EP1069878B1 - Lunettes de protection decentrees - Google Patents

Lunettes de protection decentrees Download PDF

Info

Publication number
EP1069878B1
EP1069878B1 EP99915320A EP99915320A EP1069878B1 EP 1069878 B1 EP1069878 B1 EP 1069878B1 EP 99915320 A EP99915320 A EP 99915320A EP 99915320 A EP99915320 A EP 99915320A EP 1069878 B1 EP1069878 B1 EP 1069878B1
Authority
EP
European Patent Office
Prior art keywords
lens
line
sight
blank
centre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99915320A
Other languages
German (de)
English (en)
Other versions
EP1069878A1 (fr
Inventor
Alan W. Reichow
Karl Citek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nike International Ltd
Original Assignee
Nike International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nike International Ltd filed Critical Nike International Ltd
Priority to EP10185902.3A priority Critical patent/EP2305189B1/fr
Priority to EP06009048A priority patent/EP1726277A3/fr
Publication of EP1069878A1 publication Critical patent/EP1069878A1/fr
Application granted granted Critical
Publication of EP1069878B1 publication Critical patent/EP1069878B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/02Goggles

Definitions

  • This invention concerns protective eyewear, particularly protective or non-corrective eyewear with decentered optics.
  • a serious obstacle to the more ubiquitous use of protective eyewear is that protective lenses can distort vision.
  • This distortion has been thought to be caused by unwanted dioptric power or prismatic effects in the lens, which has been particularly severe in protective lenses that are designed to curve around the eye to the side of the head ("wrap") and/or tilt inward toward the cheekbone (pantoscopic tilt).
  • wrap and tilt are aesthetically pleasing, and can provide superior physical protection of the eye, they can also cause the normal line of sight of the eye to strike the lens surface at an angle.
  • This relationship has caused optical distortion that is distracting to the wearer, and presents a serious problem to persons who require precise visual input, such as athletes, pilots and surgeons. This distortion can also be problematic when performing even more common tasks.
  • Rayton's U.S. Patent No. 1,741,536 (issued in 1929 to Bausch & Lomb) disclosed a protective goggle in which the front and back surfaces of the lenses were defined by two spheres of different radii having offset centers. An optical axis through the centers of the spheres was spaced from, and oriented parallel to, a line of sight. This optical configuration provided a tapered lens, in which the lens thickness gradually decreased from the optical center toward the edges. Maintaining the line of sight parallel to the optical axis helped neutralize the distortion that would otherwise be caused by wrapping the lenses laterally with respect to the eye.
  • the optical axis of a corrective lens may be slightly tilted from the normal line of sight.
  • a slight downward decentration is commonly used in lenses that have pantoscopic tilt, to help keep the optical axis of the lens directed through the center of rotation of the eye.
  • the optical axis is often shifted about 3 mm below the normal line of sight.
  • a deliberate decentration of a corrective lens may also be needed to compensate for misalignment of the eyes (such as phorias and tropias).
  • Decentered lenses may be manufactured by cutting a lens blank away from the geometric center of the lens blank,
  • the periphery of an injection molded lens blank often includes optical irregularities, and those irregularities are incorporated into a lens which is cut from the edge of the blank. If the decentration is large, the dimensions of the lens must be small so that it can be cut from the lens blank.
  • a larger lens blank can be used, but this solution leads to an inefficient use of large (and relatively more expensive) lens blanks. This problem is particularly acute for lenses manufactured in large quantities, where an incremental increase in the size of the lens blank can significantly increase the manufacturing cost.
  • WO97/35224 discloses an optical lens element with a prescription zone, suitable for use in wrap-around or protective type eyewear.
  • Design methods for this prescription zone include temporally rotating a prescription section around a vertical axis through the optical centre thereof, and/or decentering the optical axis of the prescription section relative to the geometric axis thereof, providing partial surface correction for astigmatic and/or mean power errors.
  • the optical lens element may be designed such that its front surface can be mounted in a frame of constant curvature of at least 5.0 dipoters, with its back surface providing good clearance from temples and eyelashes.
  • one aspect of the present invention provides a low minus power non-corrective lens, to be mounted in a frame to support the lens in front of an eye, tilted toward a face, in an as worn orientation, characterised in that the lens has an optical axis that is angled away from parallel with a line of sight in a direction substantially opposite the direction of tilt toward the face to reduce prismatic distortion.
  • the optical axis is angled away from parallel with the line of sight at an angle that reduces prismatic distortion along the line of sight and peripherally in the lens.
  • the optical axis is angled away from parallel with the line of sight at an angle that reduces astigmatic blur along the line of sight and peripherally in the lens.
  • the optical axis is angled away from parallel with the line of sight at an angle that reduces yoked prismatic effect and vergence demand of lateral peripheral gaze, as compared to a lens in which the optical axis and line of sight are spaced and parallel to one another.
  • the lens in the as worn position has pantoscopic tilt with an inferior edge of the lens closer to the face than a superior edge of the lens, and the optical axis is deviated generally superiorly.
  • the pantoscopic tilt of the lens is such that a tangent plane at the line of sight is angled at 3-20° to the vertical plane, the optical axis of the lens being angled away from parallel at an angle of 5-20° to the line of sight.
  • the lens in the as worn position has lateral wrap, and the optical axis is deviated generally nasally.
  • the wrap of the lens is such that a tangent plane at the line of sight makes an angle of 5-30° with the vertical plane, the optical axis of the lens being angled away from parallel at an angle of 10-25° to the line of sight.
  • the low minus power lens is more than - 0.005 D minus.
  • the low minus power lens is more than - 0.01 D minus.
  • the centre thickness of the lens is 1.0-3.0mm.
  • the optical axis extends horizontally and vertically away from the line of sight
  • the lens is to be mounted with lateral wrap and pantoscopic tilt
  • the optical axis extends at an angle with respect to a centre of curvature of an anterior surface of the lens, generally superiorly and nasally to reduce prismatic distortion along the line of sight.
  • the lens is a spherical lens in which an anterior surface of the lens substantially conforms to a first sphere having a first centre of curvature, a posterior surface of the lens substantially conforms to a second sphere having a second centre of curvature, and the optical axis extends through the first and second centres of curvature and though an optical centre of the lens, wherein the optical centre of the lens is displaced from the line of sight to minimise prismatic distortion along the line of sight of the lens.
  • a radius the first sphere is greater than a radius of the second sphere.
  • the lens is a high base lens.
  • the lens is at least a base 6 lens.
  • the lens is at least a base 8 lens.
  • the lens is at least a base 9 lens.
  • the lens has a minus power of -0.01 to -0.12.
  • the lens has a minus power of -0.04 to -0.09.
  • the lens is a 6 base lens with a centre thickness of about 1.6mm and a power of about -0.045 diopters, the as worn orientation of the lens includes lateral wrap of about 15% and a pantoscopic tilt of about 12°, and the optical axis of the lens is angled away from parallel to the line of sight at about 22-23 degrees nasally and 18-19 degrees superiorly.
  • the optical axis extends at an angle ⁇ from the parallel with the line of sight, wherein sin 1 R 2 sin k where ⁇ is the distance between the line of sight and an apex line, R 2 is a radius of curvature of the posterior surface of the lens, ⁇ is an angle between the line of sight and a radius of curvature of either the anterior or posterior surface of the lens, and k is a separation of the centres of curvature of the first and second spheres.
  • the lens is cut from a lens blank in which the optical centre of the lens blank is not on the lens blank.
  • the lens is cut from a lens blank in which an optical centre of the lens blank is on the lens blank, but not the lens that is cut from the lens blank
  • the lens is cut from a lens blank in which an optical centre of the lens blank is on the lens that is cut from the lens blank.
  • Another aspect of the present invention provides eyewear comprising right and left low minus power non-corrective lenses according to the above mounted to a frame for holding the lenses in front of respective right and left eyes of a wearer with an optical axis of the lens in a fixed relationship to a line of sight of the wearer.
  • a further aspect of the present invention provides a method of manufacturing a non-corrective lens, according to the above, that is to be mounted in a tilted as worn orientation in a frame, the method comprising: providing a low power lens of a selected centre thickness and base curvature; and characterised by cutting the lens from a lens blank at a position such that an optical axis of the lens is to be horizontally and vertically displaced from a reference line of sight, and angularly deviated to the reference line of sight in a direction substantially opposite the direction of tilt at an angle sufficient to offset at least some of the prismatic distortion introduced into the lens by the tilted as worn orientation.
  • the method is for manufacturing a right lens for dual lens optically corrected eyewear mounted in an as worn orientation with wrap and pantoscopic tilt, the method comprising providing a lens blank, the lens blank having a thickness which is vertically tapered symmetrically on either side of an equatorial line that extends through a geometric centre of the lens blank, the lens blank further being horizontally tapered from a relatively greater thickness at an optical centre located between the geometric centre of the lens blank at a medial edge of the blank to a relatively lesser thickness at a lateral edge of the lens blank, the equatorial line dividing the lens blank into an upper half and a lower half, characterised by cutting the lens from the lens blank such that the lens is rotated with respect to the optical centre, without substantially changing geometric and optical characteristics of the lens.
  • the lens blank comprises an inner surface conforming to a first sphere having a first centre, and an outer surface conforming to a second sphere having a second centre offset from the first centre, and an optical axis passing through the first and second centres an optical centre of the lens blank, the method further comprising the steps of rotating a lens outline around or with respect to the optical centre of the lens blank, so that the position of the optical centre in relation to the lens shape is not changed, and so that the optical and geometric characteristics of the lens are preserved; and cutting the lens from the lens blank at the position of the lens outline.
  • an A line through a geometric centre of the lens is angled to an equator of the lens blank that extends through the geometric centre and optical centre of the lens blank.
  • the lens is a low minus power lens
  • the method further comprises mounting the lens to a frame such that the optical axis intersects a wearer's straight ahead line of sight at an angle that reduces prismatic distortion.
  • the lens is cut from a lens blank having a central equatorial line defined by an optical centre offset from a lens blank geometric centre, the method comprising orienting the A line of the lens at an angle with respect to the central equatorial line.
  • the optical centre of the lens is to be horizontally and vertically displaced from a line of sight, and the lens is projected on to the lens blank with the lens projection shifted downwards to raise the optical centre to a superior portion of the lens projection, and the lens projection is rotated around the optical centre so that the A line of lens projection is at a nonzero angle to the central equatorial line, without substantially changing a shape of the lens.
  • the lens blank comprises an inner surface conforming to a first sphere having a first centre, an outer surface conforming to a second sphere having a second centre offset from the first centre, an optical axis passing through the first and second centres and an optical centre of the lens blank, the method further comprising the steps of rotating a lens outline around or with respect to the optical centre of the lens blank, so that the position of the optical centre in relation to the lens shape is not changed, the optical and geometric characteristics of the lens are preserved, and the A line of the lens is oriented at an angle with respect to the central equatorial line; and cutting the lens from the lens blank at the position of the lens outline.
  • the line of sight is a functional line of sight.
  • the functional line of sight is the normal line of sight.
