EP1076772B1 - Fuel injection nozzle for an internal combustion engine - Google Patents

Fuel injection nozzle for an internal combustion engine Download PDF

Info

Publication number
EP1076772B1
EP1076772B1 EP99924908A EP99924908A EP1076772B1 EP 1076772 B1 EP1076772 B1 EP 1076772B1 EP 99924908 A EP99924908 A EP 99924908A EP 99924908 A EP99924908 A EP 99924908A EP 1076772 B1 EP1076772 B1 EP 1076772B1
Authority
EP
European Patent Office
Prior art keywords
needle
fuel injection
injection nozzle
needle tip
nozzle according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99924908A
Other languages
German (de)
French (fr)
Other versions
EP1076772A1 (en
Inventor
Bernd Danckert
Bernhard Schütz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP1076772A1 publication Critical patent/EP1076772A1/en
Application granted granted Critical
Publication of EP1076772B1 publication Critical patent/EP1076772B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the invention relates to a fuel injection nozzle for an internal combustion engine, in particular a common rail injection system, in which the injection nozzle is permanently acted upon by fuel held at high pressure in a preliminary store, the fuel injection nozzle having a nozzle needle coupled to an actuating element which serves to control a nozzle opening process Contains the needle tip and a valve seat interacting with the needle tip of the nozzle needle, the valve seat having a conical sealing surface with an opening angle ⁇ 1 and the needle tip having a conical sealing surface with an opening angle ⁇ 2 in the closed state of the injection valve, and the needle tip and needle housing having an annular flow channel limit.
  • DE 36 05 082 A1 describes a fuel injection nozzle for internal combustion engines known which is provided for a conventional injection system and in which an annular groove in the sealing surface of the needle tip interacting with the valve seat is provided, which serves to form a turbulent boundary layer of the flow. Downstream of the sealing surface there is initially a convex shape at the needle tip Sheath surface section provided, on which a concavely shaped Shell surface section follows. This should prevent the tendency for the flow to separate The area of the valve passage is reduced and the flow or the jet formation be improved.
  • DE 196 34 933 A1 shows a fuel injection valve in which two Areas of a valve sealing surface in the transition that have different cone angles have a groove-shaped extension downstream of the valve seat.
  • the extension serves to increase the metering accuracy of the injection quantity by a defined position the sealing edge is generated.
  • DE 195 47 423 A1 also uses a groove Extensions below the valve seat in the nozzle body or nozzle needle by one create defined contact line.
  • the circumferential one representing an extension radial recess is very flat and is specified with 0.01 to 0.06 mm. It's like that assume that this expansion increases the cavitation and the nozzle needle and the nozzle body is affected by erosion in the adjacent walls, which ultimately leads to the destruction of the injection valve.
  • the flow cross section between the valve seat and the injection holes by suitable shaping of Nozzle needle tip and nozzle housing gradually changed to separate the flow and avoid instabilities.
  • the flow cross section is based on the valve seat gradually increased and gradually reduced again after a flow deflection.
  • the object of the invention is to provide a fuel injector which a low susceptibility to cavitation damage in the area of the valve seat on the nozzle needle and has needle housing.
  • the invention provides a fuel injection nozzle for an internal combustion engine, in particular a common rail injection system, in which the injection nozzle is permanently acted upon by fuel held at high pressure in a preliminary store.
  • the fuel injection nozzle contains a nozzle needle with a needle tip, which nozzle is coupled to an actuating element for controlling a nozzle opening process, and a valve seat which interacts with the needle tip of the nozzle needle, the valve seat having a conical sealing surface with an opening angle ⁇ 1 and the needle tip resting against the latter in the closed state of the injection valve have a conical sealing surface with an opening angle ⁇ 2 and the needle tip and needle housing delimit an annular flow channel.
  • the opening angle ⁇ 2 of the sealing surface of the needle tip is smaller than the opening angle ⁇ 1 of the sealing surface of the valve seat, and that an expansion of the annular flow channel between the needle tip and the needle housing is formed in the flow direction of the fuel following the sealing surfaces, such that Both on the needle tip and on the needle housing, extensions in the form of recesses form a cavitation space in which the implosion of cavitation bubbles occurs away from the wall.
  • the size and shape of the cavitation space are deliberately kept so that the cavitation bubbles are guided and disintegrate at a distance from the walls of the annular flow channel formed by the nozzle needle and needle housing, and as a result there is no erosion of the walls.
  • a particularly advantageous embodiment of this provides that the concave Course of the surface of the needle tip and / or needle housing through a radius is formed.
  • the concave course of the Surface on the upstream side with an edge in the sealing surface of Needle tip and / or valve seat merges.
  • the concave course of the surface on the downstream side with an edge in the surface of the needle tip and / or Needle housing merges.
  • Fuel injection nozzle is provided that in each case on the surface of the needle tip and needle housing an expansion of the flow channel with a concave course is provided, and that the center of the expansion of the needle housing at closed valve towards the center of the extension of the needle tip is offset upstream.
  • the extensions on The needle housing and the needle tip are formed by the same radii.
  • the opening angle ⁇ 1 of the valve seat is advantageously between 50 ° and 60 °, preferably between 55 ° and 65 °.
  • the opening angle is Valve seat around 60 °.
  • the opening angle ⁇ 2 of the sealing surface of the needle tip is advantageously between 0.5 ° and 3 °, preferably between 1 ° and 2 °, smaller than the opening angle ⁇ 1 of the valve seat.
  • a transition surface is formed on the needle tip upstream of the sealing surface, which has an angle ⁇ 3 between that of the needle body and that of the sealing surface of the nozzle needle. This transition surface improves the flow behavior at the transition from the needle body to the sealing surface.
  • This transition surface is advantageously formed by a conical surface.
  • the transition surface is designed so that it the angle between the Sealing surface of the nozzle needle and the needle body approximately halved.
  • the needle tip has a tapered end section. This has the advantage that the nozzle needle with its end portion far in at the downstream End of the needle housing trained blind hole extends, which the Blind hole volume is reduced.
  • the tapered end section is preferably formed by a cone.
  • the cone forming the tapering end section has an opening angle ⁇ 4 that is smaller than the opening angle ⁇ 2 of the sealing surface of the needle tip.
  • the opening angle ⁇ 4 of the end section is advantageously between 40 ° and 65 °, preferably between 50 ° and 55 °.
  • the needle tip upstream of the sealing surface against the diameter of the needle body has widened bead-shaped section.
  • This bead-shaped section can be formed by successive conical and / or cylindrical ring surfaces can be formed.
  • the bead-shaped portion may be lenticular or spherical Be formed.
  • the diameter of the bead-shaped section is advantageously 1.05 times up to 1.2 times, preferably 1.1 times to 1.15 times the diameter of the Needle body of the nozzle needle.
  • the longitudinal extent of the bead-shaped section in the direction of the needle axis is advantageously 0.2 times to 0.6 times, preferably 0.25 times to 0.35 times the diameter of the needle body of the nozzle needle.
  • Figure 1 is the sectional side view of an injection nozzle of a common rail injection system shown in the area of the needle tip of the nozzle needle.
  • Needle housing 14 is a nozzle needle, the needle body of which is identified by reference number 11 is provided, slidably mounted in the axial direction.
  • Located on the needle tip 12 a conical sealing surface 13, which with the sealing surface 16 one on the needle housing 14 provided valve seat 15 in the sense of opening and closing the injector interacts when the nozzle needle 11 moves.
  • the nozzle needle 11 On the needle tip 12 opposite end is the nozzle needle 11 with one for controlling a Coupled actuator serving actuator, which is not in the figure is shown.
  • a blind hole 110 is formed in the needle housing 14, from which injection openings 120 emanate, which serve to inject the fuel into the combustion chamber of the internal combustion engine.
  • the needle tip 12 of the nozzle needle 11 is provided with an end section 121 in the form of a tapered cone which extends deep into the blind hole 110. Between the sealing surface 13 and the conical end section 121, an enlargement of the annular flow channel 17 formed between the needle tip 12 and the needle housing 14 in the form of a course 19 with a concave cross section is produced on the surface of the needle tip 12.
  • a transition surface 111 is formed between the sealing surface 13 and the needle body 11, which has an angle ⁇ 3 and essentially halves the angle between the cylindrical outer surface of the needle body 11 and the sealing surface 13.
  • the sealing surface 16 of the valve seat 15 has an opening angle ⁇ 1 , which is 60 ° in the illustrated embodiment, while the sealing surface 13 of the needle tip 12 has an opening angle ⁇ 2 , which is smaller than the opening angle ⁇ 1 of the sealing surface 16 of the valve seat 15 and is 58.5 ° in the illustrated embodiment.
  • the narrowest point of the needle sealing seat is thus between the sealing surface 13 of the nozzle needle tip 12 and the sealing surface 16 of the valve seat 15 in the front region of the needle tip 12, which means an inverse seat angle difference compared to conventional sealing seat geometries.
  • the annular flow channel 17 formed between the needle tip 12 and the needle housing 14 widens through the concave courses 18, 19, whereby a "cavitation trap” or cavitation space is formed for the cavitation bubbles, which due to the inverse seat angle difference in a defined manner at the narrowest point of the Needle sealing seat are formed immediately upstream of the concave courses 18, 19.
  • a conventional needle tip geometry such is shown in dashed lines in FIG.
  • the recess on the nozzle needle and needle housing represents a sudden expansion in which cavitation bubbles form.
  • the recess is designed or dimensioned such that the subsequent implosion of the cavitation bubbles does not take place in the immediate vicinity of the walls, but rather in the middle of the flow or at least at a distance from the nozzle needle.
  • the gap width formed by the expansion is more than 0.05 mm at the widest point. Gap widths of 0.5 mm or more are more favorable.
  • In the downstream connection to the cavitation space follows a flow channel, the cross section of which is preferably designed such that the flow speed remains approximately constant.
  • the conical wall of the needle housing in connection with the cavitation space is preferably inclined somewhat more steeply than in the upstream region, which causes the flow to be deflected in the direction of the spray holes.
  • the needle tip 12 of the nozzle needle 11 from FIG. 1 is enlarged again in FIG shown.
  • the concave course 18 formed by a radius, which in the shown Embodiment is 0.5 mm. This radius creates a flute-shaped, annular recess formed by a first edge 191 on the sealing surface 13 to a second edge 192 on the front end portion 121 of the needle tip 12 runs.
  • the concave course 18 on the inside of the needle housing 14 is also formed by a radius extending from an upstream edge 181 to one downstream 182 runs, see Figure 1.
  • a nozzle needle as shown in FIG can be combined with a needle housing of the type shown in FIG Needle tip 32 upstream of a sealing surface 33 compared to the diameter of the Needle body 31 formed widened bead-shaped section 320.
  • This bead-shaped section 320 is formed by successive annular surfaces 321, 322, 323 formed, of which the annular surfaces 321 and 323 are designed as conical surfaces, while the annular surface 322 is formed in the form of a cylindrical annular surface, compare Detail Y.
  • the diameter of the bulge portion 320 is at its widest point, i.e. on the ring surface 322 around 1.15 times the diameter of the Needle body 31 of the nozzle needle.
  • the longitudinal extent of the bead portion 320 in the direction of the needle axis is approximately 0.25 times the diameter of the Needle body 31.
  • the bead-shaped Section 320 can also be formed by a lenticular or spherical surface 324, as shown in dashed lines in detail Y.
  • a conical shape 39 which is formed by a radius, such as shown in detail X.
  • the conical extension 39 goes on the one hand with an edge 391 in the sealing surface 33 and on the other side with an edge 392 in the end section 321 of the Nozzle tip 32 over.
  • the sealing surface 33 of the needle tip 32 has an opening angle ⁇ 2 of 59.8 °, compared to an opening angle ⁇ 1 of 60 ° of the sealing surface of the valve seat of the needle housing combined therewith.
  • the opening angle ⁇ 4 of the end section 321 is 55 °.
  • the conical ring surface 323 of the bead-shaped section 320 is formed with an opening angle of 45 ° as a transition surface between the sealing surface 33 and the cylindrical ring surface 322 of the bead-shaped section 320.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Die Erfindung betrifft eine Kraftstoffeinspritzdüse für eine Brennkraftmaschine, insbesondere eines Common-Rail-Einspritzsystems, bei dem die Einspritzdüse permanent von in einem Vorspeicher unter hohem Druck vorgehaltenem Kraftstoff beaufschlagt wird, wobei die Kraftstoffeinspritzdüse eine mit einem zur Steuerung eines Düsenöffnungsvorgangs dienenden Betätigungselement gekoppelte Düsennadel mit einer Nadelspitze und einen mit der Nadelspitze der Düsennadel zusammenwirkenden Ventilsitz enthält, wobei der Ventilsitz eine konische Dichtfläche mit einem Öffnungswinkel α1 und die Nadelspitze eine im geschlossenen Zustand des Einspritzventils an dieser anliegende konische Dichtfläche mit einem Öffnungswinkel α2 aufweisen und Nadelspitze und Nadelgehäuse einen ringförmigen Strömungskanal begrenzen.The invention relates to a fuel injection nozzle for an internal combustion engine, in particular a common rail injection system, in which the injection nozzle is permanently acted upon by fuel held at high pressure in a preliminary store, the fuel injection nozzle having a nozzle needle coupled to an actuating element which serves to control a nozzle opening process Contains the needle tip and a valve seat interacting with the needle tip of the nozzle needle, the valve seat having a conical sealing surface with an opening angle α 1 and the needle tip having a conical sealing surface with an opening angle α 2 in the closed state of the injection valve, and the needle tip and needle housing having an annular flow channel limit.

