WO1999062118A1 - Procede de fabrication d'un micromodule et d'un support de memorisation comportant un tel micromodule - Google Patents

Procede de fabrication d'un micromodule et d'un support de memorisation comportant un tel micromodule Download PDF

Info

Publication number
WO1999062118A1
WO1999062118A1 PCT/FR1999/001142 FR9901142W WO9962118A1 WO 1999062118 A1 WO1999062118 A1 WO 1999062118A1 FR 9901142 W FR9901142 W FR 9901142W WO 9962118 A1 WO9962118 A1 WO 9962118A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
cavity
contact pads
micromodule
ink
Prior art date
Application number
PCT/FR1999/001142
Other languages
English (en)
Inventor
Jean Christophe Fidalgo
Olivier Brunet
Original Assignee
Gemplus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gemplus filed Critical Gemplus
Priority to AU36116/99A priority Critical patent/AU3611699A/en
Priority to EP99918061A priority patent/EP1086492A1/fr
Publication of WO1999062118A1 publication Critical patent/WO1999062118A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07745Mounting details of integrated circuit chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49855Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers for flat-cards, e.g. credit cards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2405Shape
    • H01L2224/24051Conformal with the semiconductor or solid-state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24105Connecting bonding areas at different heights
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48228Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad being disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/76Apparatus for connecting with build-up interconnects
    • H01L2224/7615Means for depositing
    • H01L2224/76151Means for direct writing
    • H01L2224/76155Jetting means, e.g. ink jet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/821Forming a build-up interconnect
    • H01L2224/82101Forming a build-up interconnect by additive methods, e.g. direct writing
    • H01L2224/82102Forming a build-up interconnect by additive methods, e.g. direct writing using jetting, e.g. ink jet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to the manufacture of a r ⁇ icromodule intended to be inserted in a storage medium of the smart card type. It also relates to a method of manufacturing a storage medium of the chip card type with flush contacts.
  • Chip cards are intended for carrying out various operations, such as, for example, banking operations, telephone communications or various identification operations.
  • Contact cards include metallizations flush with the surface of the card, arranged at a precise location on the card body, defined by the usual standard ISO 7816. These metallizations are intended to come into contact with a read head of a reader for electrical data transmission.
  • smart cards are thin portable objects whose dimensions are standardized.
  • the usual ISO 7810 standard corresponds to a standard format card 85 mm long, 54 mm wide and 0.76 mm thick.
  • a conventional method illustrated in FIG. 1, consists in gluing an integrated circuit chip 20 by placing its active face with its contact pads 22 upwards, and by gluing the opposite face on a dielectric support sheet 28.
  • the dielectric sheet 28 is itself disposed on a contact grid 24 of a metallic plate of nickel-plated and gilded copper.
  • Connection wells 21 are formed in the dielectric sheet 28 and connection wires 26 connect the contact pads 22 of the chip 20 to the contact pads of the grid 24 via its connection wells 21.
  • a encapsulation resin 30, based on epoxy protects the chip 20 and the connection wires 26 welded.
  • the module is then cut and then inserted into the cavity of a card body previously decorated.
  • An object of the present invention is therefore to produce a smart card at a reduced price.
  • Processes for manufacturing smart cards, without an intermediate step of making a micromodule, have already been studied to reduce the cost of the cards.
  • a first solution described in patent applications FR2671416, FR2671417, and FR2671418, consists in inserting an integrated circuit chip directly into a card body. For this, the card holder is locally softened and the chip is pressed in the softened area. No cavity is therefore formed in the card body.
  • a card obtained using this technology is shown schematically in plan view in FIG. 2. The chip 20 is arranged so that its contact pads 22 are flush with the surface of the card 10.
  • the chip must also be perfectly positioned so that its contact pads 22 are arranged parallel to the lateral edges of the card and make it possible to produce the contact pads 25 parallel to the lateral edges of the card.
  • the chip being placed in a locally softened area, it is not easy to position it correctly, and the chip cards whose contact pads are arranged slightly at an angle are intended for scrap.
  • the application of the conductive tracks in the housing can be carried out in three different ways.
  • a first way is to carry out hot stamping.
  • a sheet comprising metallizations of copper, optionally covered with tin or nickel, and provided with a hot-activatable glue, is cut and then glued hot in the housing.
  • a second way consists in applying, by means of a pad, a lacquer containing a palladium catalyst, at the places intended to be metallized, and in heating the lacquer; then metallizing, by depositing copper and / or nickel, using an electrochemical process of autocatalysis.
  • a third way is to make a lithogravure from laser holograms.
  • This lithography allows three-dimensional metallization deposits to be produced with very high precision and high resolution. All these methods of applying conductive tracks are however complex to implement and therefore expensive. They often require the use of specific tools.
  • the contact pads and connections are made by depositing metallizations which still use copper and / or nickel, which are expensive elements, so that the cost price of the cards remains very high.
  • the "Chrysalis" technology therefore calls for processes that are too complex and uses metal elements that are too expensive to be suitable for mass industrial production.
  • the invention provides a method of manufacturing a storage medium of the chip card type with flush contacts, comprising a micromodule comprising a support film carrying contact pads, connection tracks and a chip. integrated circuit connected to the contact pads, characterized in that it comprises the following stages according to which:
  • connection pads and connection tracks are produced by printing conductive ink on the support film, - the support film is deformed so that the connection tracks are at least partially at a lower level compared to the contact pads. contact.
  • the advantage provided by the first step of the process is that it allows manufacturing in large quantities of contacts and connection tracks in a single step.
  • the difference between the lower level and the contact pads is provided to be sufficient to accommodate the chip and to be able to cover it with a coating material.
  • the connection tracks and the contacts are on the same face, the process thus avoids an additional step.
  • the method also consists in carrying out the following steps: fixing and connecting the chip before deformation, then deforming the support film by pressing it in a card body recess with a punch comprising a housing.
  • the method also consists in connecting the chip after deformation.
  • the film is pressed and glued by a punch in a recess (or cavity) formed in advance in a card body.
  • the chip is then connected, the film being fixed in the recess.
  • the film is also placed in an impression of a mold, pressed against an internal wall and after the introduction of the material into the impression, the support film is deformed either by the pressure of the material against a punch having the complementary shape of a recess to be formed and / or either by the displacement of the punch.
  • the invention also provides a method of manufacturing a micromodule at low cost without using expensive metallic elements such as copper, nickel or gold.
  • the invention therefore also relates to a method of manufacturing a micromodule comprising an integrated circuit chip provided with contact pads which are electrically connected to contact pads, via conductive tracks, characterized in that '' it includes the following stages: production, on a strip of insulating material, of a printing of conductive ink for form a repeating pattern consisting of the contact pads and the conductive tracks, then, in an indifferent order:
  • the conductive ink used to form the contacts has a very advantageous cost compared to copper, nickel or gold conventionally used to produce metallizations. This lower cost is due to the fact that the process is additive and not subtractive. In fact, the ink is only deposited where it is really needed. In conventional cases, on the contrary, we start from a solid strip and we remove all that is not necessary, which is penalizing for a pattern integrating "empty" zones constituting the spaces between the metallizations. In addition, the method according to the invention is rapid since it can be implemented continuously, using the concept of automatic tape transport (TAB) to size the substrate.
  • TAB automatic tape transport
  • Another object of the invention relates to a method of manufacturing a storage medium of the chip card type with flush contacts, comprising a micromodule produced in accordance with the method of manufacturing a micromodule according to the invention, characterized in that that it consists of:
  • - provide a card body with a cavity having inclined walls, - transfer the micromodule into the cavity, by pressure bonding, so that the support substrate of the micromodule matches the shape of the cavity; in order to position the chip and the conductive tracks of the micromodule in the cavity and the contact pads flush with the surface of the card body,
