EP1082770A2 - Verfahren zur benetzung wenigstens einer der oberflächen eines elektrolyten in einer brennstoffzelle - Google Patents

Verfahren zur benetzung wenigstens einer der oberflächen eines elektrolyten in einer brennstoffzelle

Info

Publication number
EP1082770A2
EP1082770A2 EP99924846A EP99924846A EP1082770A2 EP 1082770 A2 EP1082770 A2 EP 1082770A2 EP 99924846 A EP99924846 A EP 99924846A EP 99924846 A EP99924846 A EP 99924846A EP 1082770 A2 EP1082770 A2 EP 1082770A2
Authority
EP
European Patent Office
Prior art keywords
fuel cell
electrolyte
channel body
wetting agent
partially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99924846A
Other languages
English (en)
French (fr)
Inventor
Rolf BRÜCK
Andreé BERGMANN
Jörg-Roman KONIECZNY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP1082770A2 publication Critical patent/EP1082770A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for wetting at least one surface of an electrolyte, which is in particular a proton-conducting electrolyte membrane, in a fuel cell, in particular a low-temperature fuel cell, and to a fuel cell
  • High-temperature fuel cells such as oxide ceramic fuel cells (SOFC, Solid Oxide Fuel Cell) contain, for example, a solid electrolyte made of zirconium dioxide that is ion-conductive at a working temperature of 850 to 1050 ° C. They are mainly operated in stationary systems for decentralized energy supply
  • low-temperature fuel cells could represent an alternative to conventional internal combustion engines, particularly in vehicles and rail systems
  • the electrons of the hydrogen atoms are separated during the passage and remain, the hydrogen ions react with the oxygen particles on the other side nd lack of electrons on the oxygen side of the electrolyte has a potential difference at the adjacent electrodes, so that when the electrodes are electrically connected via an external circuit in which a consumer is connected, an electrical current flows from the anode to the cathode in addition to the electrical energy generates heat and water as a reaction product
  • the surfaces of the electrolyte and / or the electrolyte-side surfaces of the adjacent electrodes are to be kept moist to demand the reaction and to achieve good efficiencies.
  • DE 43 18 818 C2 discloses this to operate the fuel cell with a humidified gas, which, however, must first be compressed in a relatively complex manner in order to subsequently be miscible with a fluid, in particular with water
  • the invention has for its object to provide a method for wetting at least one of the surfaces of an electrolyte, by which one sufficient wetting of the electrolyte can be ensured.
  • Another object of the invention is to provide a fuel cell in which the outlay on equipment for wetting at least one surface of an electrolyte is relatively low
  • the method according to the invention for wetting at least one surface of an electrolyte, which is in particular a proton-conducting electrolyte membrane, in a fuel cell is characterized in that a fluid containing wetting agent is provided in at least one channel body. At least part of the wetting agent can be passed through at least one semipermeable membrane of the Pass through channel body to the electrolyte Through this embodiment of the method, safe and reliable wetting of at least one surface of the electrolyte is achieved
  • the wetting agent is preferably water
  • At least one of the surfaces of the electrolyte is at least partially provided with a wetting agent guided in the channel body, in particular with a water layer.
  • a wetting agent guided in the channel body in particular with a water layer.
  • Such a supply of water advantageously allows at least one of the surfaces of an electrolyte to be permanently and continuously provided with a water layer, through the water layer the reactions taking place on the electrolyte, in particular the ionization of the hydrogen atoms, are required.
  • At least the surface of the electrolyte on the fuel gas side is preferably wetted, since on the surface on the reaction gas side, the need for wetting agent due to water as the reaction product is lower
  • At least one carrier medium is preferably contained in the fluid in addition to the wetting agent, air being preferably used as the carrier medium.
  • air being preferably used as the carrier medium.
  • the channel body is preferably at least partially integrated on the gas-side surface of at least one electrode and / or at least partially integrated in at least one electrode.
  • the channel body can be at least partially designed or arranged as a blind hole-shaped reservoir.
  • Several channel bodies can also be arranged, essentially parallel to one another run
  • the Kanalko ⁇ er are arranged substantially parallel to the surfaces of the electrode.
  • Fuel cells for example one on top of the other in so-called stacks or also next to one another in a band
  • the channel body preferably has at least one semipermeable membrane, which is preferably arranged on the electrolyte side in the channel body.