Bei Kraftstoffeinspritzdüsen dieser Art besteht eine Schwierigkeit darin, daß oft schon nach kurzer Laufzeit starke Schädigungen durch Kavitation unterhalb des Ventilsitzes an Düsennadelspitze und Nadelgehäuse festzustellen sind, welche zu Undichtigkeiten im Ventilsitz und zum Ausfall der Düse führen können. Derartige Kavitationsschäden kommen insbesondere bei Common-Rail-Einspritzsystemen zum Tragen, da aufgrund des permanenten Anliegens des hohen Drucks des in dem Vorspeicher vorgehaltenen Kraftstoffs deutlich längere Kavitationsphasen während des Öffnens und Schließens der Einspritzdüse auftreten, verglichen mit Einspritzdüsen herkömmlicher Kraftstoffeinspritzsysteme.One problem with fuel injectors of this type is that often severe damage due to cavitation below the valve seat after a short running time Nozzle needle tip and needle housing are to be determined, which lead to leaks in the Valve seat and lead to failure of the nozzle. Such cavitation damage come into play particularly in common rail injection systems, because due to the permanent application of the high pressure of that stored in the preliminary storage Fuel significantly longer cavitation phases during the opening and closing of the Injector occur compared to more conventional injectors Fuel injection systems.

Aus der DE 36 05 082 A1 ist eine Kraftstoffeinspritzdüse für Brennkraftmaschinen bekannt, welche für ein herkömmliches Einspritzsystem vorgesehen ist und bei welcher in der mit dem Ventilsitz zusammenwirkenden Dichtfläche der Nadelspitze eine Ringnut vorgesehen ist, welche der Bildung einer turbulenten Grenzschicht der Strömung dient. Stromabwärts der Dichtfläche ist an der Nadelspitze zunächst ein konvex geformter Mantelflächenabschnitt vorgesehen, auf welchen ein konkav geformter Mantelflächenabschnitt folgt. Hierdurch soll die Neigung zu Ablösungen der Strömung im Bereich des Ventildurchgangs verringert und die Strömung bzw. die Strahlausbildung verbessert werden.DE 36 05 082 A1 describes a fuel injection nozzle for internal combustion engines known which is provided for a conventional injection system and in which an annular groove in the sealing surface of the needle tip interacting with the valve seat is provided, which serves to form a turbulent boundary layer of the flow. Downstream of the sealing surface there is initially a convex shape at the needle tip Sheath surface section provided, on which a concavely shaped Shell surface section follows. This should prevent the tendency for the flow to separate The area of the valve passage is reduced and the flow or the jet formation be improved.

In der DE 196 34 933 A1 ist ein Kraftstoffeinspritzventil aufgezeigt, bei dem zwei unterschiedliche Kegelwinkel aufweisende Bereiche einer Ventildichtfläche im Übergang stromabwärts des Ventilsitzes eine nutförmige Erweiterung aufweisen. Die Erweiterung dient der Erhöhung der Zumeßgenauigkeit der Einspritzmenge, indem eine definierte Lage der Dichtkante erzeugt wird. Auch die DE 195 47 423 A1 bedient sich nutförmiger Erweiterungen unterhalb des Ventilsitzes in Düsenkörper oder Düsennadel, um eine definierte Berührungslinie herzustellen. Die eine Erweiterung darstellende umlaufende radiale Ausnehmung ist sehr flach und wird mit 0,01 bis 0,06 mm angegeben. Es ist davon auszugehen, daß diese Erweiterung die Kavitation noch verstärkt und die Düsennadel und den Düsenkörper durch Erosion in den angrenzenden Wandungen in Mitleidenschaft zieht, was letztendlich zur Zerstörung des Einspritzventils führt.DE 196 34 933 A1 shows a fuel injection valve in which two Areas of a valve sealing surface in the transition that have different cone angles have a groove-shaped extension downstream of the valve seat. The extension serves to increase the metering accuracy of the injection quantity by a defined position the sealing edge is generated. DE 195 47 423 A1 also uses a groove Extensions below the valve seat in the nozzle body or nozzle needle by one create defined contact line. The circumferential one representing an extension radial recess is very flat and is specified with 0.01 to 0.06 mm. It's like that assume that this expansion increases the cavitation and the nozzle needle and the nozzle body is affected by erosion in the adjacent walls, which ultimately leads to the destruction of the injection valve.

