WO2000030032A1 - Procede de fabrication d'une carte a puce hybride par impression double face - Google Patents

Procede de fabrication d'une carte a puce hybride par impression double face Download PDF

Info

Publication number
WO2000030032A1
WO2000030032A1 PCT/FR1999/002693 FR9902693W WO0030032A1 WO 2000030032 A1 WO2000030032 A1 WO 2000030032A1 FR 9902693 W FR9902693 W FR 9902693W WO 0030032 A1 WO0030032 A1 WO 0030032A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating sheet
antenna
pads
sheet
card
Prior art date
Application number
PCT/FR1999/002693
Other languages
English (en)
Inventor
Jean Christophe Fidalgo
Olivier Brunet
Original Assignee
Gemplus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gemplus filed Critical Gemplus
Priority to AU10516/00A priority Critical patent/AU1051600A/en
Publication of WO2000030032A1 publication Critical patent/WO2000030032A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07766Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement
    • G06K19/07769Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement the further communication means being a galvanic interface, e.g. hybrid or mixed smart cards having a contact and a non-contact interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07743External electrical contacts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48228Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad being disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Definitions

  • the present invention relates to the manufacture of smart cards comprising an integrated circuit chip, the contact pads of which are connected to interface elements constituted by a connection terminal block and an antenna.
  • This type of card is capable of ensuring both contact and contactless operation.
  • hybrid card in the rest of the description, hybrid card or combicard.
  • the exchange of information with the outside is done either by the antenna, which ensures an electromagnetic coupling (in principle of inductive type) between the electronics of the card and a reader (it is the operation without touching) ; either by the contacts of the terminal block flush with the surface of the card, which ensure an electrical transmission of data when they are in contact with a read head of a reader (this is contact operation).
  • Such cards are intended for various operations such as, for example, banking operations, telephone communications, various identification operations, debit operations and recharging of unit of account, and all kinds of operations that can s 'Carry out either by inserting the card in the slot of a reader, or remotely by electromagnetic coupling between a transceiver terminal and the card placed in an area of action of this terminal.
  • Hybrid cards must necessarily have standardized dimensions identical to those of conventional smart cards only provided with contacts. The dimensions of these cards are defined by the usual standard ISO 7810 which corresponds to a standard format card 85mm long, 54mm wide and 0.76mm thick.
  • a first method which is illustrated in FIG. 1, consists in installing, in a cavity 11 hollowed out in a card body 10, a module M consisting of a double-sided printed circuit which is electrically connected to an antenna 15 by via connection wells 13. Connection wells 13 are formed in the cavity 10, so as to make accessible the connection terminals 12 of the antenna 15 which is embedded in the card body.
  • the electrical connection, between the contact pads 22 of the module M and the antenna, is ensured by means of conductive elements 14 which are provided in the connection wells 13.
  • the module M meanwhile, includes contact pads 21 on its upper face, intended to form the access contacts of the smart card, and contact pads 22, on its lower face, intended to be connected to the antenna .
  • These contact pads 21 and 22 are made of nickel-plated copper, on an insulating sheet 20.
  • Conducting wires 27 connect an integrated circuit chip 25 to the contact pads 21, forming the connection terminal block of the card, passing through vias 23 hollowed out in the thickness of the insulating sheet.
  • Other conductive wires 27 connect the chip 25 to the other contact pads 22.
  • An encapsulation resin 28 protects the chip 25 and the wires 27.
  • a second solution proposed in the prior art, and illustrated in FIG. 2, consists in not using a micromodule intended to be inserted.
  • This solution avoids the specific machining of the connection wells as well as their filling with a conductive element to establish a connection between the module and the antenna.
  • This solution consists more particularly in digging a cavity 55 in a card body 50 having at heart an antenna wire 60, produced by inlaying, laminating or printing a substance and at the ends of which are provided connection terminals 61, 62
  • An integrated circuit chip 70 is then fixed in the bottom of the cavity, by gluing for example, with its active face and its contact pads 71 oriented towards the opening of the cavity.
  • connection terminal block 65 is then produced so that its contact pads are flush with the surface of the card and are extended in the cavity by conductive tracks 66 intended to be connected to the output pads 71 of the chip 70.
  • This terminal block thus that the connections with the chip are made by depositing, by means of a syringe or the like, a conductive resin 63 of low viscosity which remains flexible after its application.
  • the output pads 71 of the chip 70 are connected in the same way to the connection terminals 61, 62 of the antenna 60.
  • the chip as well as the interconnections are encapsulated in a protective resin which is injected into the cavity 55 .
  • the present invention overcomes the drawbacks posed by the prior art and improves the methods of manufacturing hybrid cards by reducing the number of steps and improving the production yield.
  • the invention also makes it possible to manufacture such combicards without necessarily machining a cavity in the card body.
  • the invention more particularly provides a method of manufacturing a chip card comprising at least one integrated circuit chip, the output pads of which are electrically connected respectively to a connection terminal block, by means of first pads interconnection, and to an antenna, via second interconnection pads.
  • connection terminal block is produced by an operation of printing an electrically conductive substance on a first face of an insulating sheet; said antenna and said first and second interconnection pads are produced by another printing operation of said electrically conductive substance on a second face of said insulating sheet; and in that said first interconnection pads are electrically connected to said connection terminal block by 1 intermediate of vias previously hollowed out in the thickness of said insulating sheet and filled with said substance electrically conductive - during printing operations.
  • the vias are made by punching, by laser cutting or by water jet cutting of the insulating sheet.
  • a vacuum is created on the insulating sheet to facilitate the filling of the vias with the electrically conductive substance.
  • the electrically conductive substance used is an ink based on polymeric resin loaded with conductive particles or an ink based on intrinsically conductive polymeric resin.
  • the insulating sheet used, for its part, is a plastic sheet of polyvinyl chloride (PVC), acrylonitrile butadiene styrene (ABS), polystyrene (PS), polyethylene terephthalate (PET), polyethylene (PE), polycarbonate (PC) type. ), polypropylene (PP), or a sheet of paper or a sheet based on cellulose derivative.
  • PVC polyvinyl chloride
  • ABS acrylonitrile butadiene styrene
  • PS polystyrene
  • PET polyethylene terephthalate
  • PE polyethylene
  • PC polycarbonate
  • PP polypropylene
  • PP polypropylene
  • the antenna is produced in such a way that it has dimensions close to the surface of a smart card.
  • the insulating sheet has a thickness of between 0.2 and 0.4 mm and at least one other sheet of plastic material is applied to its underside by colamination.
  • the insulating sheet has a thickness of between 0.2 and 0.4 mm and another sheet of plastic material is applied to its underside by overmolding.
  • the insulating sheet has a thickness identical to or close to that of a conventional smart card, the integrated circuit chip is housed in a cavity formed in the thickness of said sheet, and an insulating varnish is applied to the underside of said sheet in order to protect the chip, the antenna and the interconnection pads.
  • the antenna is produced on a reduced surface so that the insulating sheet, provided with the connection terminal block, the antenna, the interconnection pads and the chip, forms a micromodule with incorporated antenna intended to be placed in a cavity of a card body.
  • connection terminal block, the antenna and the interconnection pads are produced on a sheet which can be cut in smart card format, at any time during the process. It is therefore no longer necessary to dig a cavity in a card body. Thanks to the manufacturing method according to the invention, the production rate is considerably increased and, consequently, the cost price of the hybrid cards is considerably reduced.
  • Another object relates to a smart card operating with and / or without contact, characterized in that it is obtained by the method according to one invention.
  • FIG. 2 already described, a combicard obtained from another known manufacturing process
  • FIG. 3 a top view of an insulating plate carrying several cards according to the invention during manufacture
  • FIG. 4 a bottom view of the plate of FIG. 3
  • FIG. 5 a sectional view of an insulating sheet, cut to card format, during the manufacturing steps of the method according to the invention
  • Figure 6A a bottom view of a smart card according to invention during its manufacture
  • FIG. 6B a sectional view along A-A of the card of FIG. 6A
  • the method of manufacturing hybrid smart cards according to the invention consists in producing the interface elements of the card, essentially consisting of a connection terminal block and an antenna, by printing an electrically conductive substance on the two faces of an insulating sheet 500.
  • the insulating sheet 500 as shown in FIGS.
  • the insulating sheet 500 can, in an alternative embodiment, be cut beforehand in card format. In this case, the interface elements of each card are produced on insulating sheets which pass one after the other.
  • the insulating sheet is a plastic sheet, for example of polyvinyl chloride (PVC), acrylonitrile butadiene styrene (ABS), polystyrene (PS), polyethylene terephthalate (PET), polyethylene (PE), polycarbonate (PC) or else polypropylene (PP).
  • PVC polyvinyl chloride
  • ABS acrylonitrile butadiene styrene
  • PS polystyrene
  • PET polyethylene terephthalate
  • PE polyethylene
  • PC polycarbonate
  • PP polypropylene
  • the insulating sheet can also be a sheet of paper or a sheet made from a cellulose derivative.
  • connection terminals 110, 210, 310 of several cards 100, 200, 300 are shown diagrammatically. These connection terminals are made to dimensions complying with the ISO standard and include contact pads intended for establishing electrical contact. with the connectors of a read head of a reader.