  • the wetting agent for the electrolyte can advantageously pass through the semipermeable membrane
  • the channel body is at least partially a molded plastic part.
  • the channel body can also be at least partially formed by the electrode itself, which is particularly advantageous in terms of production technology
  • the fuel cell is preferably cooled by the fluid and / or the channel body.
  • the channel body is at least partially designed as a cooling body, preferably rib-shaped.
  • the channel body is connected to a cooling device, which is preferably designed as a cooling circuit. The cooling of fuel cells is particularly important for fuel gases and / or oxidizing gases fed under high pressure
  • the amounts of the wetting agent to be supplied to the electrolyte can be metered in as a function of the fuel cell type used and in parameters which can be adapted to the particular fuel cell configuration, in particular as a function of the temperature
  • the advantages achieved by the invention are, in particular, that the meterability is possible by adjusting the pressure or via the concentration of the wetting agent in the fluid, in particular if the fluid additionally contains a carrier medium
  • FIG. 2 shows the low-temperature fuel cell 1 according to FIG. 1 in a side view in section along the line AA
  • 3 shows the low-temperature fuel cell 1 according to FIG. 1 in a side view in section along the line BB
  • FIG. 5 is a top view of a low-temperature fuel cell 1 with channel bodies arranged in an integrated manner and running essentially parallel,
  • FIG. 7 is a top view of a low-temperature fuel cell 1 with channel bodies arranged in an integrated manner in an electrode and designed as a blind hole-shaped reservoir,
  • FIG. 8 shows the low-temperature fuel cell 1 according to FIG. 7 in a side view with a section along the line D-D, and
  • FIG. 9 shows a further low-temperature fuel cell 1 in plan view with channel bodies arranged in an integrated manner in an electrode and formed as a blind hole-shaped reservoir
  • FIG. 1 shows a top view of a low-temperature fuel cell 1 with a channel body 9 arranged in a meandering shape on the gas-side surface 4 of an electrode 2
  • FIGS. 2 and 3 show the low-temperature fuel cell 1 according to FIG. 1 in a side view in section along the line AA or the line BB.
  • an electrolyte 6 which is in particular a proton-conducting polymer film which is only a tenth of a millimeter thick, is arranged on the gas-side Surface 4 of the electrode 2 is arranged in a channel shape 9, which has a semipermeable membrane 10 on the electrolyte side, through which the fluid, preferably only the wetting agent contained in the fluid, can pass to the electrolyte 6
  • FIG. 4 shows the low-temperature fuel cell 1 according to FIG. 3 in an enlarged detail.
  • the wetting agent preferably water, symbolizes by small arrows, first through the semipermeable membrane 10 and then through the pores 11 of the porous electrode 2 to the electrolyte 6, and provides the surface 7 of the electrolyte 6 on the fuel gas side with a wetting, in particular with a water layer
  • FIG. 5 shows a top view of a low-temperature fuel cell 1 with two channels 12, which are arranged in an integrated manner in an electrode 2 and run essentially parallel.
  • the fluid flows through the channels 12 integrated in the electrode 2 in the opposite direction of flow when the channels 12 are connected to one another (not shown) and thus once as a return and once as a return channel.
  • FIG. 6 shows the low-temperature fuel cell 1 according to FIG. 5 in a side view in section along the line CC.
  • the electrode 2 is made up of two layers, a gas-side layer 2a and an electrolyte-side layer 2b, grooves being embedded in layers 2a, 2b are that when layers 2a, 2b are superimposed, the wall of the grooves delimits a channel 12.
  • Such a two-layer system is particularly advantageous in terms of production technology.
  • 7 shows a top view of a low-temperature fuel cell 1 with channel 12, which is integrated in an electrode 2 and is designed as a blind hole-shaped reservoir.
  • Diaphragm 10 abuts and can pass through it directly to the electrolyte 6, as also shown in FIG. 8, and in particular provides the fuel gas surface 7 of the electrolyte 6 with a permanent water layer
  • FIG. 8 shows the low-temperature fuel cell 1 according to FIG. 7 in a side view with a section along the line DD.
  • the electrode 2 like the electrode 2 in FIG. 6, is made up of two layers 2c and 2d, namely a continuous upper line and contact layer 2c and a lower layer 2d, in which the channel 12 designed as a blind hole-shaped reservoir are integrated
  • FIG. 9 shows a further low-temperature fuel cell 1 in plan view with channel bodies 9, which are integrated in an electrode 2 and are designed as a blind hole-shaped reservoir.
  • the fluid is fed into the reservoir via a channel body 9 arranged on the gas-side surface 4 of the electrode 2