Aus der DE 38 10 467 A1 geht eine Kraftstoffeinspritzdüse als bekannt hervor, bei der das einspritzseitige Ende der Düsennadel mit einer rotationssymmetrischen Einschnürung versehen ist. Durch diese Ausbildung wird eine Strömungsumlenkung des Kraftstoffs in Richtung des Spritzlochs bewirkt. Es wird ein rascher Druckabfall vermieden, so dass das Auftreten von Kavitation im Düsenbereich reduziert wird.From DE 38 10 467 A1 a fuel injection nozzle emerges as known, in which the injection-side end of the nozzle needle with a rotationally symmetrical constriction is provided. Through this design, a flow deflection of the fuel in Direction of the spray hole. A rapid drop in pressure is avoided, so that Occurrence of cavitation in the nozzle area is reduced.

Bei der in der GB 2 029 508 A dargestellten Einspritzdüse wird der Strömungsquerschnitt zwischen Ventilsitz und den Einspritzlöchern durch geeignete Formgebung von Düsennadelspitze und Düsengehäuse allmählich geändert, um eine Ablösung der Strömung und Instabilitäten zu vermeiden. Der Strömungsquerschnitt wird ausgehend vom Ventilsitz allmählich vergrößert und nach einer Strömungsumlenkung allmählich wieder verkleinert.In the injection nozzle shown in GB 2 029 508 A, the flow cross section between the valve seat and the injection holes by suitable shaping of Nozzle needle tip and nozzle housing gradually changed to separate the flow and avoid instabilities. The flow cross section is based on the valve seat gradually increased and gradually reduced again after a flow deflection.

Die Aufgabe der Erfindung ist es, eine Kraftstoffeinspritzdüse zu schaffen, welche eine geringe Anfälligkeit gegen Kavitationsschäden im Bereich des Ventilsitzes an Düsennadel und Nadelgehäuse aufweist. The object of the invention is to provide a fuel injector which a low susceptibility to cavitation damage in the area of the valve seat on the nozzle needle and has needle housing.

Diese Aufgabe wird durch die im Anspruch 1 angegebene Kraftstoffeinspritzdüse gelöst. Vorteilhafte Weiterbildungen der erfindungsgemäßen Kraftstoffeinspritzdüse sind in den Unteransprüchen gekennzeichnet.This object is achieved by the fuel injector specified in claim 1. Advantageous developments of the fuel injector according to the invention are in the Subclaims marked.

Durch die Erfindung wird eine Kraftstoffeinspritzdüse für eine Brennkraftmaschine, insbesondere eines Common-Rail-Einspritzsystems, bei dem die Einspritzdüse permanent von in einem Vorspeicher unter hohem Druck vorgehaltenem Kraftstoff beaufschlagt wird, geschaffen. Die Kraftstoffeinspritzdüse enthält eine mit einem zur Steuerung eines Düsenöffnungsvorgangs dienenden Betätigungselement gekoppelte Düsennadel mit einer Nadelspitze und einen mit der Nadelspitze der Düsennadel zusammenwirkenden Ventilsitz, wobei der Ventilsitz eine konische Dichtfläche mit einem Öffnungswinkel α1 und die Nadelspitze eine im geschlossenen Zustand des Einspritzventils an dieser anliegende konische Dichtfläche mit einem Öffnungswinkel α2 aufweisen und Nadelspitze und Nadelgehäuse einen ringförmigen Strömungskanal begrenzen. Es ist vorgesehen, daß der Öffnungswinkel α2 der Dichtfläche der Nadelspitze kleiner als der Öffnungswinkel α1 der Dichtfläche des Ventilsitzes ist, und daß in Strömungsrichtung des Kraftstoffs auf die Dichtflächen folgend eine Erweiterung des ringförmigen Strömungskanals zwischen Nadelspitze und Nadelgehäuse ausgebildet ist, derart, daß sowohl an Nadelspitze als auch am Nadelgehäuse Erweiterungen in Form von Rücksprüngen einen Kavitationsraum bilden, in dem die Implosion von Kavitationsblasen wandfern erfolgt. D. h., daß Größe und Form des Kavitationsraums gezielt so gehalten sind, daß die Kavitationsblasen im Abstand zu den Wandungen des von Düsennadel und Nadelgehäuse gebildeten ringförmigen Strömungskanals geführt werden und zerfallen und dadurch keine Erosion der Wandungen erfolgt.The invention provides a fuel injection nozzle for an internal combustion engine, in particular a common rail injection system, in which the injection nozzle is permanently acted upon by fuel held at high pressure in a preliminary store. The fuel injection nozzle contains a nozzle needle with a needle tip, which nozzle is coupled to an actuating element for controlling a nozzle opening process, and a valve seat which interacts with the needle tip of the nozzle needle, the valve seat having a conical sealing surface with an opening angle α 1 and the needle tip resting against the latter in the closed state of the injection valve have a conical sealing surface with an opening angle α 2 and the needle tip and needle housing delimit an annular flow channel. It is envisaged that the opening angle α 2 of the sealing surface of the needle tip is smaller than the opening angle α 1 of the sealing surface of the valve seat, and that an expansion of the annular flow channel between the needle tip and the needle housing is formed in the flow direction of the fuel following the sealing surfaces, such that Both on the needle tip and on the needle housing, extensions in the form of recesses form a cavitation space in which the implosion of cavitation bubbles occurs away from the wall. In other words, the size and shape of the cavitation space are deliberately kept so that the cavitation bubbles are guided and disintegrate at a distance from the walls of the annular flow channel formed by the nozzle needle and needle housing, and as a result there is no erosion of the walls.

Aufgrund der inversen Sitzwinkeldifferenz befindet sich die engste Stelle des Nadeldichtsitzes am stromabwärtigen Ende, wo sich Kavitation definiert bildet, deren Kavitationsblasen dann in der nachfolgenden Erweiterung keine Möglichkeit haben sich an der Wandung von Nadelspitze bzw. Nadelgehäuse niederzuschlagen und damit keinen Schaden anrichten können. Kavitation an der Düsennadel ist kritischer als am Nadelgehäuse. Erosion an der Düsennadel beeinflußt nämlich die Funktion des Einspritzventils durch Änderung des Öffnungsverhaltens.Due to the inverse seat angle difference, the narrowest point of the Needle sealing seat at the downstream end, where cavitation forms, whose Cavitation bubbles then have no possibility in the subsequent expansion to knock down the wall of the needle tip or needle housing and therefore none Can cause damage. Cavitation at the nozzle needle is more critical than at Needle housing. Erosion at the nozzle needle affects the function of the Injector by changing the opening behavior.

Gemäß einer besonders bevorzugten Ausführungsform ist es vorgesehen, daß die Erweiterung des Strömungskanals zwischen Nadelspitze und Nadelgehäuse unmittelbar auf die Dichtflächen von Nadelspitze und Ventilsitz folgend vorgesehen ist.According to a particularly preferred embodiment, it is provided that the Extension of the flow channel between the needle tip and the needle housing immediately following the sealing surfaces of the needle tip and valve seat.

Vorzugsweise ist die Erweiterung des Strömungskanals zwischen Nadelspitze und Nadelgehäuse durch einen im Querschnitt konkaven Verlauf der Oberflächen von Nadelspitze und Nadelgehäuse gebildet.Preferably, the expansion of the flow channel between the needle tip and Needle housing due to a concave cross section of the surfaces of Needle tip and needle housing formed.

Eine besonders vorteilhafte Ausführungsform hiervon sieht es vor, daß der konkave Verlauf der Oberfläche von Nadelspitze und/oder Nadelgehäuse durch einen Radius gebildet ist. A particularly advantageous embodiment of this provides that the concave Course of the surface of the needle tip and / or needle housing through a radius is formed.