  • the antennas 120, 220, 320 of these cards 100, 200, 300 are shown diagrammatically, as well as interconnection pads 115, 116 and 125, 126 of an interconnection circuit.
  • the first interconnection pads referenced 115, 116 are electrically connected to the connection terminal 110 located on the other face. They are intended to connect an integrated circuit chip to the connection terminal block. Only two of these first interconnection areas are shown in FIG. 4, but of course their number may be greater. There are in fact, in general, as many of these first interconnection pads as there are contact pads in the connection terminal block.
  • second interconnection pads 125, 126 are provided at the ends of the antenna to allow the integrated circuit chip to be connected to the antenna.
  • FIG. 5 represents a sectional view of an insulating sheet 500 cut in the format of a card 100.
  • vias 530 are formed in the thickness of the insulating sheet 500. These vias 530 are intended to allow a connection between the two faces of the insulating sheet, and more particularly to connect the connection terminal block 110 to pads of Anterconnection 115, 116.
  • the production of these vias 530 is carried out by punching of the insulating sheet, or by laser cutting, or by water jet cutting of this insulating sheet. These vias 530 are produced at a controlled location with respect to a determined position of the connection terminal block 110.
  • said terminal block 110, the antenna 120 and the interconnection circuit are produced.
  • a first operation printing is carried out on one of the faces of the insulating sheet 500. It does not matter the face and the interface element printed during this first operation.
  • it is for example the connection terminal 110 which is printed first on the upper face 510 of the insulating sheet.
  • Printing of the electrically conductive substance can be done in various known ways. Thus, it can for example be carried out according to a screen printing technology, or offset printing, or pad printing, or flexographic printing or other. During this first printing operation, care must be taken to cover each via 530 with the electrically conductive substance. Thus, the vias 530 are partly filled with this conductive substance during the first printing operation.
  • a vacuum to the insulating sheet in order to facilitate filling of the vias 530 with the conductive substance.
  • This vacuum can be achieved by applying mechanical pressure to one side of the insulating sheet opposite to that which is printed, in order to deform and enlarge the opening of the vias opening onto the side to be printed. It can also be created by a vacuum made opposite the face to be printed in order to entrain the conductive substance in the vias.
  • a second printing operation is then performed to print the other interface elements on the other side.
  • the antenna 120 and the various interconnection areas 115, 116; 125, 126 are therefore printed on the underside 520 of the insulating sheet.
  • This printing operation consists, firstly, in printing the antenna turns 120 and its interconnection pads 125, 126, as well as the interconnection pads 115, 116 associated with the connection terminal block 110.
  • the vias 530 are completely filled with the conductive substance so that the electrical connection between the two faces 510, 520 of the insulating sheet 500 is established.
  • the interconnection pads 115, 116 associated with the terminal block 110 then cover the through vias.
  • an insulating bridge must be made, in a second step, between the end of the outer turn and one of the interconnection pads 126 of the antenna.
  • This insulating bridge consists in applying an insulating protective film 121, such as a varnish, to the antenna turns intended to be crossed, in order to avoid a short circuit. Printing is then completed by connecting the end of the external turn to the interconnection pad 126. For this, the conductive substance is applied to the insulating varnish 121.
  • the electrically conductive substance used is an ink based on polymer resin charged with conductive particles, such as for example an epoxy resin charged with particles of silver, or copper or gold. It can also be an intrinsically conductive polymer resin, such as polypirhole for example.
  • the polymer resin comprises a thermosetting polymer or a thermoplastic polymer, or else a mixture of the two. It may also optionally include a solvent to reduce its viscosity and facilitate its use.
  • An integrated circuit chip 130 is then transferred to the lower face 520 of the insulating sheet 500 and connected respectively to the first interconnection pads 115, 116 associated with the connection terminal block 110, and to the second interconnection pads 125, 126 associated with the antenna 120.
  • the integrated circuit chip 130 can be transferred in various conventional and well known ways.
  • a first method consists in sticking the chip 130 to the insulating sheet 500 and making the electrical connections via conductive wires 135, between the output pads 131 of the chip and the various interconnection pads, according to the technique well known as "wire bonding” in Anglo-Saxon literature.
  • the chip 130 and the connection wires 135 are then encapsulated in a protective resin 140.
  • the ink will have to present, with the known processes of "wedge bonding” or “wire bonding”, a quite particular formulation conferring on it, after drying, a property of weldability.
  • the integrated circuit chip 130 can also be transferred according to a well-known arrangement known as a "flip chip” in English literature, according to which the output pads of the chip are directly transferred to the various interconnection pads and they are fixed to the using an electrically conductive adhesive. This arrangement is illustrated in the bottom view of FIG. 6A and in the sectional view along A-A of FIG. 6B.
  • Another possibility for transferring the chip 130 consists in sticking the chip 130 to the underside of the insulating sheet 500, then making the connection electric, between the output pads 131 of the chip 130 and the various interconnection areas, by deposition, by means of a syringe or the like, of a conductive resin 145 with low viscosity. In the last two cases which have just been described, it is not essential to encapsulate the chip in a protective resin.
  • the antenna is given dimensions close to those of the card, in order to maximize the range of the antenna.
  • the antenna is therefore produced over a length close to 85 mm and over a width close to 54 mm (see FIGS. 4 and 6A).
  • a first method consists in carrying out a hot colamination.
  • the insulating sheet 500 is associated with other thermoplastic sheets (a single additional sheet referenced 600 is shown in Figures 6B and 6C; and two additional sheets 600 and 650 are shown in Figure 5).
  • These additional sheets are applied to the underside 520 of the insulating sheet 500 in order to drown the antenna and the electrical connections. They are optionally perforated opposite the integrated circuit chip (like sheet 650 in FIG. 5) and a resin can optionally be deposited in the space remaining between the chip and this perforation. All of the sheets are then hot pressed.
  • a plate is thus obtained comprising several hybrid cards which are then cut in card format.
  • a hybrid smart card is obtained.
  • the smart card can also be finalized by assembling sheets by cold colamination.
  • Another method to finalize the card is to perform overmolding.
  • the insulating sheet is placed in a mold so that the connection terminal block is applied against one of the walls of the mold.
  • a thermoplastic resin is then injected or poured in order to flood the antenna and the interconnection pads in a layer.
  • the insulating sheet 500 has a thickness of, for example, between 0.2 and 0.4 mm.
  • the insulating sheet 500 may have a thickness identical to or close to that of a conventional smart card, that is to say a thickness of the order of 0.8 mm.
  • This variant is shown schematically in the sectional view of FIG. 7.
  • This chip will be connected respectively to the first pads of interconnection 115, 116 associated with the terminal block 110 and the second interconnection pads 125, 126 associated with the antenna 120 either by wire wiring, or by means of a conductive resin dispensed using a syringe or the like.
  • an insulating varnish 700 is applied to the underside 520 supporting the chip, the antenna and the interconnections, in order to protect them against external aggressions.
  • the manufacturing method according to the invention has the advantage of comprising only steps which can be controlled using a computer-aided vision device. It makes it possible to manufacture portable devices such as -combicards capable of operating with and without contact, but also other devices which may include more than one antenna. It also has the advantage of making it possible to produce a fine card, of the combicard type, of thickness less than the ISO standard, in particular of the order of 400 ⁇ m.
  • the card decoration operations can be carried out at different times during the manufacturing, either on the insulating sheet before the transfer of the chip, or on the plate before cutting in card format, or on the finished card.
  • the antenna 120 can be made to reduced dimensions, for example to dimensions of 10 or 20 mm by 10 mm.
  • This reduced surface makes it possible to manipulate the insulating sheet 500 provided with the connection terminal block 110, the antenna 120, the interconnection circuit and the integrated circuit chip 130 like a micromodule 800 with incorporated antenna well known in the world of Smartcard.
  • This case can be envisaged when the integrated circuit chip has a low consumption or when the application in the contactless mode does not require a large range (for example when the distance between the card and a reader is less than 1 cm).
  • micromodule 800 we can then use traditional inserting methods to transfer micromodule 800 as well formed in a cavity 910- of a card body 900.
  • the advantage in this case lies in the fact that the micromodule is produced quickly (due to the reduced number of operations), which makes it possible to improve productivity .
  • the method according to the invention therefore has the advantage of being inexpensive and quick to implement since it comprises a reduced number of steps and uses inexpensive materials (insulating sheet and conductive ink). It therefore makes it possible to increase the production yield and to decrease the manufacturing cost.
  • the insulating sheet used generally has any surface, greater than that of a card, and it is cut in card format, or in micromodule format as the case may be, at any time during the process. This process does not necessarily require the opening of a cavity in the card body, or the production of a micromodule.
  • the electrical connections between the chip and the various interconnection pads are very reliable, so that the number of cards intended for scrap is considerably reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

