EP1083989A1 - Katalysator auf der basis von palladium, cadmium, alkali und lanthanoide und verfahren zur herstellung von vinylacetat - Google Patents
Katalysator auf der basis von palladium, cadmium, alkali und lanthanoide und verfahren zur herstellung von vinylacetatInfo
- Publication number
- EP1083989A1 EP1083989A1 EP98965733A EP98965733A EP1083989A1 EP 1083989 A1 EP1083989 A1 EP 1083989A1 EP 98965733 A EP98965733 A EP 98965733A EP 98965733 A EP98965733 A EP 98965733A EP 1083989 A1 EP1083989 A1 EP 1083989A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- palladium
- cadmium
- compounds
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/60—Platinum group metals with zinc, cadmium or mercury
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/04—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds
- C07C67/05—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation
- C07C67/055—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation in the presence of platinum group metals or their compounds
Definitions
- the present invention relates to a catalyst which contains palladium and / or its compounds, cadmium compounds, alkali metal compounds and at least one lanthanide metal compound, and its use for the production of vinyl acetate from gases containing acetic acid, ethylene and oxygen or oxygen.
- a catalyst containing palladium, cadmium and potassium is also known, a support material provided with a binder, for example an alkali metal or alkaline earth metal carboxylate, being washed with an acid before impregnation and treated with a base after impregnation (EP-A- 0 519 435).
- a binder for example an alkali metal or alkaline earth metal carboxylate
- catalysts containing palladium, cadmium and potassium are prepared by soaking the carrier particles with thorough mixing with a solution of palladium, cadmium and potassium salts and then drying them immediately, the dynamic viscosity of the Solution is at least 0.003 Pa • s and the solution volume during impregnation is 5 to 80% of the pore volume of the carrier particles.
- the solution volume during impregnation is 5 to 80% of the pore volume of the carrier particles.
- Catalysts containing palladium, cadmium and potassium can also be prepared by the process disclosed in EP-A-0 634 214 in such a way that the carrier particles are mixed thoroughly with a solution of palladium, cadmium and potassium salts in the form of Drops of an average diameter of at least 0.3 mm or sprayed in the form of liquid jets and then dried immediately, the dynamic viscosity of the solution being at least 0.003 Pa • s and the solution volume when sprayed being 5 to 80% of the pore volume of the carrier particles.
- An object of the invention is accordingly a process for the production of vinyl acetate in the gas phase from ethylene, acetic acid and oxygen or oxygen-containing gases on a catalyst which contains palladium and / or its compounds, cadmium compounds and alkali metal compounds on a support, characterized in that the Catalyst additionally contains at least one lanthanoid metal compound.
- Another object of the invention is a catalyst which contains palladium and / or its compounds, cadmium compounds and alkali metal compounds on a support, characterized in that the catalyst additionally contains at least one lanthanoid metal compound.
- lanthanide metals includes the 14 rare earth elements cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium, as well as the elements scandium, yttrium and lanthanum Understand rare earth elements similar chemical behavior.
- the known inert carrier materials such as silica, aluminum oxide, aluminum silicates, silicates, titanium oxide, zirconium oxide, titanates, silicon carbide and carbon are suitable as carriers.
- Carriers of this type with a specific surface area of 40 to 350 m 2 / g (measured by the BET method) and an average pore radius of 50 to 2000 ⁇ (angstroms) (measured using mercury porosimetry), especially silica ( Si0 2 ) and Si0 2 -Al 2 0 3 mixtures.
- These carriers can be used in any form, such as in the form of spheres, tablets, rings, stars or other shaped particles, whose diameter or length and thickness is generally 3 to 9 mm.
- Such carriers can be produced, for example, from aerogenic Si0 2 or an aerogenic Si0 2 -Al 2 0 3 mixture, which can be produced, for example, by flame hydrolysis of silicon tetrachloride or a silicon tetrachloride-aluminum trichloride mixture in a detonating gas flame (US-A -3 939 199).
- Suitable solvents for the palladium, cadmium, alkali metal and lanthanide metal salts are all compounds in which the selected salts are soluble and which can be easily removed by drying after impregnation.
- acetates unsubstituted carboxylic acids with 2 to 10 carbon atoms, such as acetic acid, propionic acid, n- and isobutyric acid and the various valeric acids, are particularly suitable. Because of their physical properties and also for economic reasons, acetic acid is preferred among the carboxylic acids. Water is particularly suitable for the chlorides, chloro and acetate complexes. The additional use of a further solvent is expedient if the salts are not sufficiently soluble in acetic acid or in water.
- Dissolve palladium chloride in an aqueous acetic acid much better than in glacial acetic acid.
- Possible additional solvents are those which are inert and miscible with acetic acid or water.
- Examples of additives for acetic acid are ketones such as acetone and acetylacetone, furthermore ethers such as tetrahydrofuran or dioxane, but also hydrocarbons such as benzene.
- Either so-called “impregnated” catalysts can be produced, in which the catalytically active metal compounds have penetrated to the core in the carrier particles, or so-called “shell catalysts", in which the metal salts have not penetrated to the core, but only in one more or less large outer part of the carrier particles, ie the so-called "shell” of the particles.
- the elements to be applied in each case palladium, cadmium, alkali metal and lanthanide metal can be applied in the form of salt solutions individually or in any combination in any order, preferably a single solution is used which contains these elements to be applied in the form of salts. It is particularly preferred to use a single solution which contains exactly one salt from each of these elements to be applied.
- This solution can also contain a mixture of salts of at least two different lanthanoid metals, preferably this solution contains a salt of only one lanthanoid metal.
- the procedure for the preparation of impregnated catalysts is preferably as follows (US Pat. No. 4,902,823, US Pat. No. 3,393,199, US Pat. No. 4,668,819):
- the catalyst support is impregnated with the solution of the active components in such a way that the support material is covered with the solution and, if necessary, excess solution is then poured off or filtered.
- solution losses it is advantageous to use only the amount of solution which corresponds to the integral pore volume of the catalyst support and to mix thoroughly so that the particles of the support material are uniformly wetted. It is expedient to carry out the impregnation process and the mixing at the same time, for example in a rotary drum or a tumble dryer, and drying can follow immediately.