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Niedertemperatur-Brennstoffzelle (1) mit zwei porösen Elektroden (2, 3) verschiedener Polarität, wobei zwischen den elektrolytseitigen Oberflächen (5) der Elektroden (2, 3) ein Elektrolyt (6) mit einer brenngasseitigen Oberfläche (7) und einer reaktionsgasseitigen Oberfläche (8) angeordnet ist, und ein Verfahren zur Befeuchtung wenigstens einer der Oberflächen (7, 8) eines Elektrolyten in einer solchen Brennstoffzelle (1). Dazu ist die Brennstoffzelle (1) benachbart zu wenigstens einem Kanalkörper (9) angeordnet, welcher eine semipermeable Membran (10) aufweist, durch die ein im Kanalkörper (9) geführtes Fluid zum Elektrolyten hindurchtreten kann und wenigstens eine der Oberflächen (7, 8) des Elektrolyten (6) wenigstens teilweise mit einer Wasserschicht versieht, wodurch die am Elektrolyten (6) ablaufenden Reaktionen gefördert werden. Die mit der Erfindung erzielbaren Vorteile bestehen insbesondere darin, dass die Dosierbarkeit über eine Einstellung des Druckes beziehungsweise über die Konzentration des Wassers im Fluid, insbesondere wenn das Fluid zusätzlich ein Trägermedium enthält, möglich ist.