L'invention concerne un procédé de fabrication de cartes à puce hybrides aptes à fonctionner avec et sans contact. Selon ce procédé, on réalise un bornier de connexion (110) par une opération d'impression d'une substance conductrice sur une première face (510) d'une feuille isolante (500). On réalise ensuite des premières plages d'interconnexion (115, 116) ainsi qu'une antenne (120), aux extrémités de laquelle sont prévues des secondes plages d'interconnexion (125, 126), par une autre opération de la même substance conductrice sur une deuxième face (520) de la feuille isolante (500). Les premières plages d'interconnexion (115, 116) sont électriquement reliées au bornier de connexion (110) par l'intermédiaire de vias (530) préalablement creusés dans l'épaisseur de la feuille isolante (500) et remplis de ladite substance conductrice au cours des opérations d'impression.

Description

PROCEDE DE FABRICATION D'UNE CARTE A PUCE HYBRIDE PAR
IMPRESSION DOUBLE FACE
La présente invention concerne la fabrication de cartes à puce comportant une puce de circuit intégré dont les plots de contact sont reliés à des éléments d'interface constitués par un bornier de connexion et une antenne. Ce type de carte est apte à assurer à la fois un fonctionnement à contact et un fonctionnement sans contact. On appellera ce type de carte, dans toute la suite de la description, carte hybride ou encore combicarte. Avec les cartes hybrides, les échanges d'informations avec l'extérieur se font soit par l'antenne, qui assure un couplage électromagnétique (en principe de type inductif) entre l'électronique de la carte et un lecteur (c'est le fonctionnement sans contact) ; soit par les contacts du bornier affleurant la surface de la carte, qui assurent une transmission électrique de données lorsqu'ils sont au contact d'une tête de lecture d'un lecteur (c'est le fonctionnement à contacts) . De telles cartes sont destinées à diverses opérations telles que, par exemple, des opérations bancaires, des communications téléphoniques, diverses opérations d'identification, des opérations de débit et de rechargement d'unité de compte, et toute sortes d'opérations qui peuvent s'effectuer soit en insérant la carte dans la fente d'un lecteur, soit à distance par un couplage électromagnétique entre une borne d' émission-réception et la carte placée dans une zone d'action de cette borne. Les cartes hybrides doivent nécessairement avoir des dimensions normalisées identiques à celles des cartes à puce classiques uniquement pourvues de contacts. Les dimensions de ces cartes sont définies par la norme usuelle ISO 7810 qui correspond à une carte de format standard de 85mm de long, 54mm de large et 0,76 mm d'épaisseur.
Ces normes imposent des contraintes sévères pour la fabrication. L'épaisseur très faible de la carte est en particulier une contrainte majeure car il faut prévoir l'incorporation d'une antenne dans la carte. De plus, d'autres problèmes techniques se posent, tels que des problèmes de positionnement de l'antenne par rapport à la carte (car l'antenne occupe presque toute la surface de la carte) , des problèmes de positionnement du module de circuit intégré (comprenant la puce de circuit intégré et ses contacts) qui assure le fonctionnement électronique de la carte, et des problèmes de précision et de fiabilité de la connexion entre le module et l'antenne. Les contraintes de tenue mécanique, de fiabilité et de coût de fabrication doivent également être prises en compte.
Des solutions ont déjà été envisagées dans l'art antérieur pour réaliser des combicartes. Un premier procédé, qui est illustré par la figure 1, consiste à mettre en place, dans une cavité 11 creusée dans un corps de carte 10, un module M constitué d'un circuit imprimé double face qui est électriquement relié à une antenne 15 par l'intermédiaire de puits de connexion 13. Les puits de connexion 13 sont pratiqués dans la cavité 10, de manière à rendre accessibles les bornes de connexion 12 de l'antenne 15 qui est noyée dans le corps de carte. La connexion électrique, entre les plots de contact 22 du module M et l'antenne, est assurée par le biais d'éléments conducteurs 14 qui sont dispensés dans les puits de connexion 13. Le module M, quant à lui, comporte des plages de contact 21, sur sa face supérieure, destinées à former les contacts d'accès de la carte à puce, et des plages de contact 22, sur sa face inférieure, destinées à être reliées à l'antenne. Ces plages de contact 21 et 22 sont réalisées en cuivre nickelé doré, sur une feuille isolante 20. Des fils conducteurs 27 relient une puce de circuit intégré 25 aux plages de contact 21, formant le bornier de connexion de la carte, en passant à travers des vias 23 creusés dans l'épaisseur de la feuille isolante. D'autres fils conducteurs 27 relient la puce 25 aux autres plages de contact 22. Une résine d' encapsulation 28 protège la puce 25 et les fils 27.
Ce procédé de fabrication présente cependant plusieurs inconvénients. Les éléments de constitution (cuivre, nickel et or) des plages de contact du module sont notamment très coûteux. De plus, ce procédé nécessite non seulement l'usinage d'une cavité mais aussi un usinage particulier pour réaliser les puits de connexion destinés à mettre à jour les bornes de connexion de l'antenne. Cet usinage spécifique des puits au dessus des bornes de connexion de l'antenne n'est pas toujours aisé à maîtriser. De plus, l'encartage d'un module double face, ainsi que le remplissage des puits de connexion par un élément conducteur, sont des opérations délicates à mettre en oeuvre, qui contribuent à diminuer le rendement de fabrication et, par conséquent, à augmenter le prix de revient des cartes. Enfin, l'adhérence entre les plages de contact dorées du module et l'élément conducteur remplissant les puits de connexion n'est pas toujours de bonne qualité. Cette mauvaise adhérence entraîne une faible fiabilité de la connexion électrique entre le module et l'antenne, ce qui implique que le nombre de cartes destinées au rebut reste encore élevé.
Une deuxième solution proposée dans l'art antérieur, et illustrée sur la figure 2, consiste à ne pas utiliser de micromodule destiné à être encarté. Cette solution permet d'éviter l'usinage spécifique des puits de connexion ainsi que leur remplissage par un élément conducteur pour établir une connexion entre le module et l'antenne. Cette solution consiste plus particulièrement à creuser une cavité 55 dans un corps de carte 50 comportant à coeur un fil d'antenne 60, réalisé par incrustation, lamination ou impression d'une substance et aux extrémités duquel sont prévues des bornes de connexion 61, 62. Une puce de circuit intégré 70 est ensuite fixée dans le fond de la cavité, par collage par exemple, avec sa face active et ses plots de contact 71 orientés vers l'ouverture de la cavité. Un bornier de connexion 65 est ensuite réalisé de telle sorte que ses plages de contact affleurent la surface de la carte et se prolongent dans la cavité par des pistes conductrices 66 destinées à être connectées aux plots de sortie 71 de la puce 70. Ce bornier ainsi que les connexions avec la puce sont réalisés par dépôt, au moyen d'une seringue ou analogue, d'une résine conductrice 63 à faible viscosité qui reste souple après son application. Les plots de sortie 71 de la puce 70 sont connectés de la même manière aux bornes de connexion 61, 62 de l'antenne 60. Enfin, la puce ainsi que les interconnexions sont encapsulées dans une résine de protection qui est injectée dans la cavité 55.