- composition of the solution used to impregnate the catalyst support in such a way that the desired amount of active substances is applied by one impregnation.
- this amount can also be applied by means of several impregnations, drying preferably after each impregnation.
- the procedure is preferably one of the three following, always using a solution of at least one salt of at least one of the elements palladium, cadmium, alkali metal and lanthanoid metal with a dynamic viscosity of at least 0.003 Pa ⁇ s, preferably 0.005 to
- the carrier particles are sprayed one or more times with intimate mixing with the solution of the salts in the form of drops with an average diameter of at least 0.3 mm or in the form of liquid jets and dried immediately after each spraying.
- the "immediate" drying means that the drying of the sprayed particles must be started. It is generally sufficient if drying of the particles is started within 30 minutes after the end of spraying.
- the solution volume is 5 to 80% of the pore volume of the carrier particles with each spraying. This method is described in detail in EP-A-0 634 214, to which reference is hereby expressly made (incorporation by reference).
- the carrier particles are soaked one or more times with thorough mixing with the solution and dried immediately after each soaking.
- the "immediate" drying means the same as in the first method, and the volume of solution with each impregnation is 5 to 80% of the pore volume of the carrier particles. This method is described in detail in EP-A-0 634 209, which is also expressly incorporated by reference.
- the carrier particles are impregnated with the solution one or more times and dried after each impregnation, but in contrast to the second method, the volume of the solution is not limited. It is now more than 80% of the pore volume with each soak. Because of the larger volume of solution, intimate mixing is not absolutely necessary, although generally useful. Instead, the duration of each impregnation and the time to the start of the subsequent drying, ie the time from the start of each impregnation to the start of the subsequent drying, must now be so short that after the end of the last drying a bowl of 5 to 80% of the pore volume of the carrier particles contains the catalytically active elements. How short this time must be chosen for this purpose can be seen easily determined by preliminary tests. This method is described in detail in EP-A-0 634 208, to which express reference is hereby made.
- the impregnated or sprayed catalyst support is preferably dried under reduced pressure (0.01 to 0.08 MPa) both in the case of fully impregnated catalysts and in the case of coated catalysts.
- the drying temperature should generally be 50 to 80 ° C, preferably 50 to 70 ° C.
- the residual solvent content after drying should preferably be less than 8% by weight, in particular less than 6% by weight.
- the finished palladium, cadmium, alkali metal and catalysts containing at least one lanthanide metal have the following metal contents:
- Palladium content generally 0.6-3.5% by weight, preferably 0.8-3.0% by weight; in particular 1.0-2.5% by weight
- Cadmium content generally 0.1-2.5% by weight, preferably 0.4-2.5% by weight; in particular 1.3-2% by weight
- Alkali metal content generally 0.3-10% by weight. Potassium is preferably used.
- Potassium content in general 0.5-4.0% by weight, preferably 1.0-3.0% by weight; in particular 1.5-2.5% by weight
- lanthanoid metal content is understood to mean the total content of all lanthanoid metals contained in the finished catalyst. The percentages given always relate to the amounts of the elements palladium, cadmium, alkali metal and lanthanide metal present in the catalyst, based on the total mass of the catalyst (active elements plus anions plus support material).
- Suitable salts are all salts of palladium, cadmium, an alkali metal and a lanthanoid element which are soluble; the acetates, the chlorides, the acetato and the chloro complexes are preferred.
- interfering anions e.g. in the case of chlorides
- salts of palladium are the carboxylates, preferably the salts of aliphatic monocarboxylic acids with 2 to 5 carbon atoms, for example the acetate, propionate or butyrate. Also suitable are, for example, nitrate, nitrite, oxide hydrate, oxalate, acetylacetonate or acetoacetate. Because of its good solubility and availability, palladium acetate is the particularly preferred palladium salt. Acetate is particularly suitable as a cadmium compound.
- the alkali metal compound used is preferably at least one sodium, potassium, rubidium or cesium compound, in particular at least one potassium compound.
- Carboxylates, in particular acetates and propionates, are particularly suitable as compounds. Also suitable are compounds which change into the alkali acetate under the reaction conditions, such as the hydroxide, the oxide or the carbonate.
- the chlorides, nitrates, acetates and acetylacetonates are particularly suitable as the lanthanide metal compound.
- a gaseous reducing agent can be used.
- suitable reducing agents are hydrogen, methanol, formaldehyde, ethylene, propylene, isobutylene, butylene or other olefins.
- the reduction temperature is generally between 40 and 260 ° C, preferably between 70 and 200 ° C.
- a reducing agent which is diluted with inert gas and contains 0.01 to 50% by volume, preferably 0.5 to 20% by volume, of reducing agent for the reduction.
- nitrogen, carbon dioxide or an inert gas are suitable as inert gases.
- the reduction can also be carried out in the liquid phase at a temperature of from 0 ° C.
- aqueous solutions of hydrazine, formic acid or alkali borohydrides, in particular sodium borohydride can be used as reducing agents.
- the amount of reducing agent depends on the amount of palladium; the reduction equivalent should be at least the simple oxidation equivalent, but larger amounts of reducing agent are harmful Not. The reduction is carried out after drying.
- the vinyl acetate is generally prepared by passing gases containing acetic acid, ethylene and oxygen at from 100 to 220 ° C., preferably 120 to 200 ° C., and at pressures from 0.1 to 2.5 MPa, preferably 0.1 up to 2.0 MPa, over the finished catalyst, whereby unreacted components can be circulated. Dilution with inert gases such as nitrogen or carbon dioxide may also be advantageous. Carbon dioxide is particularly suitable for dilution, since it is formed in small quantities during the reaction.
- Si0 2 was used as the catalyst support material, from which tablets with a diameter and a height of 6 mm each were made according to DE-OS 3 912 504. These tablets were used as a catalyst support.
- the pore volume of 1 1 carrier was 392 ml.
- the finished catalyst contained 2.0 wt% Pd, 1.7 wt% Cd, 1.7 wt% K and 0.38 wt. -% Ce. Comparative example] _____
- Example 2 The procedure was as in Example 1, but the addition of lanthanide metal salts in the impregnating solution containing palladium acetate, cadmium acetate and potassium acetate was dispensed with.
- the finished catalyst contained 2.0% by weight of Pd, 1.7% by weight of Cd and 1.7% by weight of K.