  • the present invention concerns optically decentered protective eyewear, for example noncorrective protective eyewear having both wrap and pantoscopic tilt, but which still provides optically balanced visual performance, for example over a wearer's field of view.
  • the balanced optical performance is achieved in a decentered lens in which the optical axis of the lens is tilted away from a line of sight, such as a functional line of sight (FLOS), including the straight ahead normal line of sight (NLOS).
  • FLOS functional line of sight
  • NLOS straight ahead normal line of sight
  • a median plane (MP in FIG. 2) is a unique plane that passes longitudinally through the middle of the body from front to back and divides the head into right and left halves.
  • a frontal plane (FP in FIG. 2) is any one of a series of planes passing longitudinally through the body from side-to-side, at right angles to the median plane, and dividing the body into front and back parts. Any frontal plane and the median plane are perpendicular to one another.
  • Listing's plane (LP in FIGS. 1-3) is a particular frontal plane that is further defined as a transverse vertical plane perpendicular to the anteroposterior axis of the eye, and containing the center of rotation of the eyes.
  • Listing's plane (LP) is perpendicular to the visual fixation axis z (FIG. 1), which extends straight ahead of the eye in the primary position with the head looking straight ahead.
  • Listing's plane lies in the plane defined by the transverse horizontal axis of rotation x and the vertical axis of rotation y.
  • NLOS The theoretical normal line of sight (NLOS) is along the z axis, through the center of rotation CR of the eye in the primary position with the body and head erect, perpendicular to Listing's plane (LP) and other frontal planes (FP), and parallel to the median plane MP.
  • the normal line of sight is a fixed line that projects forward from the eye along the z axis shown in FIG. 1, and that line of sight is not normally understood to vary in a given individual.
  • the normal line of sight may vary (both horizontally and vertically) between individuals, because of variations of head and face morphologies (such as the distance between the eyes, and the location of the nasion and ears) which determine an as worn orientation of eyewear.
  • the normal line of sight may vary vertically between the right and left eye of a given individual, because of facial asymmetry.
  • the "normal" line of sight is therefore often determined on a head form, such as the Alderson head form, or the more current and accurate Canadian head form, in which a statistically average position of a line of sight has been determined.
  • the NLOS may also be determined as a special case of the functional line of sight (FLOS), using the techniques described later in this specification for finding a FLOS.
  • FLOS functional line of sight
  • the geometric center of a lens (GC in FIG. 4) is defined as the geometric center of a rectangle that circumscribes each frame lens aperture from a frontal perspective.
  • the location of the geometric center can easily be located at the intersection of diagonals of each rectangle, or the intersection of perpendicular bisectors of the horizontal and vertical dimensions, which are respectively referred to as the A line and the B line.
  • the apex of a lens is a measurement that reflects the head position of the person wearing the lens, the orientation of the lens as it is held by the frame, and the fit of the frame on the head of the wearer.
  • the apex was understood to be the forwardmost point of the lens, that was tangent to a vertical plane (VP) (a frontal plane), as shown in FIGS. 2 and 3, that was perpendicular to the theoretical NLOS.
  • VP vertical plane
  • the apex is the point on each lens that would simultaneously first contact the vertical frontal plane VP as the eyewear approaches that vertical plane, if the eyewear is held in the orientation it has on the head of the person looking straight ahead, as shown in FIG. 3.
  • the apex may be superior to the lens on an imaginary continuation of the lens surface, or in extremely laterally tilted lenses (high wrap) the apex may be nasal to the lens on an imaginary continuation of the lens surface.
  • FIG. 5 shows the location of a typical apex (APX), where the vertical plane touches the forwardmost position of each of the right and left lenses, perpendicular to the NLOS.
  • FIG. 6 illustrates a functional apex plane (FA), having a functional apex (FAPX) at the intersection of the plane FA and the forwardmost point of the lens relative to the plane FA.
  • the plane FA is perpendicular to the functional line of sight (FLOS).
  • the functional line of sight is the line along the fixation axis of the eye when the eye and head are directed in a preferred position for performing a particular visual function or task (e.g.
  • trail running volleyball, surgery, or driving
  • the eye may be rotated around the x axis (FIG. 1) such that the visual fixation axis through the center of the pupil is lowered in the y-z plane about 15 degrees below the z axis.
  • the head may also tilt forward (for example by about another 15 degrees) as shown in FIG. 6.
  • the total downward visual deviation is the sum of the rotation of the eyes and the downward tilt of the head (if the head tilt and eye rotation are in the same direction), or about 30 degrees total in this example.
  • the functional apex FAPX is the point on each lens (or an imaginary extension of the lens) that is tangent to the plane FA which is perpendicular to the functional line of sight FLOS, and that touches the forwardmost portion of the lens (or an imaginary extension of the lens) as the plane is brought toward the lens while held perpendicular to the functional line of sight FLOS.
  • a population of persons performing a task can be observed performing the task, and each of their lines of sight marked on the lenses of eyewear they are wearing (or photographs taken of the pupils through the lenses) to arrive at a norm for the functional line of sight.
  • infrared pupil position detectors can be worn by persons performing the tasks, and the pupil positions determined remotely.
  • video analysis of head and body position can be performed.
  • the functional line of sight can be determined for an individual (if custom lenses are being made), or an average position of the functional line of sight can be determined for a population of persons who perform the activity.
  • the lenses can then be worn by persons performing the function for which the lenses are designed, and refinements made to the position of the optical axis based on the visual performance and comfort of the wearer.
  • the "line of sight” includes specific cases which are the normal line of sight and the functional line of sight.
  • a functional line of sight can also be the normal line of sight, when the visual demands of a function are in the straight ahead position.
  • a "nasal” direction is generally toward the nose, and a “temporal” direction is generally toward the temple.
  • a “superior” direction is generally upward and an “inferior” direction is generally downward.
  • a lens produces a linear displacement, or foreshortening, of an image if the image is viewed along a direction of gaze that is not along the optical axis of the lens nor along the normal to the surface of the lens.
  • a lens also produces an angular displacement, or prismatic deviation, if the image is viewed along a direction of gaze parallel to the optical axis but displaced from it; this defines a decentered lens.
  • Prismatic deviation likewise may be induced if the direction of gaze is not parallel to the optical axis, regardless of where on the lens the direction of gaze intersects the surface.
  • the lens will typically produce a total deviation, which is a combination of foreshortening and prismatic deviation.
  • the decentration can be horizontal, vertical, or oblique, but is generally evaluated in terms of horizontal and vertical deviations.
  • a horizontal decentration of a non-plano lens with respect to an eye generally produces a horizontal prismatic deviation.
  • a nasal decentration of a positive power lens produces a prismatic deviation that is referred to as "base-in” prism.
  • a temporal decentration of a positive power lens produces a prismatic deviation referred to as “base-out” prism.
  • Nasal and temporal decentrations of a minus power lenses produce base-out and base-in prism, respectively.
  • the eyes To compensate for horizontal prism in eyewear, the eyes must rotate horizontally by angles approximately equal to the prismatic deviations. If the prismatic deviations for both eyes have the same magnitude and direction, the NLOS is deviated, but the eyes move in a so called “yoked” alignment. If the prismatic deviations differ in magnitude or direction, a relative motion of an eye or eyes toward (convergence) or away from each other (divergence) is required to avoid diplopia (double vision). The differences in prismatic deviation thus give rise to a disjunctive or vergence demand that is quantified as the net prismatic deviation obtained by combining the individual prismatic deviations.
  • the vergence demand can require either a convergence or a divergence of the eyes, but is referred to as a vergence demand in either case.
  • a vergence demand in either case.
  • the yoked and vergence demands should be kept small in order to permit accurate spatial perception and anticipation timing, and to avoid eye fatigue.
  • casual wearers of eyewear are more comfortable if the yoked and vergence demands are decreased.
  • eyewear shown in FIG. 7 has a right lens 40 and a left lens 42.
  • the lenses 40, 42 are negative power lenses having the same power or focal length.
  • Each lens has an optical center OC on an optical axis OA coincident with a line through the centers of curvature of the anterior surface A and a posterior surface P of each lens.
  • the optical center of each lens is shifted temporally from the line of sight LOS (temporal decentration), which induces a base in (BI) prism for each eye.
  • the base in prism makes light rays R from a frontal distant object appear to diverge so that the object appears farther than it really is.
  • FIG. 9 illustrates a situation in which a right lens induces base in prism, while the left lens induces base out prism.
  • the amount of prism induced for each eye is the same, the eyes will move together in a "yoked" rotation to the right.
  • an additional vergence demand is imposed on the eyes, in which there must be relative movement of one or both of the eyes toward (convergence) or away (divergence) from each other.
  • vergence is often incomplete, which can result in diplopia or poor perception. Even if the vergence is complete, it induces oculomotor strain that is uncomfortable for the wearer.
  • BU base-up
  • BD base-down
  • the amount of horizontal prism can vary across the lens, and imbalance can become more of a problem peripherally, where one eye is looking through a nasal portion of a lens while the other eye is looking through a temporal portion of the lens.
  • the amount of vertical prism can also vary across the lens in a similar fashion when the eye is looking through a superior or inferior portion of the lens. This variation can create inaccuracies in visual perception across the field of view that are difficult to compensate, and are troublesome in recreational or sporting activities that demand accurate visual input.
  • the curvature of the anterior surface of a lens is called the base curvature and is defined as 530/R, where R is the radius of curvature of that surface in millimeters.
  • a line through the centers of curvature C 1 (of the anterior surface) and C 2 (of the posterior surface) defines an optical axis OA that intersects the lens (or an imaginary extension of the lens) at an optical center OC.
  • the lens (or its imaginary extension) has a thickness CT along the optical axis OA, and tapers symmetrically away from or towards the optical center OC.
  • the radius of curvature R 2 of the posterior surface is selected in combination with the center thickness CT and the base curvature radius R 1 to provide a predetermined lens power.
  • the radius of the inner surface is less than the radius of the outer surface of the lens, and the lens is meniscus in shape.
  • R 2 decreases with R 1 constant, the lens has more minus power.
  • R 2 R 1 -CT, the front and back surfaces of the lenses become concentric, at a power that is determined by the base curvature and center thickness of the lens.
  • the front and back surfaces of the lens become concentric at the following powers, for lenses of these center thicknesses: Table 1 Power at Which Minus Power Lens Becomes Concentic For Given Base Curve and Center Thickness Base Curve Center Thickness (mm) Power (diopters) 9 Base 1.5 -0.16 2.0 -0.22 2.5 -0.28 6 Base 1.5 -0.07 2.0 -0.10 2.5 -0.13 As the inner radius (R 2 ) continues to decrease, the lens becomes progressively more minus, and the posterior surface becomes more concave.
  • CT is the thickest portion of the lens.
  • High base lenses used in contemporary eyewear produce their own undesired optical effects, because the curvature of the lens can induce prism, with yoked and vergence demands, as well as astigmatic blur.
  • Such highly curved lenses are further optically distorted by the high wrap and pantoscopic tilt used in contemporary eyewear, which induces prism by tilt that varies across the lens.
  • the present invention minimizes such distortion by introducing minus power into the lens, and rotating the optical axis, for example with respect to the center of curvature C 1 (of the anterior surface of the lens) to deviate the optical axis away from the line of sight.
  • the optical axis is deviated in a direction generally opposite the incline of the lens toward the face.