Gemäß einer bevorzugten Ausführungsform ist es vorgesehen, daß der konkave Verlauf der Oberfläche an der stromaufwärtigen Seite mit einer Kante in die Dichtfläche von Nadelspitze und/oder Ventilsitz übergeht.According to a preferred embodiment it is provided that the concave course of the Surface on the upstream side with an edge in the sealing surface of Needle tip and / or valve seat merges.

Weiterhin kann es vorgesehen werden, daß der konkave Verlauf der Oberfläche an der stromabwärtigen Seite mit einer Kante in die Oberfläche von Nadelspitze und/oder Nadelgehäuse übergeht.Furthermore, it can be provided that the concave course of the surface on the downstream side with an edge in the surface of the needle tip and / or Needle housing merges.

Gemäß einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Kraftstoffeinspritzdüse ist es vorgesehen, daß jeweils an der Oberfläche von Nadelspitze und Nadelgehäuse eine Erweiterung des Strömungskanals mit konkavem Verlauf vorgesehen ist, und daß das Zentrum der Erweiterung des Nadelgehäuses bei geschlossenem Ventil gegenüber dem Zentrum der Erweiterung der Nadelspitze nach stromaufwärts versetzt ist.According to a particularly preferred embodiment of the invention Fuel injection nozzle is provided that in each case on the surface of the needle tip and needle housing an expansion of the flow channel with a concave course is provided, and that the center of the expansion of the needle housing at closed valve towards the center of the extension of the needle tip is offset upstream.

Gemäß einer bevorzugten Ausführungsform ist es vorgesehen, daß die Erweiterungen an Nadelgehäuse und Nadelspitze durch gleiche Radien gebildet sind.According to a preferred embodiment it is provided that the extensions on The needle housing and the needle tip are formed by the same radii.

Der Öffnungswinkel α1 des Ventilsitzes beträgt vorteilhafterweise zwischen 50° und 60°, vorzugsweise zwischen 55° und 65°.The opening angle α 1 of the valve seat is advantageously between 50 ° and 60 °, preferably between 55 ° and 65 °.

Gemäß einem besonders bevorzugten Ausführungsbeispiel beträgt der Öffnungswinkel des Ventilsitzes rund 60°.According to a particularly preferred embodiment, the opening angle is Valve seat around 60 °.

Vorteilhafterweise ist der Öffnungswinkel α2 der Dichtfläche der Nadelspitze zwischen 0,5° bis 3°, vorzugsweise zwischen 1° und 2° kleiner als der Öffnungswinkel α1 des Ventilsitzes.The opening angle α 2 of the sealing surface of the needle tip is advantageously between 0.5 ° and 3 °, preferably between 1 ° and 2 °, smaller than the opening angle α 1 of the valve seat.

Besonders vorteilhaft ist es, den Öffnungswinkel α2 der Dichtfläche der Nadelspitze um 1,5° kleiner als den Öffnungswinkel α1 des Ventilsitzes vorzusehen.It is particularly advantageous to make the opening angle α 2 of the sealing surface of the needle tip 1.5 ° smaller than the opening angle α 1 of the valve seat.

Gemäß einer vorteilhaften Weiterbildung der Erfindung ist es vorgesehen, daß an der Nadelspitze stromaufwärts der Dichtfläche eine Übergangsfläche ausgebildet ist, die einen Winkel α3 zwischen dem des Nadelkörpers und dem der Dichtfläche der Düsennadel aufweist. Diese Übergangsfläche verbessert das Strömungsverhalten am Übergang von Nadelkörper zu Dichtfläche.According to an advantageous development of the invention, it is provided that a transition surface is formed on the needle tip upstream of the sealing surface, which has an angle α 3 between that of the needle body and that of the sealing surface of the nozzle needle. This transition surface improves the flow behavior at the transition from the needle body to the sealing surface.

Diese Übergangsfläche ist vorteilhafterweise durch eine konische Fläche gebildet.This transition surface is advantageously formed by a conical surface.

Vorzugsweise ist die Übergangsfläche so ausgebildet, daß sie den Winkel zwischen der Dichtfläche der Düsennadel und dem Nadelkörper ungefähr halbiert.Preferably, the transition surface is designed so that it the angle between the Sealing surface of the nozzle needle and the needle body approximately halved.

Gemäß einer bevorzugten Weiterbildung der erfindungsgemäßen Kraftstoffeinspritzdüse ist es vorgesehen, daß die Nadelspitze einen spitz zulaufenden Endabschnitt aufweist. Dies hat den Vorteil, daß die Düsennadel mit ihrem Endabschnitt weit in ein am stromabwärtigen Ende des Nadelgehäuses ausgebildetes Sackloch hineinreicht, wodurch das Sacklochvolumen verringert wird.According to a preferred development of the fuel injection nozzle according to the invention it is provided that the needle tip has a tapered end section. this has the advantage that the nozzle needle with its end portion far in at the downstream End of the needle housing trained blind hole extends, which the Blind hole volume is reduced.

Vorzugsweise ist der spitz zulaufende Endabschnitt durch einen Konus gebildet.The tapered end section is preferably formed by a cone.

Gemäß einer bevorzugten Ausführungsform ist es vorgesehen, daß der den spitz zulaufenden Endabschnitt bildende Konus einen Öffnungswinkel α4 aufweist, der kleiner ist als der Öffnungswinkel α2 der Dichtfläche der Nadelspitze.According to a preferred embodiment, it is provided that the cone forming the tapering end section has an opening angle α 4 that is smaller than the opening angle α 2 of the sealing surface of the needle tip.

Vorteilhafterweise beträgt der Öffnungswinkel α4 des Endabschnitts zwischen 40° und 65°, vorzugsweise zwischen 50° und 55°.The opening angle α 4 of the end section is advantageously between 40 ° and 65 °, preferably between 50 ° and 55 °.

Gemäß einer Weiterbildung der Erfindung ist es vorgesehen, daß die Nadelspitze stromaufwärts der Dichtfläche einen gegenüber dem Durchmesser des Nadelkörpers verbreiterten wulstförmigen Abschnitt aufweist.According to a development of the invention, it is provided that the needle tip upstream of the sealing surface against the diameter of the needle body has widened bead-shaped section.

Dieser wulstförmige Abschnitt kann durch aufeinanderfolgende konische und/oder zylindrische Ringflächen gebildet sein. This bead-shaped section can be formed by successive conical and / or cylindrical ring surfaces can be formed.

Alternativ kann der wulstförmige Abschnitt durch eine linsenförmige oder kugelförmige Fläche gebildet sein.Alternatively, the bead-shaped portion may be lenticular or spherical Be formed.

Vorteilhafterweise beträgt der Durchmesser des wulstförmigen Abschnitts das 1,05-fache bis 1,2-fache, vorzugsweise das 1,1-fache bis 1,15-fache des Durchmessers des Nadelkörpers der Düsennadel.The diameter of the bead-shaped section is advantageously 1.05 times up to 1.2 times, preferably 1.1 times to 1.15 times the diameter of the Needle body of the nozzle needle.

Die Längsausdehnung des wulstförmigen Abschnitts in Richtung der Nadelachse beträgt vorteilhafterweise das 0,2-fache bis 0,6-fache, vorzugsweise das 0,25-fache bis 0,35-fache des Durchmessers des Nadelkörpers der Düsennadel.The longitudinal extent of the bead-shaped section in the direction of the needle axis is advantageously 0.2 times to 0.6 times, preferably 0.25 times to 0.35 times the diameter of the needle body of the nozzle needle.