- the catalyst according to the invention prepared according to Example 1 and the catalyst prepared according to Comparative Example la were tested by the following method. 225 ml of the respective catalyst were introduced into a reaction tube with an inner diameter of 20 mm and a length of 65 cm. The gas to be reacted was then passed over the catalyst over a period of 5 days at a pressure of 0.8 MPa (reactor inlet) and a catalyst temperature of 150 ° C. This gas consisted of 58 vol% ethylene, 25 vol% nitrogen, 12 vol% acetic acid and 5 vol% oxygen; the results are shown in the table.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Die vorliegende Erfindung betrifft einen Katalysator, der Palladium und/oder dessen Verbindungen, Cadmiumverbindungen, Alkalimetallverbindungen und mindestens eine Lanthanoidmetallverbindung enthält, und seine Verwendung zur Herstellung von Vinylacetat aus Essigsäure, Ethylen und Sauerstoff oder Sauerstoff enthaltenden Gasen.
Description
KATALYSATOR AUF DER BASIS VON PALLADIUM, CADMIUM, ALKALI UND LANTHANOIDE UND VERFAHREN ZUR HERSTELLUNG VON VINYLACETAT
Die vorliegende Erfindung betrifft einen Katalysator, der Palladium und/oder dessen Verbindungen, Cadmiumverbindun- gen, Alkalimetallverbindungen und mindestens eine Lanthanoidmetallverbindung enthält, und seine Verwendung zur Herstellung von Vinylacetat aus Essigsäure, Ethylen und Sauerstoff oder Sauerstoff enthaltenden Gasen.
Es ist bekannt, daß man in der Gasphase Ethylen mit Essigsäure und Sauerstoff oder sauerstoffhaltigen Gasen an Palladium/Cadmium/Alkalimetall enthaltenden Festbettkatalysatoren zu Vinylacetat umsetzen kann. Nach US-A-4 902 823, US-A-3 939 199, US-A-4 668 819 werden die kata- lytisch aktiven Metallsalze durch Tränken, Aufsprühen, Aufdampfen, Tauchen oder Ausfällen auf dem Katalysatorträger aufgebracht. Weiter ist die Herstellung eines Palladium, Cadmium und Kalium enthaltenden Katalysators bekannt, wobei ein mit einem Bindemittel, beispielsweise einem Alkali- oder Erdalkalicarboxylat, versehenes Trägermaterial vor der Imprägnierung mit einer Säure gewaschen und nach der Imprägnierung mit einer Base behandelt wird (EP-A-0 519 435) .
Nach EP-A-0 634 209 werden Palladium, Cadmium und Kalium enthaltende Katalysatoren dadurch hergestellt, daß man die Trägerteilchen unter inniger Durchmischung mit einer Lösung von Palladium-, Cadmium- und Kaliumsalzen tränkt und danach sofort trocknet, wobei die dynamische Viskosi- tat der Lösung mindestens 0,003 Pa • s ist und das Lösungsvolumen beim Tränken 5 bis 80 % des Porenvolumens der Trägerteilchen beträgt. Nach EP-A-0 634 208 kann man
beim Tränken ein Lösungsvolumen verwenden, das mehr als 80 % des Porenvolumens der Trägerteilchen beträgt. Allerdings muß bei dieser Arbeitsweise die Zeit bis zum Beginn der Trocknung so kurz gewählt werden, daß nach Ende der Trocknung eine Schale von 5 bis 80 % des Porenvolumens die genannten Metallsalze enthält.
Palladium, Cadmium und Kalium enthaltende Katalysatoren lassen sich nach dem in EP-A-0 634 214 offenbarten Ver- fahren auch in der Weise herstellen, indem man die Trägerteilchen unter inniger Durchmischung mit einer Lösung von Palladium-, Cadmium- und Kaliumsalzen in Form von Tropfen eines durchschnittlichen Durchmessers von mindestens 0,3 mm oder in Form von Flüssigkeitsstrahlen be- spritzt und danach sofort trocknet, wobei die dynamische Viskosität der Lösung mindestens 0,003 Pa • s ist und das Lösungsvolumen beim Bespritzen 5 bis 80 % des Porenvolumens der Trägerteilchen beträgt .
Aus der PCT-Anmeldung WO 96/37455 ist bekannt, daß sich derartige Katalysatoren durch Zusatz von mindestens einer Rhenium- und/oder mindestens einer Zirconiumverbindung erheblich verbessern lassen. So zeigt ein Palladium, Cadmium, Kalium enthaltender Schalenkatalysator eine Raum- Zeit-Ausbeute (Gramm gebildetes Vinylacetat pro Liter Katalysator und Stunde) von 922 (g/l'h) während nach Zirkoniumzusatz unter sonst gleichen Bedingungen eine Anfangsleistung von 950 g/l"h beobachtet wird.
Überraschenderweise wurde nun gefunden, daß Palladium, Cadmium und Kalium enthaltende Katalysatoren durch Zusatz von mindestens einer Lanthanoidmetallverbindung deutlich verbessert werden, d.h. eine höhere Raum-Zeit-Ausbeute bei gleicher oder höherer Selektivität zu Vinylacetat be- wirken.
Ein Gegenstand der Erfindung ist demgemäß ein Verfahren zur Herstellung von Vinylacetat in der Gasphase aus Ethylen, Essigsäure und Sauerstoff oder Sauerstoff enthaltenden Gasen an einem Katalysator, der Palladium und/oder dessen Verbindungen, Cadmiumverbindungen sowie AlkalimetallVerbindungen auf einem Träger enthält, dadurch gekennzeichnet, daß der Katalysator zusätzlich mindestens eine Lanthanoidmetallverbindung enthält.
Ein weiterer Gegenstand der Erfindung ist ein Katalysator, der Palladium und/oder dessen Verbindungen, Cadmiumverbindungen sowie Alkalimetallverbindungen auf einem Träger enthält, dadurch gekennzeichnet, daß der Katalysa- tor zusätzlich mindestens eine Lanthanoidmetallverbindung enthält .
Unter dem Begriff "Lanthanoidmetalle" werden die 14 Seltenerdelemente Cer, Praseodym, Neodym, Promethium, Sama- rium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium und Lutetium sowie die Elemente Scandium, Yttrium und Lanthan aufgrund ihres den Seltenerdelementen ähnelnden chemischen Verhaltens verstanden.