  • the lens could also be rotated about the center of curvature C 2 (of the posterior surface of the lens), but this would shift the apex position for any lens other than a concentric lens, and is a less efficient method of achieving the stated goals.
  • the lens is ideally rotated about C 1 , but can rotate about a point along the optical axis, for example at C 2 , or slightly away from the optical axis, such that the rotation angle is within 5 degrees of the optimal position for the given power and base curvature, preferably within 1 degree.
  • the deviated optical axis passes through the centers C 1 and C 2 in spherical designs, but in aspheric and other designs may pass between C 1 and C 2 , or near one of C 1 or C 2 (for example within a sufficient distance to reduce the optical inaccuracies in accordance with the present invention by using a deviated axis).
  • FIG. 10 is a vertical sectional view through a plano (zero power) lens 50 mounted with pantoscopic tilt in front of an eye having a center of rotation CR.
  • the pantoscopic tilt moves the bottom edge 54 of the lens toward the face, which induces base down prism in the lens.
  • the prior art attempted to address this problem by shifting the optical axis (OA) of the lens to a position spaced from and parallel to the LOS (FIG. 10). This did help minimize prismatic distortion along the LOS, but was inadequate to improve peripheral optical performance.
  • the present invention solved this problem (as shown in FIG. 11) by abandoning the parallel relationship, and instead rotating the OA in a vertical direction around one of the centers of curvature (such as C 1 ) through an angle ⁇ v in a superior direction 56 away from the LOS (which for convenience in the drawing is shown as the NLOS, although it can be any FLOS).
  • the direction 56 is selected to be away from the edge 54 that is inclined toward the face.
  • the magnitude of angle ⁇ v at which minimum prism occurs can vary depending on the properties of the lens and its position relative to the LOS, but even minimal rotation of the OA in direction 56 will begin to neutralize the prism induced by the pantoscopic tilt. Equations for determining an optimum angle for absolute minimum distortion are provided later in this specification.
  • the invention also includes eyewear and methods for reducing prism by tilt that is induced by lateral wrap of the lenses, as illustrated in FIG. 12, which is a horizontal section through a pair of lenses 50, 60.
  • the lens 50 has a nasal edge 52 and a temporal edge 58, and the lens has lateral wrap at its temporal edge 58.
  • the lens 60 has a nasal edge 62 and a temporal edge 68, and the lens has lateral wrap at its temporal edge 68.
  • the OA is rotated away from the LOS through an angle ⁇ h in a nasal direction generally opposite the direction of the lateral wrap.
  • the specific optimal angle ⁇ h at which prismatic and other optical distortion is minimized depends on a number of factors, and will be illustrated in specific examples. However, deviation of the OA away from the LOS in the nasal direction progressively begins to minimize prism induced by the lateral wrap.
  • FIG. 13 illustrates dual lens eyewear 70 in which the lenses are mounted with both lateral wrap and pantoscopic tilt.
  • FIG. 13 also illustrates OC R1 and OC L1 , which are the positions of the optical centers of the right and left lenses 50, 60 (respectively) of some prior art eyewear in which the OA is maintained parallel to the normal line of sight (NLOS).
  • the optical centers OC R2 and OC L2 are the positions of the optical centers of the right and left lenses (respectively) after the wide angle rotation nasally and superiorly to minimize optical distortion induced by the lateral wrap and pantoscopic tilt.
  • FIG. 14 further illustrates the superonasal deviation of the OA by depicting the left lens 60 of the eyewear 70 shown in FIG. 13, isolated from the frame, but maintaining the pantoscopic tilt and lateral wrap with which the lens was mounted in the frame.
  • the lens 60 has front and back surfaces that substantially conform to the surfaces of a sphere (for example as measured by a lens clock to determine sphericity of a lens as understood in the art of ophthalmic lenses).
  • the front surface of the lens substantially conforms to a first sphere having a center C 1
  • the back surface of the lens substantially conforms to a second sphere having a center C 2 .
  • the theoretical NLOS is illustrated through the center of the lens, such that the NLOS further extends through the theoretical center of rotation CR of the eye.
  • FIG. 14 The prior art location of the optical center OC L1 of FIG. 13 is also illustrated in FIG. 14, in which the OC is spaced horizontally ( ⁇ h ) and vertically ( ⁇ v ) from the NLOS, so that the OA 1 extends through C 1 and C 2a parallel to the NLOS.
  • the present invention is a significant departure from that arrangement, in that the OC L1 is moved through an angle ⁇ h in the X-Y plane (or has a component ⁇ h ) to compensate for the optical distortion induced by lateral wrap.
  • the OC L1 is also moved through an angle ⁇ v in the direction of the Z axis (or has a component ( ⁇ v ) so that the OC L1 assumes the new position OC L2 to compensate for the optical distortion induced by the pantoscopic tilt.
  • the OC L2 In its new position, the OC L2 is on an optical axis OA, that extends through the center C, of the first sphere and the new center C 2b of the second sphere (where C 2b has been rotated through opposite angles ⁇ h and ⁇ v from its original position C 2a on the X axis).
  • the OA 2 intersects the NLOS at an angle ⁇ (the resultant angle of components ⁇ h and ⁇ v ) that is described in greater detail in a later section of this specification.
  • the resultant angle of components ⁇ h and ⁇ v
  • the ultimate effect is that the optical axis in this example is moved off of the lens, at an angle to the NLOS (or other FLOS) to offset the optical distortion induced by the wrap and tilt of the lens.
  • FIG. 15 may be viewed either as a horizontal cross-section of a left lens, or a vertical cross section of either a left or right lens.
  • a horizontal cross sectional view of a right lens would be the mirror image of FIG. 15.
  • the lens 100 has an anterior surface 102 that substantially conforms to a first sphere having a center C 1 , and a posterior surface 104 that substantially conforms to a second sphere having a center C 2 , wherein the surface 104 is displaced along the optical axis from the surface 102 by a distance that corresponds to the center thickness (CT) of the lens.
  • CT center thickness
  • the CT will be the thickest portion of the lens in a low minus power lens, and the thinnest portion of the lens at greater minus powers.
  • the OA is arranged with respect to a wearer's LOS, for example a functional line of sight FLOS, so that the optical axis OA is tilted at an angle ⁇ with respect to the FLOS.
  • Angle ⁇ is optimally chosen so as to minimize the total prismatic deviation of the lens when the wearer views along the FLOS.
  • the FLOS is displaced a distance ⁇ 2 from an apex line AL parallel to the FLOS, wherein AL extends through the center of curvature C 1 and the apex of the lens.
  • Pantoscopic tilt may be defined as the angle between the apex plane (previously shown in FIG.
  • the lateral wrap angle is similarly defined and given by tan - 1 ( ⁇ 1 h / R 1 ) or tan - 1 ( ⁇ 2 h / R 2 ) where ⁇ 1h and ⁇ 2h represent the horizontal separation of the FLOS and the apex line (AL) with respect to the anterior and posterior surfaces respectively.
  • the low power lens reduces the taper of the lens, as compared to a zero power lens, and this reduced taper in turn reduces optical distortion induced across the field of view by the changing relationship of the surfaces of a more tapered lens.
  • Increased minus power can also be accompanied by an increase in the angle ⁇ , and an increase in the angle ⁇ can be accompanied by a decrease in the base curve of the lens, to maintain optimum performance of the lens.
  • a 6 base lens was made having the following optical characteristics, where the parameters are those shown in FIG. 15:
  • a low power lens with a rotated optical axis in accordance with the present invention, is able to substantially eliminate prism along the NLOS (from 0.010 pd in the zero power non-rotated lens to 0.000 pd in the low power rotated lens), and substantially reduce vergence demand peripherally at 45° (from 0.274 to 0.176 pd BO), and also substantially reduce yoked demand peripherally at 45° (from 0.546 to 0.400 pd).
  • a 9 base lens was made having the following optical characteristics, where the parameters are those shown in FIG. 15:
  • Optical performance parameters of eyewear incorporating a left and a right lens using this orientation of the lens are based on calculations and measurements that are collected in Table 3. Performance parameters are also set forth for comparison eyewear having both plano and low power lenses with optical axes through the apex and parallel to (and nasally spaced 18.5 mm from) the NLOS. Procedures for exact optical ray tracings to confirm these calculations are well known and are described in, for example, Warren Smith, Modem Optical Engineering (1966).
  • the vergence demand of the eyewear is calculated from the prismatic deviations at the nasal and temporal viewing angles.
  • the right eye is viewing at an angle of 45° nasally with respect to the NLOS, then the left eye is viewing at about 45° temporally.
  • these piano lenses produce large prismatic deviations in peripheral portions of the lenses.
  • the prismatic deviations in the individual lenses are large (about 1.37 pd BO and 0.95 pd BI, respectively) and produce a large vergence demand of 0.417 BO.
  • Decentered minus eyewear produce prismatic deviations even when the NLOS is parallel to the optical centerline.
  • the prismatic deviations are about 0.89 BO and 0.42 BI, respectively.
  • the magnitudes of the prismatic deviations at the extreme nasal and temporal angles are smaller than those of the plano eyewear and the vergence demand is larger, but not significantly so.
  • the decentered minus eyewear is particularly well-suited for applications requiring monocular vision with low levels of prismatic deviation with respect to angles of gaze away from the NLOS.
  • the rotated, decentered minus eyewear exhibits no prismatic deviation along the NLOS.
  • the prismatic deviations are about 0.69 BO and 0.50 BI. These prismatic deviations are smaller than those of the other eyewear and produce a significantly smaller vergence demand of 0.18 BO, and yoked demand of 0.50 pd.
  • Table 3 also contains calculated values of astigmatism. Values of astigmatism of less than 0.12 D are generally considered acceptable. For example, the ANSI sunglasses standard (ANSI Z80.3) permits 0.12 D of astigmatism in nonprescription eyewear along the NLOS. Table 3 illustrates that the low minus, rotated OA eyewear of the present invention also has less astigmatic blur than tilted decentered plano eyewear or tilted, decentered minus eyewear.
  • the piano decentered, non-rotated lenses produce very low prism along the NLOS, while low minus power decentered, non-rotated lenses produce Base Out prism along the NLOS.
  • the decentered, OA rotated lenses of the present invention are capable of reducing prism along the FLOS (including the NLOS) to substantially zero (for example less than 0.1 pd or 0.05 pd), and even eliminating prism along the FLOS to zero.
  • This general scheme for designing a lens with a rotated (angularly deviated) OA is set forth in this Example, with particular reference to FIGS. 14 and 15, where the AL is the apex line that extends from C 1 through the apex of the lens.
  • the lens 100 may first be arranged so that the LOS (such as a FLOS, or particularly a NLOS) is parallel to the optical axis OA, and offset horizontally by ⁇ H and vertically ⁇ V .
  • the OA is then rotated generally horizontally by the angle ⁇ H in a substantially nasal direction, and generally vertically by the angle ⁇ v in a substantially superior direction (for lenses with lateral wrap and pantoscopic tilt) so that the optical axis OA is tilted away from the LOS.
  • Such rotations of the OA may be accomplished by moving the outline of a lens (or a lens blank) on a sphere as described in FIG. 16A.
  • the angles of rotation of the OA are given in horizontal and vertical components for convenience, the deviation can also occur in a single superonasal direction without tracing out the horizontal and vertical components of the displacement.
  • FIG. 15 depicts a representative lens with an optical axis OA intersecting the anterior and posterior surfaces 102, 104 of a lens.
  • the OA of the lens does not necessarily pass through either the lens blank from which the lens is cut, or the lens as cut for insertion into a frame. The decentrations and substantial tilts of the lens from the NLOS are still measured from the optical axis.
  • the optical center is not on the cut lens or the lens blank, the optical center is readily located by extending the curvature of the anterior surface of the lens until it intersects the optical axis.
  • a lens is selected for eyewear based upon an apex location and a base curvature of the lens.
  • the apex location and the base curvature are usually determined by the frame and may be selected for appearance or eye protection.
  • the radius of curvature of the posterior surface R 2 and the center thickness CT of the lens are then varied to produce a small amount of power, for example, minus power.
  • the center thickness CT generally is greater than 1 mm so that the lens is strong and durable, but other or future materials and methods of manufacture may allow for a thinner lens.
