre la connexion de la puce. Dans ce cas, les éléments d'interface et les pistes conductrices forment un seul et même motif.
Les différentes techniques d'impression permettent d'utiliser différentes sortes d'encre conductrice. Ainsi, l'encre conductrice peut être constituée par une encre à solvant, comportant une résine polymère solubilisée dans un solvant avec des -charges conductrices (particules métalliques) , qui durcie par évaporation du solvant. L'encre peut en outre être une encre thermodurcissable mono- ou bicomposant, une encre à polymérisation sous rayonnement UV , un composé de type pâte à braser ou encore un alliage métallique.
La puce peut, quant à elle, être reportée au fond de la cavité selon trois types de montage différents. Une première méthode consiste à reporter la puce selon un montage de type "flip chip". Ce type de montage est déjà bien connu et il est représenté sur les schémas en vue de dessus et en coupe des figures 4A et 4B. Sur la figure 4B, les plages de contact 111 du bornier de connexion 110 et les pistes conductrices 112 sont représentées par un trait épais noir pour faciliter la compréhension. Mais, étant donné qu'elles sont obtenues par impression d'encre conductrice, leur épaisseur est en réalité négligeable. Le report de la puce est effectué en la retournant, la face active comportant les plots de contact 220 orientés vers le fond de la cavité 120. La puce 200 est ensuite connectée en appliquant ses plots de contact 220 sur les plages conductrices 112 préalablement imprimées, sans utilisation de fils conducteurs. Dans ce cas les pistes d'interconnexion 112 doivent être imprimées avec précision et elles sont amenées jusqu'à l'emplacement exact des plots de contact 220 de la puce 200 de circuit intégré.
Dans l'exemple illustré sur la figure 4B, la puce 200 est connectée aux pistes conductrices 112 au moyen d'une colle 350 à conduction électrique anisotrope bien connue et souvent utilisée pour le montage de composants passifs en surface. Cette colle 350 contient en fait des particules conductrices élastrquement déformables, qui permettent d'établir une conduction électrique suivant l'axe z (c'est à dire suivant l'épaisseur) lorsqu'elles sont pressées entre les plots de contact 220 et les pistes conductrices 112, tout en assurant une isolation suivant les autres directions
(χ,y) •
Dans une variante de réalisation, la connexion électrique peut être établie au moyen de protubérances formées par un adhésif conducteur, préalablement déposé sur les plots de contact 220 de la puce et réactivé à chaud lors du report de la puce.
Une autre façon d'établir la connexion électrique entre la puce 200 et les pistes conductrices 112 consiste à réaliser, sur les plots de contact 220 de la puce 200, des bossages en matériau conducteur, destinés à améliorer le contact électrique, puis à appliquer la puce sur le motif préalablement imprimé, avant la polymérisation complète de l'encre conductrice utilisée pour l'impression du motif. La fixation et la connexion de la puce s'effectuent alors simultanément, au cours de la polymérisation de l'encre conductrice du motif imprimé. Enfin, dans le cas où les pistes conductrices 112 sont réalisées par impression par jet d'encre, d'un alliage métallique, il est envisageable de fixer et de connecter la puce en une seule étape de soudage. Pour cela, des bossages en alliage métallique à bas point de fusion sont réalisés sur les plots de contact 220 de la puce 200 et sont refondus au moment du report de la puce afin de les souder aux pistes conductrices 112.
Une dernière étape de la fabrication de la carte à puce à contacts affleurant illustrée sur la figure 4B consiste ensuite à enrober la puce d'une résine de protection 300. Pour cela, une goutte de résine est déposée dans la cavité 120. De plus, pour obtenir une surface externe plane, on utilise de préférence une résine de très faible viscosité. Par ailleurs lorsqu'une colle conductrice est utilisée pour le report de la puce, la résine de protection doit être choisie de façon à ce qu'elle soit compatible avec cette colle. Une deuxième méthode pour effectuer le report de la puce consiste à coller la puce à l'endroit avec sa face active, comportant les plots de contact, orientée vers le haut, c'est-à-dire vers l'ouverture de la cavité 120. Ce type de montage est illustré par les figures 5A et 5B qui schématisent respectivement une vue de dessus et une vue en coupe d'une carte à puce à contact affleurant.
Dans ce cas, les pistes d'interconnexion 112 sont amenées à proximité de l'emplacement prévu pour la puce 200. La puce 200 est collée dans le fond de la cavité 120, par la face opposée à la face active, en utilisant une colle 500 isolante. La colle 500 utilisée peut par exemple être un adhésif réticulant sous l'effet d'une exposition à un rayonnement ultra-violet. La cadence de cette opération de collage peut être particulièrement élevée, puisqu'il est possible de coller par exemple cinq à six milles puces à l'heure.