Als Träger eignen sich die bekannten inerten Trägermaterialien wie Kieselsäure, Aluminiumoxid, Alumosilikate, Silikate, Titanoxid, Zirkonoxid, Titanate, Siliciumcarbid und Kohle. Besonders geeignet sind Träger dieser Art mit einer spezifischen Oberfläche von 40 bis 350 m2/g (gemessen nach der BET-Methode) und einem mittleren Porenradius von 50 bis 2000 Ä (Angström) (gemessen mit Quecksilber-Porosimetrie) , vor allem Kieselsäure (Si02) und Si02-Al203-Gemische . Diese Träger können in jedweder Form, wie z.b. in Form von Kugeln, Tabletten, Ringen, Sternen oder anders geformten Teilchen benutzt werden,
deren Durchmesser bzw. deren Länge und Dicke im allgemeinen bei 3 bis 9 mm liegt.
Solche Träger können z.B. aus aerogenem Si02 oder einem aerogenen Si02-Al203-Gemisch hergestellt werden, die beispielsweise durch Flammenhydrolyse von Siliciumte- trachlorid oder eines Siliciumtetrachlorid-Aluminium- trichlorid-Gemisches in einer Knallgasflamme hergestellt werden können (US-A-3 939 199) .
Als Lösungsmittel für die Palladium-, Cadmium-, Alkalimetall- und Lanthanoidmetallsalze sind alle Verbindungen geeignet, in denen die gewählten Salze löslich sind und die nach der Imprägnierung leicht wieder durch Trocknung zu entfernen sind. Verwendet man Acetate, so sind vor allem unsubstituierte Carbonsäuren mit 2 bis 10 Kohlenstoffatomen, wie Essigsäure, Propionsäure, n- und iso- Buttersäure und die verschiedenen Valeriansäuren geeignet. Wegen ihrer physikalischen Eigenschaften und auch aus wirtschaftlichen Gründen wird Essigsäure unter den Carbonsäuren bevorzugt. Für die Chloride, Chloro- und Acetatokomplexe ist vor allem Wasser geeignet. Die zusätzliche Verwendung eines weiteren Lösungsmittels ist dann zweckmäßig, wenn die Salze in der Essigsäure oder im Wasser nicht genügend löslich sind. So läßt sich z.B. Palladiumchlorid in einer wäßrigen Essigsäure wesentlich besser lösen als in Eisessig. Als zusätzliche Lösungsmittel kommen diejenigen in Betracht, die inert und mit Essigsäure bzw. Wasser mischbar sind. Genannt seien als Zu- sätze für Essigsäure Ketone wie Aceton und Acetylaceton, ferner Ether wie Tetrahydrofuran oder Dioxan, aber auch Kohlenwasserstoffe wie Benzol .
Man kann mehrere Salze von Palladium, Cadmium, Alkalime- tall und dem jeweiligen Lanthanoidmeall aufbringen, aber
im allgemeinen bringt man von jedem dieser Elemente genau ein Salz auf.
Man kann entweder sogenannte "durchimprägnierte" Kataly- satoren herstellen, bei denen die katalytisch wirksamen Metallverbindungen bis zum Kern in die Trägerteilchen eingedrungen sind, oder aber sogenannte "Schalenkatalysatoren", bei denen die Metallsalze nicht bis zum Kern vorgedrungen sind, sondern nur in einen mehr oder weniger großen äußeren Teil der Trägerteilchen, d.h. die sogenannte "Schale" der Teilchen.
Die jeweils aufzubringenden Elemente Palladium, Cadmium, Alkalimetall und Lanthanoidmetall können in Form von Salzlösungen einzeln oder auch in beliebiger Kombination in einer beliebigen Reihenfolge aufgebracht werden, vorzugsweise verwendet man eine einzige Lösung, die diese aufzubringenden Elemente in Form von Salzen enthält. Besonders bevorzugt ist der Einsatz einer einzigen Lösung, die von jedem dieser aufzubringenden Elemente genau ein Salz enthält. Diese Lösung kann dabei auch ein Gemisch aus Salzen von mindestens zwei verschiedenen Lanthanoid- metallen enthalten, vorzugsweise enthält diese Lösung ein Salz von nur einem Lanthanoidmetall.
Wenn im folgenden im allgemeinen über "die Lösung der Salze" gesprochen wird, so gilt sinngemäß dasselbe für den Fall, daß mehrere Lösungen der Reihe nach eingesetzt werden, die jeweils nur einen Teil der insgesamt aufzu- bringenden Salze enthalten, wobei sich die einzelnen Teile zur Gesamtmenge der Salze ergänzen, die auf den Träger aufgebracht werden sollen.
Zur Herstellung durchimprägnierter Katalysatoren wird vorzugsweise folgendermaßen vorgegangen (US-A-4 902 823, US-A-3 393 199, US-A-4 668 819) :
Die Tränkung des Katalysatorträgers mit der Lösung der aktiven Komponenten wird so vorgenommen, daß das Trägermaterial mit der Lösung überschichtet und gegebenenfalls überschüssige Lösung dann abgegossen oder filtriert wird. Mit Rücksicht auf Lösungsverluste ist es vorteilhaft, nur die dem integralen Porenvolumen des Katalysatorträgers entsprechende Menge an Lösung einzusetzen und sorgfältig zu durchmischen, damit die Teilchen des Trägermaterials gleichmäßig benetzt werden. Es ist zweckmäßig, den Trän- kungsvorgang und das Durchmischen gleichzeitig durchzuführen, beispielsweise in einer Drehtrommel oder einem Taumeltrockner, wobei sich die Trocknung sofort anschließen kann. Weiterhin ist es im allgemeinen zweckmäßig, die Zusammensetzung der zum Tränken des Katalysatorträgers verwendeten Lösung so zu bemessen, daß durch einmaliges Tränken die gewünschte Menge aktiver Stoffe aufgebracht wird. Man kann diese Menge jedoch auch durch mehrere Imprägnierungen aufbringen, wobei vorzugsweise nach jeder Imprägnierung getrocknet wird.