  • Another object of the invention relates to another embodiment of a method of manufacturing a storage medium of the chip card type with flush contacts, comprising an integrated circuit chip which is embedded in the card body. and which comprises contact pads connected, via conductive tracks, to contact pads, characterized in that:
  • said conductive tracks and contact pads form a pattern, which is produced beforehand by printing conductive ink on an insulating strip in accordance with the process which is the first object of the invention, and which is cut to obtain an insulating substrate forming a support, and in that the method further comprises the following steps:
  • a card body with a cavity having inclined walls transfer, into the cavity, the pre-cut substrate, by pressure bonding, so that it matches the shape of the cavity; so that the conductive tracks line the walls and the bottom of the cavity and the contact pads are flush with the surface of the card body,
  • FIG. 1 already described, a diagram in cross section which illustrates a traditional method of manufacturing smart cards with contacts
  • FIG. 4A a top view of a substrate supporting a pattern obtained by printing conductive ink
  • FIGS. 4B and 4C respectively a top view and a sectional view of a micromodule according to the invention
  • FIGS. 4D and 4E respectively a top view and a sectional view of another micromodule according to the invention.
  • FIGS. 4F and 4G two top views of a substrate supporting a pattern obtained by printing conductive ink, on which a chip is respectively transferred, then connected by wire wiring,
  • FIGS. 5A and 5B two sectional views of a smart card during its manufacture, in which a micromodule according to the invention is inserted
  • FIGS. 6A and 6B two sectional views of another smart card during its manufacture.
  • FIG. 3 shows schematically a strip 170 with patterns 130 intended to allow the production of micromodules continuously.
  • This strip consists of an insulating material. It may include regular perforations 160, distributed along its longitudinal edges, on one of its sides or on its two sides. These perforations 160 are used for driving the strip by a toothed wheel system for automatically transporting strips.
  • TAB automatic transport
  • the strip can also be transported using a roller conveyor system, replacing the perforations with sights, printed at the same time as the pattern, and whose role is to allow indexing by an optical device.
  • the micromodule manufacturing method according to the invention consists firstly in producing, on this strip 170, a repeating pattern 130 by printing conductive ink.
  • This repetitive pattern 130 consists on the one hand of contact pads 131 of a connection terminal block and on the other hand of conductive tracks 132 capable of establishing an electrical connection between the contact pads of an integrated circuit chip and the contact pads 131.
  • the insulating strip 170 therefore makes it possible to manufacture micromodules continuously, from the pattern 130, printed repeatedly on this strip, and from integrated circuit chips which are transferred and connected to each copy of the pattern.
  • the strip 170 therefore forms the main support of integrated circuit chips, which constitute the heart of micromodules.
  • the patterns can be printed on a sheet.
  • the patterns can also be printed on a discontinuous strip.
  • a drop of resin is arranged so as to coat the chip and the connection connections with the chip, then the drop is optionally leveled to a predetermined height, and finally the micromodules are separated from the rest of the strip.
  • the manufacture of the micromodules is not limited to this order of sequence of steps. We can indeed very well cut each printed pattern 130, in order to separate it from the rest of the strip 170, even before carrying out the transfer of the integrated circuit chip.
  • An insulating substrate 150 is then obtained, as illustrated in top view in FIG. 4A. This substrate 150 forms the support for a previously printed connection terminal block, constituted by contact pads 131, and connected to conductive interconnection tracks 132.
  • the interconnection tracks 132 are provided so as to be able to connect each pad of contact of the integrated circuit chip with the contact pad 131 associated therewith.
  • the printing of conductive ink to form the contact pads 131 and the conductive tracks 132 can be carried out according to different techniques.
  • the printing of conductive ink is obtained by a technique of pad printing.
  • an ink pad allows to transfer the conductive ink, according to the desired pattern, on the surface of the insulating strip 170.
  • This technique can be implemented either with a pad moving vertically towards the card, or with a pad with rotary movement.
  • the printing of conductive ink is obtained by an offset printing technique using an inkwell, a polymer or metallic plate comprising the pattern to be printed hollow or in relief and a blanket-type roller for transfer. ink on the card.
  • a third embodiment, for the printing of conductive ink consists in using an ink jet printing technique.
  • the inkjet printing technique can be carried out in two different and well-known ways: either by deviated continuous inkjet, or by a so-called drop-on-demand method.
  • the printing of conductive ink is obtained by screen printing.
  • the conductive ink can be constituted by a solvent ink, comprising a polymer resin dissolved in a solvent with conductive fillers (metal particles), which hardens by evaporation of the solvent.
  • the ink can also be a one-component or two-component thermosetting ink, an UV polymerization ink, a solder paste type compound or a metal alloy.
  • the chip it can be transferred either directly to the strip 170, or to the precut substrate 150, according to three different types of arrangement.
  • a first method consists in transferring the chip according to a “flip chip” type of assembly.
  • This type of assembly is already well known and is shown in the diagrams in top view and in section of FIGS. 4B and 4C.
  • FIG. 4C as well as in the other sectional views of FIGS. 4E, 5A, 5B, 6A and 6B described in the following, the contact pads 131 of the connection terminal block and the conductive tracks 132 are represented by a single line thick black to facilitate understanding. However, since they are obtained by printing conductive ink, their thickness is in reality negligible.
  • the chip 200 is transferred by turning it over, the active face comprising the contact pads 220 oriented towards the substrate 150. It is then connected by applying its contact pads 220 to the conductive tracks 132 previously printed, without the use of wires conductors. In this case the interconnection tracks 132 must be printed with precision and they are brought to the exact location of the contact pads 220 of the integrated circuit chip 200.
  • the chip 200 is connected to the conductive tracks 132 by means of an adhesive 350 with anisotropic electrical conduction well known and often used for mounting passive components on the surface.
  • This adhesive 350 actually contains elastic conductive particles that can be deformed, which make it possible to establish electrical conduction along the z axis (that is to say along the thickness) when they are pressed between the pads contact 220 and the conductive tracks 132, while ensuring insulation in the other directions
  • the electrical connection can be established by means of protuberances formed by a conductive adhesive, previously deposited on the contact pads 220 of the chip and reactivated hot when the chip is transferred.
  • Another way of establishing the electrical connection between the chip and the conductive tracks consists in making, on the contact pads of the chip, bosses in conductive material intended to improve the electrical contact, then in applying the chip to the pattern beforehand. printed, before the conductive ink used for printing the pattern has completely polymerized. The fixing and the connection of the chip are then carried out simultaneously, during the polymerization of the conductive ink of the printed pattern. Finally, in the case where the conductive tracks 132 are produced by printing a metal alloy, it is conceivable to fix and connect the chip in a single welding step. For this, metal alloy bosses with a low melting point are produced on the contact pads of the chip and are remelted when the chip is transferred in order to weld them to the conductive tracks.
  • FIGS. 4D and 4E respectively show a top view and a sectional view of the substrate 150 previously printed and cut on which the chip 200 is transferred.
  • the interconnection tracks 132 are brought close to the location provided for the chip 200.
  • the chip 200 is bonded by the face opposite to the active face, using an insulating adhesive 500.
  • the adhesive used may for example be a crosslinking adhesive under the effect of exposure to ultraviolet radiation.
  • the rate of this bonding operation can be particularly high, since it is possible, for example, to bond five to six thousand chips per hour.
  • the electrical connections are made between the contact pads 220 of the chip 200 and the conductive tracks 132. These connections are made by dispensing a conductive resin 400 on the contact pads 220 of the chip and on the connection tracks 132.
  • the conductive resin 400 may for example be a polymerizable adhesive loaded with conductive particles such as silver particles.
  • This second connection step can be carried out at the same high rate as the bonding step of the chip. In addition, these two bonding and connection steps can be carried out using the same equipment.