Description

Verfahren zur Benetzung wenigstens einer der Oberflachen eines Elektrolyten in einer Brennstoffzelle
Die Erfindung bezieht sich auf ein Verfahren zur Benetzung wenigstens einer Oberflache eines Elektrolyten, der insbesondere eine protonenleitende Elektrolytmembrane ist, in einer Brennstoffzelle, insbesondere einer Niedertemperatur-Brennstoffzelle sowie auf eine Brennstoffzelle
Ebenso wie in anderen galvanischen Elementen wird in Brennstoffzellen die, beispielsweise bei der chemischen Verbindung von Wasserstoff (H2) mit Sauerstoff (O2) freiwerdende Bindungsenergie in elektrische Energie und Warme umgewandelt Grundsatzlich unterscheidet man zwischen Niedertemperatur-Brennstoffzellen (bis ca 200°C) und Hochtemperatur-Brennstofϊzellen (etwa 600 bis 1100°C) Dazwischen liegen die sogenannten schmelzkarbonate MCFC-Brennstoffzellen (Molten Carbonate Fuel Cell) mit einer Arbeitstemperatur von etwa 200 bis 600°C und mit einem in einer Matrix angeordneten Flussigelektrolyten
Hochtemperaturbrennstoffzellen, wie oxidkeramische Brennstoffzellen (SOFC, Solid Oxide Fuel Cell), enthalten beispielsweise einen Festelektrolyten aus Zirkon- dioxid der bei einer Arbeitstemperatur von 850 bis 1050°C ionenleitend ist Sie werden überwiegend in stationären Anlagen für die dezentrale Energieversorgung betrieben
Niedertemperatur-Brennstoffzellen konnten in Verbindung mit einem Elektromotor eine Alternative zu herkömmlichen Verbrennungsmotoren, insbesondere in Fahrzeugen und Bahnsystemen, darstellen
Bei bekannten Elektro-Fahrzeugen wird die elektrische Energie zunächst in einem Kraftwerk erzeugt und dann an Bord in einer Batterie zwischengespeichert Hohe Kosten, großes Gewicht, begrenzte Haltbarkeit und lange Aufladezeiten dieser Batterien sind Probleme, die bisher nicht zufriedenstellend gelost werden konnten Besonders vielversprechend scheinen deshalb Konzepte, die ohne Zwischenspei- cherung auskommen, den Strom also an Bord und je nach Bedarf erzeugen, insbesondere das Konzept der Brennstoffzellen mit einem protonenleitenden Membranelektrolyten, sogenannten Proton-Exchange-Membrane-Fuel-Cells (PEM- Brennstoffzellen) Der gasförmige Kraftstoff, insbesondere Wasserstoffgas und Sauerstoffgas, muß nicht verbrannt werden, sondern wird in einer sogenannten kalten Reaktion direkt in elektrische Energie und Wasserdampf umgewandelt Der Elektrolyt in der PEM-Brennstoffzelle trennt die beiden Gase voneinander und verhindert eine sogenannte heiße Reaktion Ein elektrochemischer Vorgang am Elektrolyten laßt nur Protonen, also positiv geladene Wasserstoff-Ionen (ET), passieren Die Elektronen der Wasserstoff-Atome werden beim Durchgang abgeschieden und bleiben zurück, die Wasserstoff-Ionen reagieren mit den Sauerstoffteilchen auf der anderen Seite Durch Elektronenuberschuß auf der Wasserstoffseite und Elektronenmangel auf der Sauerstoffseite des Elektrolyts liegt an den benachbarten Elektroden eine Potentialdifferenz an, so daß bei einer elektrischen Verbindung der Elektroden über einen äußeren Stromkreis, in dem ein Verbraucher geschaltet ist, ein elektrischer Strom von der Anode zu der Kathode fließt Neben der elektrischen Energie entsteht Warme sowie Wasser als Reaktionsprodukt
Bei den Niedertemperatur-Brennstoffzellen, insbesondere den PEM-Brennstoff- zellen, sind zur Forderung der Reaktion und Erzielung guter Wirkungsgrade die Oberflächen des Elektrolyts und/oder die elektrolytseitigen Oberflachen der benachbarten Elektroden feucht zu halten Dazu ist beispielsweise aus der DE 43 18 818 C2 bekannt, die Brennstoffzelle mit einem befeuchteten Gas zu betreiben, welches jedoch zuvor relativ aufwendig verdichtet werden muß um anschließend mit einem Fluid, insbesondere mit Wasser, mischbar zu sein
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Benetzung wenigstens einer der Oberflachen eines Elektrolyten anzugeben, durch welches eine ausreichende Benetzung des Elektrolyten gewahrleistet werden kann Ein weiteres Ziel der Erfindung ist eine Brennstoffzelle anzugeben, bei der der apparative Aufwand zur Benetzung wenigstens einer Oberflache eines Elektrolyten relativ gering ist
Diese Aufgabe wird erfindungsgemaß durch ein Verfahren zur Benetzung wenigstens einer der Oberflachen eines Elektrolyten mit den Merkmalen des Anspruchs 1 beziehungsweise durch eine Brennstoffzelle mit den Merkmalen des Anspruchs 7 gelost Weitere vorteilhafte Weiterbildungen und Ausgestaltungen des Verfahrens sowie der Brennstoffzelle sind Gegenstand der abhangigen Ansprüche