Im folgenden werden bevorzugte Ausführungsbeispiele der Erfindung anhand der Zeichnung erläutert. Es zeigen:

  • Figur 1 eine geschnittene Seitenansicht einer Kraftstoffeinspritzdüse im Bereich der Nadelspitze gemäß einem Ausführungsbeispiel der Erfindung;
  • Figur 2 eine Darstellung der Nadelspitze der Düsennadel des in Figur 1 gezeigten Ausführungsbeispiels mit einer vergrößerten Einzelheit X;
  • Figur 3 die Nadelspitze einer Düsennadel gemäß einem weiteren Ausführungsbeispiel der Erfindung mit Einzelheiten X und Y.
  • Preferred exemplary embodiments of the invention are explained below with reference to the drawing. Show it:
  • Figure 1 is a sectional side view of a fuel injector in the area of the needle tip according to an embodiment of the invention;
  • FIG. 2 shows the needle tip of the nozzle needle of the exemplary embodiment shown in FIG. 1 with an enlarged detail X;
  • Figure 3 shows the needle tip of a nozzle needle according to another embodiment of the invention with details X and Y.
  • In Figur 1 ist die geschnittene Seitenansicht einer Einspritzdüse eines Common-Rail-Einspritzsystems im Bereich der Nadelspitze der Düsennadel dargestellt. In einem Nadelgehäuse 14 ist eine Düsennadel, deren Nadelkörper mit dem Bezugszeichen 11 versehen ist, in Axialrichtung verschieblich gelagert. An der Nadelspitze 12 befindet sich eine konische Dichtfläche 13, welche mit der Dichtfläche 16 eines an dem Nadelgehäuse 14 vorgesehenen Ventilsitzes 15 im Sinne eines Öffnens und Schließens der Einspritzdüse bei Bewegung der Düsennadel 11 zusammenwirkt. An dem der Nadelspitze 12 entgegengesetzten Ende ist die Düsennadel 11 mit einem zur Steuerung eines Düsenöffnungsvorgangs dienenden Betätigungselement gekoppelt, das in der Figur nicht dargestellt ist. In Figure 1 is the sectional side view of an injection nozzle of a common rail injection system shown in the area of the needle tip of the nozzle needle. In one Needle housing 14 is a nozzle needle, the needle body of which is identified by reference number 11 is provided, slidably mounted in the axial direction. Located on the needle tip 12 a conical sealing surface 13, which with the sealing surface 16 one on the needle housing 14 provided valve seat 15 in the sense of opening and closing the injector interacts when the nozzle needle 11 moves. On the needle tip 12 opposite end is the nozzle needle 11 with one for controlling a Coupled actuator serving actuator, which is not in the figure is shown.

    An der Vorderseite der Düsennadel 11 ist in dem Nadelgehäuse 14 ein Sackloch 110 ausgebildet, von welchem Einspritzöffnungen 120 ausgehen, welche zum Einspritzen des Kraftstoffs in den Brennraum der Brennkraftmaschine dienen. Die Nadelspitze 12 der Düsennadel 11 ist mit einem Endabschnitt 121 in Form eines spitz zulaufenden Konus versehen, welcher tief in das Sackloch 110 hineinragt. Zwischen der Dichtfläche 13 und dem konischen Endabschnitt 121 ist an der Oberfläche der Nadelspitze 12 eine Erweiterung des zwischen Nadelspitze 12 und Nadelgehäuse 14 gebildeten ringförmigen Strömungskanals 17 in Form eines im Querschnitt konkaven Verlaufs 19 hergestellt. Diesem konkaven Verlauf 19 der Nadelspitze 12 gegenüberliegend ist an der Innenwand des Nadelgehäuses 14 eine Erweiterung des zwischen Nadelspitze 12 und Nadelgehäuse 14 gebildeten ringförmigen Strömungskanals 17 in Form eines im Querschnitt ebenfalls konkaven Verlaufs 18 hergestellt. Zwischen der Dichtfläche 13 und dem Nadelkörper 11 ist eine Übergangsfläche 111 ausgebildet, die einen Winkel α3 aufweist und den Winkel zwischen der zylindrischen Mantelfläche des Nadelkörpers 11 und der Dichtfläche 13 im wesentlichen halbiert. Die Dichtfläche 16 des Ventilsitzes 15 weist einen Öffnungswinkel α1 auf, welcher bei dem dargestellten Ausführungsbeispiel 60° beträgt, während die Dichtfläche 13 der Nadelspitze 12 einen Öffnungswinkel α2 aufweist, welcher kleiner als der Öffnungswinkel α1 der Dichtfläche 16 des Ventilsitzes 15 ist und bei dem dargestellten Ausführungsbeispiel 58,5° beträgt. Somit befindet sich die engste Stelle des Nadeldichtsitzes zwischen der Dichtfläche 13 der Düsennadelspitze 12 und der Dichtfläche 16 des Ventilsitzes 15 im vorderen Bereich der Nadelspitze 12, was gegenüber herkömmlichen Dichtsitzgeometrien eine inverse Sitzwinkeldifferenz bedeutet. Nach dieser Engstelle erweitert sich der zwischen Nadelspitze 12 und Nadelgehäuse 14 gebildete ringförmige Strömungskanal 17 durch die konkaven Verläufe 18,19, wodurch eine "Kavitationsfalle" oder Kavitationsraum für die Kavitationsblasen gebildet wird, die aufgrund der inversen Sitzwinkeldifferenz in definierter Weise an der engsten Stelle des Nadeldichtsitzes unmittelbar stromaufwärts der konkaven Verläufe 18,19 gebildet werden. Zum Vergleich mit einer herkömmlichen Nadelspitzengeometrie ist eine solche in Figur 1 gestrichelt dargestellt. Der Rücksprung an Düsennadel und Nadelgehäuse stellt eine plötzliche Erweiterung dar, in der sich gezielt Kavitationsblasen bilden. Dabei ist der Rücksprung so ausgebildet oder bemessen, daß die anschließende Implosion der Kavitationsblasen nicht in unmittelbarer Nähe der Wandungen erfolgt, sondern vielmehr in der Mitte der Strömung oder zumindest im Abstand zur Düsennadel. Die durch die Erweiterung gebildete Spaltweite beträgt an der breitesten Stelle mehr als 0,05 mm. Günstiger sind Spaltweiten um 0,5 mm oder mehr. Im stromabwärtigen Anschluß an den Kavitationsraum folgt ein Strömungskanal, dessen Querschnitt vorzugsweise so ausgebildet ist, daß die Strömungsgeschwindigkeit ungefähr konstant bleibt. Vorzugsweise ist die kegelförmige Wand des Nadelgehäuses im Anschluß an den Kavitationsraum etwas steiler geneigt, als im stromaufwärtigen Bereich, was eine Umlenkung der Strömung in Richtung auf die Spritzlöcher bewirkt.At the front of the nozzle needle 11, a blind hole 110 is formed in the needle housing 14, from which injection openings 120 emanate, which serve to inject the fuel into the combustion chamber of the internal combustion engine. The needle tip 12 of the nozzle needle 11 is provided with an end section 121 in the form of a tapered cone which extends deep into the blind hole 110. Between the sealing surface 13 and the conical end section 121, an enlargement of the annular flow channel 17 formed between the needle tip 12 and the needle housing 14 in the form of a course 19 with a concave cross section is produced on the surface of the needle tip 12. Opposite this concave course 19 of the needle tip 12, an enlargement of the annular flow channel 17 formed between the needle tip 12 and the needle case 14 in the form of a course 18 which is also concave in cross section is produced on the inner wall of the needle housing 14. A transition surface 111 is formed between the sealing surface 13 and the needle body 11, which has an angle α 3 and essentially halves the angle between the cylindrical outer surface of the needle body 11 and the sealing surface 13. The sealing surface 16 of the valve seat 15 has an opening angle α 1 , which is 60 ° in the illustrated embodiment, while the sealing surface 13 of the needle tip 12 has an opening angle α 2 , which is smaller than the opening angle α 1 of the sealing surface 16 of the valve seat 15 and is 58.5 ° in the illustrated embodiment. The narrowest point of the needle sealing seat is thus between the sealing surface 13 of the nozzle needle tip 12 and the sealing surface 16 of the valve seat 15 in the front region of the needle tip 12, which means an inverse seat angle difference compared to conventional sealing seat geometries. After this constriction, the annular flow channel 17 formed between the needle tip 12 and the needle housing 14 widens through the concave courses 18, 19, whereby a "cavitation trap" or cavitation space is formed for the cavitation bubbles, which due to the inverse seat angle difference in a defined manner at the narrowest point of the Needle sealing seat are formed immediately upstream of the concave courses 18, 19. For comparison with a conventional needle tip geometry, such is shown in dashed lines in FIG. The recess on the nozzle needle and needle housing represents a sudden expansion in which cavitation bubbles form. The recess is designed or dimensioned such that the subsequent implosion of the cavitation bubbles does not take place in the immediate vicinity of the walls, but rather in the middle of the flow or at least at a distance from the nozzle needle. The gap width formed by the expansion is more than 0.05 mm at the widest point. Gap widths of 0.5 mm or more are more favorable. In the downstream connection to the cavitation space follows a flow channel, the cross section of which is preferably designed such that the flow speed remains approximately constant. The conical wall of the needle housing in connection with the cavitation space is preferably inclined somewhat more steeply than in the upstream region, which causes the flow to be deflected in the direction of the spray holes.