  • FIGS. 4D and 4E which have just been described show a configuration for which each contact pad is located opposite a pad of the chip which is associated with it.
  • the chip is mounted according to a third method consisting of conventional wired cabling, it will be necessary to use an interdigital pattern as shown diagrammatically in FIGS. 4F and 4G and as described in patent application EP-A-0 753 827.
  • This interdigitated reason thus makes it possible to bring the conductive tracks 132 of each contact pad 131 associated with a contact pad 220 of the chip 200 near this pad, and thus avoid entanglement of the connection wires 260.
  • FIG. 4F represents more particularly the interdigitated pattern on which a chip 200 is carried over.
  • FIG. 4G also represents the wire connections 260 between the pattern and the contact pads of the chip.
  • the chip 200 is then coated in a resin 351.
  • This resin 351 makes it possible to protect the chip against mechanical and climatic attacks.
  • the use of this resin is completely optional (see Figures 4C and 4E).
  • FIGS. 5A and 5B represent the steps of a method of manufacturing a storage medium of the chip card type with flush contacts according to a first embodiment.
  • This embodiment consists in transferring, in the cavity 120 of a card body 100, the micromodule 180 previously produced on the insulating substrate 150 precut.
  • the card body 100 is produced according to a conventional method, for example by injecting plastic material into a mold.
  • the cavity 120 is obtained either by milling the card body, or at the time of manufacture by injection of the card body, which is more economical.
  • the micromodule substrate 180 is transferred into the cavity 120 of the card body so that the support substrate 150 follows the shape of the cavity.
  • the substrate 150 separated from the rest of the insulating strip 170, is made of a material flexible enough to be easily deformable during the insertion of the micromodule.
  • This flexible material can furthermore be very inexpensive. It can be chosen from the materials in the following list given by way of non-exhaustive example: polyvinyl chloride (PVC), acrylonitrile butadiene styrene (ABS), polystyrene (PS), polyethylene terephthalate (PET), polyethylene (PE), polycarbonate (PC), polypropylene (PP), paper or cellulose derivative.
  • PVC polyvinyl chloride
  • ABS acrylonitrile butadiene styrene
  • PS polystyrene
  • PET polyethylene terephthalate
  • PE polyethylene
  • PC polycarbonate
  • PP polypropylene
  • the micromodule 180 has a sufficiently shallow depth, preferably between 100 and 600 ⁇ m, for example of the order of 300 ⁇ m.
  • the cavity 120 must not have walls close to the vertical but only walls inclined at an angle of inclination preferably between 5 and 30 °.
  • the cavity 120 is circular. It has a first horizontal plane defined inside a first circle 121 and forming the bottom of the cavity, located at a depth between 100 and 600 ⁇ m.
  • a second inclined plane is defined inside a second circle 122 concentric to the first, and of larger diameter, and forms the walls of the cavity 120.
  • a third horizontal plane is also defined inside a third circle 123 concentric with the first two and of even greater diameter. This third plane is produced over a depth equal to the thickness of the substrate 150, so that the contact pads 131 previously printed on the substrate 150 are flush with the surface of the card body 100. The depth of this third plane is therefore preferably between 50 and 100 ⁇ m.
  • the shape of the cavity is not limited to a circle, it can just as easily be rectangular, lozenge, octagonal or any other form.
  • the bottom of the cavity is intended to receive the portion of the micromodule 180 comprising the integrated circuit chip 200 coated in a protective resin 351 as well as the conductive tracks 132.
  • the substrate 150 of the micromodule 180 is bonded into the cavity 120 using a tool 500, such as a press for example, whose shape is adapted to that of the cavity.
  • the substrate which is sufficiently flexible, is therefore pressed by means of this tool 500, to adopt the shape of the cavity 120.
  • the tool 500 comprises a housing 510 formed to the dimensions of the chip 200. In this way, the chip does not undergo the pressure stresses suffered by the substrate 150.
  • the bonding of the substrate 150 to the bottom of the cavity 120 can be done using an adhesive which can be activated hot or cold.
  • This adhesive can either be dispensed in the cavity 120 during the transfer of the micromodule 180, or coated on the insulating substrate 150 before the manufacture of the micromodule and then activated hot at the time of the transfer of the micromodule, or else deposited on the insulating substrate 150 just before the micromodule insertion phase.
  • the material of the insulating substrate 150 can also be chosen so that it makes it possible to obtain excellent adhesion to the material constituting the card 100, without any adhesive, but by a simple hot pressing or by welding. ultrasonic or high frequency.
  • the micromodule can also be thermoformed before or after the cutting operation. The transfer and paste operation is then made easier.
  • the final step of the chip card manufacturing process consists in depositing a drop of resin 300 in the cavity 120 in order to protect the micromodule 180 and the conductive tracks 132 from climatic and mechanical constraints. This encapsulation resin is deposited so as to be flush with the surface of the card body 100. It must also be identical or compatible with the coating resin 351 of the chip of micromodule 180.
  • FIGS. 6A and 6B represent the steps of the method of manufacturing a storage medium of the chip card type with flush contacts according to another embodiment.
  • the micromodule is not entirely produced before it is inserted.
  • the substrate 150 with a pre-printed pattern is separated from the rest of the strip 170 with patterns before the chip is transferred.
  • the substrate 150 is deposited in the cavity 120 of the card body 100 by means of a tool 500, such as a press, the shape of which is adapted to that of the cavity 120.
  • a tool 500 such as a press, the shape of which is adapted to that of the cavity 120.
  • the press 500 it is not necessary for the press 500 to have a housing for protecting the chip.
  • the pressure applied to the substrate 150 is therefore uniform over its entire surface.
  • the method of bonding the substrate in the cavity 120 is identical to that which has been previously described.
  • the substrate 150 is transferred into the cavity so that the contact pads 131 are flush with the surface of the card body 100 and that the conductive tracks 132, connected to the contact pads, line the walls and the bottom of the cavity 120.
  • the chip 200 is then transferred to the bottom of the cavity and connected to the conductive tracks 132. It can be mounted according to the three types of assembly previously described with reference to FIGS. 4B to 4G.
  • the final step of the chip card manufacturing process consists in depositing a drop of resin 300 in the cavity 120 in order to protect the chip 200 and its connections to the conductive tracks 132 from climatic and mechanical constraints.
  • This encapsulation resin 300 is deposited so as to be flush with the surface of the card body 100. It must also be compatible with the adhesives used during the transfer of the chip.
  • the micromodule 180 or the insulating substrate 150 supporting the pre-printed pattern without the chip, is inserted into the body of the storage medium during the injection of the latter.
  • the substrate 150 is separated from the rest of the strip 170 and cut to the final dimensions of the micromodule.
  • This substrate, with or without a deferred chip, is then clamped in the injection mold, in order to maintain it in position during the injection of the material constituting the card body, and to obtain a seal so that the injected material does not does not pass between the module and the mold and does not cover the preprinted connection areas.
  • This clamping can be performed by suction or by an electrostatic process.
  • the material constituting the card body is then injected.
  • the substrate takes the form of the mold under the pressure of the injected material.
  • the material is first injected, then the substrate is deformed by placing the core to the dimensions of the cavity just after the injection.
  • a card is obtained provided with a module formed in the reliefs of the desired cavity with flush electrical contacts.
  • the substrate 150 of the micromodule 180 may also include perforations made in its thickness. These perforations allow the encapsulation resin 300 to be in direct contact with the material of the card body, and thus to constitute an anchoring point of the module in the cavity 120. In addition, they make it possible to evacuate any air bubbles that can be trapped between the card body cavity and the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un micromodule comprenant une puce de circuit intégré munie de plots de contact qui sont électriquement reliés à des plages de contact, par l'intermédiaire de pistes conductrices. Ce procédé comprend les étapes suivantes: réalisation, sur une bande de matériau isolant, d'une impression d'encre conductrice pour former un motif répétitif constitué par les plages de contact et les pistes conductrices, puis, dans un ordre indifférent: report de la puce de circuit intégré sur le motif préalablement imprimé, découpage du motif en vue de le séparer du reste de la bande, afin d'obtenir un substrat isolant formant le support du micromodule; enrobage de la puce dans une résine de protection. Le micromodule fabriqué selon ce procédé est destiné à être inséré dans un support de mémorisation de type carte à puce. Le procédé selon l'invention est par ailleurs rapide et permet de réaliser en continu des micromodules à bas coût.