Dans une deuxième étape, on réalise les connexions électriques entre les plots de contact 220 de la puce 200 et les pistes conductrices 112. Ces connexions sont effectuées par dispense d'une résine conductrice 400 sur les plots de contact 220 de la puce et les pistes de connexion 112. La résine conductrice 400 peut par exemple être une colle polymérisable chargée en particules conductrices telles que des particules d'argent. Cette deuxième étape de connexion peut être réalisée avec la même cadence élevée qu'à l'étape de collage de la puce. De plus, ces deux étapes de collage et de connexion peuvent être réalisées en utilisant le même équipement.
De la même manière que précédemment décrite, la puce 200 est ensuite enrobée d'une résine de protection 300 qui est déposée dans la cavité 120 et affleure la surface du support de carte 100. cette résine d'encapsulation permet ainsi de protéger la puce de circuit intégré des contraintes climatiques et mécaniques. Elle doit d'autre part être compatible avec la colle isolante 500 et avec la résine conductrice 400 utilisées .
Les figures 5A et 5B qui viennent d'être décrites schématisent une configuration pour laquelle chaque plage de contact se trouve en face d'un plot de la puce qui lui est associé. En revanche lorsque la puce est montée selon une troisième méthode consistant en un câblage filaire classique, il faudra utiliser un motif interdigité tel que schématisé sur les figures 5C et 5D et tel que décrit dans la demande de brevet EP-A-0 753 827. Ce motif interdigité permet ainsi d'amener les pistes de connexion 112 de chaque plage de contact 111, associée à un plot de contact 220 de la puce 200, à proximité de ce plot, et d'éviter ainsi un enchevêtrement des fils de connexion 260. La figure 5C représente plus particulièrement le motif interdigité sur lequel une puce 200 est reportée. La figure 5D représente en outre les connexions filaires 260 entre les pistes de connexion 112 et les plots de contact de la puce.
L'invention s'applique également à la fabrication de cartes à puce sans contact. Dans ce cas, les éléments d'interface sont constitués par une antenne dont les spires peuvent être imprimées sur la surface de la carte et/ou dans la cavité. Cependant, quel que soit l'emplacement des spires, les extrémités de l'antenne doivent toujours être positionnées dans le fond de la cavité, afin de pouvoir les connecter aux plots de contacts de la puce. Les figures 6A et 6B schématisent deux étiquettes électroniques vues de dessus, au cours de leur fabrication. Ces deux étiquettes peuvent éventuellement servir de base à la fabrication de cartes à puce sans contact ou bien être utilisées telle qu'elles. Elles sont référencées 100. Elles comportent une cavité 120 et une antenne 140. L'antenne 140 est obtenue par impression d'encre conductrice en utilisant l'une des techniques d'impression citées précédemment, à savoir la tampographie, l'impression offset ou le jet d'encre.
L'étiquette de la figure 6A comporte une antenne
140 dont les spires sont réalisées à la fois sur la surface de la carte et dans la cavité 120. Les pistes conductrices associées à cet élément d'interface sont formées par les extrémités d'antenne 141, 142, et aboutissent dans le fond de la cavité. Une puce, non représentée sur cette figure, est ensuite reportée dans le fond de la cavité et connectée aux extrémités 141, 142 d'antenne. Le report de la puce peut se faire des deux manières décrites ci-dessus. Cependant, dans le cas d'un montage "flip chip", on préfère éviter l'utilisation d'une colle conductrice anisotrope afin d'éviter des courts circuits susceptibles de se produire du fait de la présence des spires d'antenne dans le fond de la cavité.
Dans ce cas, et plus particulièrement dans le cas du schéma de la figure 6B décrit ci-dessous, dans la mesure où il n'y a que deux contacts à relier, on pourra envisager d'effectuer la connexion en déposant deux petites gouttes de colle conductrice puis en positionnant la puce face retournée vers le bas. Préalablement au report de la puce, on préfère en outre protéger les spires d'antenne situées dans le fond de la cavité en les recouvrant d'un vernis isolant.
L'antenne 140 de l'étiquette représentée sur la figure 6B diffère de l'antenne représentée sur la figure 6A par le fait que les spires sont entièrement imprimées sur la surface du support de carte 100 et seules les extrémités d'antenne 141, 142, formant des pistes conductrices associées à l'antenne, aboutissent dans le fond de la cavité. Cette forme de réalisation permet de faciliter le report de la puce dans le fond de la cavité. En revanche, dans ce cas les spires d'antenne se chevauchent en au moins un point C de la surface de la carte. Il est donc nécessaire d'appliquer un vernis isolant sur ce (s) point (s) de chevauchement afin d'éviter l'apparition d'un court-circuit.