    In Figur 2 ist die Nadelspitze 12 der Düsennadel 11 aus Figur 1 nochmals vergrößert dargestellt. Wie insbesondere aus dem vergrößerten Ausschnitt X ersichtlich ist, ist der konkave Verlauf 18 durch einen Radius gebildet, welcher bei dem gezeigten Ausführungsbeispiel 0,5 mm beträgt. Durch diesen Radius wird eine hohlkehlenförmige, ringförmige Ausnehmung gebildet, welche von einer ersten Kante 191 an der Dichtfläche 13 zu einer zweiten Kante 192 an dem vorderen Endabschnitt 121 der Nadelspitze 12 verläuft. Der konkave Verlauf 18 an der Innenseite des Nadelgehäuses 14 ist ebenfalls durch einen Radius gebildet, welcher von einer stromaufwärtigen Kante 181 zu einer stromabwürtigen Kante 182 verläuft, vergleiche Figur 1. Wie ebenfalls aus Figur 1 ersichtlich ist, ist das Zentrum der konkaven Erweiterung 18 des Nadelgehäuses 14 bei geschlossenen Ventil gegenüber dem Zentrum der konkaven Erweiterung 19 der Nadelspitze 12 nach stromaufwärts versetzt. Bei diesem Ausführungsbeispiel sind die beiden Erweiterungen 18,19 an Nadelgehäuse 14 und Nadelspitze 12 durch gleiche Radien gebildet, so daß sich eine Breite des Kavitationsraums an der breitesten Stelle von ca. 1 mm ergibt.The needle tip 12 of the nozzle needle 11 from FIG. 1 is enlarged again in FIG shown. As can be seen in particular from the enlarged section X, the concave course 18 formed by a radius, which in the shown Embodiment is 0.5 mm. This radius creates a flute-shaped, annular recess formed by a first edge 191 on the sealing surface 13 to a second edge 192 on the front end portion 121 of the needle tip 12 runs. The concave course 18 on the inside of the needle housing 14 is also formed by a radius extending from an upstream edge 181 to one downstream 182 runs, see Figure 1. As also from Figure 1 can be seen, the center of the concave extension 18 of the needle housing 14 at closed valve opposite the center of the concave extension 19 of the Needle tip 12 moved upstream. In this embodiment, the two extensions 18, 19 on the needle housing 14 and needle tip 12 by the same radii formed so that a width of the cavitation space at the widest point of approx. 1 mm results.

    Bei einem in Figur 3 dargestellten zweiten Ausführungsbeispiel einer Düsennadel, wie sie mit einem Nadelgehäuse der in Figur 1 dargestellten Art kombinierbar ist, ist an der Nadelspitze 32 stromaufwärts einer Dichtfläche 33 ein gegenüber dem Durchmesser des Nadelkörpers 31 verbreiteter wulstförmiger Abschnitt 320 ausgebildet. Dieser wulstförmige Abschnitt 320 ist durch aufeinanderfolgende Ringflächen 321, 322,323 gebildet, von denen die Ringflächen 321 und 323 als konische Flächen ausgebildet sind, während die Ringfläche 322 in Form einer zylindrischen Ringfläche gebildet ist, vergleiche Einzelheit Y. Der Durchmesser des wulstförmigen Abschnitts 320 beträgt an seiner breitesten Stelle, d.h. an der Ringfläche 322 rund das 1,15-fache des Durchmessers des Nadelkörpers 31 der Düsennadel. Die Längsausdehnung des wulstförmigen Abschnitts 320 in Richtung der Nadelachse beträgt etwa das 0,25-fache des Durchmessers des Nadelkörpers 31. Abweichend von der Ausgestaltung des wulstförmigen Abschnitts 320 durch aufeinanderfolgende konische und zylindrische Ringflächen kann der wulstförmige Abschnitt 320 auch durch eine linsenförmige oder kugelförmige Fläche 324 gebildet sein, wie in der Einzelheit Y gestrichelt dargestellt.In a second exemplary embodiment of a nozzle needle, as shown in FIG can be combined with a needle housing of the type shown in FIG Needle tip 32 upstream of a sealing surface 33 compared to the diameter of the Needle body 31 formed widened bead-shaped section 320. This bead-shaped section 320 is formed by successive annular surfaces 321, 322, 323 formed, of which the annular surfaces 321 and 323 are designed as conical surfaces, while the annular surface 322 is formed in the form of a cylindrical annular surface, compare Detail Y. The diameter of the bulge portion 320 is at its widest point, i.e. on the ring surface 322 around 1.15 times the diameter of the Needle body 31 of the nozzle needle. The longitudinal extent of the bead portion 320 in the direction of the needle axis is approximately 0.25 times the diameter of the Needle body 31. Deviating from the configuration of the bead-shaped section 320 by successive conical and cylindrical ring surfaces the bead-shaped Section 320 can also be formed by a lenticular or spherical surface 324, as shown in dashed lines in detail Y.

    Unmittelbar auf die Dichtfläche 33 der Nadelspitze 32 folgend ist eine Erweiterung in Form eines konischen Verlaufs 39 ausgebildet, welche durch einen Radius gebildet ist, wie in der Einzelheit X dargestellt. Die konische Erweiterung 39 geht einerseits mit einer Kante 391 in die Dichtfläche 33 und andereiseits mit einer Kante 392 in den Endabschnitt 321 der Düsenspitze 32 über.Immediately following the sealing surface 33 of the needle tip 32 is an expansion in Formed a conical shape 39, which is formed by a radius, such as shown in detail X. The conical extension 39 goes on the one hand with an edge 391 in the sealing surface 33 and on the other side with an edge 392 in the end section 321 of the Nozzle tip 32 over.

    Wie in Figur 3 dargestellt, weist die Dichtfläche 33 der Nadelspitze 32 einen Öffnungswinkel α2 von 59,8° auf, gegenüber einem Öffnungswinkel α1 von 60° der Dichtfläche des Ventilsitzes des damit kombinierten Nadelgehäuses. Der Öffnungswinkel α4 des Endabschnitts 321 beträgt 55°. Die konische Ringfläche 323 des wulstförmigen Abschnitts 320 ist mit einem Öffnungswinkel von 45° als Übergangsfläche zwischen der Dichtfläche 33 und der zylindrischen Ringfläche 322 des wulstförmigen Abschnitts 320 ausgebildet. As shown in Figure 3, the sealing surface 33 of the needle tip 32 has an opening angle α 2 of 59.8 °, compared to an opening angle α 1 of 60 ° of the sealing surface of the valve seat of the needle housing combined therewith. The opening angle α 4 of the end section 321 is 55 °. The conical ring surface 323 of the bead-shaped section 320 is formed with an opening angle of 45 ° as a transition surface between the sealing surface 33 and the cylindrical ring surface 322 of the bead-shaped section 320.

    BezugszeichenlisteLIST OF REFERENCE NUMBERS

    11
    Einspritzdüseinjection
    11; 3111; 31
    Düsennadel, NadelkörperNozzle needle, needle body
    12; 3212; 32
    Nadelspitzepinpoint
    13; 3313; 33
    Dichtflächesealing surface
    1414
    Nadelgehäuseneedle housing
    1515
    Ventilsitzvalve seat
    1616
    Dichtflächesealing surface
    1717
    Strömungskanalflow channel
    1818
    Konkaver VerlaufConcave course
    1919
    Konkaver VerlaufConcave course
    110110
    Sacklochblind
    120120
    EinspritzöffnungInjection port
    181181
    Kanteedge
    182182
    Kanteedge
    191; 391191; 391
    Kanteedge
    192; 392192; 392
    Kanteedge
    111111
    ÜbergangsflächeTransition surface
    121; 321121; 321
    Endabschnittend
    320320
    wulstförmiger Abschnittbeaded section
    321321
    Ringflächering surface
    322322
    Ringflächering surface
    323323
    Ringflächering surface
    324324
    Kugelförmige FlächeSpherical surface

    Claims (26)