Description

PROCEDE DE FABRICATION D'UN MICROMODULE ET D'UN SUPPORT DE MÉMORISATION COMPORTANT UN TEL MICROMODULE
La présente invention concerne la fabrication d'un rαicromodule destiné à être encarté dans un support de mémorisation du type carte à puce. Elle concerne également un procédé de fabrication d'un support de mémorisation de type carte à puce à contacts affleurant.
Les cartes à puce sont destinées à la réalisation de diverses opérations, telles que, par exemple, des opérations bancaires, des communications téléphoniques ou diverses opérations d'identification.
Les cartes à contact comportent des métallisations affleurant la surface de la carte, disposées à un endroit précis du corps de carte, défini par la norme usuelle ISO 7816. Ces métallisations sont destinées à venir au contact d'une tête de lecture d'un lecteur en vue d'une transmission électrique de données.
Telles qu'elles sont réalisées actuellement, les cartes à puce sont des objets portables de faible épaisseur dont les dimensions sont normalisées. La norme usuelle ISO 7810 correspond à une carte de format standard de 85 mm de longueur, de 54 mm de largeur et de 0,76 mm d'épaisseur.
Il existe de nombreux procédés de fabrication de cartes à puce. La majorité de ces procédés est basée sur l'assemblage de la puce de circuit intégré dans un sous-ensemble appelé micromodule qui est assemblé en utilisant des procédés traditionnels.
Un procédé classique, illustré sur la figure 1, consiste à coller une puce de circuit intégré 20 en disposant sa face active avec ses plots de contact 22 vers le haut, et en collant la face opposée sur une feuille support diélectrique 28. La feuille diélectrique 28 est elle-même disposée sur une grille de contacts 24 d'une plaque métallique en cuivre nickelé et doré. Des puits de connexion 21 sont pratiqués dans la feuille diélectrique 28 et des fils de connexion 26 relient les plots de contact 22 de la puce 20 aux plages de contacts de la grille 24 par l'intermédiaire de ses puits de connexion 21. Enfin, une résine d'encapsulation 30, à base d'époxy, protège la puce 20 et les fils de connexion 26 soudés. Le module est ensuite découpé puis encarté dans la cavité d'un corps de carte préalablement décoré.
Ce procédé présente cependant l'inconvénient d'être coûteux. En effet, les métallisations en cuivre, nickel et or élèvent considérablement le prix de revient des cartes. De plus, le nombre d'étapes de favrication est élevé.
Un but de la présente invention est donc de réaliser une carte à puce à prix réduit. Des procédés de fabrication de cartes à puce, sans étape intermédiaire de réalisation d'un micromodule, ont déjà été étudiés pour réduire les coûts de revient des cartes. Une première solution, décrite dans les demandes de brevets FR2671416, FR2671417, et FR2671418, consiste à encarter une puce de circuit intégré directement dans un corps de carte. Pour cela le support de carte est localement ramolli et la puce est pressée dans la zone ramollie. Aucune cavité n'est donc pratiquée dans le corps de carte. Une carte obtenue selon cette technologie est schématisée en vue de dessus sur la figure 2. La puce 20 est disposée de telle sorte que ses plots de contact 22 affleurent la surface de la carte 10. Des opérations de sérigraphie permettent ensuite d'imprimer, sur un même plan, des plages de contact 25 et des pistes conductrices 27 permettant de relier les plages de contact 25 aux plots de contact 22 de la puce 20. Un vernis de protection est ensuite appliqué sur la puce 20 ainsi que sur les connexions entre les plots de contact 22 de la puce et les pistes conductrices 27.
Cette première solution présente cependant plusieurs inconvénients. Tout d'abord, ce procédé ne peut être adapté qu'à des puces de très petites dimensions. De plus, l'opération de sérigraphie des plages de contacts 25 et des pistes d'interconnexion 27 est délicate à mettre en oeuvre car le positionnement des pistes 27 sur les plots de contact 22 de la puce 20 nécessite une très grande précision d'indexation qui doit être contrôlée par VAO (Vision Assistée par Ordinateur) . Cette contrainte nuit à la cadence et au rendement du procédé de fabrication.
La puce doit par ailleurs être parfaitement positionnée pour que ses plots de contact 22 soient disposés parallèlement aux bords latéraux de la carte et permettre de réaliser les plages de contact 25 parallèles aux bords latéraux de la carte. Or, la puce étant disposée dans une zone localement ramollie, il n'est pas facile de la positionner correctement, et les cartes à puce dont les plages de contact sont disposées légèrement de biais sont destinées au rebut.
Ce procédé est par conséquent trop délicat à mettre en oeuvre pour être adapté à une production industrielle. De plus, le pourcentage de cartes destinées au rebut reste important et contribue à élever le coût de fabrication.
Une autre solution ayant été envisagée, pour réduire le prix de revient des cartes à puce, utilise la technologie "Chrysalide". Cette technologie repose sur l'application de pistes électriquement conductrices par un procédé de type MID ("Moulded Interconnection Device" en littérature anglo-saxonne) . Plusieurs procédés associés à cette technologie ont déjà fait l'objet de dépôts de demandes de brevet. Les demandes de brevet EP-A-0 753 827, EP-A-0 688 050, et EP-A- 0 688 051, notamment, décrivent des procédés de fabrication et d'assemblage d'une carte à circuit intégré. La carte comporte un logement pour recevoir le circuit intégré. Des pistes électriquement conductrices sont disposées contre le fond et les parois latérales du logement et sont reliées à des plages métalliques de contact formées sur la surface du support de carte.
L'application des pistes conductrices dans le logement peut être effectuée de trois manières différentes.
Une première manière consiste à réaliser de l'estampage à chaud. Pour cela, une feuille comportant des métallisations en cuivre, recouvertes éventuellement d'étain ou de nickel, et munie d'une colle activable à chaud, est découpée puis collée à chaud dans le logement.
Une deuxième manière consiste à appliquer, au moyen d'un tampon, une laque contenant un catalyseur au Palladium, aux endroits destinés à être métallisés, et à chauffer la laque; puis à réaliser une métallisation, par dépôt de cuivre et/ou de nickel, en utilisant un procédé électrochimique d' autocatalyse.
Une troisième manière consiste à réaliser une lithogravure à partir d'hologrammes laser. Cette lithogravure permet de réaliser des dépôts de métallisations en trois dimensions avec une très grande précision et une haute résolution. Tous ces procédés d'application de pistes conductrices sont cependant complexes à mettre en oeuvre et donc coûteux. Ils nécessitent souvent l'utilisation d'un outillage spécifique. De plus, les plages de contact et les connexions sont réalisées par un dépôt de métallisations utilisant encore le cuivre et/ou le nickel qui sont des éléments chers, si bien que le prix de revient des cartes reste très élevé. La technologie "Chrysalide" fait donc appel à des procédés trop complexes et utilise des éléments métalliques trop chers pour être adaptée à une production industrielle en grande masse.
Pour pallier les inconvénients précités, l'invention propose un procédé de fabrication d'un support de mémorisation de type carte à puce à contacts affleurant, comprenant un micromodule comportant un film support portant des plages de contacts, des pistes de connexion et une puce de circuit intégré reliée aux plages de contact, caractérisé en ce qu'il comporte les étapes suivantes selon lesquelles :
- on réalise les plages de contact et des pistes de connexion par impression d'encre conductrice sur le film support, - on déforme le film support de manière que les pistes de connexion soient au moins en partie à un niveau inférieur par rapport aux plages de contact.
L'avantage procuré par la première étape du procédé est de permettre des fabrications en grande quantité de contacts et des pistes de connexion en une seule étape. Bien entendu, l'écart entre le niveau inférieur et les plages de contact est prévu pour être suffisant de manière à loger la puce et à pouvoir la recouvrir d'un matériau d'enrobage. Les pistes de connexion et les contacts sont sur la même face, le procédé évite ainsi une étape supplémentaire .
Selon une variante, le procédé consiste en outre à effectuer les étapes suivantes : fixer et connecter la puce avant déformation, puis déformer le film support en le pressant dans un évidement de corps de carte avec un poinçon comportant un logement.
Selon une autre variante, le procédé consiste en outre à connecter la puce après déformation.
Premier cas, le film est pressé et collé par un poinçon dans un évidement (ou cavité) formé à l'avance dans un corps de carte. La puce est alors connectée, le film étant fixé dans l' évidement. Deuxième cas, pour la déformation on vient en outre placer le film dans une empreinte d'un moule, plaqué contre une paroi interne et après l'introduction de la matière dans l'empreinte, le film support est déformé soit par la pression de la matière contre un poinçon ayant la forme complémentaire d'un évidement à former et/ou soit par le déplacement du poinçon.
Pour pallier les inconvénients précités, tout en restant dans le même esprit, l'invention propose également un procédé de fabrication d'un micromodule à bas coût sans utiliser d'éléments métalliques coûteux tels que le cuivre, le nickel ou l'or.
L'invention a donc également pour objet, un procédé de fabrication d'un micromodule comprenant une puce de circuit intégré munie de plots de contact qui sont électriquement reliés à des plages de contact, par l'intermédiaire de pistes conductrices, caractérisé en ce qu'il comprend les étapes suivantes: réalisation, sur une bande de matériau isolant, d'une impression d'encre conductrice pour former un motif répétitif constitué par les plages de contact et les pistes conductrices, puis, dans un ordre indifférent :
- report de la puce de circuit intégré sur le motif préalablement imprimé,
- découpage du motif en vue de le séparer du reste de la bande, afin d'obtenir un substrat isolant formant le support du micromodule,
- enrobage de la puce dans une résine de protection.