  • the lens may then be decentered so that the optical axis of the lens is parallel to the FLOS and passes through the functional apex.
  • the lens may be rotated through an angle ⁇ about the center of curvature of the anterior surface (C 1 ).
  • the prismatic deviation along the FLOS is then calculated, and may be confirmed by measurement.
  • Angle ⁇ may be adjusted until the total deviation along the LOS approaches a minimum, preferably less than 0.12 prism diopters along the LOS and less than 0.9 prism diopters at 45 degrees nasally and temporally, more specifically less than 0.1 prism diopters along the line of sight, most suitably about 0 prism diopters along the line of sight.
  • the vergence demand of the lens is suitably less than 0.4 prism diopters, and ideally less than 0.3 or 0.2 prism diopters.
  • the visual angle is identified as the direction of gaze with respect to the FLOS, which in FIG. 15 is zero degrees. This direction of gaze intersects the posterior surface 104 of the lens 100 at P 2 .
  • the rotation angle ⁇ or the lens power is changed. If the prismatic deviation is base-out, the angle of rotation ⁇ is increased or the magnitude of the minus power is reduced. If the prismatic deviation is base-in, the angle of rotation ⁇ is decreased or the magnitude of the minus power increased.
  • the lens power and the angle of rotation can be selected to reduce the prismatic deviation along the NLOS. For example, the angle of rotation can be selected to be greater than 30°, greater than 20°, greater than 15°, between 20° and 40°, or between 15° and 30°.
  • This Example shows some optimal relationships between the base curvature, center thickness of the lens, and the low minus power of the lens that optimally minimizes prismatic distortion along the LOS.
  • the following Table illustrates the nasalward rotation of the optical axis that produces zero prism along the LOS with changes in decentration for the following lenses: 6 Base: center thickness 1.6 mm, power -0.045 D 7 Base: center thickness 1.5 mm, power -0.051 D 8 Base: center thickness 1.5 mm, power -0.063 D 9 Base: center thickness 1.5 mm, power -0.075 D Table 4 Rotation of OA for Varying Decentrations and Base Curvatures Decentration 6 Base 7 Base 8 Base 9 Base 0 mm 0 deg 0 deg 0 deg 0 deg 5 mm 4.5 deg 4.2 deg 4.2 deg 4.2 deg 10 mm 9.0 deg 8.5 deg 8.5 deg 8.5 deg 15 mm 13.8 deg 13.0 deg 13.0 deg 13.0 deg 20 mm 18.9 deg 17.8
  • This example illustrates the nasalward rotation of the optical axis that maintains zero prism along the line of sight with changes in center thickness for the following lenses: 6 Base: nasal decentration 23.35 mm, power -0.045 D 7 Base: nasal decentration 23.35 mm, power -0.051 D 8 Base: nasal decentration 18.5 mm, power -0.063 D 9 Base: nasal decentration 18.5 mm, power -0.075 D
  • the nasal decentration is a function of lateral wrap.
  • the radius of curvature of the posterior surface of the lens decreases as CT increases for each base curve to maintain constant power and zero prism along the line of sight.
  • the angle ⁇ decreases for a lens of a given base curvature, power and decentration.
  • Table 6 Rotation of OA for Varying Base Curvatures and Powers Base Curve Power (D) -0.02 -0.04 -0.06 -0.08 -0.10 6 4.5 deg 15.2 deg --- --- 7 3.6 deg 9.9 deg 24.6 deg --- --- 8 2.8 deg 7.35 deg 15.0 deg 32.5 deg --- 9 2.3 deg 5.9 deg 10.7 deg 18.7 deg 44.0 deg
  • These examples illustrate that as base curve increases for a given CT and ⁇ , the angle ⁇ decreases for a given low power lens. For a given base curve, the angle also increases as greater minus power is provided by the lens.
  • the lenses of the present invention may be injection molded to an exact shape or ground and then cut, the lenses are preferably cut from an injection molded lens blank.
  • the lens blank can be conceptualized as being cut from the shell of a sphere 120, as shown in FIG. 16A.
  • the positions of the centers of curvature C 1 and C 2 and radii of curvature R 1 and R 2 (FIG. 16B), of the outer and inner surfaces of the sphere 120 respectively determine the power of the lens to be cut from the lens blank.
  • the radius of curvature R 1 (of the outer surface of the shell) determines the base curvature of the lens.
  • the optical axis OA extends through C 1 and C 2 , and is shown projecting through a pole of the sphere.
  • the lens blank 122 is formed with a shape corresponding to the shell of the sphere at the depicted location, in which the optical axis does not extend through the lens blank itself. Hence, the optical center of the lens blank is not on the blank itself, but is instead on an imaginary extension of the blank at the pole of the sphere.
  • the blank 122 is positioned so that a lens to be cut from the lens blank will have a selected LOS (such as a FLOS, e.g. the NLOS) that is at the desired angle ⁇ to the optical axis OA, for a lens of a given low minus power and base curvature.
  • LOS such as a FLOS, e.g. the NLOS
  • the blank is shown displaced from the pole by distances X, Y and H that are projected on to a frontal plane A.
  • the geometric center GC of the blank 122 is displaced a distance of 54.5 mm in a direction Y along a vertical meridian of the sphere, and a distance of 42.0 mm in a direction X along a latitudinal line (parallel to the equator).
  • the net displacement of the GC from the OC of the sphere is therefore a distance H of 68.8 mm.
  • FIG. 17 is a two dimensional view of FIG. 16A, which further shows the position of a lens that is to be cut from the lens blank, illustrating the position of the NLOS and the geometric center GC of the lens blank with respect to the OA.
  • This view shows the wide angle of deviation between the optical axis OA of the sphere and the GC of the lens blank, which are separated by an angle ⁇ at C 1 (not shown in FIG. 17) that subtends an angle at the surface of the sphere demarcated by the distance H on the sphere surface.
  • the present invention also includes a method of more efficiently using lens blanks than in the prior art, while maintaining superior optical performance of the lens cut from the blank.
  • the problem of the prior art is illustrated in FIG. 18, which shows a right lens blank 130 and a left lens blank 132 which are injection molded.
  • Each of the lens blanks has a geometric center GC, and an optical center OC displaced along an equator E of the lens blank toward a medial edge of the blank.
  • the lens blank therefore tapers vertically symmetrically (in a superoinferior direction along meridian M) from the equator E.
  • One of the problems with an injection molded blank is that there are often injection molding artifacts peripherally in the lens, and particularly at the injection "gate” where plastic is injected into the mold prior to hardening.
  • the optical irregularities introduced by these artifacts can often be avoided by cutting a lens 134 or 136 from the lens blank 130, 132 at a central position on the lens blank, away from the peripheral irregularities.
  • Lenses 134, 136 are shown in FIG. 18 to be cut from the center of the lens blank to avoid these optical irregularities.
  • FIG. 19 shows a problem that is encountered if the lenses 134, 136 are to be vertically optically decentered by shifting the lens vertically downward on the lens blank. If the amount of vertical decentration approaches the B dimension of the lens, then peripheral portions of the lens will not fit on the lens blank. This will necessitate the expensive step of using a larger lens blank. Even if the lens is small enough to fit on the lens blank (which it is not in FIG. 19), the lens must be cut from optically irregular, peripheral portions of the blank.
  • FIG. 20 shows the solution of the present invention, which permits a horizontal and vertical decentration of the same extent as in FIG. 19, but without the problems encountered in that example.
  • FIG. 20 shows that the lens outlines in FIG. 19 can be rotated in the direction of the arrows in FIG. 19, around the optical centers OC, so that the A line of the lens outline is at a non-zero acute angle ⁇ to the A line.
  • the OC is still located at the upper edge of the lens, however the body of the lens outline has now been rotated into a central area of the blank that is freer of optical irregularities. This rotation also permits the extremely vertically decentered lens and/or horizontally decentered lens to be cut from a lens blank without having to increase the diameter of the blank to accommodate the decentered lens.
  • the lens can be rotated without changing the optical characteristics of the lens (such as power and center thickness) when the lens is rotated on the surface of the blank around an axis defined by the optical axis.
  • the magnitude of the angle ⁇ through which the lens is rotated can vary widely, depending on the size of the lens and the desired degree of vertical decentration. In the illustrated embodiment of FIG. 20, the angle ⁇ is approximately 30-40°, although the angle could, for example, be 5-90°, more particularly 10-80°, or greater than 10 or 20 degrees, and less than 90°.
  • FIG. 21 further illustrates the versatility of the method by showing that an extreme vertical decentration, in which the OC is not even on the lens, can be achieved by rotating the lens outline from the position shown in FIG. 19 to the position shown in FIG. 20, and then further displacing the lens outline in a direction perpendicular to the A line.
  • the extent of vertical decentration achieved in FIG. 21 could not be obtained by the non-rotated method of FIG. 19. If the simple displacement of the lens along the vertical meridian M (as in FIG. 19) were not accompanied by the rotary maneuver of the present invention, the lens would project partially off of the lens blank. Hence it would not be possible to cut the lens from the lens blank, without increasing the diameter or other dimensions of the lens blank.
  • FIG. 22 further illustrates the versatility of the rotational method, showing that even a lens that does not have vertical decentration can be rotated around the OC to cut it from a more convenient portion of the blank, for example to avoid a defect D in the blank that would otherwise interfere with the optical quality of the lens cut from the blank.
  • FIG. 23 demonstrates that the optical center OC need not be on the equator E of the lens blank (where the equator is a horizontal bisector of the blank that does not define a line of symmetry about which the blank vertically tapers). Instead the axis of symmetry from which the blank symmetrically tapers superiorly and inferiorly is the axis AX in FIG. 23, which extends through the GC of the blank, at a non-zero acute angle to the equator E.
  • FIG. 24 demonstrates a lens blank in which the OC is not on the blank, which is a common situation in the manufacture of lenses described in this specification that have large angles of deviation between the optical axis and line of sight.
  • the lens outline does not have to be centered over the GC of the lens blank, but can be en bloc rotated with respect to the OC.
  • Such en bloc rotation can be visualized, for example, by imagining a fixed arm extending from the OC to the nasal edge of the lens in FIG. 24.
  • the lens outline can then be moved by rotating the rigid arm around the OC, but without changing the position of the lens outline relative to the rigid arm. Two possible positions to which the lens outline can be rotated are shown in phantom in FIG. 24, which provide a lens of the same shape and with the same location of the OC in the lens.
  • FIG. 25 shows another lens blank with the OC off the blank, but in which the OC is both vertically displaced from the equator E and horizontally displaced from the vertical meridian M.
  • FIG. 26 is a schematic vertical sectional view which illustrates that pantoscopic tilt is determined by measuring the angle ⁇ between a frontal vertical plane VP that is perpendicular to the FLOS (such as the NLOS) and extends through the point at which the FLOS/NLOS intersects the lens, and a tangent plane TP that is tangent to the point at which the FLOS/NLOS intersects the anterior surface of the lens.
  • the pantoscopic tilt ⁇ of the lens may, for example, be in the range of 1-30°, for example 3-20° or 8-14°, and more particularly 8-12°.
  • the degree of tilt may also vary depending on the head and facial morphology of the person wearing the eyewear. Europeans and European-Americans, for example, have less prominent cheeks, more prominent brows, and higher nasions than Asians and Asian-Americans, and can tolerate more pantoscopic tilt. Exemplary pantoscopic tilt angles are shown in Table 7.
  • FIG. 27 is a schematic horizontal view which illustrates that lateral wrap is determined by measuring the angle ⁇ between the frontal vertical plane VP and the tangent plane TP. As with pantoscopic tilt, examples of the degree of wrap are shown in Table 7. Table 7 Wrap and Panto Angles in Non-Asians and Asians Non-Asian Asian Lateral Wrap 5-30° 5-20° Panto 5-20° 3-15°
  • Lenses may have wrap and panto angles outside of these ranges.
  • the angles given in Table 7 are merely exemplary, and smaller and larger angles of tilt can be compensated for by the present invention.
  • the lenses are preferably made of polycarbonate, but may also be made from other impact resistant material such as CR-39.
  • the direction of deviation need not be exactly opposite the direction of tilt, but can be a direction that generally reduces the undesired optical distortions discussed herein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Eyeglasses (AREA)
  • Helmets And Other Head Coverings (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Eye Examination Apparatus (AREA)
  • Window Of Vehicle (AREA)
  • Mushroom Cultivation (AREA)