Cette solution nécessite cependant la réalisation d'un nombre important d'opérations qui contribue à augmenter le coût de fabrication des cartes. L'usinage d'une cavité pour y placer la puce est en outre toujours nécessaire. De plus, la technique de dispense de la résine de faible viscosité ne permet pas d'obtenir des rendements de fabrication satisfaisants : ils sont trop faibles et contribuent par conséquent à élever le prix de revient des cartes hybrides.
La présente invention permet de pallier les inconvénients posés par l'art antérieur et d'améliorer les procédés de fabrication des cartes hybrides en réduisant le nombre d'étapes et en améliorant le rendement de production. L'invention permet par ailleurs de fabriquer de telles combicartes sans nécessairement usiner de cavité dans le corps de carte. Pour cela, l'invention propose plus particulièrement un procédé de fabrication d'une carte à puce comprenant au moins une puce de circuit intégré dont les plots de sortie sont électriquement reliés respectivement à un bornier de connexion, par l'intermédiaire de premières plages d'interconnexion, et à une antenne, par l'intermédiaire de secondes plages d'interconnexion. Ce procédé est caractérisé en ce que ledit bornier de connexion est réalisé par une opération d'impression d'une substance électriquement conductrice sur une première face d'une feuille isolante; ladite antenne et ledites premières et secondes plages d'interconnexion sont réalisées par une autre opération d'impression de ladite substance électriquement conductrice sur une deuxième face de ladite feuille isolante; et en ce que ledites premières plages d'interconnexion sont électriquement reliées audit bornier de connexion par 1 Antermédiaire de vias préalablement creusés dans l'épaisseur de ladite feuille isolante et remplis de ladite substance électriquement conductrice- pendant les opérations d' impression.
Les vias sont réalisés par poinçonnage, par découpe au laser ou par découpe au jet d'eau de la feuille isolante.
Selon une autre caractéristique de l'invention, lors de la première opération d'impression, -on crée une dépression sur la feuille isolante pour faciliter le remplissage des vias par la substance électriquement conductrice.
Selon une autre caractéristique de l'invention, la substance électriquement conductrice utilisée est une encre à base de résine polymère chargée en particules conductrices ou une encre à base de résine polymère intrinsèquement conductrice.
La feuille isolante utilisée, quant à elle, est une feuille de matière plastique de type polychlorure de vinyle (PVC) , acrylonitrile butadiène styrène (ABS) , polystyrène (PS) , polyéthylène téréphtalate (PET) , polyéthylène (PE) , polycarbonate (PC) , polypropylène (PP) , ou une feuille de papier ou encore une feuille à base de dérivé cellulosique.
Selon une autre caractéristique de l'invention, l'antenne est réalisée de telle sorte qu'elle présente des dimensions proches de la surface d'une carte à puce.
Selon encore une autre caractéristique de l'invention, la feuille isolante présente une épaisseur comprise entre 0,2 et 0,4 mm et au moins une autre feuille de matière plastique est appliquée sur sa face inférieure par colamination .
Selon encore une autre caractéristique de l'invention, la feuille isolante présente une épaisseur comprise entre 0,2 et 0,4mm et une autre feuille de matière plastique est appliquée sur sa face inférieure par surmoulage.
Selon encore une autre caractéristique de l'invention, la feuille isolante présente une épaisseur identique ou proche de celle d'une carte à puce classique, la puce de circuit intégré est logée dans une cavité pratiquée dans l'épaisseur -de ladite feuille, et un vernis isolant est appliqué sur la face inférieure de ladite feuille afin de protéger la puce, l'antenne et les plages d'interconnexion.
Selon une autre caractéristique de l'invention, l'antenne est réalisée sur une surface réduite de manière à ce que la feuille isolante, munie du bornier de connexion, de l'antenne, des plages d'interconnexion et de la puce, forme un micromodule à antenne incorporée destiné à être disposé dans une cavité d'un corps de carte.
Le nombre d'opérations permettant de réaliser une carte hybride par le procédé selon l'invention est considérablement réduit. Le bornier de connexion, l'antenne et les plages d'interconnexion sont réalisés sur une feuille qui peut être découpée au format carte à puce, à tout moment du procédé. Il n'est donc plus nécessaire de creuser une cavité dans un corps de carte. Grâce au procédé de fabrication selon l'invention, la cadence de production est considérablement augmentée et, par conséquent, le prix de revient des cartes hybrides est considérablement réduit. Un autre objet se rapporte à une carte à puce à fonctionnement avec et/ou sans contact, caractérisée en ce qu'elle est obtenue par le procédé selon 1 ' invention. D'autres particularités et avantages de l'invention apparaîtront à la lecture de la description donnée à titre d'exemple illustratif mais non limitatif et faite en référence aux figures annexées qui schématisent : - la figure 1, déjà décrite, une combicarte au cours d'un procédé de fabrication de l'art antérieur,
- la figure 2, déjà décrite, une combicarte obtenue à partir d'un autre procédé de fabrication connu,
- la figure 3, une vue de dessus d'une plaque isolante portant plusieurs cartes selon l'invention en cours de fabrication, la figure 4, une vue de dessous de la plaque de la figure 3,
- la figure 5, une vue en coupe d'une feuille isolante, découpée au format carte, au cours des étapes de fabrication du procédé selon l'invention, la figure 6A, une vue de dessous d'une carte à puce selon l'invention au cours de sa fabrication,
- la figure 6B, une vue en coupe selon A-A de la carte de la figure 6A,