L'encre conductrice utilisée pour former les contacts présente un coût très avantageux par rapport au cuivre, au nickel ou à l'or utilisés de manière classique pour réaliser des métallisations. Ce coût plus faible est du au fait que le procédé est additif et non soustractif. En effet, on ne dépose l'encre qu'à l'endroit où elle est vraiment nécessaire. Dans les cas classiques, au contraire, on part d'une bande pleine et on ôte tout ce qui n'est pas nécessaire, ce qui est pénalisant pour un motif intégrant des zones "vides" constituant les espaces entre les métallisations. De plus, le procédé selon l'invention est rapide étant donné qu'il peut être mis en oeuvre en continu, en utilisant le concept du transport automatique de bande (TAB) pour dimensionner le substrat.
Un autre objet de l'invention se rapporte à un procédé de fabrication d'un support de mémorisation de type carte à puce à contacts affleurant, comprenant un micromodule réalisé conformément au procédé de fabrication d'un micromodule selon l'invention, caractérisé en ce qu'il consiste à :
- fournir un corps de carte avec une cavité présentant des parois inclinées, - reporter le micromodule dans la cavité, par collage sous pression, de manière à ce que le substrat support du micromodule épouse la forme de la cavité; afin de positionner la puce et les pistes conductrices du micromodule dans la cavité et les plages de contact en affleurement de la surface du corps de carte,
- déposer une résine de protection dans la cavité.
Un autre objet de l'invention se rapporte à un autre mode de réalisation d'un procédé de fabrication d'un support de mémorisation de type carte à puce à contacts affleurant, comprenant une puce de circuit intégré qui est noyée dans le corps de carte et qui comporte des plots de contact connectés, par l'intermédiaire de pistes conductrices, à des plages de contact, caractérisé en ce que:
- lesdites pistes conductrices et plages de contact forment un motif, qui est préalablement réalisé par impression d'encre conductrice sur une bande isolante conformément au procédé premier objet de l'invention, et qui est découpé pour obtenir un substrat isolant formant un support, et en ce que le procédé comporte en outre les étapes suivantes :
- fournir un corps de carte avec une cavité présentant des parois inclinées, reporter, dans la cavité, le substrat prédécoupé, par collage sous pression, de manière à ce qu'il épouse la forme de la cavité; afin que les pistes conductrices tapissent les parois et le fond de la cavité et que les plages de contact affleurent la surface du corps de carte,
- reporter la puce de circuit intégré dans le fond de l'a cavité, sur le motif préalablement imprimé, - déposer une résine de protection dans la cavité.
D'autres particularités et avantages de l'invention apparaîtront à la lecture de la description donnée à titre d'exemple illustratif et non limitatif et faite en référence aux figures annexées qui représentent :
- la figure 1, déjà décrite, un schéma en section transversale qui illustre un procédé traditionnel de fabrication de cartes à puce à contacts,
- la figure 2, déjà décrite, un schéma en vue de dessus d'une carte à puce fabriquée selon une technologie connue, - la figure 3, un schéma d'une bande à motifs réalisée, selon un procédé de l'invention, en vue de fabriquer des micromodules en continu, la figure 4A, une vue de dessus d'un substrat supportant un motif obtenu par impression d'encre conductrice,
- les figures 4B et 4C, respectivement une vue de dessus et une vue en coupe d'un micromodule selon 1' invention,
- les figures 4D et 4E, respectivement une vue de dessus et une vue en coupe d'un autre micromodule selon l'invention,
- les figures 4F et 4G, deux vues de dessus d'un substrat supportant un motif obtenu par impression d'encre conductrice, sur lequel une puce est respectivement reportée, puis connectée par câblage filaire,
- les figures 5A et 5B, deux vues en coupe d'une carte à puce au cours de sa fabrication, dans laquelle est encarté un micromodule selon l'invention, - les figures 6A et 6B, deux vues en coupe d'une autre carte à puce au cours de sa fabrication.
La figure 3 schématise une bande 170 à motifs 130 destinée à permettre la réalisation de micromodules en continu. Cette bande est constituée par un matériau isolant. Elle peut comporter des perforations 160 régulières, réparties le long de ses bords longitudinaux, sur un de ses côtés ou sur ses deux côtés. Ces perforations 160 servent à l'entraînement de la bande par un système à roue dentée de transport automatique de bandes. L'utilisation de ce concept de transport automatique (TAB) de bandes pour dimensionner le substrat du micromodule permet de travailler avec un pas faible. Par exemple, la distance entre deux motifs 130 pourra être de 9,5 mm.
On pourra aussi transporter la bande en utilisant un système de convoyage à galet, en remplaçant les perforations par des mires, imprimées en même temps que le motif, et dont le rôle est de permettre l'indexation par un dispositif optique.
Le procédé de fabrication de micromodule selon l'invention consiste dans un premier temps à réaliser, sur cette bande 170, un motif répétitif 130 par impression d'encre conductrice. Ce motif répétitif 130 est constitué d'une part de plages de contact 131 d'un bornier de connexion et d'autre part de pistes conductrices 132 aptes à établir une liaison électrique entre les plots de contact d'une puce de circuit intégré et les plages de contact 131. La bande isolante 170 permet donc de fabriquer des micromodules en continu, à partir du motif 130, imprimé de manière répétitive sur cette bande, et de puces de circuit intégré qui sont reportées et connectées sur chaque exemplaire du motif. La bande 170 forme donc le support principal des puces de circuit intégré, lesquelles constituent le coeur des micromodules.
Dans une variante de réalisation, les motifs peuvent être imprimés sur une feuille. L'impression des motifs peut également être réalisée sur une bande discontinue.
Les étapes suivantes du procédé de fabrication des micromodules sont effectuées de manière traditionnelle. Ainsi, une goutte de résine est disposée de manière à enrober la puce et les connexions de liaison avec la puce, puis la goutte est éventuellement arasée à une hauteur prédéterminée, et enfin les micromodules sont séparés d'avec le reste de la bande.
Bien sûr, la fabrication des micromodules n'est pas limitée à cet ordre de déroulement des étapes. On peut en effet très bien découper chaque motif imprimé 130, en vue de le séparer d'avec le reste de la bande 170, avant même d'effectuer le report de la puce de circuit intégré. On obtient alors un substrat isolant 150, tel qu'illustré en vue de dessus sur la figure 4A. Ce substrat 150 forme le support d'un bornier de connexion préalablement imprimé, constitué par des plages de contact 131, et relié à des pistes conductrices d'interconnexion 132. Les pistes d'interconnexion 132 sont prévues de manière à pouvoir connecter chaque plot de contact de la puce de circuit intégré à la plage de contact 131 qui lui est associée.
L'impression d'encre conductrice pour former les plages de contact 131 et les pistes conductrices 132 peut être réalisée selon différentes techniques.
Dans un premier mode de réalisation, l'impression d'encre conductrice est obtenue par une technique de tampographie. Pour cela, un tampon encreur permet de reporter l'encre conductrice, selon le motif désiré, sur la surface de la bande isolante 170. Cette technique peut être mise en oeuvre soit avec un tampon à déplacement vertical vers la carte, soit avec un tampon à déplacement rotatif.
Dans un deuxième mode de réalisation, l'impression d'encre conductrice est obtenue par une technique d'impression offset utilisant un encrier, une plaque polymère ou métallique comportant le motif à imprimer creux ou en relief et un rouleau de type blanchet pour le transfert de l'encre sur la carte.
Un troisième mode de réalisation, pour l'impression d'encre conductrice, consiste à utiliser une technique d'impression par jet d'encre. Traditionnellement, la technique d'impression par jet d'encre peut être réalisée de deux manières différentes et bien connues : soit par jet d'encre continu dévié, soit par une méthode dite de goutte à la demande. Dans un autre mode de réalisation, l'impression d'encre conductrice est obtenue par sérigraphie.
Les différentes techniques d'impression permettent d'utiliser différentes sortes d'encre conductrice. Ainsi, l'encre conductrice peut être constituée par une encre à solvant, comportant une résine polymère solubilisée dans un solvant avec des charges conductrices (particules métalliques) , qui durcie par évaporation du solvant. L'encre peut également être une encre thermodurcissable mono- ou bicomposant, une encre à polymérisation sous rayonnement UV, un composé de type pâte à braser ou encore un alliage métallique. La puce peut quant à elle être reportée soit directement sur la bande 170, soit sur le substrat 150 prédécoupé, selon trois types de montages différents.
Une première méthode consiste à reporter la puce selon un montage de type "flip chip". Ce type de montage est déjà bien connu et il est représenté sur les schémas en vue de dessus et en coupe des figures 4B et 4C. Sur la figure 4C, ainsi que sur les autres vues en coupe des figures 4E, 5A, 5B, 6A et 6B décrites dans ce qui suit, les plages de contact 131 du bornier de connexion et les pistes conductrices 132 sont représentées par un seul trait épais noir afin de faciliter la compréhension. Mais, étant donné qu'elles sont obtenues par impression d'encre conductrice, leur épaisseur est en réalité négligeable.
Le report de la puce 200 est effectué en la retournant, la face active comportant les plots de contact 220 orientée vers le substrat 150. Elle est ensuite connectée en appliquant ses plots de contacts 220 sur les pistes conductrices 132 préalablement imprimées, sans utilisation de fils conducteurs. Dans ce cas les pistes d'interconnexion 132 doivent être imprimées avec précision et elles sont amenées jusqu'à l'emplacement exact des plots de contact 220 de la puce 200 de circuit intégré.
Dans l'exemple illustré sur la figure 4C la puce 200 est connectée aux pistes conductrices 132 au moyen d'une colle 350 à conduction électrique anisotrope bien connue et souvent utilisée pour le montage de composants passifs en surface. Cette colle 350 contient en fait des particules conductrices élastique ent déformables, qui permettent d'établir une conduction électrique suivant l'axe z (c'est à dire suivant l'épaisseur) lorsqu'elles sont pressées entre les plots de contact 220 et les pistes conductrices 132, tout en assurant une isolation suivant les autres directions