Lorsque l'antenne est ainsi réalisée sur la surface de la carte une étape ultérieure consiste à appliquer sur ses spires un vernis isolant de protection.
On peut également noyer l'antenne, en appliquant une autre feuille plastique sur la surface imprimée de la carte, afin de réaliser une carte à puce sans contact .
Une résine d'encapsulation est par ailleurs déposée dans la cavité 120 afin de protéger la puce, et l'antenne lorsque celle-ci est située dans la cavité.
Une carte hybride peut également être réalisée conformément au procédé selon l'invention. Les figures 7A et 7B schématisent une telle carte. Dans ce cas, les éléments d'interface sont constitués par un bornier de connexion 110 et une antenne 140. Le motif imprimé, par impression d'encre conductrice, comprend d'une part le bornier de connexion 110 qui se prolonge par des pistes conductrices 112 aboutissant dans le fond de la cavité, et d'autre part l'antenne 140 dont les extrémités 141,
142 au moins aboutissent dans le fond de la cavité 120. Une puce est ensuite reportée dans le fond de la cavité 120 de telle sorte que ses plots de contact soient connectés d'une part aux extrémités 141, 142 d'antenne et d'autre part aux pistes conductrices 112 associées aux plages de contact 111 du bornier de connexion 110.
Pour des raisons de clarté, la puce n'est pas représentée sur les figures 7A et 7B. La figure 7A illustre un mode de réalisation préféré, selon lequel l'antenne 140 est entièrement réalisée dans la cavité 120 de manière à ce que seules les plages de contact 111 du bornier de connexion 110 soient visibles sur la surface du support de carte 100. Dans ce cas, les pistes de l'antenne se chevauchent et un vernis isolant
143 est déposé sur les points de chevauchement pour éviter l'apparition d'un court-circuit.
Cependant, il est bien sûr envisageable de réaliser à la fois les spires d'antenne et le bornier de connexion sur la surface du corps de carte, tel que schématisé sur la figure 7B. Dans ce cas, seules les extrémités d'antenne 141, 142 aboutissent dans le fond de la cavité 120. Un vernis isolant 143 est également déposé sur les points de chevauchement des spires d'antenne pour éviter l'apparition d'un court-circuit.
Dans l'exemple de la figure 7A, il est préférable de protéger les spires d'antenne 140 par un vernis isolant, avant le report de la puce, afin d'éviter l'apparition de courts-circuits. Le report de la puce peut se faire selon les différentes méthodes décrites précédemment. Cependant on préfère la reporter selon la deuxième méthode, c'est à dire la face active orientée vers le haut et les plots de contact connectés au moyen d'une résine conductrice, comme de la colle à argent par exemple. Ce mode de report requiert en effet moins de précision concernant la position des pistes conductrices formées par les extrémités 141, 142 d'antenne, et des pistes conductrices 112 associées au bornier 110, par rapport aux plots de contact de la puce; et il permet d'éviter d'éventuels court-circuits en collant, dans le fond de la cavité et sur les spires d'antenne 140, la face inactive de la puce au moyen d'une colle isolante. Grâce au procédé selon l'invention, il est possible de fabriquer des cartes à puce en grande masse car la cadence de fabrication est considérablement augmentée. En effet, les étapes intermédiaires de fabrication d'un micromodule sont supprimées et la réalisation du bornier de connexion, et/ou de l'antenne, et des pistes d'interconnexion se fait en une seule et même étape consistant en une impression d'encre conductrice. Il en résulte une diminution importante du prix de revient.
De plus, le procédé selon l'invention est peu coûteux car l'encre conductrice est moins chère que le cuivre, le nickel et l'or qui sont utilisés dans les procédés classiques pour la réalisation des métallisations et des connexions.
En outre, l'invention n'utilise pas d'équipement cher ce qui réduit les coûts de fabrication.
D'autre part, la cavité étant réalisée sur une profondeur suffisamment faible, pour permettre une impression d'encre conductrice de bonne qualité sur les parois inclinées et sur le fond (typiquement sur une profondeur inférieure à 400 μm) , il reste au dos de la puce, c'est-à-dire dans la partie inférieure de la carte située sous la cavité, une quantité de matière plus importante que dans les cartes à puce traditionnelles. L'épaisseur restante sous la cavité est en effet comprise entre 350 et 500 μm. Cette épaisseur restante permet de réduire considérablement les risques de formation de fissures susceptibles de se produire. La tenue mécanique de la puce dans le corps de carte est par conséquent améliorée. De plus cette géométrie est extrêmement facile à fabriquer par moulage par injection avec un noyau fixe de conception simple.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un dispositif électronique, tel qu'une carte à puce, comprenant au moins une puce de circuit intégré (200) qui est noyée dans un support de carte (100) et qui comporte des plots de contact (220) reliés, par l'intermédiaire de pistes conductrices (112; 141, 142), à des éléments d'interface constitués par un bornier de connexion (110) et/ou une antenne (140), caractérisé en ce qu'il consiste à: - réaliser, dans le support de carte (100), une cavité (120) présentant des parois inclinées,