- la figure 6C, une vue en coupe selon A-A de la carte de la figure 6A selon une variante de réalisation, la figure 7, une vue en coupe d'une combicarte en cours de fabrication selon une variante de réalisation du procédé selon l'invention, - la figure 8, un module double face à antenne incorporée réalisé selon la présente invention et prêt à être encarté dans un corps de carte. Le procédé de fabrication de cartes à puce hybrides selon l'invention consiste à réaliser les éléments d'interface de la carte, constitués essentiellement par un bornier de connexion et une antenne, par impression d'une substance électriquement conductrice sur les deux faces d'une feuille isolante 500. La feuille isolante 500, telle que représentée sur les figures 3 et 4 respectivement vue de dessus (face supérieure 510) et vue de dessous (face inférieure 520) , peut se présenter sous la forme d'une plaque dont la surface est bien supérieure à celle d'une carte à puce. Dans ce cas, les éléments d'interface de plusieurs cartes sont réalisés sur la plaque et une découpe au format carte est réalisée ultérieurement. La feuille isolante 500 peut, dans une variante de réalisation, être préalablement découpée au format carte. Dans ce cas, les éléments d'interface de chaque carte sont réalisés sur des feuilles isolantes qui défilent les unes après les autres. La feuille isolante est une feuille de matière plastique, par exemple de type polychlorure de vinyle (PVC) , acrylonitrile butadiène styrène (ABS) , polystyrène (PS) , polyéthylène téréphtalate (PET) , polyéthylène (PE) , polycarbonate (PC) ou encore polypropylène (PP) . La feuille isolante peut également être une feuille de papier ou encore une feuille réalisée à base de dérivé cellulosique.
Sur la figure 3 , sont schématisés des borniers de connexion 110, 210, 310 de plusieurs cartes 100, 200, 300. Ces borniers de connexion sont réalisés à des dimensions respectant la norme ISO et comportent des plages de contact destinées à établir un contact électrique avec les connecteurs d'une tête de lecture d'un lecteur. Sur la figure 4, sont schématisées les antennes 120, 220, 320 de ces cartes 100, 200, 300, ainsi que des plages d'interconnexion 115, 116 et 125, 126 d'un circuit d'interconnexion. Les premières plages d'interconnexion référencées 115, 116 sont électriquement reliées au bornier de connexion 110 situé sur l'autre face. Elles sont destinées à relier une puce de circuit intégré au bornier de connexion. Seules deux de ces premières plages d'interconnexion sont représentées sur la figure 4, mais bien sûr leur nombre peut être supérieur. Il y a en fait, en général, autant de ces premières plages d'interconnexion que de plages de contact dans le bornier de connexion.
D'autres secondes plages d'interconnexion 125, 126 sont prévues aux extrémités de l'antenne pour permettre de relier la puce de circuit intégré à l'antenne.
La figure 5 représente une vue en coupe d'une feuille isolante 500 découpée au format d'une carte 100. Préalablement à la réalisation des éléments d'interface et du circuit d'interconnexion, des vias 530 sont pratiqués dans l'épaisseur de la feuille isolante 500. Ces vias 530 sont destinés à permettre une connexion entre les deux faces de la feuille isolante, et plus particulièrement à relier le bornier de connexion 110 à des plages d Anterconnexion 115, 116. La réalisation de ces vias 530 est effectuée par poinçonnage de la feuille isolante, ou bien par découpe au laser, ou encore par découpe au jet d'eau de cette feuille isolante. Ces vias 530 sont réalisés à un emplacement contrôlé par rapport à une position déterminée du bornier de connexion 110.
Après avoir creusé ces vias 530, ledit bornier 110, l'antenne 120 et le circuit d'interconnexion sont réalisés. Pour cela, une première opération d'impression est réalisée sur l'une des faces de la feuille isolante 500. Peu importe la face et l'élément d'interface imprimé lors de cette première opération.^ Dans l'exemple, c'est par exemple le bornier de connexion 110 qui est imprimé en premier sur la face supérieure 510 de la feuille isolante.
L'impression de la substance électriquement conductrice peut se faire de différentes manières connues. Ainsi, elle peut par exemple être effectuée selon une technologie de sérigraphie, ou d'impression offset, ou d'impression par tampographie, ou d'impression par flexographie ou autre. Lors de cette première opération d'impression, il faut prendre soin de recouvrir chaque via 530 par la substance électriquement conductrice. Ainsi, les vias 530 sont en partie remplis par cette substance conductrice au cours de la première opération d'impression.
Dans une variante de réalisation du procédé selon l'invention, on pourra par exemple appliquer une dépression sur la feuille isolante afin de faciliter le remplissage des vias 530 par la substance conductrice. Cette dépression pourra être effectuée en appliquant une pression mécanique sur une face de la feuille isolante opposée à celle qui est imprimée, afin de déformer et d'agrandir l'ouverture des vias débouchant sur la face à imprimer. Elle pourra également être créée par un vide réalisé à l'opposé de la face à imprimer afin d'entraîner la substance conductrice dans les vias. Une deuxième opération d'impression est ensuite effectuée pour imprimer les autres éléments d'interface sur l'autre face. Dans cet exemple, l'antenne 120 et les différentes plages d'interconnexion 115, 116; 125, 126 sont donc imprimées sur la face inférieure 520 de la feuille isolante. Cette opération- d'impression consiste, dans un premier temps, à imprimer les spires d'antenne 120 et ses plages d'interconnexion 125, 126, ainsi que les plages d'interconnexion 115, 116 associées au bornier de connexion 110. Au cours de cette opération d'impression, les vias 530 sont complètement remplis par la substance conductrice si bien que la connexion électrique entre les deux faces 510, 520 de la feuille isolante 500 est établie. Les plages d'interconnexion 115, 116 associées au bornier 110 recouvrent alors les vias débouchants.
Les plages d'interconnexion 125, 126 étant prévues a l'intérieur des spires d'antenne, un pont isolant doit être réalisé, dans un deuxième temps, entre l'extrémité de la spire extérieure et l'une des plages d'interconnexion 126 de l'antenne. Ce pont isolant consiste à appliquer un film isolant de protection 121, tel qu'un vernis, sur les spires d'antenne destinées à être croisées, afin d'éviter un court-circuit. L'impression est ensuite terminée en reliant l'extrémité de la spire externe à la plage d'interconnexion 126. Pour cela la substance conductrice est appliquée sur le vernis isolant 121.
La substance électriquement conductrice utilisée est une encre à base de résine polymère chargée en particules conductrices, telle que par exemple une résine époxy chargée en particules d'argent, ou de cuivre ou d'or. Ce peut également être une résine polymère intrinsèquement conductrice, telle que du polypirhole par exemple. Dans tous les cas, la résine polymère comporte un polymère thermodurcissable ou un polymère thermoplastique, ou encore un mélange des deux. Elle peut en outre éventuellement comporter un solvant pour diminuer sa viscosité et faciliter sa mise en oeuvre.
Une puce de circuit intégré 130 est ensuite reportée sur la face inférieure 520 de la feuille isolante 500 et connectée respectivement aux premières plages d'interconnexion 115, 116 associées au bornier de connexion 110, et aux secondes plages d'interconnexion 125, 126 associées à l'antenne 120. La puce de circuit intégré 130 peut être reportée selon différentes manières classiques et bien connues.