(x, Y) •
Dans une variante de réalisation, la connexion électrique peut être établie au moyen de protubérances formées par un adhésif conducteur, préalablement déposé sur les plots de contact 220 de la puce et réactivé à chaud lors du report de la puce.
Une autre façon d'établir la connexion électrique entre la puce et les pistes conductrices consiste à réaliser, sur les plots de contact de la puce, des bossages en matériau conducteur destinés à améliorer le contact électrique, puis à appliquer la puce sur le motif préalablement imprimé, avant la polymérisation complète de l'encre conductrice utilisée pour l'impression du motif. La fixation et la connexion de la puce s'effectuent alors simultanément, au cours de la polymérisation de l'encre conductrice du motif imprimé. Enfin, dans le cas où les pistes conductrices 132 sont réalisées par impression d'un alliage métallique, il est envisageable de fixer et de connecter la puce en une seule étape de soudage. Pour cela, des bossages en alliage métallique à bas point de fusion sont réalisés sur les plots de contact de la puce et sont refondus au moment du report de la puce afin de les souder aux pistes conductrices.
Une deuxième méthode pour effectuer le report de la puce consiste à coller la puce à l'endroit avec sa face active comportant les plots de contact, orientée vers le haut. Ce type de montage est illustré par les figures 4D et 4E qui schématisent respectivement une vue de dessus et une vue en coupe du substrat 150 préalablement imprimé et découpé sur lequel la puce 200 est reportée.
Dans ce cas, les pistes d'interconnexion 132 sont amenées à proximité de l'emplacement prévu pour la puce 200. La puce 200 est collée par la face opposée à la face active, en utilisant une colle 500 isolante. La colle utilisée peut par exemple être un adhésif réticulant sous l'effet d'une exposition à un rayonnement ultra-violet. La cadence de cette opération de collage peut être particulièrement élevée, puisqu'il est possible de coller par exemple cinq à six milles puces à l'heure.
Dans une deuxième étape, on réalise les connexions électriques entre les plots de contact 220 de la puce 200 et les pistes conductrices 132. Ces connexions sont effectuées par dispense d'une résine conductrice 400 sur les plots de contact 220 de la puce et sur les pistes de connexion 132. La résine conductrice 400 peut par exemple être une colle polymerisable chargée en particules conductrices telles que des particules d'argent. Cette deuxième étape de connexion peut être réalisée avec la même cadence élevée qu'à l'étape de collage de la puce. De plus, ces deux étapes de collage et de connexion peuvent être réalisées en utilisant le même équipement.
Les figures 4D et 4E qui viennent d'être décrites schématisent une configuration pour laquelle chaque plage de contact se trouve en face d'un plot de la puce qui lui est associé. En revanche lorsque la puce est montée selon une troisième méthode consistant en un câblage filaire classique, il faudra utiliser un motif interdigité tel que schématisé sur les figures 4F et 4G et tel que décrit dans la demande de brevet EP-A-0 753 827. Ce motif interdigité permet ainsi d'amener les pistes conductrices 132 de chaque plage de contact 131 associée à un plot de contact 220 de la puce 200 à proximité de ce plot, et d'éviter ainsi un enchevêtrement des fils de connexion 260. La figure 4F représente plus particulièrement le motif interdigité sur lequel une puce 200 est reportée. La figure 4G représente en outre les connexions filaires 260 entre le motif et les plots de contact de la puce.
Une fois reportée, la puce 200 est ensuite enrobée dans une résine 351. Cette résine 351 permet de protéger la puce contre les agressions mécaniques et climatiques. L'usage de cette résine est tout à fait optionnel (voir figures 4C et 4E) .
Les figures 5A et 5B représentent les étapes d'un procédé de fabrication d'un support de mémorisation de type carte à puce à contacts affleurant selon un premier mode de réalisation.
Ce mode de réalisation consiste à reporter, dans la cavité 120 d'un corps de carte 100, le micromodule 180 préalablement réalisé sur le substrat isolant 150 prédécoupé. Le corps de carte 100 est réalisé selon un procédé classique, par exemple par injection de matière plastique dans un moule. La cavité 120 est obtenue soit par fraisage du corps de carte, soit au moment de la fabrication par injection du corps de carte, ce qui est plus économique.
Le substrat micromodule 180 est reporté dans la cavité 120 du corps de carte de telle sorte que le substrat support 150 épouse la forme de la cavité. Pour cela, le substrat 150, séparé du reste de la bande isolante 170, est réalisé dans un matériau suffisamment souple pour être facilement défor able lors de l'encartage du micromodule. Ce matériau souple pourra en outre être très bon marché. Il peut être choisit parmi les matériaux de la liste suivante donnée à titre d'exemple non exhaustif: polychlorure de vinyle (PVC) , acrylonitrile butadiène styrène (ABS) , polystyrène (PS) , polyéthylène téréphtalate (PET) , polyéthylène (PE) , polycarbonate (PC) , polypropylène (PP) , papier ou dérivé cellulosique.
Pour faciliter la mise en place du micromodule 180 dans la cavité 120, celle-ci présente une profondeur suffisamment faible, comprise de préférence entre 100 et 600μm, par exemple de l'ordre de 300μm. De plus pour permettre une fixation correcte du micromodule, la cavité 120 ne doit pas présenter de parois proches de la verticale mais uniquement des parois inclinées selon un angle d'inclinaison de préférence compris entre 5 et 30°.
Dans l'exemple de la figure 5A, la cavité 120 est circulaire. Elle présente un premier plan horizontal défini à l'intérieur d'un premier cercle 121 et formant le fond de la cavité, situé à un profondeur comprise entre 100 et 600μm. Un deuxième plan incliné est défini à l'intérieur d'un deuxième cercle 122 concentrique au premier, et de diamètre supérieur, et forme les parois de la cavité 120. Un troisième plan horizontal est en outre défini à l'intérieur d'un troisième cercle 123 concentrique aux deux premiers et de diamètre encore supérieur. Ce troisième plan est réalisé sur une profondeur égale à l'épaisseur du substrat 150, de manière à ce que les plages de contact 131 préalablement imprimées sur le substrat 150 affleurent la surface du corps de carte 100. La profondeur de ce troisième plan est donc comprise de préférence entre 50 et lOOμm. Bien sûr, la forme de la cavité n'est pas limitée à un cercle, elle peut tout aussi bien être rectangulaire, losangique, octogonale ou de toute autre forme.
Le fond de la cavité est destiné à recevoir la portion du micromodule 180 comportant la puce 200 de circuit intégré enrobée dans une résine de protection 351 ainsi que les pistes conductrices 132.
Le substrat 150 du micromodule 180 est collé dans la cavité 120 en utilisant un outil 500, tel qu'une presse par exemple, dont la forme est adaptée à celle de la cavité. Le substrat, qui est suffisamment souple, est donc pressé au moyen de cet outil 500, pour adopter la forme de la cavité 120. De plus, pour éviter de dégrader la puce 200 de circuit intégré au moment de l'étape de pressage du micromodule 180 dans la cavité 120, l'outil 500 comporte un logement 510 pratiqué aux dimensions de la puce 200. De cette manière, la puce ne subit pas les efforts de pression subits par le substrat 150.
Le collage du substrat 150 dans le fond de la cavité 120 peut se faire à l'aide d'un adhésif activable à chaud ou à froid. Cet adhésif pourra être soit dispensé dans la cavité 120 lors du report du micromodule 180, soit enduit sur le substrat isolant 150 avant la fabrication du micromodule puis activé à chaud au moment du report du micromodule, ou encore déposé sur le substrat isolant 150 juste avant la phase d'encartage du micromodule.
Le matériau du substrat isolant 150 peut en outre être choisit de telle sorte qu'il permet d'obtenir une excellente adhésion sur le matériau de constitution de la carte 100, sans aucun adhésif, mais par un simple pressage à chaud ou alors par une soudure à ultrasons ou sous haute fréquence. Dans une variante de réalisation, le micromodule peut en outre être thermoformé avant ou après l'opération de découpe. L'opération de report et de collage se trouve alors facilitée. L'étape finale du procédé de fabrication de la carte à puce consiste à déposer une goutte de résine 300 dans la cavité 120 afin de protéger le micromodule 180 et les pistes conductrices 132 des contraintes climatiques et mécaniques. Cette résine d' encapsulation est déposée de manière à affleurer la surface du corps de carte 100. Elle doit de plus être identique ou compatible avec la résine d'enrobage 351 de la puce du micromodule 180.
Les figures 6A et 6B représentent les étapes du procédé de fabrication d'un support de mémorisation de type carte à puce à contacts affleurant selon un autre mode de réalisation.
Dans ce mode de réalisation, le micromodule n'est pas entièrement réalisé avant son encartage. En effet, le substrat 150 à motif préimprimé est séparé d'avec le reste de la bande 170 à motifs avant le report de la puce. Puis le substrat 150 est déposé dans la cavité 120 du corps de carte 100 au moyen d'un outil 500, tel qu'une presse, dont la forme est adaptée à celle de la cavité 120. A ce stade de la fabrication, étant donné que la puce n'est pas encore reportée sur le substrat imprimé et prédécoupé, il n'est pas nécessaire que la presse 500 possède un logement de protection de la puce. La pression appliquée sur le substrat 150 est donc uniforme sur toute sa surface.
Le mode de collage du substrat dans la cavité 120 est identique à celui qui a été préalablement décrit. La seule différence par rapport au procédé de fabrication de carte à puce selon le premier mode de réalisation, réside dans le fait que la puce n'est pas reportée au même moment sur le motif imprimé 130.
Le substrat 150 est reporté dans la cavité de telle sorte que les plages de contact 131 viennent affleurer la surface du corps de carte 100 et que les pistes conductrices 132, reliées aux plages de contact, tapissent les parois et le fond de la cavité 120.