Claims (36)

  1. Lentille non correctrice à faible puissance négative (50, 60) destinée à être montée dans une monture pour supporter la lentille devant un oeil, inclinée vers un visage, dans une orientation telle que portée,
    caractérisée en ce que la lentille (50, 60) a un axe optique (OA) qui forme un angle à partir d'une parallèle à une ligne de visée (LOS) dans une direction sensiblement opposée à la direction d'inclinaison vers le visage pour réduire la distorsion prismatique.
  2. Lentille de la revendication 1, dans laquelle l'axe optique (OA) forme un angle à partir d'une parallèle à la ligne de visée (LOS) selon un angle qui réduit la distorsion prismatique le long de la ligne de visée et périphériquement dans la lentille (50, 60).
  3. Lentille de la revendication 1, dans laquelle l'axe optique (OA) forme un angle à partir d'une parallèle à la ligne de visée (LOS) selon un angle qui réduit le flou astigmatique le long de la ligne de visée et périphériquement dans la lentille (50, 60).
  4. Lentille de la revendication 1, dans laquelle l'axe optique (OA) forme un angle à partir d'une parallèle à la ligne de visée (LOS) selon un angle qui réduit l'effet prismatique et le besoin de vergence appariés du regard périphérique latéral, comparativement à une lentille dans laquelle l'axe optique et la ligne de visée sont espacés et parallèles l'un par rapport à l'autre.
  5. Lentille de la revendication 1, dans laquelle la lentille (50, 60) dans la position telle que portée présente une inclinaison pantoscopique avec un bord inférieur (50) de la lentille plus proche du visage qu'un bord supérieur de la lentille (50), et l'axe optique (OA) est dévié généralement au-dessus.
  6. Lentille de la revendication 5, dans laquelle l'inclinaison pantoscopique de la lentille (50, 60) est telle qu'un plan tangent à la ligne de visée (LOS) forme un angle de 3-20° par rapport au plan vertical, l'axe optique (OA) de la lentille (50, 60) formant un angle à partir d'une parallèle de 5-20° par rapport à la ligne visée (LOS).
  7. Lentille de la revendication 4, 5 ou 6, dans laquelle la lentille (50, 60) dans la position telle que portée présente un enveloppement latéral, et l'axe optique (OA) est dévié généralement de manière nasale.
  8. Lentille de la revendication 7, dans laquelle l'enveloppement de la lentille (50, 60) est tel qu'un plan tangent à la ligne de visée (LOS) fait un angle de 5-30° avec le plan vertical, l'axe optique de la lentille (50, 60) formant un angle à partir d'une parallèle de 10-25° par rapport à la ligne de visée (LOS).
  9. Lentille d'une quelconque revendication précédente, dans laquelle la lentille à faible puissance négative (50, 60) est supérieure à -0,005 D négative.
  10. Lentille de la revendication 9, dans laquelle la lentille à faible puissance négative (50, 60) est supérieure à -0,01 D négative.
  11. Lentille d'une quelconque revendication précédente, dans laquelle l'épaisseur centrale de la lentille (50, 60) est de 1,0-3,0 mm.
  12. Lentille de la revendication 1, dans laquelle l'axe optique (OA) s'étend horizontalement et verticalement au loin de la ligne de visée (LOS), la lentille (50, 60) doit être montée avec un enveloppement latéral et une inclinaison pantoscopique, et l'axe optique (OA) s'étend selon un angle par rapport à un centre de courbure d'une surface antérieure de la lentille (50, 60), généralement au-dessus et de manière nasale pour réduire la distorsion prismatique le long de la ligne de visée (LOS).
  13. Lentille d'une quelconque revendication précédente, dans laquelle la lentille (50, 60) est une lentille sphérique (100) dans laquelle une surface antérieure (102) de la lentille (100) se conforme sensiblement en une première sphère ayant un premier centre (C1) de courbure, une surface postérieure (104) de la lentille (100) se conforme sensiblement en une seconde sphère ayant un second centre (C2) de courbure, et l'axe optique (OA) passe par les premier et seconde centres (C1, C2) de courbure et par un centre optique (OC) de la lentille (100), dans laquelle le centre optique (OC) de la lentille (100) est déplacé de la ligne de visée (LOS) pour minimiser la distorsion prismatique le long de la ligne de visée de la lentille.
  14. Lentille de la revendication 13, dans laquelle le rayon (R1) de la première sphère est supérieur au rayon (R2) de la seconde sphère.
  15. Lentille de la revendication 14, dans laquelle la lentille (50, 60) est une lentille de base élevée.
  16. Lentille de la revendication 15, dans laquelle la lentille (50, 60) est au moins une lentille de base 6.
  17. Lentille de la revendication 16, dans laquelle la lentille (50, 60) est au moins une lentille de base 8.
  18. Lentille de la revendication 17, dans laquelle la lentille (50, 60) est au moins une lentille de base 9.
  19. Lentille d'une quelconque des revendications 12 à 18, dans laquelle la lentille (50, 60) a une puissance négative de -0,01 à -0,12.
  20. Lentille de la revendication 19, dans laquelle la lentille (50, 60) a une puissance négative de -0,04 à -0,09.
  21. Lentille de la revendication 14, dans laquelle la lentille (50, 60) est une lentille de base 6 avec une épaisseur centrale (CT) d'environ 1,6 mm et une puissance d'environ -0,045 dioptrie, l'orientation telle que portée de la lentille (50, 60) comprend un enveloppement latéral d'environ 15% et une inclinaison pantoscopique d'environ 12°, et l'axe optique (OA) de la lentille (50, 60) forme un angle à partir d'une parallèle de la ligne de visée (LOS) d'environ 22-23 degrés de façon nasale et 18-19 degrés de façon supérieure.
  22. Lentille de la revendication 14, dans laquelle l'axe optique (OA) s'étend selon un angle ω à partir de la parallèle à la ligne de visée (LOS), dans lequel ω = sin 1 ( δ R 2 sin θ k )
    Figure imgb0027