- réaliser une impression d'encre conductrice, en trois dimensions, pour former un motif comprenant les éléments d'interface (110; 140) et les pistes conductrices (112; 141, 142), ledit motif s'étendant de la surface du support de carte (100), le long des parois inclinées de la cavité (120) jusque dans le fond de celle-ci,
- reporter et connecter la puce (200) dans le fond de la cavité (120) , et
- enrober la puce (200) dans une résine de protection (300).
2. Procédé de fabrication d'une carte à puce à contacts affleurant selon la revendication 1, caractérisé en ce que les éléments d'interface sont constitués par un bornier de connexion (110) qui est imprimé sur la surface du support de carte (100) et se prolonge par les pistes conductrices (112) qui aboutissent dans le fond de la cavité (120) .
3. Procédé de fabrication d'une carte à puce sans contact ou d'une étiquette électronique selon la revendication 1, caractérisé en ce que les éléments d'interface sont constitués par une antenne (140), dont les spires sont imprimées sur la surface du support de carte (100) et/ou dans la cavité (120), et en ce que les pistes conductrices (141, 142) sont formées par les extrémités d'antenne et aboutissent dans le fond de la cavité .
4. Procédé de fabrication d'une carte à puce hybride selon la revendication 1, caractérisé en ce que les éléments d'interface sont constitués d'une part par un bornier de connexion (110), qui est imprimé sur la surface du support de carte (100) et se prolonge par des pistes conductrices (112) aboutissant dans le fond de la cavité (120), et d'autre part par une antenne (140) dont les extrémités (141, 142) au moins aboutissent dans le fond de la cavité (120).
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la cavité (120) est réalisée sur une profondeur comprise entre 100 et 600μm.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que les parois inclinées de la cavité (120) sont réalisées selon un angle d'inclinaison compris entre 5 et 30°.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que l'impression d'encre conductrice est réalisée par tampographie , en utilisant un tampon encreur déformable apte à s'adapter à la forme de la cavité.
8. Procédé selon la revendication 7, caractérisé en ce que le tampon utilisé est un tampon à déplacement vertical ou rotatif.
9. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que l'impression d'encre conductrice est réalisée par une technique offset utilisant un rouleau de type blanchet pour le transfert de l'encre sur le support de carte, le rouleau étant déformable pour s'adapter à la forme de la cavité (120) .
10. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que l'impression d'encre conductrice est réalisée par jet d'encre.
11. Procédé selon l'une des revendications 7 à 10, caractérisé en ce que l'encre conductrice utilisée est une encre à solvant, une encre thermodurcissable bicomposant, une encre poly ér isable sous rayonnement ultra-violet, une pâte à braser ou un alliage métallique .
12. Procédé selon la revendication 1, caractérisé en ce que la puce (200) est reportée dans le fond de la cavité (120) selon un montage "flip chip".
13. Procédé selon la revendication 1, caractérisé en ce que la puce (200) est reportée dans le fond de la cavité (120), par collage de la face opposée à la face active au moyen d'une colle isolante (500), et connectée au moyen d'une résine conductrice (400) dispensée à la fois sur les plots de contact (220) de la puce (200) et sur les pistes conductrices (112; 141, 142) .
14. Procédé selon la revendication 3, caractérisé en ce que la puce (200) est reportée face active retournée vers le bas dans le fond de la cavité (120) , après avoir déposé deux petites gouttes de colle conductrice sur les extrémités d'antenne (141, 142).
EP99920924A 1998-05-27 1999-05-26 Procede de fabrication d'un dispositif electronique portable comportant au moins une puce de circuit integre Withdrawn EP1084481A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9806684 1998-05-27
FR9806684A FR2779255B1 (fr) 1998-05-27 1998-05-27 Procede de fabrication d'un dispositif electronique portable comportant au moins une puce de circuit integre
PCT/FR1999/001232 WO1999062028A1 (fr) 1998-05-27 1999-05-26 Procede de fabrication d'un dispositif electronique portable comportant au moins une puce de circuit integre