Zur Herstellung von Schalenkatalysatoren wird vorzugsweise nach einer der drei folgenden Methoden vorgegangen, wobei stets eine Lösung von mindestens einem Salz von mindestens einem der Elemente Palladium, Cadmium, Alkali- metall und Lanthanoidmetall mit einer dynamischen Viskosität von mindestens 0,003 Pa • s, vorzugsweise 0,005 bis
0,009 Pa • s benutzt wird:
1. Die Trägerteilchen werden unter inniger Durch- mischung mit der Lösung der Salze in Form von Tropfen eines durchschnittlichen Durchmessers von mindestens 0,3 mm oder in Form von Flüssigkeitsstrahlen ein- oder mehrmals bespritzt und nach jedem Bespritzen sofort getrocknet. Die "sofortige" Trocknung be- deutet dabei, daß zügig mit der Trocknung der be-
spritzten Teilchen begonnen werden muß. Dabei reicht es im allgemeinen, wenn nach dem Ende einer Bespritzung spätestens innerhalb 30 Minuten mit der Trocknung der Teilchen begonnen wird. Das Lösungsvolumen beträgt bei jedem Bespritzen 5 bis 80 % des Porenvolumens der Trägerteilchen. Diese Methode wird ausführlich beschrieben in EP-A-0 634 214, auf die hiermit ausdrücklich Bezug genommen wird ("incorpo- ration by reference") .
2. Die Trägerteilchen werden unter inniger Durchmischung mit der Lösung ein- oder mehrmals getränkt und nach jedem Tränken sofort getrocknet. Dabei bedeutet die "sofortige" Trocknung dasselbe wie bei der ersten Methode, und das Lösungsvolumen bei jedem Tränken ist 5 bis 80 % des Porenvolumens der Trägerteilchen. Diese Methode wird ausführlich beschrieben in EP-A-0 634 209, auf die hiermit ebenfalls ausdrücklich Bezug genommen wird.
3. Die Trägerteilchen werden mit der Lösung ein- oder mehrmals getränkt und nach jedem Tränken getrocknet, aber das Lösungsvolumen ist im Unterschied zur 2. Methode nicht nach oben beschränkt. Es beträgt nunmehr bei jedem Tränken mehr als 80 % des Porenvolumens . Wegen des größeren Lösungsvolumens ist eine innige Durchmischung nicht unbedingt notwendig, wenngleich im allgemeinen nützlich. Stattdessen muß jetzt die Dauer jeder Tränkung sowie die Zeit bis zum Beginn der darauf folgenden Trocknung, d.h. die Zeit vom Beginn jeder Tränkung bis zum Beginn der darauf folgenden Trocknung, so kurz sein, daß nach Ende der letzten Trocknung eine Schale von 5 bis 80 % des Porenvolumens der Trägerteilchen die kata- lytisch aktiven Elemente enthält. Wie kurz diese Zeit zu diesem Zweck gewählt werden muß, läßt sich
leicht durch Vorversuche ermitteln. Diese Methode wird ausführlich beschrieben in EP-A-0 634 208, auf die hiermit ausdrücklich Bezug genommen wird.
Die Trocknung des getränkten bzw. bespritzten Katalysatorträgers wird sowohl bei durchimprägnierten Katalysatoren als auch bei Schalenkatalysatoren vorzugsweise unter verminderten Druck (0,01 bis 0,08 MPa) durchgeführt. Die Temperatur bei der Trocknung sollte im allgemeinen 50 bis 80 °C, vorzugsweise 50 bis 70°C betragen. Weiterhin empfiehlt es sich im allgemeinen, die Trocknung in einem Inertgasstrom, beispielsweise in einem Stickstoff- oder Kohlendioxidstrom vorzunehmen. Der Lösungsmittel -Restgehalt nach der Trocknung sollte vorzugsweise weniger als 8 Gew.-%, insbesondere weniger als 6 Gew. -% betragen.
Die fertigen Palladium, Cadmium, Alkalimetall und mindestens ein Lanthanoidmetall enthaltenden Katalysatoren weisen folgende Metallgehalte auf:
Palladiumgehalt im allgemeinen 0,6 - 3,5 Gew.-%, vorzugsweise 0,8 - 3,0 Gew.-%; insbesondere 1,0 - 2,5 Gew.-%
Cadmiumgehalt : im allgemeinen 0,1 - 2,5 Gew.-%, vorzugsweise 0,4 - 2,5 Gew.-%; insbesondere 1,3 - 2 Gew.-%
Alkalimetallgehalt: im allgemeinen 0,3 - 10 Gew.-%. Vorzugsweise verwendet man Kalium.
Kaliumgehalt im allgemeinen 0,5 - 4,0 Gew.-%, vorzugsweise 1,0 - 3,0 Gew.-%; insbesondere 1,5 - 2,5 Gew.-%
Lanthanoidmetallgehalt : im allgemeinen 0,01 - 1 Gew.-%, vorzugsweise 0,05 - 0,5 Gew.-%, insbesondere 0,2 - 0,5 Gew.-%.
Wird zur Dotierung der Palladium, Cadmium und Alkalimetall enthaltenden Katalysatoren mehr als ein Lanthanoidmetall verwendet, wird unter dem Begriff "Lanthanoidmetallgehalt" der Gesamtgehalt aller in dem fertigen Katalysator enthaltender Lanthanoidmetalle verstanden. Die angegebenen Prozentzahlen betreffen stets die im Katalysator anwesenden Mengen der Elemente Palladium, Cadmium, Alkalimetall und Lanthanoidmetall, bezogen auf die Gesamtmasse des Katalysators (aktive Elemente plus Anionen plus Trägermaterial) .
Als Salze sind alle Salze von Palladium, Cadmium, einem Alkalimetall und einem Lanthanoidelement geeignet, die löslich sind; bevorzugt sind die Acetate, die Chloride, die Acetato- und die Chlorokomplexe . Dabei muß aber im Fall störender Anionen, wie z.B. bei Chloriden, sichergestellt werden, daß diese Anionen vor dem Einsatz des Katalysators weitgehend entfernt werden. Dies geschieht durch Auswaschen des dotierten Trägers, z.B. mit Wasser, nachdem die Metalle in eine unlösliche Form überführt wurden, etwa durch Reduktion und/oder durch Umsetzung mit alkalisch reagierenden Verbindungen.