    où δ est la distance entre la ligne de visée (LOS) et une ligne d'apex (AL), R2 est un rayon de courbure de la surface postérieure (104) de la lentille (100), θ est un angle entre la ligne de visée (LOS) et un rayon de courbure de la surface antérieure (102) ou de la surface postérieure (104) de la lentille (100), et k est une séparation des centres de courbure (C1, C2) des première et seconde sphères.
  23. Lentille d'une quelconque revendication précédente, dans laquelle la lentille (50, 60) est découpée à partir d'une ébauche de lentille (122) dans laquelle le centre optique (OC) de l'ébauche de lentille (122) n'est pas sur l'ébauche de lentille (122).
  24. Lentille d'une quelconque des revendications 1 à 22, dans laquelle la lentille (50, 60) est découpée à partir d'une ébauche de lentille (122) dans laquelle un centre optique (OC) de l'ébauche de lentille (122) est sur l'ébauche de lentille, mais non la lentille (50, 60) qui est découpée à partir de l'ébauche de lentille (122).
  25. Lentille d'une quelconque des revendications 1 à 22, dans laquelle la lentille (50, 60) est découpée à partir d'une ébauche de lentille (122) dans laquelle un centre optique (OC) de l'ébauche de lentille (122) est sur la lentille (50, 60) qui est découpée à partir de l'ébauche de lentille (122).
  26. Lunettes (70) comprenant des lentilles non correctrices à faible puissance négative droite et gauche (50, 60) selon une quelconque revendication précédente, montées sur une monture pour maintenir les lentilles (50, 60) devant les yeux droit et gauche respectifs d'une personne avec un axe optique (OA) de la lentille (50, 60) dans une relation fixe par rapport à une ligne de visée (LOS) de la personne.
  27. Procédé de fabrication d'une lentille non correctrice (50, 60), selon une quelconque des revendications précédentes, qui doit être montée, selon une orientation inclinée telle que portée dans une monture, le procédé consistant à : fournir une lentille de faible puissance (50, 60) d'une épaisseur centrale (CT) et d'une courbure de base (R1) choisies ; et caractérisé en ce qu'il consiste à découper la lentille (50, 60) à partir d'une ébauche de lentille (130) selon une position de telle sorte que l'axe optique (OA) de la lentille (50, 60) doit être déplacé horizontalement et verticalement à partir d'une ligne de visée de référence (LOS), et dévié angulairement par rapport à la ligne de visée de référence (LOS) dans une direction sensiblement opposée à la direction d'inclinaison selon un angle suffisant pour décaler au moins quelque peu la distorsion prismatique introduite dans la lentille (50, 60) par l'orientation inclinée telle que portée.
  28. Procédé selon la revendication 27 pour fabriquer une lentille droite (134) pour une paire de lunettes corrigée optiquement à deux lentilles ou verres montée selon une orientation telle que portée avec un enveloppement et une inclinaison pantoscopique, le procédé consistant à fournir une ébauche de lentille (130), l'ébauche de lentille (130) ayant une épaisseur qui s'amincit verticalement de façon symétrique de chaque côté d'une ligne équatoriale (E) qui traverse un centre géométrique (GC) de l'ébauche de lentille, l'ébauche de lentille (130) étant de plus amincit horizontalement à partir d'une épaisseur relativement plus grande au niveau d'un centre optique (OC) situé entre le centre géométrique (GC) de l'ébauche de lentille au niveau d'un bord médian (M) de l'ébauche vers une épaisseur relativement moindre au niveau d'un bord latéral de l'ébauche de lentille, la ligne équatoriale (E) divisant l'ébauche de lentille (130) en une moitié supérieure et une moitié inférieure, caractérisé en ce qu'il consiste à découper la lentille (134) à partir de l'ébauche de lentille (130) de telle sorte que la lentille (134) est tournée par rapport au centre optique (OC), sans changer sensiblement les caractéristiques géométriques et optiques de la lentille.
  29. Procédé selon la revendication 27, dans lequel l'ébauche de lentille (130) comprend une surface interne conformée en une première sphère ayant un premier centre (C1) et une surface externe conformée en une seconde sphère ayant un second centre (C2) décalé du premier centre (C1), et un axe optique (OA) traversant les premier et second centres (C1, C2) et un centre optique (OC) de l'ébauche de lentille (130), le procédé comprenant de plus les étapes de faire tourner un contour de la lentille autour ou par rapport au centre optique (OL) de l'ébauche de lentille (130), de sorte que la position du centre optique (OC) par rapport à la forme de la lentille n'est pas changée, et de sorte que les caractéristiques optiques et géométriques de la lentille sont conservées ; et de découper la lentille à partir de l'ébauche de lentille (130) au niveau de la position du contour de la lentille.
  30. Procédé selon la revendication 29, dans lequel une ligne A via un centre géométrique (GC) de la lentille fait un angle par rapport à un équateur (E) de l'ébauche de lentille (130) qui traverse le centre géométrique (GC) et le centre optique (OC) de l'ébauche de lentille (130).
  31. Procédé selon la revendication 30, dans lequel la lentille (130) est une lentille à faible puissance négative, et le procédé consiste de plus à monter la lentille (134) sur une monture de telle sorte que l'axe optique (OA) coupe une ligne de visée (LOS) droit devant la personne avec un angle qui réduit la distorsion prismatique.
  32. Procédé selon une quelconque des revendications 27 à 31, dans lequel la lentille est découpée à partir d'une ébauche de lentille ayant une ligne équatoriale centrale (E) définie par un centre optique (OL) décalé du centre géométrique (GC) de l'ébauche de lentille, le procédé consistant à orienter la ligne A de la lentille avec un angle par rapport à la ligne équatoriale centrale (E).
  33. Procédé selon la revendication 32, dans lequel le centre optique (OC) de la lentille doit être déplacé horizontalement et verticalement à partir d'une ligne de visée (LOS), et la lentille fait saillie sur l'ébauche de lentille avec la projection de la lentille décalée vers le bas pour relever le centre optique vers une partie supérieure de la projection de la lentille, et la projection de la lentille est tournée autour du centre optique (OC) de sorte que la ligne A de la projection de la lentille fait un angle non nul avec la ligne équatoriale centrale (E), sans changer sensiblement la forme de la lentille.
  34. Procédé selon la revendication 32 ou 33, dans lequel l'ébauche de lentille comprend une surface interne conformée selon une première sphère ayant un premier centre (C1) une surface externe conformée en une seconde sphère ayant un second centre (C2) décalé du premier centre (C1), un axe optique (OA) traversant les premier et second centres (C1, C2) et un centre optique (OC) de l'ébauche de lentille, le procédé comprenant de plus les étapes de faire tourner un contour de la lentille autour ou par rapport au centre optique (OC) de l'ébauche de lentille (130), de sorte que la position du centre optique (OC) par rapport à la forme de la lentille n'est pas changée, les caractéristiques optiques et géométriques de la lentille sont conservées, et la ligne A de la lentille est orientée selon un angle par rapport à la ligne équatoriale centrale ; et de découper la lentille à partir de l'ébauche de lentille (130) au niveau de la position du contour de lentille.
  35. Lentille ou procédé ou lunettes selon une quelconque revendication précédente, dans lequel la ligne de visée est une ligne de visée fonctionnelle (FLOS).
  36. Lentille ou procédé ou lunettes selon la revendication 35, dans lequel la ligne fonctionnelle de visée est la ligne de visée normale (NLOS).
EP99915320A 1998-04-09 1999-04-07 Lunettes de protection decentrees Expired - Lifetime EP1069878B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10185902.3A EP2305189B1 (fr) 1998-04-09 1999-04-07 Lunettes de protection excentrées
EP06009048A EP1726277A3 (fr) 1998-04-09 1999-04-07 Lunettes de protection décentrées