    1. Fuel injection nozzle for an internal combustion engine, in particular of a common-rail injection system, in which the injection nozzle is acted upon permanently by fuel reserved under high pressure in a prestore, containing a nozzle needle (11; 21; 31) coupled to an actuating element serving for controlling a nozzle-opening operation, with a needle tip (12; 22; 32), and a valve seat (15; 25) cooperating with the needle tip (12; 22; 32) of the nozzle needle (11; 21; 31), the valve seat (15; 25) having a conical sealing surface (16; 26) with an aperture angle α1, and the needle tip (12; 22; 32) having a conical sealing surface (13; 23; 33) coming to bear on the conical sealing surface (15; 26) in the closed state of the injection valve, with an aperture angle α2, and the needle tip (12; 22; 32) and the needle housing (14; 24) delimiting an annular flow duct (17; 27), the aperture angle α2 of the sealing surface (13; 23; 33) of the needle tip (12; 22; 32) being smaller than the aperture angle α1 of the sealing surface (16; 26) of the valve seat (15; 25), and, following the sealing surfaces (13; 23; 33, 16; 26) of the needle tip (12; 22; 32) and valve seat (15; 25) in the direction of flow of the fuel, a widening of the annular flow duct (17; 27) being formed between the needle tip (12; 22; 32) and the needle housing (14; 24), characterized in that setbacks forming the widening of the flow ducts (17) are provided on the needle tip (12) and on the needle housing (14; 24), said setbacks together forming a cavitation space, in which the implosion of cavitation bubbles takes place at a distance from the wall.
    2. Fuel injection nozzle according to Claim 1, characterized in that the widening of the flow duct (17; 27) between the needle tip (12; 22; 32) and the needle housing (14; 24) is provided, directly following the sealing surfaces (13; 23; 33, 16; 26) of the needle tip (12; 22; 32) and valve seat (15; 25).
    3. Fuel injection nozzle according to Claim 1 or 2, characterized in that the widening of the flow duct (17; 27) between the needle tip (12; 22; 32) and the needle housing (14; 24) is formed by a cross-sectionally concave profile (18; 28; 19; 39) of the surfaces of the needle tip (12; 22; 32) and needle housing (14; 24).
    4. Fuel injection nozzle according to Claim 3, characterized in that the concave profile (18; 28; 19; 39) of the surface of the needle tip (12; 22; 32) and/or needle housing (14; 24) is formed by a radius.
    5. Fuel injection nozzle according to Claim 3 or 4, characterized in that the concave profile (18; 28; 19; 39) of the surface merges on the upstream side, with an edge (181; 191; 281; 391), into the sealing surface (13; 16; 26; 33) of the needle tip (12;22;32) and/or valve seat (15; 25).
    6. Fuel injection nozzle according to Claim 3, 4 or 5, characterized in that the concave profile (18; 19; 28; 39) of the surface merges on the downstream side, with an edge (182; 192; 282; 392), into the surface of the needle tip (12; 22; 32) and/or needle housing (14; 24).
    7. Fuel injection nozzle according to Claims 3 to 6, characterized in that, with the valve closed, the centre of the widening (18) of the needle housing (14) is offset upstream in relation to the centre of the widening (19) of the needle tip (12).
    8. Fuel injection nozzle according to one of Claims 4 to 7, characterized in that the widenings (18; 19) on the needle housing (14) and needle tip (12) are formed by identical radii.
    9. Fuel injection nozzle according to one of Claims 1 to 8, characterized in that the aperture angle α1 of the valve seat (15; 25) is between 50° and 70°, preferably between 55° and 65°.
    10. Fuel injection nozzle according to Claim 9, characterized in that the aperture angle α1 of the valve seat (15; 25) is around 60°.
    11. Fuel injection nozzle according to Claim 9 or 10, characterized in that the aperture angle α2 of the sealing surface (13; 23; 33) of the needle tip (12; 22; 32) is between 0.5° and 3°, preferably between 1° and 2°, smaller than the aperture angle α1 of the valve seat (16; 26).
    12. Fuel injection nozzle according to Claim 11, characterized in that the aperture angle α1 of the sealing surface (13; 23; 33) of the needle tip (12; 22; 32) is 1.5° smaller than the aperture angle α1 of the valve seat (16; 26).
    13. Fuel injection nozzle according to one of Claims 1 to 12, characterized in that the needle tip (12; 22) has formed on it, upstream of the sealing surface (13; 23), a transitional surface (111; 211) which has an angle α3 between that of the needle body (11; 21) and that of the sealing surface (13; 23) of the nozzle needle (10; 20).
    14. Fuel injection nozzle according to Claim 13, characterized in that the transitional surface (111; 211) is formed by a conical surface.
    15. Fuel injection nozzle according to Claim 14, characterized in that the transitional surface (111; 211) approximately bisects the angle between the sealing surface (13; 23) of a nozzle needle (10; 20) and the needle body (11; 21).
    16. Fuel injection nozzle according to one of Claims 1 to 15, characterized in that the needle tip (12; 22; 32) has a tapering end portion (121; 221; 321).
    17. Fuel injection nozzle according to Claim 16, characterized in that the tapering end portion (121; 221; 321) is formed by a cone.
    18. Fuel injection nozzle according to Claim 17, characterized in that the cone forming the tapering end portion (121; 221; 321) has an aperture angle α4 which is smaller than the aperture angle α2 of the sealing surface (13; 23; 33) of the needle tip (12; 22; 32).
    19. Fuel injection nozzle according to Claim 18, characterized in that the aperture angle α4 of the end portion (121; 221; 321) is between 40° and 65°, preferably between 50° and 55°.
    20. Fuel injection nozzle according to one of Claims 1 to 19, characterized in that the needle tip (32) has, upstream of the sealing surface (33), a bead-like portion (320) widened in relation to the diameter of the needle body (31).
    21. Fuel injection nozzle according to Claim 20, characterized in that the bead-like portion (320) is formed by successive conical and/or cylindrical annular surfaces (321; 322; 323).
    22. Fuel injection nozzle according to Claim 20, characterized in that the bead-like portion (320) is formed by a lenticular or spherical surface (324).
    23. Fuel injection nozzle according to Claim 20, 21 or 22, characterized in that the diameter of the bead-like portion (320) is 1.05 times to 1.2 times , preferably 1.1 times to 1.15 times, the diameter of the needle body (31) of the nozzle needle.
    24. Fuel injection nozzle according to one of Claims 20 to 23, characterized in that the longitudinal extent of the bead-like portion (320) in the direction of the needle axis is 0.2 times to 0.6 times, preferably 0.25 times to 0.35 times, the diameter of the needle body (31) of the nozzle needle.
    25. Fuel injection nozzle according to one of Claims 1 to 24, characterized in that the cross-sectional profile following the widening downstream and formed by the needle tip and the needle housing is designed for an essentially constant flow velocity.
    26. Fuel injection nozzle according to Claim 25, characterized in that that part of the needle housing which is located downstream of the valve seat is designed as a conical surface, with an aperture angle, measured in relation to the longitudinal axis of the fuel injection nozzle, which is smaller than the aperture angle α1 of the sealing surface (16, 26) located upstream.
    EP99924908A 1998-05-08 1999-05-07 Fuel injection nozzle for an internal combustion engine Expired - Lifetime EP1076772B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19820513A DE19820513A1 (en) 1998-05-08 1998-05-08 Fuel injection nozzle for internal combustion engine
    DE19820513 1998-05-08
    PCT/EP1999/003160 WO1999058844A1 (en) 1998-05-08 1999-05-07 Fuel injection nozzle for an internal combustion engine

    Publications (2)

    Publication Number Publication Date
    EP1076772A1 EP1076772A1 (en) 2001-02-21
    EP1076772B1 true EP1076772B1 (en) 2002-10-02

    Family

    ID=7867026

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99924908A Expired - Lifetime EP1076772B1 (en) 1998-05-08 1999-05-07 Fuel injection nozzle for an internal combustion engine

    Country Status (4)

    Country Link
    US (1) US6427932B1 (en)
    EP (1) EP1076772B1 (en)
    DE (2) DE19820513A1 (en)
    WO (1) WO1999058844A1 (en)