Als Salze von Palladium sind besonders geeignet die Carboxylate, vorzugsweise die Salze der aliphatischen Monocarbonsäuren mit 2 bis 5 Kohlenstoffatomen, beispielsweise das Acetat, Propionat oder Butyrat . Weiter sind beispielsweise geeignet das Nitrat, Nitrit, Oxidhydrat, Oxalat, Acetylacetonat oder Acetoacetat . Wegen seiner guten Löslichkeit und Verfügbarkeit ist Palladiumace- tat das besonders bevorzugte Palladiumsalz.
Als Cadmiumverbindung ist vor allem das Acetat geeignet.
Als Alkalimetallverbindung wird vorzugsweise mindestens eine Natrium-, Kalium-, Rubidium- oder Caesiumverbindung eingesetzt, insbesondere mindestens eine Kaliumverbindung. Geeignet als Verbindungen sind vor allem Carboxy- late, insbesondere Acetate und Propionate. Geeignet sind auch Verbindungen, die unter den Reaktionsbedingungen in das Alkaliacetat übergehen, wie etwa das Hydroxid, das Oxid oder das Carbonat .
Als Lanthanoidmetallverbindung sind vor allem die Chloride, Nitrate, Acetate und Acetylacetonate geeignet.
Falls eine Reduktion der Palladiumverbindungen durchgeführt wird, was manchmal nützlich ist, so kann dafür ein gasförmiges Reduktionsmittel verwendet werden. Als Reduktionsmittel kommen beispielsweise Wasserstoff, Methanol, Formaldehyd, Ethylen, Propylen, Isobutylen, Butylen oder andere Olefine in Frage. Die Reduktionstemperatur liegt im allgemeinen zwischen 40 und 260°C, vorzugsweise zwischen 70 und 200°C. Im allgemeinen ist es zweckmäßig, für die Reduktion ein mit Inertgas verdünntes Reduktionsmittel zu verwenden, das 0,01 bis 50 Vol.-%, vorzugsweise 0,5 bis 20 Vol.-% Reduktionsmittel enthält. Als Inertgas kommt beispielsweise Stickstoff, Kohlendioxid oder ein Edelgas in Frage. Die Reduktion kann auch in flüssiger Phase bei einer Temperatur von 0°C bis 90 °C, vorzugsweise von 15 bis 25 °C durchgeführt werden. Als Reduktionsmittel lassen sich beispielsweise wäßrige Lösungen von Hydrazin, Ameisensäure oder Alkaliborhydriden, insbesondere Natriumborhydrid, verwenden. Die Menge des Reduktionsmittels richtet sich nach der Palladiummenge; das Reduktionsäquivalent soll mindestens das einfache Oxidationsäquivalent betragen, jedoch schaden größere Mengen Reduktionsmittel
nicht. Die Reduktion wird im Anschluß an die Trocknung vorgenommen .
Die Herstellung des Vinylacetats erfolgt im allgemeinen durch Leiten von Essigsäure, Ethylen und Sauerstoff enthaltenden Gasen bei Temperaturen von 100 bis 220°C, vorzugsweise 120 bis 200°C, und bei Drücken von 0,1 bis 2,5 MPa, vorzugsweise 0,1 bis 2,0 MPa, über den fertigen Katalysator, wobei nichtumgesetzte Komponenten im Kreis ge- führt werden können. Unter Umständen ist auch eine Verdünnung mit inerten Gasen wie Stickstoff oder Kohlendioxid vorteilhaft. Besonders Kohlendioxid eignet sich zur Verdünnung, da es in geringen Mengen während der Reaktion gebildet wird.
Mit Hilfe der erfindungsgemäßen Katalysatoren gelingt es, bei gleichen Reaktionsbedingungen im Vergleich zu den bekannten Katalysatoren mehr Vinylacetat pro Reaktorvolumen und Zeit bei gleichzeitig verbesserter Selektivität her- zustellen. Dadurch wird die Aufarbeitung des erhaltenen Rohvinylacetats erleichtert, da der Vinylacetatgehalt im Reaktorausgangsgas höher ist, was weiterhin zu einer Energieersparnis im Aufarbeitungsteil führt . Eine geeignete Aufarbeitung wird z.B. in der US-A-5 066 365 be- schrieben.
Will man dagegen die Raum-Zeit-Ausbeute konstant halten, so kann man die Reaktionstemperatur senken und dadurch bei gleicher Gesamtleistung die Reaktion selektiver durchführen, wobei Edukte eingespart werden. Dabei wird auch die Menge des als Nebenprodukt entstehenden und daher auszuschleusenden Kohlendioxids und der mit dieser Ausschleusung verbundene Verlust an mitgeschlepptem Ethylen geringer. Darüber hinaus führt diese Fahrweise zu einer Verlängerung der Katalysatorstandzeit .
Die folgenden Beispiele sollen die Erfindung erläutern, schränken sie aber nicht ein. Die Prozentangaben der Elemente Palladium, Cadmium, Kalium und des Lanthanoidme- talls sind Gewichtsprozente, bezogen auf die Gesamtmasse des Katalysators .
Als Katalysatorträgermaterial wurde Si02 verwendet, aus dem gemäß DE-OS 3 912 504 Tabletten mit einem Durchmesser und einer Höhe von jeweils 6 mm hergeteilt wurden. Diese Tabletten wurden als Katalysatorträger verwendet. Das Porenvolumen von 1 1 Träger war 392 ml.
Beispie] I
Bei 65°C wurden 25,3 g (0,11 mol) Palladiumacetat, 25 g (0,09 mol) Cadmiumacetat , 25,3 g (0,26 mol) Kaliumacetat und 6,82 g (0,016 mol) Ceracetylacetonat in 130 ml Eisessig gelöst (Lösungsvolumen = 33 % des Porenvolumens) und die hochviskose Lösung in eine auf 65°C vorgewärmte Vor- läge eingefüllt. 1 1 Katalysatorträger wurden ebenfalls auf 65°C erwärmt und in einen Kolben gegeben. Die Trägerteilchen wurden mit der gesamten Imprägnierlösung Übergossen und solange innig durchmischt, bis die gesamte Imprägnierlösung von dem Katalysatorträger aufgesaugt wor- den war. Dieser Vorgang war nach 3 Minuten beendet. Die Trocknung erfolgte im Stickstoffström bei 65°C und 0,02 MPa bis zur Gewichtskonstanz. Der fertige Katalysator enthielt 2,0 Gew.-% Pd, 1,7 Gew.-% Cd, 1,7 Gew.-% K und 0,38 Gew . -% Ce .