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US58118 1998-04-09
US09/058,118 US6129435A (en) 1998-04-09 1998-04-09 Decentered protective eyewear
PCT/US1999/007628 WO1999052480A1 (fr) 1998-04-09 1999-04-07 Lunettes de protection decentrees

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP06009048A Division EP1726277A3 (fr) 1998-04-09 1999-04-07 Lunettes de protection décentrées

Publications (2)

Publication Number Publication Date
EP1069878A1 EP1069878A1 (fr) 2001-01-24
EP1069878B1 true EP1069878B1 (fr) 2006-06-07

Family

ID=22014804

Family Applications (3)

Application Number Title Priority Date Filing Date
EP06009048A Withdrawn EP1726277A3 (fr) 1998-04-09 1999-04-07 Lunettes de protection décentrées
EP99915320A Expired - Lifetime EP1069878B1 (fr) 1998-04-09 1999-04-07 Lunettes de protection decentrees
EP10185902.3A Expired - Lifetime EP2305189B1 (fr) 1998-04-09 1999-04-07 Lunettes de protection excentrées

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06009048A Withdrawn EP1726277A3 (fr) 1998-04-09 1999-04-07 Lunettes de protection décentrées

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10185902.3A Expired - Lifetime EP2305189B1 (fr) 1998-04-09 1999-04-07 Lunettes de protection excentrées

Country Status (9)

Country Link
US (2) US6129435A (fr)
EP (3) EP1726277A3 (fr)
JP (1) JP4780259B2 (fr)
AT (1) ATE328558T1 (fr)
AU (1) AU3386499A (fr)
CA (1) CA2327873C (fr)
DE (1) DE69931768T2 (fr)
ES (1) ES2267262T3 (fr)
WO (1) WO1999052480A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD892913S1 (en) 2018-11-05 2020-08-11 Smith Sport Optics, Inc. Goggle
US11726351B2 (en) 2018-11-05 2023-08-15 Smith Sport Optics, Inc. Goggle lens with compound curvature for downward field of view enhancement