Publications (1)

Publication Number Publication Date
EP1084481A1 true EP1084481A1 (fr) 2001-03-21

Family

ID=9526770

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99920924A Withdrawn EP1084481A1 (fr) 1998-05-27 1999-05-26 Procede de fabrication d'un dispositif electronique portable comportant au moins une puce de circuit integre

Country Status (8)

Country Link
EP (1) EP1084481A1 (fr)
JP (1) JP2002517047A (fr)
CN (1) CN1309796A (fr)
AU (1) AU3832299A (fr)
BR (1) BR9910718A (fr)
CA (1) CA2333431A1 (fr)
FR (1) FR2779255B1 (fr)
WO (1) WO1999062028A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875995B1 (fr) * 2004-09-24 2014-10-24 Oberthur Card Syst Sa Procede de montage d'un composant electronique sur un support, de preference mou, et entite electronique ainsi obtenue, telle q'un passeport
JP2006318217A (ja) 2005-05-12 2006-11-24 Matsushita Electric Works Ltd メモリカード用アダプタ
JP4500214B2 (ja) * 2005-05-30 2010-07-14 株式会社日立製作所 無線icタグ、及び無線icタグの製造方法
CN101025796B (zh) * 2006-02-17 2010-05-12 上海英内电子标签有限公司 一种电子标签的倒封装工艺
JP4950627B2 (ja) * 2006-11-10 2012-06-13 株式会社日立製作所 Rficタグとその使用方法
FR3009411A1 (fr) * 2013-08-02 2015-02-06 Ask Sa Couverture de livret d'identite muni d'un dispositif radiofrequence et son procede de fabrication
FR3027433A1 (fr) 2014-10-16 2016-04-22 Ask Sa Procede de fabrication d'un support de dispositif radiofrequence constitue d'une seule couche
CN106299623A (zh) * 2016-09-27 2017-01-04 北京小米移动软件有限公司 无线保真WiFi天线及制造方法
CN106897766A (zh) * 2017-03-31 2017-06-27 金邦达有限公司 带ic芯片的智能卡及智能卡的制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684471B1 (fr) * 1991-12-02 1994-03-04 Solaic Procede de fabrication d'une carte a memoire et carte a memoire ainsi obtenue.
EP0688050A1 (fr) * 1994-06-15 1995-12-20 Philips Cartes Et Systemes Procédé d'assemblage de carte à circuit intégré et carte ainsi obtenue
US6329213B1 (en) * 1997-05-01 2001-12-11 Micron Technology, Inc. Methods for forming integrated circuits within substrates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9962028A1 *