Das erfϊndungsgemaße Verfahren zur Benetzung wenigstens einer Oberflache eines Elektrolyten, der insbesondere eine protonenleitende Elektrolytmembrane ist, in einer Brennstoffzelle, zeichnet sich dadurch aus, daß in wenigstens einem Kanalkoφer ein Benetzungsmittel enthaltendes Fluid bereitgestellt wird Wenigstens ein Teil des Benetzungsmittels kann durch wenigstens eine semipermeable Membran des Kanalkoφers zum Elektrolyten hindurchtreten Durch diese Ausgestaltung des Verfahrens wird eine sichere und zuverlässige Benetzung wenigstens einer Oberflache des Elektrolyten erreicht
Vorzugsweise handelt es sich bei dem Benetzungsmittel um Wasser
Wenigstens eine der Oberflachen des Elektrolyten wird wenigstens teilweise durch ein im Kanalkoφer geführtes Benetzungsmittel, insbesondere mit einer Wasserschicht versehen Durch eine solche Zuführung von Wasser kann in vorteilhafter Weise wenigstens eine der Oberflachen eines Elektrolyten dauerhaft und kontinuierlich mit einer Wasserschicht versehen werden, wobei durch die Wasserschicht die am Elektrolyten ablaufenden Reaktionen, insbesondere die Ionisierung der Wasserstoff-Atome, gefordert werden Vorzugsweise wird wenigstens die brenngasseitige Oberflache des Elektrolyten benetzt, da auf der reaktionsgasseitigen Oberflache der Bedarf am Benetzungsmittel durch Wasser als Reaktionsprodukt geringer ist
Erfindungsgemaß bevorzugt ist im Fluid neben dem Benetzungsmittel wenigstens ein Tragermedium enthalten, wobei vorzugsweise als Tragermedium Luft eingesetzt wird Ein solches Fluid ist dann in vorteilhafter Weise dem Elektrolyten durch die porösen Elektroden zuführbar
Der Kanalkoφer ist erfindungsgemaß bevorzugt wenigstens teilweise auf der gasseitigen Oberflache wenigstens einer Elektrode und/oder wenigstens teilweise in wenigstens einer Elektrode integriert angeordnet Der Kanalkoφer kann dabei wenigstens teilweise als sacklochformiges Reservoir ausgebildet beziehungsweise angeordnet sein Auch können mehrere Kanalkoφer angeordnet sein, die im wesentlichen parallel zueinander verlaufen Zudem sind die Kanalkoφer im wesentlichen parallel zu den Oberflachen der Elektrode angeordnet Die verschiedenen Anordnungen ermöglichen in vorteilhafter Weise eine einfache, insbesondere dauerhafte und kontinuierliche, Zuführung eines Benetzungsmittels zu wenigstens einer Oberflache des Elektrolyts unabhängig von der Anordnung der
Brennstoffzellen, beispielsweise übereinander in sogenannten Stacks oder auch bandförmig nebeneinander
Erfindungsgemaß bevorzugt weist der Kanalkoφer wenigstens eine semipermeable Membran auf, welche vorzugsweise elektrolytseitig im Kanalkoφer angeordnet ist Durch die semipermeable Membran kann in vorteilhafter Weise das Benetzungsmittel zum Elektrolyten hindurchtreten
In seiner konstruktiv einfachsten Ausfuhrungsform ist der Kanalkoφer wenigstens teilweise ein Kunststoff-Formteil Je nach Zweckmäßigkeit kann der Kanalkoφer aber auch wenigstens teilweise durch die Elektrode selbst gebildet sein, was insbesondere fertigungstechnisch von Vorteil ist Erfindungsgemaß bevorzugt wird die Brennstoffzelle durch das Fluid und/oder den Kanalkoφer gekühlt Dazu ist der Kanalkoφer wenigstens teilweise als Kuhlkoφer, vorzugsweise rippenformig, ausgebildet Alternativ und/oder kumulativ ist der Kanalkoφer mit einer Kuhleinrichtung verbunden, welche vorzugsweise als Kuhlkreislauf ausgebildet ist Die Kühlung von Brennstoffzellen ist insbesondere bei unter hohem Druck zugeführten Brenngasen und/oder Oxidationsgasen wichtig
Erfindungsgemaß bevorzugt sind die dem Elektrolyten zuzuführenden Mengen des Benetzungsmittels in Abhängigkeit des verwendeten Brennstoffzellen-Typs und in an die jeweilige Brennstoffzellen-Konfiguration anpaßbaren Parameter, insbesondere in Abhängigkeit von der Temperatur, zudosierbar
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß die Dosierbarkeit über eine Einstellung des Druckes beziehungsweise über die Konzen- tration des Benetzungsmittels im Fluid, insbesondere wenn das Fluid zusatzlich ein Tragermedium enthalt, möglich ist
Weitere Vorteile und Ausgestaltungen der vorliegenden Erfindung werden anhand exemplarischer Ausführungsbeispiele, vorzugsweise für eine PEM-Brennstoffzelle, und anhand der Zeichnung beschrieben
Es zeigen
Fig 1 eine Niedertemperatur-Brennstoffzelle 1 in der Draufsicht mit einem auf der gasseitigen Oberflache einer Elektrode maanderformige angeordneten
Kanalkoφer,
Fig 2 die Niedertemperatur-Brennstoffzelle 1 nach Fig 1 in der Seitenansicht im Schnitt entlang der Linie A-A, Fig 3 die Niedertemperatur-Brennstoffzelle 1 nach Fig 1 in der Seitenansicht im Schnitt entlang der Linie B-B,
Fig 4 die Niedertemperatur-Brennstoffzelle 1 nach Fig 3 in einem vergrößerten Ausschnitt,