Une première méthode consiste à coller la puce 130 sur la feuille isolante 500 et à réaliser les connexions électriques par l'intermédiaire de fils conducteurs 135, entre les plots de sortie 131 de la puce et les différentes plages d'interconnexion, selon la technique bien connue dite de "wire bonding" en littérature anglo-saxonne. La puce 130 et les fils de connexion 135 sont ensuite encapsulés dans une résine 140 de protection. L'encre devra présenter dans ce cas, avec les procédés connus de "wedge bonding" ou "wire bonding", une formulation tout à fait particulière lui conférant, après séchage, une propriété de soudabilité.
La puce de circuit intégré 130 peut également être reportée selon un montage bien connu dit "flip chip" en littérature anglo-saxonne, selon lequel on reporte directement les plots de sortie de la puce sur les différentes plages d'interconnexion et on les fixe au moyen d'une colle électriquement conductrice. Ce montage est illustré sur la vue de dessous de la figure 6A et sur la vue en coupe selon A-A de la figure 6B.
Une autre possibilité pour reporter la puce 130, illustrée sur la vue en coupe de la figure 6C, consiste à coller la puce 130 sur la face inférieure de la feuille isolante 500, puis à effectuer la connexion électrique, entre les plots de sortie 131 de la puce 130 et les différentes plages d'interconnexion, par dépôt, au moyen d'une seringue ou analogue, d'une résine conductrice 145 à faible viscosité. Dans les deux derniers cas qui viennent d'être décrits il n'est pas indispensable d'encapsuler la puce dans une résine de protection.
De préférence, on donne à l'antenne des dimensions voisines de celles de la carte, afin de maximiser la portée de l'antenne. L'antenne est donc réalisée sur une longueur proche de 85mm et sur une largeur proche de 54 mm (voir figures 4 et 6A) .
La carte à puce hybride selon l'invention est ensuite finalisée. Pour cela une première méthode consiste à réaliser une colamination à chaud. Dans ce cas, la feuille isolante 500 est associée à d'autres feuilles thermoplastiques (une seule feuille supplémentaire référencée 600 est représentée sur les figures 6B et 6C; et deux feuilles supplémentaires 600 et 650 sont représentées sur la figure 5) . Ces feuilles supplémentaires sont appliquées sur la face inférieure 520 de la feuille isolante 500 afin de noyer l'antenne et les connexions électriques. Elles sont éventuellement perforées en regard de la puce de circuit intégré (comme la feuille 650 de la figure 5) et une résine peut éventuellement être déposée dans l'espace restant entre la puce et cette perforation. L'ensemble des feuilles est ensuite pressé à chaud.
Lorsque la feuille isolante 500 n'a pas été préalablement découpée, on obtient donc une plaque comprenant plusieurs cartes hybrides qui sont ensuite découpées au format carte. Lorsque la feuille isolante a été préalablement découpée au format carte, on obtient une carte à puce hybride. La carte à puce pourra également être finalisée par assemblage de feuilles par colamination à froid.
Une autre méthode pour finaliser la carte consiste à effectuer du surmoulage. Dans ce cas, on place la feuille isolante dans un moule de telle sorte que le bornier de connexion soit appliqué contre une des parois du moule. On injecte ou on coule ensuite une résine thermoplastique pour noyer l'antenne et les plages d'interconnexion dans une couche. On obtient alors soit une plaque destinée à être découpée au format carte, soit une combicarte aux dimensions normalisées, ou plus fine, lorsque la feuille isolante a été préalablement découpée.
Dans les cas qui viennent d'être décrits, la feuille isolante 500 présente une épaisseur comprise par exemple entre 0,2 et 0,4 mm.
Selon une autre variante de réalisation, la feuille isolante 500 pourra présenter une épaisseur identique ou proche de celle d'une carte à puce classique, c'est à dire une épaisseur de l'ordre de 0,8 mm. Cette variante est schématisée sur la vue en coupe de la figure 7. Dans ce cas, on pourra par exemple prévoir une cavité 540 dans la feuille isolante 500 pour y loger la puce de circuit intégré 130. Cette puce sera connectée respectivement aux premières plages d'interconnexion 115, 116 associées au bornier 110 et aux secondes plages d'interconnexion 125, 126 associées à l'antenne 120 soit par câblage filaire, soit au moyen d'une résine conductrice dispensée à l'aide d'une seringue ou analogue. Dans ce cas, l'épaisseur de la feuille isolante étant identique ou proche de celle d'une carte à puce, un vernis isolant 700, d'épaisseur très faible, est appliqué sur la face inférieure 520 supportant la puce, l'antenne et les d'interconnexions, afin de les protéger contre les agressions extérieures.
Le procédé de fabrication selon l'invention présente l'avantage de ne comporter que des étapes qui peuvent être contrôlées en utilisant un dispositif de Vision Assistée par Ordinateur. Il permet de fabriquer des dispositifs portables tels que des -combicartes aptes à fonctionner avec et sans contact, mais aussi d'autres dispositifs pouvant comporter plus d'une antenne. Il présente en outre l'avantage de permettre la réalisation d'une carte fine, de type combicarte, d'épaisseur inférieure à la norme ISO, notammant de l'ordre de 400μm. Les opérations de décoration de la carte peuvent être réalisées à différents moments de la fabrication, soit sur la feuille isolante avant le report de la puce, soit sur la plaque avant découpe au format carte, soit sur la carte terminée.
Dans une variante de réalisation du procédé selon l'invention, illustrée sur la figure 8, l'antenne 120 peut être réalisée à des dimensions réduites, par exemple à des dimensions de 10 ou 20 mm par 10 mm. Cette surface réduite permet de manipuler la feuille isolante 500 munie du bornier de connexion 110, de l'antenne 120, du circuit d'interconnexion et de la puce de circuit intégré 130 comme un micromodule 800 à antenne incorporée bien connu dans le monde de la carte à puce. Ce cas est envisageable lorsque la puce de circuit intégré présente une faible consommation ou lorsque l'application dans le mode sans contact ne nécessite pas une grande portée (par exemple lorsque la distance entre la carte et un lecteur est inférieure à 1 cm) .
On peut ensuite utiliser les procédés traditionnels d'encartage pour reporter le micromodule 800 ainsi formé dans une cavité 910- d'un corps de carte 900. L'avantage dans ce cas, réside dans le fait que le micromodule est fabriqué rapidement (du fait du nombre réduit d'opérations), ce qui permet d'améliorer la productivité.