Vergleichsbeispie] _____
Es wurde wie in Beispiel 1 vorgegangen, allerdings wurde auf den Zusatz von Lanthanoidmetallsalzen in der Palladiumacetat, Cadmiumacetat und Kaliumacetat enthaltenden Imprägnierlösung verzichtet. Der fertige Katalysator enthielt 2,0 Gew.-% Pd, 1,7 Gew.-% Cd und 1,7 Gew. -% K.
Die Austestung des nach dem Beispiel 1 hergestellten erfindungsgemäßen Katalysators sowie des nach dem Vergleichsbeispiel la hergestellten Katalysators erfolgte nach folgendem Verfahren. Es wurden 225 ml des jeweiligen Katalysators in ein Reaktionsrohr von 20 mm Innendurch- messer und einer Länge von 65 cm eingefüllt. Dann wurde bei einem Druck von 0,8 MPa (Reaktoreingang) und einer Katalysatortemperatur von 150°C das umzusetzende Gas über 5 Tage über den Katalysator geleitet . Dieses Gas bestand aus 58 Vol.-% Ethylen, 25 Vol.-% Stickstoff, 12 Vol.-% Essigsäure und 5 Vol.-% Sauerstoff; die Ergebnisse sind aus der Tabelle ersichtlich.
Raum-Zeit-Ausbeute in Gramm Vinylacetat pro Liter Katalysator und Stunde .
C02-Selektivität in %, bezogen auf die Menge umgesetztes Ethylen.
Überraschenderweise wurde gefunden, daß schon geringe Zusätze an Lanthanoidmetall erbindungen zu den bekannten Palladium, Cadmium und Kalium enthaltenden Katalysatoren die C02-Selektivität und die Leistungsfähigkeit (Raum- Zeit-Ausbeute) dieser Katalysatoren in der Vinylacetat- herstellung deutlich verbessern.
Claims
1.) Verfahren zur Herstellung von Vinylacetat in der Gasphase aus Ethylen, Essigsäure und Sauerstoff oder Sauerstoff enthaltenden Gasen an einem Katalysator, der Palladium und/oder dessen Verbindungen, Cadmium- verbindungen sowie Alkalimetallverbindungen auf einem Träger enthält, dadurch gekennzeichnet, daß der Katalysator zusätzlich mindestens eine Lantha- noidmetallverbindung enthält.
2.) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Katalysator mindestens eine Kaliumverbindung enthält .
3. ) Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß der Katalysator 0,01 Gew.-% bis 1 Gew.-% Lanthanoidmetall, bezogen auf die Gesamtmasse des Katalysators, enthält.
4.) Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Katalysator 0,05 Gew.-% bis 0,5 Gew.-% Lanthanoidmetall, bezogen auf die Gesamtmasse des Katalysators, enthält.
5.) Katalysator, der Palladium und/oder dessen Verbindungen, Cadmiumverbindungen sowie Alkalimetallverbindungen auf einem Träger enthält, dadurch gekennzeichnet, daß der Katalysator zusätzlich mindestens eine Lanthanoidmetallverbindung enthält.
6.) Katalysator nach Anspruch 5, dadurch gekennzeichnet, daß der Katalysator mindestens eine Kaliumverbindung enthält .
7. ) Katalysator nach Anspruch 5 oder 6 , dadurch gekennzeichnet, daß der Katalysator 0,01 Gew.-% bis 1 Gew.-% Lanthanoidmetall, bezogen auf die Gesamtmasse des Katalysators, enthält.
8.) Katalysator nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß der Katalysator 0,05 Gew.- % bis 0,5 Gew.-% Lanthanoidmetall, bezogen auf die Gesamtmasse des Katalysators, enthält.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19755022 | 1997-12-11 | ||
DE19755022A DE19755022C2 (de) | 1997-12-11 | 1997-12-11 | Katalysator und Verfahren zur Herstellung von Vinylacetat |
PCT/EP1998/007817 WO1999029419A1 (de) | 1997-12-11 | 1998-12-02 | Katalysator auf der basis von palladium, cadmium, alkali und lanthanoide und verfahren zur herstellung von vinylacetat |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1083989A1 true EP1083989A1 (de) | 2001-03-21 |
Family
ID=7851530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98965733A Withdrawn EP1083989A1 (de) | 1997-12-11 | 1998-12-02 | Katalysator auf der basis von palladium, cadmium, alkali und lanthanoide und verfahren zur herstellung von vinylacetat |
Country Status (10)
Country | Link |
---|---|
US (1) | US6346501B1 (de) |
EP (1) | EP1083989A1 (de) |
JP (1) | JP2001525245A (de) |
KR (1) | KR20010032973A (de) |
CN (1) | CN1281385A (de) |
BR (1) | BR9813560A (de) |
CA (1) | CA2313644A1 (de) |
DE (1) | DE19755022C2 (de) |
ID (1) | ID25474A (de) |
WO (1) | WO1999029419A1 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6358882B1 (en) * | 1998-12-08 | 2002-03-19 | The Standard Oil Company | Fluid bed vinyl acetate catalyst |
DE19914066A1 (de) * | 1999-03-27 | 2000-10-05 | Celanese Chem Europe Gmbh | Katalysatoren für die Gasphasenoxidation von Ethylen und Essigsäure zu Vinylacetat, Verfahren zu ihrer Herstellung und ihre Verwendung |
TW200539941A (en) * | 2003-12-19 | 2005-12-16 | Celanese Int Corp | Methods of making alkenyl alkanoates |
UA95442C2 (ru) * | 2004-12-20 | 2011-08-10 | Селаниз Интернешнл Корпорейшн | Модифицированные материалы носителей для катализаторов |
US8227369B2 (en) * | 2005-05-25 | 2012-07-24 | Celanese International Corp. | Layered composition and processes for preparing and using the composition |
DE102006062331A1 (de) * | 2006-12-22 | 2008-06-26 | Uhde Gmbh | Herstellung von Vinylchlorid |