Fig 5 eine Niedertemperatur-Brennstoffzelle 1 in der Draufsicht mit in einer Elektrode integriert angeordneten, im wesentlichen parallel verlaufenden, Kanalkoφern,
Fig 6 die Niedertemperatur-Brennstoffzelle 1 nach Fig 5 in der Seitenansicht im Schnitt entlang der Linie C-C,
Fig 7 eine Niedertemperatur-Brennstoffzelle 1 in der Draufsicht mit in einer Elektrode integriert angeordneten, als sacklochformiges Reservoir ausgebildeten, Kanalkoφern,
Fig 8 die Niedertemperatur-Brennstoffzelle 1 nach Fig 7 in der Seitenansicht mit Schnitt entlang der Linie D-D, und
Fig 9 eine weitere Niedertemperatur-Brennstoffzelle 1 in der Draufsicht mit in einer Elektrode integriert angeordneten, als sacklochformiges Reservoir ausgebildeten, Kanalkoφern
Fig 1 zeigt eine Niedertemperatur-Brennstoffzelle 1 in der Draufsicht mit einem auf der gasseitigen Oberflache 4 einer Elektrode 2 maanderfbrmig angeordnetem Kanalkoφer 9
In den Figuren 1, 5, 7, 9 kennzeichnen die fetten schwarzen Pfeile die Stromungs- richtung eines im Kanalkoφer 9 geführtes Fluid Figuren 2 und 3 zeigen die Niedertemperatur-Brennstoffzelle 1 nach Fig 1 in der Seitenansicht im Schnitt entlang der Linie A-A beziehungsweise der Linie B-B Zwischen den Elektroden 2 und 3 ist ein Elektrolyt 6, welcher insbesondere eine nur zehntelmillimeterdicken protonenleitende Polymerfolie ist, angeordnet Auf der gasseitigen Oberflache 4 der Elektrode 2 ist der Kanalkoφer 9 maanderfbrmig angeordnet, welcher elektrolytseitig eine semipermeable Membran 10 aufweist, durch die das Fluid, vorzugsweise lediglich das im Fluid enthaltene Benetzungsmittel, zum Elektrolyten 6 hindurchtreten kann
Fig 4 zeigt die Niedertemperatur-Brennstoffzelle 1 nach Fig 3 in einem vergrößerten Ausschnitt Das Benetzungsmittel, vorzugsweise Wasser, tritt durch kleine Pfeile symbolisiert, zunächst durch die semipermeable Membran 10 und anschließend durch die Poren 11 der porösen Elektrode 2 zum Elektrolyten 6 hindurch, und versieht die brenngasseitige Oberflache 7 des Elektrolyts 6, mit einer Benetzung, insbesondere mit einer Wasserschicht
Fig 5 zeigt eine Niedertemperatur-Brennstoffzelle 1 in der Draufsicht mit zweien, in einer Elektrode 2 integriert angeordneten, im wesentlichen parallel verlaufenden, Kanal 12 Das Fluid durchströmt die in der Elektrode 2 integrierten Kanäle 12 in entgegengesetzter Stromungsrichtung, wenn die Kanäle 12, miteinander verbunden (nicht dargestellt) und somit einmal als Hin- und einmal als Rucklaufkanal ausgebildet sind.
Fig 6 zeigt die Niedertemperatur-Brennstoffzelle 1 nach Fig 5 in der Seitenansicht im Schnitt entlang der Linie C-C Die Elektrode 2 ist aus zwei Schichten, einer gasseitigen Schicht 2a und einer elektrolytseitigen Schicht 2b aufgebaut, wobei in den Schichten 2a, 2b jeweils Nuten so eingelassen sind, daß bei Ubereinanderordnung der Schichten 2a, 2b die Wandung der Nuten einen Kanal 12 begrenzt. Ein solches Zwei-Schichten-System ist insbesondere fertigungstechnisch vorteilhaft. Fig 7 zeigt eine Niedertemperatur-Brennstoffzelle 1 in der Draufsicht mit in einer Elektrode 2 integriert angeordneten, als sacklochformiges Reservoir ausgebildeten, Kanal 12 Dem Reservoir wird das Fluid seitlich (nicht dargestellt) so zugeführt, daß es kontinuierlich an der im Kanal 12 angeordneten, semipermeablen Membran 10 anliegt und durch diese hindurch direkt zum Elektrolyten 6, wie auch in Figur 8 dargestellt, hindurchtreten kann und insbesondere die brenngasseitige Oberflache 7 des Elektrolyts 6 mit einer dauerhaften Wasserschicht versieht
Fig 8 zeigt die Niedertemperatur-Brennstoffzelle 1 nach Fig 7 in der Seitenansicht mit Schnitt entlang der Linie D-D Die Elektrode 2 ist, ahnlich wie die Elektrode 2 in Fig 6, aus zwei Schichten 2c und 2d aufgebaut, nämlich einer durchgangigen oberen Leitungs- und Kontaktschicht 2c und einer unteren Schicht 2d, in welcher die als sacklochformiges Reservoier ausgebildeten Kanal 12 integriert sind
Fig 9 zeigt eine weitere Niedertemperatur-Brennstoffzelle 1 in der Draufsicht mit in einer Elektrode 2 integriert angeordneten, als sacklochformiges Reservoir ausgebildeten, Kanalkoφern 9 Die Zuführung des Fluids in das Reservoir erfolgt hierbei über einen auf der gasseitigen Oberflache 4 der Elektrode 2 angeordneten Kanalkoφer 9
Bezugszeichenliste
Niedertemperatur-Brennstoffzelle Elektrode a bis 2d Schicht Elektrode gasseitige Oberfläche der Elektroden 2, 3 elektrolytseitige Oberfläche der Elektroden 2, 3 Elektrolyt brenngasseitige Oberfläche des Elektrolyts 6 reaktionsgasseitge Oberfläche des Elektrolyts 6 Kanalköφer 0 semipermeable Membran 1 Pore 2 Kanal