La puce 200 est ensuite reportée dans le fond de la cavité et connectée aux pistes conductrices 132. Elle peut être montée selon les trois types de montage précédemment décrits en regard des figures 4B à 4G.
L'étape finale du procédé de fabrication de la carte à puce consiste à déposer une goutte de résine 300 dans la cavité 120 afin de protéger la puce 200 et ses connexions aux pistes conductrices 132, des contraintes climatiques et mécaniques.
Cette résine d' encapsulation 300 est déposée de manière à affleurer la surface du corps de carte 100. Elle doit en outre être compatible avec les adhésifs employés lors du report de la puce.
Dans une variante de réalisation, le micromodule 180, ou le substrat isolant 150 supportant le motif préimprimé sans la puce, est inséré dans le corps du support de mémorisation au cours de l'injection de celui-ci. Pour cela, le substrat 150 est séparé du reste de la bande 170 et découpé aux dimensions finales du micromodule. Ce substrat, avec ou sans puce reportée, est ensuite bridé dans le moule d'injection, afin de le maintenir en position durant l'injection du matériau de constitution du corps de carte, et d'obtenir une étanchéité pour que la matière injectée ne passe pas entre le module et le moule et ne recouvre pas les plages de connexion préimprimées. Ce bridage peut être effectué par une aspiration ou alors par un procédé électrostatique. La matière de constitution du corps de carte est ensuite injectée.
Dans le cas où l'injection est réalisée dans un moule à noyau fixe, le substrat prend la forme du moule sous la pression de la matière injectée.
Dans le cas où l'injection est réalisée dans un moule à noyau mobile, on injecte dans un premier temps la matière, puis on déforme le substrat en mettant en place le noyau aux dimensions de la cavité juste après 1' injection.
A la fin de cette opération d'injection, on obtient une carte munie d'un module formé aux reliefs de la cavité désirée avec des contacts électriques affleurant.
Dans une variante de réalisation, le substrat 150 du micromodule 180 peut en outre comporter des perforations pratiquées dans son épaisseur. Ces perforations permettent à la résine d' encapsulation 300 d'être en contact direct avec le matériau du corps de carte, et de constituer ainsi un point d'ancrage du module dans la cavité 120. De plus, elles permettent d'évacuer les éventuelles bulles d'air pouvant être piégées entre la cavité du corps de carte et le substrat.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un micromodule (180) comprenant une puce (200) de circuit intégré munie de plots de contact (220) qui sont électriquement reliés à des plages de contact (131), par l'intermédiaire de pistes conductrices (132), caractérisé en ce qu'il comprend les étapes suivantes:
- réalisation, sur une bande (170) de matériau isolant, d'une impression d'encre conductrice pour former un motif (130) répétitif constitué par les plages de contact (131) et les pistes conductrices (132), puis, dans un ordre indifférent :
- report de la puce (200) de circuit intégré sur le motif (130) préalablement imprimé, - découpage du motif (130) en vue de le séparer du reste de la bande (170), afin d'obtenir un substrat isolant (150) formant le support du micromodule (180) ,
- enrobage de la puce (200) dans une résine (351) de protection.
2. Procédé selon la revendication 1, caractérisé en ce que la bande isolante (170) est constituée d'un matériau souple choisit parmi les matériaux suivant: polychlorure de vinyle (PVC) , acrylonitrile butadiène styrène (ABS) , polystyrène (PS) , polyéthylène téréphtalate (PET) , polyéthylène (PE) , polycarbonate (PC) , polypropylène (PP) , papier ou dérivé cellulosique.
3. Procédé selon la revendication 1, caractérisé en ce que l'impression d'encre conductrice est réalisée par tampographie en utilisant un tampon encreur à déplacement vertical ou rotatif.
4. Procédé selon la revendication 1, caractérisé en ce que l'impression d'encre conductrice est réalisée par une technique offset utilisant un rouleau de type blanchet pour le transfert de l'encre sur la bande (170).
5. Procédé selon la revendication 1, caractérisé en ce que l'impression d'encre conductrice est réalisée par jet d'encre.
6. Procédé selon la revendication 1, caractérisé en ce que l'impression d'encre conductrice est réalisée par sérigraphie.
7. Procédé selon l'une des revendications 3 à 6, caractérisé en ce que l'encre conductrice utilisée est une encre à solvant, une encre thermodurcissable mono- ou bicomposant, une encre polymerisable sous rayonnement ultra-violet, une pâte à braser ou un alliage métallique.
8. Procédé selon la revendication 1, caractérisé en ce que la bande (170) est convoyée par un système de convoyage à galet et en ce qu'elle comporte des mires d'indexation, imprimées en même temps que le motif
(130) , pour permettre une indexation par un dispositif optique.
9. Procédé de fabrication d'un support de mémorisation de type carte à puce à contacts affleurant, comprenant un micromodule (180) réalisé conformément au procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'il consiste à :
- fournir un corps de carte (100) avec une cavité (120) présentant des parois inclinées,
- reporter le micromodule (180) dans la cavité (120) , par collage sous pression, de manière à ce que le substrat (150) support du micromodule (180) épouse la forme de la cavité (120) ; afin de positionner la puce (200) et les pistes conductrices (132) du micromodule (180) dans la cavité (120) et les plages de contact (131) en affleurement de la surface du corps de carte (100),
- déposer une résine de protection (300) dans la cavité (120) .
10. Procédé selon la revendication 9, caractérisé en ce que la pression appliquée sur le micromodule
(180) , lors de son report dans la cavité (120) , est exercée au moyen d'un outil (500) dont la forme est adaptée à celle de la cavité et comportant un logement (510) destinée à protéger la puce (200) .
11. Procédé de fabrication d'un support de mémorisation de type carte à puce à contacts affleurant, comprenant une puce (200) de circuit intégré qui est noyée dans le corps de carte (100) et qui comporte des plots de contact (220) connectés, par l'intermédiaire de pistes conductrices (132), à des plages de contact (131) , caractérisé en ce que:
- lesdites pistes conductrices (132) et plages de contact (131) forment un motif (130) , qui est préalablement réalisé par impression d'encre conductrice sur une bande isolante (170) conformément à l'une des revendications 1 à 7, et qui est découpé pour obtenir un substrat isolant (150) formant un support, et en ce que le procédé comporte en outre les étapes suivantes :
- fournir un corps de carte (100) avec une cavité (120) et présentant des parois inclinées,
- reporter, dans la cavité (120) , le substrat (150) prédécoupé, par collage sous pression, de manière à ce qu'il épouse la forme de la cavité (120); afin que les pistes conductrices (132) tapissent les parois et le fond de la cavité (120) et que les plages de contact (131) affleurent la surface du corps de carte (100) , - reporter la puce (200) de circuit intégré dans le fond de la cavité, sur le motif (130) préalablement imprimé,
- déposer une résine de protection (300) dans la cavité (120) .
12. Procédé selon la revendication 11, caractérisé en ce que la pression appliquée sur le substrat (150) , lors de son report dans la cavité (120) , est exercée au moyen d'un outil (500) dont la forme est adaptée à celle de la cavité.
13. Procédé selon l'une des revendications 9 à 12, caractérisé en ce que la cavité (120) est réalisée sur une profondeur comprise entre 100 et 600μm.
14. Procédé selon l'une des revendications 9 à 12, caractérisé en ce que les parois de la cavité (120) sont réalisées selon un angle d'inclinaison compris entre 5 et 30°.
15. Procédé selon l'une des revendications 1 ou 11, caractérisé en ce que la puce (200) est reportée sur le motif (130) préalablement imprimé selon un montage de type "flip chip".
16. Procédé selon l'une des revendications 1 ou 11, caractérisé en ce que la puce (200) est reportée sur le motif (130) préalablement imprimé, par collage de la face opposée à la face active au moyen d'une colle isolante (500) , et connectée au moyen d'une résine conductrice (400) dispensée à la fois sur les plots de contact (220) de la puce (200) et sur les pistes conductrices (132) .
17. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le substrat isolant (150) comporte des perforations pratiquées dans son épaisseur.
18. Procédé de fabrication ,d'un support de mémorisation de type carte à puce à contacts affleurant, comprenant un micromodule comportant un film support portant des plages de contacts, des pistes de connexion et une puce de circuit intégré reliée aux plages de contact, caractérisé en ce qu'il comporte les étapes suivantes selon lesquelles :
- on réalise les plages de contact et des pistes de connexion par impression d'encre conductrice sur le film support,
- on déforme le film support de manière que les pistes de connexion soient au moins en partie à un niveau inférieur par rapport aux plages de contact.
19. Procédé de fabrication selon la revendication 18, caractérisé en ce qu'il comporte en outre les étapes suivantes :
- fixer et connecter la puce avant déformation, puis déformer le film support en le pressant dans un évidemment de corps de carte avec un poinçon comportant un logement .
20. Procédé de fabrication selon la revendication 18, caractérisé en ce que la puce est connectée après déformation du support.
PCT/FR1999/001142 1998-05-27 1999-05-12 Procede de fabrication d'un micromodule et d'un support de memorisation comportant un tel micromodule WO1999062118A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU36116/99A AU3611699A (en) 1998-05-27 1999-05-12 Method for making a micromodule and a storage medium comprising such a micromodule
EP99918061A EP1086492A1 (fr) 1998-05-27 1999-05-12 Procede de fabrication d'un micromodule et d'un support de memorisation comportant un tel micromodule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9806683A FR2779272B1 (fr) 1998-05-27 1998-05-27 Procede de fabrication d'un micromodule et d'un support de memorisation comportant un tel micromodule
FR98/06683 1998-05-27