CN105904482B (zh) * | 2016-06-16 | 2017-06-16 | 清华大学深圳研究生院 | 一种机械臂偏心关节机构 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4120492A1 (de) * | 1991-06-21 | 1992-12-24 | Hoechst Ag | Verfahren zur herstellung von vinylacetat |
DE4323980C1 (de) * | 1993-07-16 | 1995-03-30 | Hoechst Ag | Palladium und Kalium sowie Cadmium, Barium oder Gold enthaltender Schalenkatalysator, Verfahren zu dessen Herstellung sowie dessen Verwendung zur Herstellung von Vinylacetat |
DE4323981C1 (de) * | 1993-07-16 | 1995-03-09 | Hoechst Ag | Palladium und Kalium sowie Cadmium, Barium oder Gold enthaltender Schalenkatalysator, Verfahren zu dessen Herstellung sowie dessen Verwendung zur Herstellung von Vinylacetat |
ES2142061T3 (es) * | 1995-05-23 | 2000-04-01 | Celanese Chem Europe Gmbh | Catalizador y procedimiento para la fabricacion de acetato de vinilo. |
DE19533484A1 (de) * | 1995-09-12 | 1997-03-13 | Basf Ag | Monomodale und polymodale Katalysatorträger und Katalysatoren mit engen Porengrößenverteilungen und deren Herstellverfahren |
DE19533486A1 (de) * | 1995-09-12 | 1997-03-13 | Basf Ag | Monomodale und polymodale Katalysatorträger und Katalysatoren mit engen Porengrößenverteilungen und deren Herstellverfahren |
GB9622911D0 (en) * | 1996-11-04 | 1997-01-08 | Bp Chem Int Ltd | Process |
GB9817363D0 (en) * | 1998-08-11 | 1998-10-07 | Bp Chem Int Ltd | Process for the production of vinyl acetate |
-
1997
- 1997-12-11 DE DE19755022A patent/DE19755022C2/de not_active Expired - Fee Related
-
1998
- 1998-12-02 CN CN98812033A patent/CN1281385A/zh active Pending
- 1998-12-02 WO PCT/EP1998/007817 patent/WO1999029419A1/de not_active Application Discontinuation
- 1998-12-02 BR BR9813560-0A patent/BR9813560A/pt not_active IP Right Cessation
- 1998-12-02 CA CA002313644A patent/CA2313644A1/en not_active Abandoned
- 1998-12-02 US US09/581,462 patent/US6346501B1/en not_active Expired - Fee Related
- 1998-12-02 EP EP98965733A patent/EP1083989A1/de not_active Withdrawn
- 1998-12-02 KR KR1020007006321A patent/KR20010032973A/ko not_active Application Discontinuation
- 1998-12-02 JP JP2000524071A patent/JP2001525245A/ja not_active Withdrawn
- 1998-12-02 ID IDW20001083A patent/ID25474A/id unknown
Non-Patent Citations (1)
Title |
---|
See references of WO9929419A1 * |
Also Published As
Publication number | Publication date |
---|---|
ID25474A (id) | 2000-10-05 |
WO1999029419A1 (de) | 1999-06-17 |
DE19755022C2 (de) | 2000-03-09 |
CA2313644A1 (en) | 1999-06-17 |
US6346501B1 (en) | 2002-02-12 |
DE19755022A1 (de) | 1999-06-24 |
BR9813560A (pt) | 2000-10-10 |
KR20010032973A (ko) | 2001-04-25 |
CN1281385A (zh) | 2001-01-24 |
JP2001525245A (ja) | 2001-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0634209B1 (de) | Katalysator, Verfahren zu dessen Herstellung, sowie dessen Verwendung zur Herstellung von Vinylacetat | |
EP0330853B1 (de) | Verfahren zur Herstellung von Vinylacetat | |
EP0634208B1 (de) | Trägerkatalysator, Verfahren zu dessen Herstellung, sowie dessen Verwendung zur Herstellung von Vinylacetat | |
DE2509251C3 (de) | Verfahren zur Herstellung eines Palladiumkatalysators | |
EP0004079B1 (de) | Träger-Katalysator für die Herstellung von Vinylacetat aus Ethylen, Essigsäure und Sauerstoff in der Gasphase | |
EP1198291B1 (de) | Katalysator und verfahren zur herstellung von vinylacetat | |
DE4323980C1 (de) | Palladium und Kalium sowie Cadmium, Barium oder Gold enthaltender Schalenkatalysator, Verfahren zu dessen Herstellung sowie dessen Verwendung zur Herstellung von Vinylacetat | |
EP0565952B1 (de) | Trägerkatalysator, Verfahren zu dessen Herstellung, sowie dessen Verwendung zur Herstellung von Vinylacetat | |
EP1083988B1 (de) | Katalysator auf der basis von palladium, gold, alkali und lanthanoid und verfahren zur herstellung von vinylacetat | |
EP1083989A1 (de) | Katalysator auf der basis von palladium, cadmium, alkali und lanthanoide und verfahren zur herstellung von vinylacetat | |
EP0431478B1 (de) | Verfahren zur Herstellung von Vinylacetat | |
EP0403950B1 (de) | Verfahren zur Herstellung von Vinylacetat | |
EP0519436A1 (de) | Katalysator und Verfahren zur Herstellung von Vinylacetat | |
EP1102635B1 (de) | Verfahren zur herstellung von trägerkatalysatoren sowie deren verwendung für die herstellung von vinylacetatmonomer | |
EP0871604B1 (de) | Katalysator und verfahren zur herstellung von vinylacetat | |
DE19523271A1 (de) | Katalysator und Verfahren zur Herstellung von Vinylacetat | |
DE2513125C3 (de) | Verfahren zur Regenerierung von Palladiumkatalysatoren | |
DE19903536C2 (de) | Katalysator und Verfahren zur Herstellung von Vinylacetat | |
DE2811211A1 (de) | Traeger-katalysator fuer die herstellung von ungesaettigten estern aus olefinen (c tief 3 -c tief 10 ), carbonsaeuren und sauerstoff in der gasphase | |
DE2513125B2 (de) | Verfahren zur regenerierung von palladiumkatalysatoren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000711 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT NL |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20030322 |