Le procédé selon l'invention présente donc l'avantage d'être peu coûteux et rapide à mettre en oeuvre puisqu'il comporte un nombre réduit d'étapes et utilise des matériaux (feuille isolante et encre conductrice) peu coûteux. Il permet donc d'augmenter le rendement de production et de diminuer le coût de fabrication. De plus, la feuille isolante utilisée présente en général une surface quelconque, supérieure à celle d'une carte, et elle est découpée au format carte, ou au format micromodule selon le cas, à un moment quelconque du procédé. Ce procédé ne nécessite pas obligatoirement l'ouverture d'une cavité dans le corps de carte, ni la réalisation d'un micromodule. Enfin, les connexions électriques entre la puce et les différentes plages d'interconnexion présentent une grande fiabilité, si bien que le nombre de cartes destinées au rebut est considérablement réduit.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une carte à puce comprenant au moins une puce de circuit intégré (130) dont les plots de sortie (131) sont électriquement reliés respectivement à un bornier de connexion (110), par l'intermédiaire de premières plages d'interconnexion (115, 116), et à une antenne (120), par l'intermédiaire de secondes plages d'interconnexion (125, 126), caractérisé en ce que ledit bornier de connexion (110) est réalisé par une opération d'impression d'une substance électriquement conductrice sur une première face (510) d'une feuille isolante (500); ladite antenne (120) et lesdites premières (115, 116) et secondes (125, 126) plages d'interconnexion sont réalisées par une autre opération d'impression de ladite substance électriquement conductrice sur une deuxième face (520) de ladite feuille isolante (500); et en ce que lesdites premières plages d'interconnexion (115, 116) sont électriquement reliées audit bornier de connexion (110) par l'intermédiaire de vias (530) préalablement creusés dans l'épaisseur de ladite feuille isolante (500) et remplis de ladite substance électriquement conductrice pendant les opérations d'impression.
2. Procédé selon la revendication 1, caractérisé en ce que les vias (530) sont réalisés par poinçonnage, ou par découpe au laser, ou par découpe au jet d'eau de la feuille isolante (500) .
3. Procédé selon l'une des revendicatipns l à 2, caractérisé en ce que lors de la première opération d'impression, on crée une dépression sur la feuille isolante (500) pour faciliter le remplissage des vias (530) par la substance électriquement conductrice.
4. Procédé selon l'une des revendications l à 3, caractérisé en ce que les opérations d'impression de la substance électriquement conductrice sont réalisées par une technologie de sérigraphie, ou une technologie d'impression offset, ou une technologie d'impression par tampographie ou par flexographie.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la puce de circuit intégré (130) est électriquement reliée aux premières (115, 116) et aux secondes (125, 126) plages d'interconnexion soit par collage de ses plots de sortie (131) sur lesdites plages d'interconnexion à l'aide d'une colle conductrice, soit par dépôt sur ses plots de sortie (131) et lesdites plages d'interconnexion, au moyen d'une seringue ou analogue, d'une résine conductrice (145) à faible viscosité.
6. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la puce de circuit intégré (130) est électriquement reliée aux premières (115, 116) et secondes (125, 126) plages d'interconnexion par l'intermédiaire de fils conducteurs (135).
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la substance électriquement conductrice utilisée est une encre à base de résine polymère chargée en particules conductrices, ou une encre à base d'une résine polymère intrinsèquement conductrice.
8. Procédé selon la revendication 7, caractérisé en ce que la résine polymère comporte un polymère thermodurcissable et/ou un polymère thermoplastique.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en " ce que la feuille isolante (500) utilisée est une feuille de matière plastique de type polychlorure de vinyle (PVC) , acrylonitrile butadiène styrène (ABS) ; polystyrène (PS) , polyéthylène téréphtalate (PET) , polyéthylène (PE) , polycarbonate (PC) , ou polypropylène (PP) , ou une feuille de papier ou encore une feuille à base de dérivé cellulosique.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'antenne (120) est réalisée de telle sorte qu'elle présente des dimensions proches de la surface d'une carte à puce.
11. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la feuille isolante (500) présente une épaisseur comprise entre 0,2 et 0,4 mm et au moins une autre feuille de matière plastique (600, 650) est appliquée sur sa face inférieure (520) par colamination.
12. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que la feuille isolante (500) présente une épaisseur comprise entre 0,2 et 0,4 mm, et une autre feuille de matière plastique est appliquée sur sa face inférieure (520) par surmoulage.
13. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que la feuille isolante (500) présente une épaisseur identique ou proche de celle des cartes à puce classiques, en ce que la puce de circuit intégré (130) est logée dans une cavité (540) pratiquée dans l'épaisseur de ladite feuille (500), et en ce qu'un vernis isolant (700) est appliqué sur la face inférieure (520) de ladite feuille (500) afin de protéger la puce (130), l'antenne (120) et les plages d'interconnexion (115, 116; 125, 126).
14. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que l'antenne (120) est réalisée sur une surface réduite de manière à ce que la feuille isolante (500) , munie du bornier de connexion (110) , de l'antenne (120), des plages d'interconnexion (115, 116; 125, 126) et de la puce de circuit intégré (130), forme un micromodule (800) à antenne incorporée destiné à être disposé dans une cavité (910) d'un corps de carte (900) .
15. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la feuille isolante (500) présente une surface quelconque, supérieure à celle d'une carte, et en ce qu'elle est découpée au format carte, ou au format micromodule, à un moment quelconque du procédé.
16. Carte à puce à fonctionnement avec et/ou sans contact, caractérisée en ce qu'elle est obtenue par le procédé selon l'une quelconque des revendications précédentes .
17. Carte à puce comprenant au moins une puce de circuit intégré (130) dont les plots de sortie (131) sont électriquement reliés respectivement à un bornier de connexion (110), par l'intermédiaire de premières plages d'interconnexion (115, 116), et à une antenne (120), par l'intermédiaire de secondes plages d'interconnexion (125, 126), caractérisé en ce que ledit bornier de connexion (110) est constitué d'une impression d'une substance électriquement conductrice sur une première face (510) d'une feuille isolante (500) ; ladite antenne (120) et lesdites premières (115, 116) et secondes (125, 126) plages d'interconnexion sont constituées d'une impression de ladite substance électriquement conductrice sur une deuxième face (520) de ladite feuille isolante (500) ; et en ce que lesdites premières plages d'interconnexion (115, 116) sont électriquement reliées audit bornier de connexion (110) par l'intermédiaire de vias (530) situés dans l'épaisseur de ladite feuille isolante (500) et remplis de ladite substance électriquement conductrice .
PCT/FR1999/002693 1998-11-16 1999-11-04 Procede de fabrication d'une carte a puce hybride par impression double face WO2000030032A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU10516/00A AU1051600A (en) 1998-11-16 1999-11-04 Method for making a hybrid smart card by double face printing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/14363 1998-11-16
FR9814363A FR2786009B1 (fr) 1998-11-16 1998-11-16 Procede de fabrication d'une carte a puce hybride par impression double face