Publications (1)

Publication Number Publication Date
WO1999062118A1 true WO1999062118A1 (fr) 1999-12-02

Family

ID=9526769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/001142 WO1999062118A1 (fr) 1998-05-27 1999-05-12 Procede de fabrication d'un micromodule et d'un support de memorisation comportant un tel micromodule

Country Status (5)

Country Link
EP (1) EP1086492A1 (fr)
CN (1) CN1303521A (fr)
AU (1) AU3611699A (fr)
FR (1) FR2779272B1 (fr)
WO (1) WO1999062118A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2828333B1 (fr) * 2000-06-23 2003-11-07 Gemplus Card Int Procede d'isolation electrique de puces comportant des circuits integres par le depot d'une couche isolante
FR2817656B1 (fr) * 2000-12-05 2003-09-26 Gemplus Card Int Isolation electrique de microcircuits regroupes avant collage unitaire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0128822A1 (fr) * 1983-06-09 1984-12-19 Flonic S.A. Procédé de fabrication de cartes à mémoire et cartes obtenues suivant ce procédé
EP0201952A1 (fr) * 1985-04-12 1986-11-20 Philips Composants Procédé et dispositif pour fabriquer une carte d'identification électronique
EP0207853A1 (fr) * 1985-06-26 1987-01-07 Bull S.A. Procédé de montage d'un circuit intégré sur un support, dispositif en résultant et son application à une carte à microcircuits électroniques
EP0598914A1 (fr) * 1992-06-05 1994-06-01 MITSUI TOATSU CHEMICALS, Inc. Plaquette de circuit imprime en relief, boitier de circuit electronique utilisant cette plaquette et procede de realisation de cette plaquette
EP0688051A1 (fr) * 1994-06-15 1995-12-20 Philips Cartes Et Systemes Procédé de fabrication et d'assemblage de carte à circuit intégré et carte ainsi obtenue
EP0772232A1 (fr) * 1995-11-03 1997-05-07 Schlumberger Industries Procédé de fabrication d'un ensemble de modules électroniques pour cartes à mémoire électronique
DE19618103A1 (de) * 1996-05-06 1997-11-13 Siemens Ag Chipkartenmodul mit Beschichtung aus leitfähigem Kunststoff und Verfahren zu dessen Herstellung
EP0824301A2 (fr) * 1996-08-09 1998-02-18 Hitachi, Ltd. Panneau à circuit imprimé, carte à puce, et leur procédé de fabrication

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0128822A1 (fr) * 1983-06-09 1984-12-19 Flonic S.A. Procédé de fabrication de cartes à mémoire et cartes obtenues suivant ce procédé
EP0201952A1 (fr) * 1985-04-12 1986-11-20 Philips Composants Procédé et dispositif pour fabriquer une carte d'identification électronique
EP0207853A1 (fr) * 1985-06-26 1987-01-07 Bull S.A. Procédé de montage d'un circuit intégré sur un support, dispositif en résultant et son application à une carte à microcircuits électroniques
EP0598914A1 (fr) * 1992-06-05 1994-06-01 MITSUI TOATSU CHEMICALS, Inc. Plaquette de circuit imprime en relief, boitier de circuit electronique utilisant cette plaquette et procede de realisation de cette plaquette
EP0688051A1 (fr) * 1994-06-15 1995-12-20 Philips Cartes Et Systemes Procédé de fabrication et d'assemblage de carte à circuit intégré et carte ainsi obtenue
EP0772232A1 (fr) * 1995-11-03 1997-05-07 Schlumberger Industries Procédé de fabrication d'un ensemble de modules électroniques pour cartes à mémoire électronique
DE19618103A1 (de) * 1996-05-06 1997-11-13 Siemens Ag Chipkartenmodul mit Beschichtung aus leitfähigem Kunststoff und Verfahren zu dessen Herstellung
EP0824301A2 (fr) * 1996-08-09 1998-02-18 Hitachi, Ltd. Panneau à circuit imprimé, carte à puce, et leur procédé de fabrication

Also Published As

Publication number Publication date
FR2779272A1 (fr) 1999-12-03
AU3611699A (en) 1999-12-13
CN1303521A (zh) 2001-07-11
FR2779272B1 (fr) 2001-10-12
EP1086492A1 (fr) 2001-03-28

Similar Documents

Publication Publication Date Title
EP0688051A1 (fr) Procédé de fabrication et d'assemblage de carte à circuit intégré et carte ainsi obtenue
EP3201843B1 (fr) Procédé de fabrication de carte à puce et carte à puce obtenue par ce procédé.
FR2716281A1 (fr) Procédé de fabrication d'une carte sans contact.
WO2006082199A2 (fr) Procédé de placement d'un ensemble électronique sur un substrat et dispositif de placement d'un tel ensemble
EP0692770A1 (fr) Procédé de fabrication d'une carte sans contact par surmoulage et carte sans contact obtenue par un tel procédé
EP3166143A1 (fr) Procede de fabrication d'un dispositif a puce de circuit integre par depot direct de matiere conductrice
WO2000013138A1 (fr) Procede de fabrication de carte a puce sans contact
WO2003088139A1 (fr) Procede de conditionnement de microcircuits pour carte a puce et module ainsi obtenu
EP1084481A1 (fr) Procede de fabrication d'un dispositif electronique portable comportant au moins une puce de circuit integre
WO2000072254A1 (fr) Procede de fabrication de dispositif electronique portable a circuit integre comportant un dielectrique bas cout
EP1724712A1 (fr) Micromodule, notamment pour carte à puce
EP2545503B1 (fr) Dispositif électronique à puce et procédé de fabrication par bobines
EP1086492A1 (fr) Procede de fabrication d'un micromodule et d'un support de memorisation comportant un tel micromodule
WO2000077854A1 (fr) Procede de fabrication de tout ou partie d'un dispositif electronique par jet de matiere
WO2000030032A1 (fr) Procede de fabrication d'une carte a puce hybride par impression double face
FR2786317A1 (fr) Procede de fabrication de carte a puce a contact affleurant utilisant une etape de gravure au laser et carte a puce obtenue par le procede
EP1190379B1 (fr) Procede de fabrication de cartes a puce a contact avec dielectrique bas cout
EP1153432A1 (fr) Procede de fabrication de support de memorisation portable de type carte a puce
WO2001009828A1 (fr) Procede de fabrication d'une carte a puce a contact
FR2816107A1 (fr) Module de circuit integre sur film et son procede de fabrication
FR2795204A1 (fr) Procede pour la fabrication d'un support de memorisation comportant une grille de metallisation tridimensionnelle support obtenu
WO2013034759A1 (fr) Dispositif électronique à puce et procédé de fabrication par bobines
WO2001015504A1 (fr) Procede de fabrication de cartes a puce hybrides et cartes a puce obtenues par ledit procede
FR2812428A1 (fr) Procede de fabrication d'un micromodule de carte a puce et carte a puce incluant un tel micromodule
FR2798225A1 (fr) Micromodule electronique et procede de fabrication et d'integration de tels micromodules pour la realisation de dispositifs portatifs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99806708.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999918061

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

WWP Wipo information: published in national office

Ref document number: 1999918061

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1999918061

Country of ref document: EP