Claims

Patentanspruche
Verfahren zur Benetzung wenigstens einer Oberflache (7, 8) eines Elektrolyten (6), der insbesondere eine protonenleitende Elektrolytmembrane ist, in einer Brennstoffzelle, insbesondere einer Niedertemperatur-Brennstoffzelle (1), bei dem in wenigstens einem Kanalkorper (9) ein Benetzungsmittel enthaltendes Fluid bereitgestellt wird, wobei wenigstens ein Teil des Benetzungsmittels durch wenigstens eine semipermeable Membran (10) des Kanalkoφers (9) zum Elektrolyten (6) hindurchtreten kann
Verfahren nach Anspruch 1, bei dem das Benetzungsmittel in Form von Wasser vorliegt
Verfahren nach Anspruch 1 oder 2, bei dem das Benetzungsmittel in einem Tragermedium bereitgestellt wird
Verfahren nach Anspruch 3, bei dem als Tragermedium Luft verwendet wird
Verfahren nach einem der vorherigen Ansprüche, bei dem wenigstens die brenngasseitige Oberflache (7) des Elektrolyts (6) benetzt wird
Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die dem Elektrolyten (6) zuzuführenden Mengen des Fluids, insbesondere das im Fluid enthaltene Wasser, in Abhängigkeit des verwendeten Brennstoffzellen- Typs und in an die jeweilige Brennstoffzellen-Konfiguration anpaßbaren
Parameter, insbesondere in Abhängigkeit von der Temperatur, zudosiert werden
Niedertemperatur-Brennstoffzelle (1) mit zwei porösen Elektroden (2, 3) verschiedener Polarität mit einer gasseitigen Oberflache (4) sowie mit einer elektrolytseitigen Oberflache (5), wobei zwischen den elektrolytseitigen Ober- flachen (5) der Elektroden (2, 3) ein Elektrolyt (6), insbesondere eine protonenleitende Polymerfolie, mit einer brenngasseitigen Oberflache (7) und einer reaktionsgasseitigen Oberflache (8) angeordnet ist, dadurch gekennzeichnet, daß die Brennstoffzelle (1) mit wenigstens einem Kanalkoφer (9) verbunden ist, der so ausgebildet ist, daß wenigstens eine der Oberflachen (7, 8) des Elektrolyten (6) wenigstens teilweise benetzbar ist durch ein im Kanalkoφer (9) geführtes ein Benetzungsmittel enthaltendes Fluid
Brennstoffzelle (1) nach Anspruch 7, dadurch gekennzeichnet, daß das Benetzungsmittel Wasser ist
Brennstoffzelle (1) nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß im Fluid wenigstens ein Tragermedium enthalt
Brennstoffzelle (1) nach Anspruch 9, dadurch gekennzeichnet, daß als Tragermedium Luft eingesetzt wird
Brennstoffzelle (1) nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß der Kanalkoφer (9) wenigstens teilweise auf der gasseitigen Oberflache (4) wenigstens einer Elektrode (2, 3) angeordnet ist
Brennstoffzelle (1) nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß der Kanalkoφer (9) wenigstens teilweise in wenigstens einer Elektrode (2, 3) integriert angeordnet ist
Brennstoffzelle (1) nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß der Kanalkoφer (9) wenigstens teilweise als sacklochformiges Reservoir ausgebildet ist
Brennstoffzelle (1) nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß der Kanalkoφer (9) wenigstens teilweise etwa maanderformig angeordnet ist
15. Brennstoffzelle (1) nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß mehrere Kanalkörper (9), im wesentlichen parallel zueinander, angeordnet sind.
16. Brennstoffzelle (1) nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, daß der Kanalköφer (9) im wesentlichen parallel zu den Oberflächen (4, 5) der Elektrode (2, 3) angeordnet ist.
17. Brennstoffzelle (1) nach einem der Ansprüche 7 bis 16, dadurch gekenn- zeichnet, daß der Kanalköφer (9) wenigstens eine semipermeable Membran
(10) aufweist, durch die das Benetzungsmittel zum Elektrolyten (6) hindurchtreten kann.
18. Brennstoffzelle (1) nach Anspruch 17, dadurch gekennzeichnet, daß die wenig- stens eine semipermeable Membran (10) vorzugsweise elektrolytseitg im
Kanalköφer (9) angeordnet ist.
19. Brennstoffzelle (1) nach einem der Ansprüche 7 bis 18, dadurch gekennzeichnet, daß der Kanalköφer (9) wenigstens teilweise ein Kunststoff-Formteil ist.
20. Brennstoffzelle (1) nach einem der Ansprüche 7 bis 19, dadurch gekennzeichnet, daß der Kanalköφer (9) wenigstens teilweise durch die Elektrode (2, 3) gebildet ist.
21. Brennstoffzelle (1) nach einem der Ansprüche 7 bis 20, dadurch gekennzeichnet, daß der Kanalköφer (9) wenigstens teilweise ein Kühlköφer ist, der vorzugsweise rippenförmig ausgebildet ist.
22. Brennstoffzelle (1) nach einem der Ansprüche 7 bis 21, dadurch gekennzeichnet, daß der Kanalköφer (9) mit einer Kühleinrichtung verbunden ist, die vorzugsweise als Kühlkreislauf ausgebildet ist.
23. Brennstoffzelle (1) nach einem der Ansprüche 7 bis 22, dadurch gekennzeichnet, daß die dem Elektrolyten (6) zuzuführenden Mengen des Benetzungsmittels in Abhängigkeit des verwendeten Brennstoffzellen-Typs und in an die jeweilige Brennstoffzellen-Konfiguration anpaßbaren Parameter, insbesondere in Abhängigkeit von der Temperatur, zudosierbar sind.
EP99924846A 1998-04-30 1999-04-29 Verfahren zur benetzung wenigstens einer der oberflächen eines elektrolyten in einer brennstoffzelle Withdrawn EP1082770A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19819324A DE19819324A1 (de) 1998-04-30 1998-04-30 Verfahren zur Benetzung wenigstens einer der Oberflächen eines Elektrolyten in einer Brennstoffzelle
DE19819324 1998-04-30
PCT/EP1999/002923 WO1999057778A2 (de) 1998-04-30 1999-04-29 Verfahren zur benetzung wenigstens einer der oberflächen eines elektrolyten in einer brennstoffzelle

Publications (1)

Publication Number Publication Date
EP1082770A2 true EP1082770A2 (de) 2001-03-14

Family

ID=7866283

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99924846A Withdrawn EP1082770A2 (de) 1998-04-30 1999-04-29 Verfahren zur benetzung wenigstens einer der oberflächen eines elektrolyten in einer brennstoffzelle

Country Status (5)

Country Link
US (1) US6630258B1 (de)
EP (1) EP1082770A2 (de)
JP (1) JP2002513996A (de)
DE (1) DE19819324A1 (de)
WO (1) WO1999057778A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555262B1 (en) * 2000-02-08 2003-04-29 Hybrid Power Generation Systems, Llc Wicking strands for a polymer electrolyte membrane
US7846593B2 (en) * 2006-05-25 2010-12-07 The Board Of Trustees Of The Leland Stanford Junior University Heat and water management device and method in fuel cells

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923546A (en) * 1974-12-13 1975-12-02 United Technologies Corp Corrosion protection for a fuel cell coolant system
JPH0622136B2 (ja) * 1986-10-22 1994-03-23 昭和電工株式会社 燃料電池セパレータ用炭素板の製造法
JP2761059B2 (ja) * 1989-06-28 1998-06-04 三菱重工業株式会社 固体高分子電解質型燃料電池
US5108849A (en) * 1989-08-30 1992-04-28 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Fuel cell fluid flow field plate
JPH0412465A (ja) * 1990-04-27 1992-01-17 Fuji Electric Co Ltd 固体高分子電解質型燃料電池のセル構造
JP2814716B2 (ja) * 1990-07-31 1998-10-27 富士電機株式会社 固体高分子電解質型燃料電池のセル構造および水とガスの供給方法
JPH0495357A (ja) * 1990-07-31 1992-03-27 Fuji Electric Co Ltd 固体高分子電解質型燃料電池のセル構造および水とガスの供給方法
JP3107229B2 (ja) * 1991-02-14 2000-11-06 田中貴金属工業株式会社 固体高分子電解質燃料電池及び電解セルの隔膜加湿構造
JP3352716B2 (ja) * 1992-03-31 2002-12-03 株式会社東芝 固体高分子電解質型燃料電池装置
JPH0684533A (ja) * 1992-08-31 1994-03-25 Sumitomo Electric Ind Ltd 固体高分子型燃料電池の加湿手段
JPH06231793A (ja) * 1993-02-04 1994-08-19 Mitsubishi Heavy Ind Ltd 固体高分子電解質型燃料電池
JPH06260190A (ja) * 1993-03-01 1994-09-16 Mitsubishi Heavy Ind Ltd 固体高分子型燃料電池
JPH06275284A (ja) * 1993-03-24 1994-09-30 Mitsubishi Heavy Ind Ltd 固体高分子電解質膜型燃料電池
JPH06325780A (ja) * 1993-05-10 1994-11-25 Mitsubishi Heavy Ind Ltd 燃料電池システム
JPH06338338A (ja) * 1993-05-28 1994-12-06 Mitsubishi Heavy Ind Ltd 燃料電池の高分子イオン交換膜の加湿方法
JP3515161B2 (ja) * 1994-02-28 2004-04-05 三洋電機株式会社 固体高分子電解質型燃料電池
JPH08287934A (ja) * 1995-04-10 1996-11-01 Toyota Motor Corp 燃料電池
JPH08306375A (ja) * 1995-04-28 1996-11-22 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池
JP3769882B2 (ja) * 1997-06-06 2006-04-26 トヨタ自動車株式会社 燃料電池装置および燃料電池装置の温度調整方法
US6207312B1 (en) * 1998-09-18 2001-03-27 Energy Partners, L.C. Self-humidifying fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9957778A2 *

Also Published As

Publication number Publication date
JP2002513996A (ja) 2002-05-14
WO1999057778A3 (de) 2000-03-02
WO1999057778A2 (de) 1999-11-11
US6630258B1 (en) 2003-10-07
DE19819324A1 (de) 1999-11-04

Similar Documents

Publication Publication Date Title
EP1080511B1 (de) Brennstoffzellen-modul
DE19857398B4 (de) Brennstoffzellensystem, insbesondere für elektromotorisch angetriebene Fahrzeuge
EP1082769B1 (de) Elektrode mit für ein fluid durchgängigen poren und brennstoffzelle
DE19624887A1 (de) Elektrochemisches Festelektrolyt-Zellsystem
DE102009057720A1 (de) Batterie und Verfahren zum Betreiben einer Batterie
EP1333517A2 (de) Brennstoffzellenvorrichtung und System mir derartiger Brennstoffzellenvorrichtung
DE102008038202A1 (de) PEM-Brennstoffzelle mit verbessertem Wassermanagement
DE1596275A1 (de) Brennstoffelement zur elektrochemischen Erzeugung von Elektrizitaet
EP1271683A2 (de) Brennstoffzelle
DE102009003074A1 (de) Elektrochemische Zelle zur Gewinnung elektrischer Energie
DE10221397A1 (de) Herstellungsverfahren einer Brennstoffzellenelektrode und eine Brennstoffzelle davon
DE102016200055A1 (de) Flussfeldplatte und Bipolarplatte sowie Brennstoffzelle
EP1433215B1 (de) Brennstoffzellenblock
WO2001022516A1 (de) Brennstoffzelle mit internem reformer und verfahren zu deren betrieb
EP2789038B1 (de) Stack für einen elektrischen energiespeicher
WO1999057772A1 (de) Verfahren zum herstellen einer elektrode sowie eine elektrode für eine brennstoffzelle
EP1082770A2 (de) Verfahren zur benetzung wenigstens einer der oberflächen eines elektrolyten in einer brennstoffzelle
DE19815455A1 (de) Kombination aus Elektrolyse- und Brennstoffzelle
DE102012201066A1 (de) Elektrischer Energiespeicher
DE102004015601B4 (de) Brennstoffzelle
DE102020203048A1 (de) Brennstoffzelleneinheit
EP1665443B1 (de) Brennstoffzelle und zugehöriges brennstoffzellenmodul
EP2850687B1 (de) Elektrischer energiespeicher
DE102021116585A1 (de) Bipolarplatte
EP1080508B1 (de) Elektrode für eine brennstoffzelle und brennstoffzelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001107

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20010227

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20010905