Publications (1)

Publication Number Publication Date
WO2000030032A1 true WO2000030032A1 (fr) 2000-05-25

Family

ID=9532770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/002693 WO2000030032A1 (fr) 1998-11-16 1999-11-04 Procede de fabrication d'une carte a puce hybride par impression double face

Country Status (3)

Country Link
AU (1) AU1051600A (fr)
FR (1) FR2786009B1 (fr)
WO (1) WO2000030032A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10151941A1 (de) * 2001-10-22 2003-01-02 Infineon Technologies Ag Chipmodul und Chipkarte oder Speicherkarte

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2817373B1 (fr) * 2000-11-30 2003-02-07 D Vito Antoine Orazio Procede de fabrication d'objets portables de type cartes sans contact
DE10139395A1 (de) * 2001-08-10 2003-03-06 Infineon Technologies Ag Kontaktierung von Halbleiterchips in Chipkarten
FR2880160B1 (fr) * 2004-12-28 2007-03-30 K Sa As Module electronique double face pour carte a puce hybride
DE102005038132B4 (de) 2005-08-11 2008-04-03 Infineon Technologies Ag Chipmodul und Chipkarte
DE102008019571A1 (de) * 2008-04-18 2009-10-22 Giesecke & Devrient Gmbh Chipkarte und Verfahren zu deren Herstellung
EP2189928A1 (fr) * 2008-11-21 2010-05-26 Gemalto SA Dispositif à circuit integré muni de différents moyens de connexion
US9196554B2 (en) 2013-10-01 2015-11-24 Infineon Technologies Austria Ag Electronic component, arrangement and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4105869A1 (de) * 1991-02-25 1992-08-27 Edgar Schneider Ic-karte und verfahren zu ihrer herstellung
EP0706152A2 (fr) * 1994-11-03 1996-04-10 Fela Holding AG Carte à puce et méthode pour sa fabrication
FR2726106A1 (fr) * 1994-10-21 1996-04-26 Solaic Sa Carte electronique utilisable avec un lecteur de cartes sans contact et un lecteur de cartes a contacts
EP0768620A2 (fr) * 1995-10-11 1997-04-16 Palomar Technologies Corporation Transpondeur d'identification radio-fréquence et méthode de fabrication
FR2753305A1 (fr) * 1996-09-12 1998-03-13 Schlumberger Ind Sa Procede de fabrication d'un ensemble de modules electroniques pour cartes a memoire sans contact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4105869A1 (de) * 1991-02-25 1992-08-27 Edgar Schneider Ic-karte und verfahren zu ihrer herstellung
FR2726106A1 (fr) * 1994-10-21 1996-04-26 Solaic Sa Carte electronique utilisable avec un lecteur de cartes sans contact et un lecteur de cartes a contacts
EP0706152A2 (fr) * 1994-11-03 1996-04-10 Fela Holding AG Carte à puce et méthode pour sa fabrication
EP0768620A2 (fr) * 1995-10-11 1997-04-16 Palomar Technologies Corporation Transpondeur d'identification radio-fréquence et méthode de fabrication
FR2753305A1 (fr) * 1996-09-12 1998-03-13 Schlumberger Ind Sa Procede de fabrication d'un ensemble de modules electroniques pour cartes a memoire sans contact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10151941A1 (de) * 2001-10-22 2003-01-02 Infineon Technologies Ag Chipmodul und Chipkarte oder Speicherkarte

Also Published As

Publication number Publication date
FR2786009B1 (fr) 2001-01-26
AU1051600A (en) 2000-06-05
FR2786009A1 (fr) 2000-05-19

Similar Documents

Publication Publication Date Title
EP0671705B1 (fr) Procédé de fabrication d'une carte hybride
EP3143557B1 (fr) Procédé de fabrication d'un circuit pour module de carte à puce et circuit pour module de carte à puce
FR2756955A1 (fr) Procede de realisation d'un circuit electronique pour une carte a memoire sans contact
EP0692770A1 (fr) Procédé de fabrication d'une carte sans contact par surmoulage et carte sans contact obtenue par un tel procédé
EP1076882B1 (fr) Carte a circuit integre comportant un bornier d'interface et procede de fabrication d'une telle carte
EP1185955B1 (fr) Procede de fabrication de cartes sans contact par laminage
EP2178032B1 (fr) Module, carte à microcircuit et procédé de fabrication correspondant
WO2000030032A1 (fr) Procede de fabrication d'une carte a puce hybride par impression double face
EP1190377B1 (fr) Procede de fabrication de dispositif electronique portable a circuit integre comportant un dielectrique bas cout
EP0925553B1 (fr) Procede de fabrication d'un ensemble de modules electroniques pour cartes a memoire sans contact
FR2785071A1 (fr) Procede de fabrication d'une carte a puce et d'un module electronique destine a etre insere dans une telle carte
EP3132386A1 (fr) Procédé de fabrication d'un dispositif à circuit électronique / électrique
CA2333431A1 (fr) Procede de fabrication d'un dispositif electronique portable comportant au moins une puce de circuit integre
FR2810768A1 (fr) Procede de fabrication de cartes a puce hybrides et cartes a puce obtenues par ledit procede
EP2866173A1 (fr) Procédé de réalisation d'un circuit électrique et circuit électrique réalisé par ce procédé
EP1190379B1 (fr) Procede de fabrication de cartes a puce a contact avec dielectrique bas cout
FR2786317A1 (fr) Procede de fabrication de carte a puce a contact affleurant utilisant une etape de gravure au laser et carte a puce obtenue par le procede
FR2797976A1 (fr) Procede de fabrication de cartes a puce hybrides et cartes a puce obtenues par ledit procede
FR2837013A1 (fr) Support de donnees portable avec module d'affichage et son procede de fabrication
FR2816107A1 (fr) Module de circuit integre sur film et son procede de fabrication
WO2013127698A1 (fr) Procede de fabrication d'un dispositif comprenant un module dote d'un circuit electrique et/ou electronique
EP1086492A1 (fr) Procede de fabrication d'un micromodule et d'un support de memorisation comportant un tel micromodule
FR2790850A1 (fr) Procede de fabrication de dispositif electronique portable de type carte a puce

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 10516

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase