EP1078165A1 - Ensemble compresseur en spirale - Google Patents

Ensemble compresseur en spirale

Info

Publication number
EP1078165A1
EP1078165A1 EP00920440A EP00920440A EP1078165A1 EP 1078165 A1 EP1078165 A1 EP 1078165A1 EP 00920440 A EP00920440 A EP 00920440A EP 00920440 A EP00920440 A EP 00920440A EP 1078165 A1 EP1078165 A1 EP 1078165A1
Authority
EP
European Patent Office
Prior art keywords
driver
compressor
driving surface
compressor according
compressor body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00920440A
Other languages
German (de)
English (en)
Other versions
EP1078165B1 (fr
Inventor
Thomas Hasemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bitzer Kuehlmaschinenbau GmbH and Co KG
Original Assignee
Bitzer Kuehlmaschinenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bitzer Kuehlmaschinenbau GmbH and Co KG filed Critical Bitzer Kuehlmaschinenbau GmbH and Co KG
Publication of EP1078165A1 publication Critical patent/EP1078165A1/fr
Application granted granted Critical
Publication of EP1078165B1 publication Critical patent/EP1078165B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement

Definitions

  • the invention relates to a compressor comprising a scroll compressor with a first compressor body and a second compressor body, the first and second spiral ribs of which are designed in the form of a circular involute, so that the second compressor body can be moved on an orbital path about a central axis relative to the first compressor body, a drive for the scroll compressor with a drive motor and a driver unit which has a driver driven by the drive motor and rotating on a driver path around the central axis and a driver receptacle arranged on the second compressor body, the driver receptacle in the radial direction to the central axis having a radial degree of freedom with respect to the driver It is movable that the second compressor body with the second spiral rib on the first spiral rib due to the radial degree of freedom and the centrifugal forces acting on the second compressor body of the first compressor body is sealingly movable.
  • Such a scroll compressor is known, for example, from US Pat. No. 5,295,813.
  • the problem with these scroll compressors is that this solution is complicated to manufacture and, on the other hand, undesirable high local surface pressures can occur due to the flat driver surfaces.
  • the invention is therefore based on the object of improving a compressor of the generic type in such a way that it can be manufactured as simply as possible and works as reliably as possible.
  • the driver has a driver surface which is convexly curved in a direction transverse to the central axis in the direction of rotation, that the driver receptacle is arranged in a rotationally fixed manner relative to the second compressor body and has a driver surface which surrounds the driver in an annular manner, to which the driver surface always acts only in a partial section by applying force, that the pressurized section also rotates on the driving surface when the second compressor body rotates on the orbital track, and that between the driver and the driving surface outside the force-carrying section, the radial degree of freedom of the driver receptacle is opposite there is space between the driver.
  • the advantage of the solution according to the invention lies in its structural simplicity, which on the one hand allows the driver receptacle no longer to be rotatably arranged on the second compressor body, but in a rotationally fixed manner, so that the pivot bearing required for this can be omitted, since in the solution according to the invention the relative rotation due to the rotation of the section is solved on the driving surface.
  • the solution according to the invention has the great advantage that it requires fewer and, in particular, only easy to machine parts.
  • a structurally particularly simple solution provides that the driver receptacle is fixedly arranged on the second compressor body.
  • this is a bushing which is preferably integrally formed on the compressor body and in whose inner recess the driver engages.
  • the possible radial degree of freedom corresponds at least to the maximum deviation of the orbital orbit of the second compressor body from a geometric circular path around the central axis.
  • the geometric circular path around the central axis represents the ideal case of the orbital path, which, however, cannot be reached temporarily or over a long time due to the manufacturing inaccuracies in the area of the spiral ribs, due to thermal changes during operation, for example different temperature expansion, or due to wear Time can be maintained, so that it can be assumed that the actual orbital path of the second compressor body deviates from the ideal geometric circular path.
  • the intermediate space has an extension in the radial direction which is at least the maximum deviation of the orbital orbit from the geometric circular orbit corresponds since the intermediate space is thus able to permit the radial movements which are necessary for the second compressor body with its second spiral rib to always lie adjacent to the first spiral rib of the first compressor body.
  • the intermediate space has a dimension which is in the range from approximately 1.5% to approximately 15% of an expansion of the driving surface in the radial direction. Values from approximately 2% to approximately 10% are preferred.
  • the distance between these, starting from the force-acting section increases with increasing distance from the section, i. That is, due to the continuous increase in the distance between the driving surface and the driving surface, a lubricant cushion is formed near the force-affected section, which must be displaced from the intermediate space in the event of a sudden radial movement and thus employs a certain damping effect.
  • the distance between the driver surface and the driver surface coexists on both sides of the force-affected section increasing distance from this increases, so that a movement in the radial direction or in the opposite direction is damped in each case.
  • a particularly favorable solution with regard to the production of the driving surface provides that the driving surface runs in a circular manner, preferably as a cylindrical surface of a circular cylinder, so that when the second compressor body moves on the orbital track, the driving surface moves along the circular or cylindrical driving surface.
  • the center of the circle or cylinder formed by the driving surface is preferably on the circular path on which the orbital path is based, around the central axis.
  • a simplest embodiment of a driver unit according to the invention provides that it has a single driver surface and a driver surface assigned to it. Preferably, the space between the driver and the driving surface.
  • the driving surface assigned to the driving surface is arranged on an intermediate ring, which in turn acts with a further driving surface on a further section of a further driving surface by applying force and that between the intermediate ring and the further driving surface there is also a further space which contributes to the radial degree of freedom of the driver receptacle with respect to the driver.
  • the intermediate ring it is not absolutely necessary for the intermediate ring to slide with the further driving surface along the further driving surface. It is also conceivable for the intermediate ring to roll along with the additional driving surface on the additional driving surface.
  • the driver surface rolls on the driver surface, which however makes it necessary to for example the driver surface as the outer surface of a driver enclosing and rotatably mounted on this Realize sleeve, so that the driving surface can roll as the entire outer surface of the sleeve on the associated driving surface during the movement of the second compressor body on the orbital track.
  • a lubricant is supplied in front of the driver surface, so that the lubricant is moved during the rotational movement in the direction of the partial section under power.
  • Such a lubricant supply to the driver unit via the driver can be implemented in a variety of ways. For example, it would be conceivable to let lubricant emerge on the face of the driver, which then moves in the direction of the intermediate space and penetrates into it.
  • a particularly favorable solution provides that for this purpose the driver with a lubricant channel passing through it is provided, the lubricant channel preferably continuing from the driver via the drive shaft and, for example, a lubricant pump being arranged at an end of the drive shaft of the drive motor opposite the driver.
  • the driver is provided with a lubricant outlet opening close to the driver surface and opening into the intermediate space, so that the lubricant is preferably introduced into the intermediate space directly in front of the carrier surface and then from it Moved direction of the power section.
  • the intermediate space in order to have the lubricant available as optimally as possible in the area of the force-affected section, in particular for the formation of a hydrodynamic lubricating film, it is preferably provided that the intermediate space, viewed in the direction of rotation of the driver, has an expansion in front of the driving surface which holds the lubricant due to capillary action .
  • the force-affected section of the driving surface always extends approximately parallel to the direction of the radial degree of freedom and maintains this orientation, so that a defined orientation of the action of the driver on the driver receptacle can thereby be determined.
  • the section lies symmetrically to a tangent to the circular path on which the orbital orbit is based, the tangent running through the center of the circular driving surface.
  • the driver always acts on the second compressor body in such a way that it is able to overcome the tangential gas force, but does not make any contribution in the direction of the radial degree of freedom, so that the radial gas force only counteracts the centrifugal force.
  • FIG. 1 shows a longitudinal section through a first embodiment of a compressor according to the invention.
  • FIG. 2 shows an enlarged partial section along line 2-2 in FIG. 1 with an additional illustration of a section of a first and a second spiral rib, in which overcoming the tangential gas force does not lead to a radial force component;
  • Fig. 3 is an illustration of an interpretation of the first
  • Embodiment wherein the overcoming of the tangential gas force leads to a force component in the radial direction;
  • FIG. 4 shows a section similar to FIG. 1 through a second embodiment of a compressor according to the invention
  • FIG. 5 shows a section similar to FIG. 2 through the second embodiment
  • Fig. 6 shows a section similar to FIG. 2 through a third embodiment of a compressor according to the invention.
  • FIG. 1 An embodiment of a scroll compressor according to the invention, shown in FIG. 1, comprises a housing designated as a whole by 10, in which an electric drive motor designated as a whole by 12 and a scroll compressor designated as a whole by 14 are arranged.
  • the scroll compressor comprises a first compressor body 16 and a second compressor body 18, the first compressor body 16 having a first spiral rib 22 formed in the form of a circular involute and rising above a base area 20 thereof, and the second compressor body 18 having a second rib rising in a base area 24 Formed a circular involute spiral rib 26, the spiral ribs 22, 26 interlocking and in each case sealingly abut against the base surface 24 or 20 of the respective other compressor body 18, 16, so that there are chambers between the spiral ribs 22, 26 and the base surfaces 20, 24 28 form, in which a compression of a medium takes place, which flows in via an inlet space 30 surrounding the spiral ribs 22, 26 radially on the outside and, after compression in the chambers 28, exits at an end pressure via an outlet
  • the first compressor body 16 is held firmly in the compressor housing 10, while the second compressor body 18 can be moved about a central axis 34 on an orbital track 36 relative to the first compressor body 16, the spiral ribs 22 and 26 theoretically along a line of contact 28 abut each other and the line of contact 28 also rotates around the central axis 34 when the second compressor body 18 moves on the orbital track 36.
  • the drive motor 12 for driving the second compressor body 18 comprises a stator 40, which is fixedly arranged in the housing 10, and a rotor 42, which is seated on a drive shaft 44, which in turn is rotatable, namely about the axis 34, in the housing 10 is stored.
  • a driver unit designated as a whole by 50, which comprises an eccentric 52 designed as a driver, which is arranged with an offset with respect to the central axis 34, specifically in the radial direction.
  • the driver 52 engages in a driver receptacle 54 designed as a bushing, which is arranged on a bottom part 56 of the second compressor body 18, specifically on a side thereof opposite the spiral rib 26 and in the direction of the drive motor 12.
  • the driver receptacle 54 designed as a bush has an inner cylindrical surface 60, the cylinder axis 62 of which on the one hand intersects the theoretically circular orbital track 36, on the other hand runs parallel to the central axis 34, but is offset from the central axis 34 by the radius of the orbital track 36 is arranged.
  • the driver 52 which is designed as an eccentric, is in turn likewise preferably designed as a cylindrical body with a cylindrical jacket surface 64, the cylinder axis 66 of which likewise runs parallel to the central axis 34 and also has a radial distance RE from it, which corresponds approximately to the radius of the orbital orbit 36.
  • the driver 52 is designed such that it rests with a driver surface 70 on the inner cylinder surface 60 of the driver receptacle 54, which acts as a driving surface, in a partial section 72 thereof, for the rest However, it runs without contact with respect to the driving surface 60, so that, starting from the section 72, there is a space 74 between the driver 52 and the driver receptacle 54, which initially has areas 76 and 78 in connection with the section 72, in which there is a width of the space increasingly enlarged, and these areas 76 and 78 with increasing width of the intermediate space 74 merge into an area 80 of maximum width, the area 80 in the first exemplary embodiment being opposite the partial area 72.
  • the driver surface 70 now acts with a force A against the section 72 of the driver surface 60 in order to overcome the tangential gas force TG.
  • the tangential gas force TG aligned in the direction 84 of a tangent to the orbital path 36 through the cylinder axis 62 acts in a neutral direction, which is caused on the one hand by the Cylinder axis 66 runs as the center of curvature of the driving surface 70 and on the other hand runs through the cylinder axis 62 and is perpendicular to a straight line 86 which connects the central axis 34 with the line of contact 28 of the spiral ribs 22, 26.
  • Such dimensioning makes it necessary to choose the distance RE of the cylinder axis 66 of the driver 52 from the central axis 34 to be greater than the radius RB of the orbital track 36, since the cylinder axis 66 is offset in relation to the cylinder axis 62 in the direction of the force-actuated section 72.
  • the cylinder axis 62 is shifted away from the central axis 34, as viewed in the radial direction 86, relative to the cylinder axis and is thus, with respect to the radial direction 86, on the side of the cylinder axis 66 opposite the central axis 34 2 in the direction according to FIG. 2 in the direction of the central axis 34, and thus the tangent 85 ', created in the partial area 72', is inclined with respect to the radial direction 86, so that the parallel a tangential gas force TG effective at tangent 84 has a component TGS perpendicular to tangent 85 'and a component TGR in FIG 3 comprises the radial direction 86 which, in the case shown in FIG. 3, counteracts the centrifugal force Z in the same direction as the radial gas force RG, that is to say with respect to the force with which the spiral ribs 22, 26 abut one another.
  • Such a radial component TGR of the tangential gas force can already be determined constructively by selecting the distance RE to be smaller than it should be for the starting position.
  • a radial component TGR also occurs when the radius RB of the orbital track 36 increases compared to the radius RB for the starting position due to machining inaccuracies in the area of the adjacent spiral ribs 22, 26.
  • a reverse acting radial component TGR i. H.
  • a component TGR with a strengthening effect with regard to the force with which the spiral ribs 22, 26 abut against one another arises when the cylinder axis 62 moves relative to the cylinder axis 66 towards the central axis 34 and, viewed in the radial direction 86, between the latter and the Cylinder axis 66 lies, wherein the reinforcing radial component TGR is either predetermined by design or can arise due to inaccuracies by changing the radius of the orbital track 36.
  • driver surface 70 of the driver 52 always remains the same, since the driver 52 is fixedly connected to the drive shaft 44 and thus pivots around it with the central axis 34 as the axis of rotation.
  • the areas 76 and 78 of the space 74 Due to the increasing width in the areas 76 and 78 of the space 74 between the driver 52 and the driver receptacle 54, the areas 76 and 78 of the space 74 have a width W at the point at which they are penetrated by the connecting line 86, which is a Movement of the second compressor body 18 in the radial direction to the central axis 34 permits, so that overall the second compressor body 18 with the spiral rib 26 has a radial degree of freedom in the direction of the line 86, which makes it possible, on the one hand, for the liquid spiral to briefly cause the second spiral rib 26 from of the first spiral rib 22 and the second spiral rib 26 is also able to compensate for manufacturing inaccuracies in the region of the spiral ribs 22 and 26, for example due to a lack of surface accuracy.
  • the guidance of the second compressor body 18 during movement along the path in the radial direction takes place through the spiral ribs 22 and 26 abutting along the line of contact 28, so that the orbital movement of the second compressor body 18 is not a theoretically circular orbital path 36 generated about the central axis 34, but deviates from this ideal geometric circular path due to manufacturing inaccuracies or operational thermal expansion or wear.
  • the second compressor body 18 compensates all of this automatically due to the centrifugal force Z acting thereon, since the driver receptacle 54 is able to carry out radial movements to the central axis 34 in the regions 76 and 78 due to the width W of the intermediate space 74.
  • the width W is designed such that it is at least as large as the deviations of the orbital orbit 36 from an ideal geometric circular path around the central axis 34.
  • the width W was dimensioned such that it is of the order of magnitude of the deviations of the orbital orbit 36 from an ideal circular orbit.
  • the width W is preferably in a range from approximately 1.5% e to approximately 15% ⁇ of the diameter of the circle defining the cylinder inner surface 60, preferably in the range from approximately 3% a to approximately 10% &. Based on a bearing play that would be required if the cylinder surface 64 of the driver 52 with the cylinder inner surface 60 of the driver receptacle 54 is a conventional rotating slide bearing would form, this means that the width W is at least 1.5 times a maximum usual bearing clearance and is less than six times a usual maximum bearing clearance.
  • the lubrication between the driving surface 70 and the driving surface 60 takes place through an oil channel 92, which starts from an oil pump 91 and passes through the drive shaft 44 and the driving 52, which ends on an end 94 of the driving 52 facing away from the drive shaft 44 and thus ends with an orifice opening 96 introduces oil into a space 98 between the end face 94 and the base plate 56 of the second compressor body 18, which then enters the space 74 from this space 98, the space 74 preferably being dimensioned such that the oil is drawn into it by capillary action, a hydrodynamic lubricating film can be produced in the sub-area 72 in a simple manner on account of the sub-area 72 rotating on the driving surface 60.
  • the second compressor body 18 can still be moved axially in the direction of the central axis 34 towards the first compressor body and is acted upon by a piston 99 mounted in the housing 10, the pressure chambers 99a, b of which are connected to the medium to be compressed via channels and thus by are charged to this.
  • the oil channel 92 is provided with a transverse channel 100 which extends radially to the cylinder axis 66 and which ends with an opening 102 which opens in the cylinder surface 64 lies, however, is offset from the driver surface 70 seen in the direction of rotation 82 to the front, so that oil is supplied to the area 76 of the space 74, which runs in advance of the force-actuated section 72 when the second compressor body 18 moves on the orbital track 36 in front of the force-affected section 72 , which then moves in the direction of the section 72 and leads in the area of the section 72 between the driving surface 60 and the driving surface 70 to a hydrodynamic oil film which lies between the driving surface 70 and the force-carrying section 72 of the driving surface 60.
  • the second exemplary embodiment is designed in the same way as the first exemplary embodiment, so that the same parts are provided with the same reference numerals and in this respect reference can be made in full to the statements relating to the first exemplary embodiment.
  • the driver unit 50 is designed such that the driver 52 with the driver surface 70 acts on an intermediate ring 110 which carries the driver surface 60, the portion 72 of which is acted upon by the driver surface 70.
  • the intermediate ring 110 has also has an outer cylindrical surface 112, which is arranged coaxially to the driving surface 60 and forms a driving surface 120, which then in turn acts on a driving surface 130 designed as a cylindrical surface to the cylinder axis 62, the further driving surface 120 only in the area of a further subsection 122 acts on further driving surface 130, which represents an inner surface of the driving receptacle 54.
  • a further space 124 is provided, and both spaces 74 and 124 contribute to the radial degree of freedom of the driver receptacle 54 relative to the driver 52.
  • This solution has the advantage that the widths W x and W 2 of the spaces 74 and 124, which contribute to the radial degree of freedom in the direction of the connecting line 86, add up, so that the spaces 74 and 124 each individually have a smaller width W : and W 2 may have, but overall the mobility of the second compressor body 18 with the second spiral rib 26 required for the radial degree of freedom results from the sum of the two widths W x and W 2 , so that, despite the smaller widths of the individual spaces 74 and 124, a sufficiently large overall radial mobility is achievable.
  • the small widths x and W 2 of the spaces 74 and 124 also allow good lubrication and even better damping against vibratory movements of the second compressor body relative to the driver 52, since there is the possibility of maintaining an oil supply in the spaces 74 and 124, which is for Carrying out a movement in the radial direction is displaceable, but the damping has a damping effect on higher-frequency vibratory movements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
EP00920440A 1999-03-10 2000-02-23 Ensemble compresseur en spirale Expired - Lifetime EP1078165B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19910460A DE19910460A1 (de) 1999-03-10 1999-03-10 Kompressor
DE19910460 1999-03-10
PCT/EP2000/001451 WO2000053934A1 (fr) 1999-03-10 2000-02-23 Ensemble compresseur en spirale

Publications (2)

Publication Number Publication Date
EP1078165A1 true EP1078165A1 (fr) 2001-02-28
EP1078165B1 EP1078165B1 (fr) 2006-05-17

Family

ID=7900328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00920440A Expired - Lifetime EP1078165B1 (fr) 1999-03-10 2000-02-23 Ensemble compresseur en spirale

Country Status (8)

Country Link
US (1) US6398530B1 (fr)
EP (1) EP1078165B1 (fr)
AT (1) ATE326634T1 (fr)
DE (2) DE19910460A1 (fr)
DK (1) DK1078165T3 (fr)
ES (1) ES2263467T3 (fr)
PT (1) PT1078165E (fr)
WO (1) WO2000053934A1 (fr)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10065821A1 (de) 2000-12-22 2002-07-11 Bitzer Kuehlmaschinenbau Gmbh Kompressor
JP4864689B2 (ja) * 2006-04-17 2012-02-01 株式会社デンソー 流体機械およびランキンサイクル
US20090185927A1 (en) * 2008-01-17 2009-07-23 Bitzer Scroll Inc. Key Coupling and Scroll Compressor Incorporating Same
US7963753B2 (en) 2008-01-17 2011-06-21 Bitzer Kuhlmaschinenbau Gmbh Scroll compressor bodies with scroll tip seals and extended thrust region
US7918658B2 (en) * 2008-01-17 2011-04-05 Bitzer Scroll Inc. Non symmetrical key coupling contact and scroll compressor having same
US7878780B2 (en) 2008-01-17 2011-02-01 Bitzer Kuhlmaschinenbau Gmbh Scroll compressor suction flow path and bearing arrangement features
US7878775B2 (en) * 2008-01-17 2011-02-01 Bitzer Kuhlmaschinenbau Gmbh Scroll compressor with housing shell location
US7967581B2 (en) 2008-01-17 2011-06-28 Bitzer Kuhlmaschinenbau Gmbh Shaft mounted counterweight, method and scroll compressor incorporating same
US8142175B2 (en) * 2008-01-17 2012-03-27 Bitzer Scroll Inc. Mounting base and scroll compressor incorporating same
US7997877B2 (en) 2008-01-17 2011-08-16 Bitzer Kuhlmaschinenbau Gmbh Scroll compressor having standardized power strip
US7993117B2 (en) 2008-01-17 2011-08-09 Bitzer Scroll Inc. Scroll compressor and baffle for same
US8152500B2 (en) 2008-01-17 2012-04-10 Bitzer Scroll Inc. Scroll compressor build assembly
US9568002B2 (en) 2008-01-17 2017-02-14 Bitzer Kuehlmaschinenbau Gmbh Key coupling and scroll compressor incorporating same
US8133043B2 (en) * 2008-10-14 2012-03-13 Bitzer Scroll, Inc. Suction duct and scroll compressor incorporating same
US8167595B2 (en) * 2008-10-14 2012-05-01 Bitzer Scroll Inc. Inlet screen and scroll compressor incorporating same
DK2620228T3 (en) 2008-11-14 2017-08-21 Kaercher Gmbh & Co Kg Alfred Pressure Washer
CN102326000B (zh) * 2009-01-23 2014-03-12 比策尔制冷机械制造有限公司 具有不同容积指数的涡旋压缩机及其系统和方法
AU2009339812B2 (en) 2009-02-13 2014-01-23 Alfred Karcher Gmbh & Co. Kg Motor pump unit
DE102009010461A1 (de) 2009-02-13 2010-08-19 Alfred Kärcher Gmbh & Co. Kg Motorpumpeneinheit
PL2396550T3 (pl) 2009-02-13 2014-09-30 Kaercher Gmbh & Co Kg Alfred Zespół motopompy
US8167597B2 (en) * 2009-03-23 2012-05-01 Bitzer Scroll Inc. Shaft bearings, compressor with same, and methods
US8328543B2 (en) * 2009-04-03 2012-12-11 Bitzer Kuehlmaschinenbau Gmbh Contoured check valve disc and scroll compressor incorporating same
US8297958B2 (en) 2009-09-11 2012-10-30 Bitzer Scroll, Inc. Optimized discharge port for scroll compressor with tip seals
US9458850B2 (en) 2012-03-23 2016-10-04 Bitzer Kuehlmaschinenbau Gmbh Press-fit bearing housing with non-cylindrical diameter
US9909586B2 (en) 2012-03-23 2018-03-06 Bitzer Kuehlmaschinenbau Gmbh Crankshaft with aligned drive and counterweight locating features
US10233927B2 (en) 2012-03-23 2019-03-19 Bitzer Kuehlmaschinenbau Gmbh Scroll compressor counterweight with axially distributed mass
US9039384B2 (en) 2012-03-23 2015-05-26 Bitzer Kuehlmaschinenbau Gmbh Suction duct with adjustable diametric fit
US9051835B2 (en) 2012-03-23 2015-06-09 Bitzer Kuehlmaschinenbau Gmbh Offset electrical terminal box with angled studs
US9181949B2 (en) 2012-03-23 2015-11-10 Bitzer Kuehlmaschinenbau Gmbh Compressor with oil return passage formed between motor and shell
US8876496B2 (en) 2012-03-23 2014-11-04 Bitzer Kuehlmaschinenbau Gmbh Offset electrical terminal box with angled studs
US9022758B2 (en) 2012-03-23 2015-05-05 Bitzer Kuehlmaschinenbau Gmbh Floating scroll seal with retaining ring
US9011105B2 (en) 2012-03-23 2015-04-21 Bitzer Kuehlmaschinenbau Gmbh Press-fit bearing housing with large gas passages
US9441631B2 (en) 2012-03-23 2016-09-13 Bitzer Kuehlmaschinenbau Gmbh Suction duct with heat-staked screen
US9920762B2 (en) 2012-03-23 2018-03-20 Bitzer Kuehlmaschinenbau Gmbh Scroll compressor with tilting slider block
US9181940B2 (en) 2012-03-23 2015-11-10 Bitzer Kuehlmaschinenbau Gmbh Compressor baseplate with stiffening ribs for increased oil volume and rail mounting without spacers
US9057269B2 (en) 2012-03-23 2015-06-16 Bitzer Kuehlmaschinenbau Gmbh Piloted scroll compressor
US9080446B2 (en) 2012-03-23 2015-07-14 Bitzer Kuehlmaschinenbau Gmbh Scroll compressor with captured thrust washer
US8920139B2 (en) 2012-03-23 2014-12-30 Bitzer Kuehlmaschinenbau Gmbh Suction duct with stabilizing ribs
US9188124B2 (en) 2012-04-30 2015-11-17 Emerson Climate Technologies, Inc. Scroll compressor with unloader assembly
WO2014116582A1 (fr) 2013-01-22 2014-07-31 Emerson Climate Technologies, Inc. Ensemble palier de compresseur
US9856874B2 (en) 2014-09-26 2018-01-02 Bitzer Kuehlmaschinenbau Gmbh Holding plate for piloted scroll compressor
US10626870B2 (en) 2015-06-11 2020-04-21 Bitzer Kuehlmaschinenbau Gmbh Ring weld blocker in discharge check valve
US9777731B2 (en) 2015-06-16 2017-10-03 Bitzer Kuehlmaschinenbau Gmbh Duct-mounted suction gas filter
US9951772B2 (en) 2015-06-18 2018-04-24 Bitzer Kuehlmaschinenbau Gmbh Scroll compressor with unmachined separator plate and method of making same
US9890784B2 (en) 2015-06-30 2018-02-13 Bitzer Kuehlmaschinenbau Gmbh Cast-in offset fixed scroll intake opening
US11078913B2 (en) 2015-06-30 2021-08-03 Bitzer Kuehlmaschinenbau Gmbh Two-piece suction fitting
US10215175B2 (en) 2015-08-04 2019-02-26 Emerson Climate Technologies, Inc. Compressor high-side axial seal and seal assembly retainer
US10132317B2 (en) 2015-12-15 2018-11-20 Bitzer Kuehlmaschinenbau Gmbh Oil return with non-circular tube
US10697454B2 (en) 2016-03-08 2020-06-30 Bitzer Kuehlmaschinenbau Gmbh Method of making a two-piece counterweight for a scroll compressor
US11015598B2 (en) 2018-04-11 2021-05-25 Emerson Climate Technologies, Inc. Compressor having bushing
US11002276B2 (en) 2018-05-11 2021-05-11 Emerson Climate Technologies, Inc. Compressor having bushing
KR102547591B1 (ko) * 2019-03-21 2023-06-27 한온시스템 주식회사 스크롤 압축기

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2132276B (en) 1982-12-23 1986-10-01 Copeland Corp Scroll-type rotary fluid-machine
JPS59162383A (ja) 1983-03-07 1984-09-13 Mitsubishi Electric Corp スクロ−ル流体機械
JPS59173587A (ja) * 1983-03-22 1984-10-01 Mitsubishi Electric Corp スクロ−ル形流体機械
US4585403A (en) 1984-03-06 1986-04-29 Mitsubishi Denki Kabushiki Kaisha Scroll device with eccentricity adjusting bearing
US4715796A (en) * 1985-05-16 1987-12-29 Mitsubishi Denki Kabushiki Kaisha Scroll-type fluid transferring machine with loose drive fit in crank shaft recess
JP2718666B2 (ja) * 1986-07-21 1998-02-25 株式会社日立製作所 スクロール流体機械の給油装置
US4877382A (en) 1986-08-22 1989-10-31 Copeland Corporation Scroll-type machine with axially compliant mounting
US5011384A (en) 1989-12-01 1991-04-30 Carrier Corporation Slider block radial compliance mechanism for a scroll compressor
JP2863261B2 (ja) 1990-05-18 1999-03-03 サンデン株式会社 スクロール型圧縮機
JP3111707B2 (ja) * 1992-02-28 2000-11-27 株式会社豊田自動織機製作所 スクロール型圧縮機
JP3165153B2 (ja) 1992-11-02 2001-05-14 コープランド コーポレイション ブレーキを備えたスクロール式圧縮機駆動装置
JP3314561B2 (ja) * 1994-11-30 2002-08-12 松下電器産業株式会社 スクロール圧縮機
JP3314562B2 (ja) * 1994-11-30 2002-08-12 松下電器産業株式会社 スクロール圧縮機
US5496158A (en) 1994-12-22 1996-03-05 Carrier Corporation Drive for scroll compressor
CN1152674A (zh) 1995-12-18 1997-06-25 柯恩九 容积式涡旋流体压缩装置的楔形曲柄轴
US5772415A (en) 1996-11-01 1998-06-30 Copeland Corporation Scroll machine with reverse rotation sound attenuation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0053934A1 *

Also Published As

Publication number Publication date
ATE326634T1 (de) 2006-06-15
US6398530B1 (en) 2002-06-04
EP1078165B1 (fr) 2006-05-17
DE50012753D1 (de) 2006-06-22
WO2000053934A1 (fr) 2000-09-14
DE19910460A1 (de) 2000-09-21
DK1078165T3 (da) 2006-09-18
PT1078165E (pt) 2006-08-31
ES2263467T3 (es) 2006-12-16

Similar Documents

Publication Publication Date Title
EP1078165B1 (fr) Ensemble compresseur en spirale
DE2939945C2 (fr)
DE3013785C2 (de) Rotationskolbenmaschine
DE3014520A1 (de) Drehkolbenmaschine
DE3015628A1 (de) Drucklager/kopplungseinrichtung und damit ausgeruestete schneckenmaschine
EP3194782B1 (fr) Compresseur à spirales
DE69500906T2 (de) Spiralmaschine
DE1528983B2 (de) Steuerdrehschiebereinrichtung fuer eine rotationskolbenmaschine
DE3519244A1 (de) Hydraulische maschine der spiralart
DE60011319T2 (de) Gerotormotor
DE2911435B2 (de) Hydrostatisches Lager für eine Radialkolbenmaschine
DE3406543A1 (de) Verdraengermaschine, insbes. zykloiden-planetengetriebe mit integriertem, hydraulischem motor
DE10028336C1 (de) Axialkolbenmaschine
EP0761968A1 (fr) Soupape pour moteur à engrenage à denture intérieure avec palier hydrostatique
EP0302190B1 (fr) Machine à engrenages à denture intérieure
CH638590A5 (de) Hydrostatische kolbenmaschine.
EP3420193B1 (fr) Compresseur
DE10041318A1 (de) Hydraulische Radialkolbenmaschine
DE3744637A1 (de) Drehkolbenverdichter
EP0878626A1 (fr) Compresseur à spirales
WO1997044585A1 (fr) Compresseur helicoidal
EP1364126A1 (fr) Pompe a engrenages interieurs sans pieces intercalaires
DE1528983C3 (de) Steuerdrehschiebereinrichtung für eine Rotationskolbenmaschine
DE2907979A1 (de) Hydraulische pumpe
DE2623765A1 (de) Axialkolbenmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040427

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060517

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50012753

Country of ref document: DE

Date of ref document: 20060622

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Effective date: 20060614

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20060402573

Country of ref document: GR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060906

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2263467

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080226

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20080204

Year of fee payment: 9

Ref country code: GR

Payment date: 20071121

Year of fee payment: 9

Ref country code: LU

Payment date: 20080225

Year of fee payment: 9

Ref country code: NL

Payment date: 20080229

Year of fee payment: 9

Ref country code: PT

Payment date: 20071119

Year of fee payment: 9

Ref country code: SE

Payment date: 20080213

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20071214

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080205

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20090212

Year of fee payment: 10

Ref country code: DK

Payment date: 20090213

Year of fee payment: 10

BERE Be: lapsed

Owner name: *BITZER KUHLMASCHINENBAU G.M.B.H.

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060517

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20090824

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090223

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090824

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090223

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090902

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50012753

Country of ref document: DE

Representative=s name: HOEGER, STELLRECHT & PARTNER PATENTANWAELTE MB, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190221

Year of fee payment: 20

Ref country code: GB

Payment date: 20190227

Year of fee payment: 20

Ref country code: ES

Payment date: 20190326

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190226

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50012753

Country of ref document: DE

Representative=s name: HOEGER, STELLRECHT & PARTNER PATENTANWAELTE MB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190426

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50012753

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200224