    Families Citing this family (40)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19942370A1 (en) * 1999-09-04 2001-03-22 Bosch Gmbh Robert Injection nozzle for internal combustion engines with an annular groove in the nozzle needle
    DE10000574A1 (en) * 2000-01-10 2001-07-19 Bosch Gmbh Robert Fuel injector
    IT1319988B1 (en) 2000-03-21 2003-11-12 Fiat Ricerche CLOSING PLUG OF A NOZZLE IN AN INTERNAL COMBUSTION FUEL INJECTOR.
    DE10031264A1 (en) * 2000-06-27 2002-01-17 Bosch Gmbh Robert Fuel injection valve for IC engines with even fuel supply to all injection openings even if valve member is misaligned
    GB0017542D0 (en) * 2000-07-18 2000-09-06 Delphi Tech Inc Valve member
    DE10122503A1 (en) * 2001-05-10 2002-11-21 Bosch Gmbh Robert Valve with radial recesses
    DE10157463A1 (en) * 2001-11-23 2003-06-05 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
    DE10163908A1 (en) * 2001-12-22 2003-07-03 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
    DE10245573A1 (en) * 2002-09-27 2004-04-08 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
    DE10249144A1 (en) * 2002-10-22 2004-05-06 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
    DE10253721A1 (en) * 2002-11-19 2004-06-03 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
    DE10307873A1 (en) * 2003-02-25 2004-09-02 Robert Bosch Gmbh Blind hole and seat hole injection nozzle for an internal combustion engine with a transition cone between the blind hole and nozzle needle seat
    US20040256494A1 (en) * 2003-06-03 2004-12-23 Varble Daniel L. Outwardly-opening fuel injector
    DE60305038T2 (en) * 2003-10-06 2007-05-16 Delphi Technologies, Inc., Troy injection
    DE10359302A1 (en) * 2003-12-17 2005-07-21 Robert Bosch Gmbh Valve body with multi-cone geometry at the valve seat
    EP1566538B1 (en) * 2004-02-20 2006-08-09 Delphi Technologies, Inc. Injection nozzle
    ATE335925T1 (en) * 2004-02-20 2006-09-15 Delphi Tech Inc INJECTOR
    AT414159B (en) * 2004-07-22 2006-09-15 Bosch Gmbh Robert INJECTOR
    DE102004050046A1 (en) * 2004-10-14 2006-04-20 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
    DE102005008894A1 (en) * 2005-02-26 2006-08-31 Audi Ag Injection jet for internal combustion engine has contact surface rounded towards inner circumferential surface of jet body and narrowing towards jet outlet
    DE102005025135A1 (en) * 2005-06-01 2006-12-07 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
    US20070200011A1 (en) * 2006-02-28 2007-08-30 Caterpillar Inc. Fuel injector having nozzle member with annular groove
    DE102006033687A1 (en) * 2006-07-20 2008-01-24 Siemens Ag Injector nozzle e.g. for fuel injection, has nozzle needle, and conical-trained sealing area with body jet, circuit and nozzle needle provided which axially moves bag shaped capsules
    DE102008039920A1 (en) * 2008-08-27 2010-03-04 Continental Automotive Gmbh Nozzle body, nozzle assembly and fuel injector, and method of making a nozzle body
    WO2011022821A1 (en) * 2009-08-31 2011-03-03 Lewis Johnson Injection valve for an internal combustion engine
    DE102009042155A1 (en) * 2009-09-21 2011-04-07 Continental Automotive Gmbh Fuel injection valve for an internal combustion engine
    EP2369166B1 (en) * 2010-03-22 2017-12-13 Delphi International Operations Luxembourg S.à r.l. Injection nozzle
    DE102011004993A1 (en) * 2011-03-02 2012-09-06 Robert Bosch Gmbh Valve device for switching or metering a fluid
    US9903329B2 (en) * 2012-04-16 2018-02-27 Cummins Intellectual Property, Inc. Fuel injector
    JP6059915B2 (en) * 2012-08-27 2017-01-11 日立オートモティブシステムズ株式会社 Fuel injection valve
    CN105202225B (en) * 2014-06-10 2017-12-22 克拉玛依市金牛信泰石油设备有限公司 Valve cup ring and the banked direction control valves with the valve cup ring
    JP6348006B2 (en) * 2014-07-04 2018-06-27 株式会社Soken Fuel injection nozzle
    JP6264221B2 (en) * 2014-07-24 2018-01-24 株式会社デンソー Fuel injection nozzle
    JP6329867B2 (en) * 2014-09-17 2018-05-23 株式会社Soken Fuel injection nozzle
    JP6354519B2 (en) * 2014-10-23 2018-07-11 株式会社デンソー Fuel injection valve
    CN104612875A (en) * 2014-12-02 2015-05-13 中国第一汽车股份有限公司无锡油泵油嘴研究所 Novel high flow injector nozzle matching parts of common rail injector
    DE102014019022B4 (en) * 2014-12-18 2017-05-24 L'orange Gmbh nozzle body
    JP2017008859A (en) * 2015-06-24 2017-01-12 株式会社日本自動車部品総合研究所 Fuel injection nozzle
    DE102019220072A1 (en) * 2019-12-18 2021-06-24 Robert Bosch Gmbh Injector nozzle for injecting fuel under high pressure
    US20230374961A1 (en) * 2022-05-20 2023-11-23 Caterpillar Inc. Fuel injector nozzle assembly including needle having flow guiding tip for directing fuel flow

    Family Cites Families (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE5082C (en) W. STEDING, Maschineningenieur in Hannover, Windmühlenstrafse Nr. 7 Metal stuffing box
    DE2750928A1 (en) * 1977-11-15 1979-05-17 Maschf Augsburg Nuernberg Ag FUEL INJECTION NOZZLE FOR COMBUSTION MACHINES
    CA1124146A (en) * 1978-09-08 1982-05-25 William B. Claxton Injector valve with contoured valve seat and needle valve interface
    US4417694A (en) * 1980-10-22 1983-11-29 The Bendix Corporation Injector valve with contoured valve seat and needle valve interface
    DE3605082A1 (en) * 1986-02-18 1987-08-20 Bosch Gmbh Robert FUEL INJECTION NOZZLE FOR INTERNAL COMBUSTION ENGINES
    WO1987007334A2 (en) * 1986-05-31 1987-12-03 Robert Bosch Gmbh Fuel injection valve
    DE3810467A1 (en) 1988-03-26 1989-10-12 Daimler Benz Ag Fuel injection valve for an air-compressing internal combustion engine with direct fuel injection
    DE4117910A1 (en) * 1991-05-31 1992-12-03 Yaroslavskij Z Dizel Noj Appar Fuel injection nozzle for IC engine - has injector needle with turned ring groove between conical surfaces, forming throttle edge
    DE4303813C1 (en) * 1993-02-10 1994-06-30 Bosch Gmbh Robert Fuel injection nozzle for internal combustion engines
    DE19547423B4 (en) * 1995-12-19 2008-09-18 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
    DE19634933B4 (en) * 1996-08-29 2007-06-06 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
    DE19726727A1 (en) * 1997-06-24 1999-01-07 Bosch Gmbh Robert Fuel injector or fuel injector
    US6062498A (en) * 1998-04-27 2000-05-16 Stanadyne Automotive Corp. Fuel injector with at least one movable needle-guide

    Also Published As

    Publication number Publication date
    US6427932B1 (en) 2002-08-06
    EP1076772A1 (en) 2001-02-21
    DE59902943D1 (en) 2002-11-07
    WO1999058844A1 (en) 1999-11-18
    DE19820513A1 (en) 1999-11-11

    Similar Documents

    Publication Publication Date Title
    EP1076772B1 (en) Fuel injection nozzle for an internal combustion engine
    DE4039520B4 (en) Fuel injection valve
    EP1187983B1 (en) Fuel injection valve for internal combustion engines
    EP2087228B1 (en) Fuel injection valve
    DE10354878A1 (en) Fuel injection device, in particular for an internal combustion engine with direct fuel injection, and method for their preparation
    DE3841142A1 (en) INJECTION VALVE
    DE102010064268A1 (en) Injector
    DE19623713B4 (en) Injection valve, in particular for the direct injection of fuel into a combustion chamber of an internal combustion engine
    EP2521853B1 (en) Fuel injection valve
    DE19507171C1 (en) Fuel injection valve for internal combustion engines
    DE4131499C1 (en) IC engine fuel injection valve - has ring gap between downstream continuation of sealing and seating surfaces of nozzle
    DE19843616A1 (en) Fuel injector
    EP1408231A1 (en) Injection device for fuel injection
    DE112014000267B4 (en) Fuel injector
    EP3014104B1 (en) Nozzle assembly for a fuel injector, and fuel injector
    EP1043496B1 (en) Injector for fuel injection in an internal combustion engine
    EP1045981A1 (en) Fuel injector for internal combustion engines
    WO2012084515A1 (en) Nozzle body comprising an injection hole having at least two inlet openings
    EP1702156B1 (en) Fuel injection valve
    DE3105687A1 (en) Leakage-free fuel injection nozzle
    EP0061529B1 (en) Fuel injection nozzle for internal-combustion engines
    DE10349778A1 (en) Fuel injecting valve for use in diesel internal combustion engine, has multi-hole nozzle with spraying hole channels that are located on one central longitudinal axis and are oppositely arranged in pairs
    DE102021202732A1 (en) Injector, fuel injector with injector
    EP3073107B1 (en) Fuel injection valve for combustion engines and use of the fuel injection valve
    DE102019210551A1 (en) Fuel injector

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20001011

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT

    17Q First examination report despatched

    Effective date: 20010727

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: MTU FRIEDRICHSHAFEN GMBH

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59902943

    Country of ref document: DE

    Date of ref document: 20021107

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20021203

    ET Fr: translation filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20030428

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20030512

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20030514

    Year of fee payment: 5

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030703

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040507

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041201

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20040507

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050507