Also Published As

Publication number Publication date
AU3832299A (en) 1999-12-13
CA2333431A1 (fr) 1999-12-02
FR2779255A1 (fr) 1999-12-03
WO1999062028A1 (fr) 1999-12-02
FR2779255B1 (fr) 2001-10-12
JP2002517047A (ja) 2002-06-11
CN1309796A (zh) 2001-08-22
BR9910718A (pt) 2001-01-09

Similar Documents

Publication Publication Date Title
EP0688051B1 (fr) Procédé de fabrication et d'assemblage de carte à circuit intégré.
EP0671705B1 (fr) Procédé de fabrication d'une carte hybride
EP0908843B1 (fr) Carte électronique sans contacts et son procédé de fabrication
WO1997026621A1 (fr) Module electronique sans contact pour carte ou etiquette
EP0753827A1 (fr) Procédé de production et d'assemblage de carte à circuit intégré et carte ainsi obtenue
EP3201843B1 (fr) Procédé de fabrication de carte à puce et carte à puce obtenue par ce procédé.
EP1084481A1 (fr) Procede de fabrication d'un dispositif electronique portable comportant au moins une puce de circuit integre
EP0925553B1 (fr) Procede de fabrication d'un ensemble de modules electroniques pour cartes a memoire sans contact
EP1190377B1 (fr) Procede de fabrication de dispositif electronique portable a circuit integre comportant un dielectrique bas cout
EP1724712A1 (fr) Micromodule, notamment pour carte à puce
EP0688050A1 (fr) Procédé d'assemblage de carte à circuit intégré et carte ainsi obtenue
WO2000025265A1 (fr) Procede de fabrication d'une carte a puce et d'un module electronique destine a etre insere dans une telle carte
WO2000077854A1 (fr) Procede de fabrication de tout ou partie d'un dispositif electronique par jet de matiere
WO2000030032A1 (fr) Procede de fabrication d'une carte a puce hybride par impression double face
FR2810768A1 (fr) Procede de fabrication de cartes a puce hybrides et cartes a puce obtenues par ledit procede
FR2786317A1 (fr) Procede de fabrication de carte a puce a contact affleurant utilisant une etape de gravure au laser et carte a puce obtenue par le procede
EP1190379B1 (fr) Procede de fabrication de cartes a puce a contact avec dielectrique bas cout
WO1999062118A1 (fr) Procede de fabrication d'un micromodule et d'un support de memorisation comportant un tel micromodule
WO2000077728A1 (fr) Carte et procede de fabrication de cartes ayant une interface de communication a contact et sans contact
FR2816107A1 (fr) Module de circuit integre sur film et son procede de fabrication
WO2000048250A1 (fr) Procede de fabrication de support de memorisation portable de type carte a puce
WO2001009828A1 (fr) Procede de fabrication d'une carte a puce a contact
FR2797976A1 (fr) Procede de fabrication de cartes a puce hybrides et cartes a puce obtenues par ledit procede
FR2795204A1 (fr) Procede pour la fabrication d'un support de memorisation comportant une grille de metallisation tridimensionnelle support obtenu
FR2812428A1 (fr) Procede de fabrication d'un micromodule de carte a puce et carte a puce incluant un tel micromodule

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020816

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021228