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4195091B2 (ja) 1996-03-21 2008-12-10 カール・ツァイス・ビジョン・オーストラリア・ホールディングズ・リミテッド 改良単視野レンズ
AUPO625797A0 (en) 1997-04-17 1997-05-15 Sola International Holdings Ltd Spectacles bearing sunglass lenses
US20020008844A1 (en) * 1999-10-26 2002-01-24 Copeland Victor L. Optically superior decentered over-the-counter sunglasses
US6129435A (en) * 1998-04-09 2000-10-10 Nike, Inc. Decentered protective eyewear
IL133301A0 (en) * 1998-06-04 2001-04-30 Sola Int Holdings Shaped ophthalmic lenses
IL126771A0 (en) * 1998-10-26 1999-08-17 Yanowitz Shimon Improved optical systems
JP4215325B2 (ja) * 1998-12-24 2009-01-28 山本光学株式会社 眼鏡レンズ及びそれを使用した眼鏡
US6440335B1 (en) 1998-12-30 2002-08-27 Sola International, Inc. Process for molding thermoplastic lenses and, steeply curved and/or thin lenses produced thereby
US6682193B1 (en) * 1998-12-30 2004-01-27 Sola International Holdings Ltd. Wide field spherical lenses and protective eyewear
FR2805353B1 (fr) * 2000-02-22 2003-06-13 Christian Dalloz Sunoptics Oculaire non correcteur a compensation de prisme et lunette equipee de cet oculaire
US6540352B2 (en) * 2000-02-22 2003-04-01 Christian Dalloz Sunoptics Noncorrective prism compensating lens and eyeglass provided with said lens
US20050073643A1 (en) * 2003-10-03 2005-04-07 Brent Sheldon Eyewear having lenses with RIMS
US7399078B2 (en) * 2003-10-03 2008-07-15 Brent Sheldon Attachment of prescription lenses to eyewear having wrap-type frames
US7134752B2 (en) * 2003-12-03 2006-11-14 Sola International Holdings Ltd. Shaped non-corrective eyewear lenses and methods for providing same
US7059718B2 (en) * 2004-01-21 2006-06-13 Hidden Harbor Group L.L.C. Eyewear having a magnified wide field of view
US8512180B2 (en) * 2004-02-02 2013-08-20 Nike, Inc. Soccer ball with motion graphic
US8360905B2 (en) * 2004-02-02 2013-01-29 Nike, Inc. Chromatic architecture for sports equipment
JP4228966B2 (ja) 2004-03-30 2009-02-25 セイコーエプソン株式会社 眼鏡レンズ
WO2005115712A1 (fr) * 2004-05-31 2005-12-08 Hoya Corporation Procédé de conception de moule, moule, et piece moulee
US7389543B2 (en) 2004-06-30 2008-06-24 Nike, Inc. Optically decentered face shield
EP1657587A1 (fr) * 2004-10-22 2006-05-17 Christian Dalloz Sunoptics S.A.S Verre de lunettes non correcteur avec vision périphérique améliorée
DE102004059448A1 (de) 2004-11-19 2006-06-01 Rodenstock Gmbh Verfahren und Vorrichtung zum Fertigen eines Brillenglases; System und Computerprogrammprodukt zum Fertigen eines Brillenglases
ITBO20050524A1 (it) * 2005-08-05 2007-02-06 Luxottica Srl Lente per maschere ed occhiali
FR2890190B1 (fr) * 2005-08-31 2007-09-28 Essilor Int Methode de centrage d'une lentille ophtalmique non detouree dont le point de centrage est decale par rapport au centre geometrique
US20070139609A1 (en) * 2005-12-15 2007-06-21 Budney David L Downhole tool
FR2901031B1 (fr) * 2006-05-10 2008-09-26 Essilor Int Procede de centrage d'une lentille ophtalmique sur une monture de lunettes cambree
US7403346B2 (en) * 2006-07-18 2008-07-22 Nike, Inc. Inclined-edged sports lens
JP4434182B2 (ja) 2006-07-25 2010-03-17 セイコーエプソン株式会社 眼鏡レンズの設計方法
US7828434B2 (en) 2006-08-31 2010-11-09 Nike, Inc. Zone switched sports training eyewear
WO2008128187A1 (fr) * 2007-04-13 2008-10-23 Nike, Inc. Centre de test autonome permettant de tester la vision et la coordination
US8317324B2 (en) * 2007-04-13 2012-11-27 Nike, Inc. Unitary vision and neuro-processing testing center
WO2008128192A1 (fr) * 2007-04-13 2008-10-23 Nike, Inc. Essai et entraînement de la vision, de la cognition et de la coordination
KR101520113B1 (ko) 2007-04-13 2015-05-13 나이키 이노베이트 씨.브이. 단일형 시각 및 신경 처리 시험 센터
US7976157B2 (en) 2007-05-08 2011-07-12 Gunnar Optiks, Llc Eyewear for reducing symptoms of computer vision syndrome
US8075431B2 (en) 2007-05-11 2011-12-13 Nike, Inc. Sporting ball with enhanced visual acuity
US20090017934A1 (en) * 2007-07-13 2009-01-15 Nike, Inc. Putters with Enhanced Alignment Visualization
US8246481B2 (en) * 2007-07-13 2012-08-21 Nike, Inc. Putters with enhanced alignment visualization
US7726810B2 (en) * 2007-08-17 2010-06-01 Politzer Thomas A Tilted prism for the treatment of cyclo deviation
DE102007043390B4 (de) 2007-09-12 2018-08-30 Uvex Arbeitsschutz Gmbh Verfahren und Vorrichtung zur Herstellung von Schutzbrillen mit einer optisch nicht korrigierenden Sichtscheibe und danach hergestellte Schutzbrille
US8073805B2 (en) 2007-09-26 2011-12-06 Nike, Inc. Sensory testing data analysis by categories
US7717559B2 (en) 2007-09-28 2010-05-18 Seiko Epson Corporation Method for designing spectacle lens, and spectacles
US8272070B2 (en) * 2007-11-19 2012-09-25 Nike, Inc. Conical face shield
US8356895B2 (en) * 2008-01-17 2013-01-22 Zeal Optics, Inc. All weather sport goggle
US9564058B2 (en) * 2008-05-08 2017-02-07 Nike, Inc. Vision and cognition testing and/or training under stress conditions
DE102008023634A1 (de) * 2008-05-15 2009-11-19 Sortech Ag Aluminiumhaltiges Substrat mit einer mikroporösen Schicht eines Aluminiumphosphat-Zeoliths, ein Verfahren zu dessen Herstellung und dessen Verwendung
US8002404B2 (en) * 2009-05-22 2011-08-23 Polylite Taiwan Co., Ltd. Prescription lens and method of making same
US7942525B2 (en) 2009-07-09 2011-05-17 Nike, Inc. Contrast sensitivity testing and/or training using circular contrast zones
US8136943B2 (en) 2009-07-09 2012-03-20 Nike, Inc. Testing/training visual perception speed and/or span
US8100532B2 (en) * 2009-07-09 2012-01-24 Nike, Inc. Eye and body movement tracking for testing and/or training
US8998828B2 (en) * 2009-07-09 2015-04-07 Nike, Inc. Visualization testing and/or training
FR2948467B1 (fr) * 2009-07-21 2011-10-21 Bnl Eurolens Masque de vision
US8197065B2 (en) 2009-08-03 2012-06-12 Nike, Inc. Vision testing and/or training using adaptable visual indicia
US8430547B2 (en) 2009-08-03 2013-04-30 Nike, Inc. Compact motion-simulating device
US7980693B2 (en) * 2009-08-03 2011-07-19 Nike, Inc. Anaglyphic depth perception training or testing
US8002408B2 (en) * 2009-08-03 2011-08-23 Nike, Inc. Anaglyphic depth perception training or testing
US9492344B2 (en) * 2009-08-03 2016-11-15 Nike, Inc. Unified vision testing and/or training
US20110113535A1 (en) 2009-09-03 2011-05-19 Lebel Stephane Ballistic and Impact Protective System for Military Helmet Assembly
US7926943B1 (en) 2009-11-10 2011-04-19 Nike, Inc. Peripheral vision training and/or testing during central vision fixation
DE102010061056B4 (de) 2010-12-06 2022-07-07 Optotech Optikmaschinen Gmbh Verfahren zur Herstellung von kostenoptimierten Brillengläsern
EP3295815B1 (fr) 2011-03-03 2019-02-13 NIKE Innovate C.V. Vêtements de sport ayant des propriétés visuelles améliorées
US8595949B2 (en) 2011-04-12 2013-12-03 Nike, Inc. Eye alignment training device with sliding markers
US8608313B2 (en) 2011-04-12 2013-12-17 Nike, Inc. Training and/or measuring visual focusing and vergence abilities using a plurality of optical elements
AU2014231883B2 (en) * 2013-03-15 2017-06-01 Hoya Corporation Spectacle lens, manufacturing method thereof and lens supply system
CN105916669B (zh) * 2014-01-22 2017-12-22 埃西勒国际通用光学公司 用于对一组光学镜片坯件进行优化的方法
KR102353079B1 (ko) * 2014-04-02 2022-01-19 에씰로 앙터나시오날 주어진 안경 프레임에 따른 광학계를 계산하는 방법
EP3002114B1 (fr) * 2014-09-30 2017-03-01 Essilor International (Compagnie Generale D'optique) Procédé d'optimisation de la position d'une lentille optique dans une ébauche de lentille
US10401650B2 (en) 2014-12-26 2019-09-03 Hoya Lens Thailand Ltd. Spectacle lens, manufacturing method, supply system, and supply program thereof
JP6495006B2 (ja) 2014-12-26 2019-04-03 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 両眼用の一対の眼鏡レンズ、その製造方法、供給システム、および供給プログラム
JP6495005B2 (ja) * 2014-12-26 2019-04-03 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 両眼用の一対の眼鏡レンズ、その製造方法、供給システム、および供給プログラム
US10007115B2 (en) 2015-08-12 2018-06-26 Daqri, Llc Placement of a computer generated display with focal plane at finite distance using optical devices and a see-through head-mounted display incorporating the same
CN108139599B (zh) * 2015-10-01 2019-09-24 卡尔蔡司光学国际有限公司 带一件式防护罩的眼镜以及用于设计所述防护罩的方法
US10649209B2 (en) 2016-07-08 2020-05-12 Daqri Llc Optical combiner apparatus
WO2018071042A1 (fr) * 2016-10-14 2018-04-19 Carl Zeiss Vision International Gmbh Verre de lunettes à distorsion réduite
BR122023024766A2 (pt) * 2016-11-30 2023-12-26 Essilor International Método para fabricação de lentes oftálmicas sem prescrição
US10481678B2 (en) 2017-01-11 2019-11-19 Daqri Llc Interface-based modeling and design of three dimensional spaces using two dimensional representations
EP3388813B1 (fr) * 2017-04-13 2021-09-29 Carl Zeiss Vision International GmbH Procédé de fabrication d'un verre de lunette selon au moins un ensemble de données relatives au bord du moule
EP3435144A1 (fr) * 2017-07-26 2019-01-30 SUN-RAY Corporation Lentille de verre à courbe élevée, lunettes et leur procédé de production
US10488666B2 (en) 2018-02-10 2019-11-26 Daqri, Llc Optical waveguide devices, methods and systems incorporating same
EP3827305A4 (fr) 2018-07-26 2022-06-01 Oakley, Inc. Verre pour lunettes et autres supports portés sur la tête ayant une optique améliorée
US11125993B2 (en) 2018-12-10 2021-09-21 Facebook Technologies, Llc Optical hyperfocal reflective systems and methods, and augmented reality and/or virtual reality displays incorporating same
US11221494B2 (en) 2018-12-10 2022-01-11 Facebook Technologies, Llc Adaptive viewport optical display systems and methods
JP2022516730A (ja) 2019-01-09 2022-03-02 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニー Ar、hmd、およびhud用途向けの光導波路における不均一な副瞳リフレクタおよび方法
EP3708133B1 (fr) 2019-03-12 2024-05-01 Moldex/Metric AG & Co. KG Lunettes protectrices pour un utilisateur humain
EP3958789A4 (fr) * 2019-04-23 2022-09-28 Sightglass Vision, Inc. Lentilles ophtalmiques ayant des propriétés optiques dynamiques permettant de réduire le développement de la myopie
CN113547674B (zh) * 2021-08-10 2022-12-20 艾普偏光科技(厦门)有限公司 一种8c注塑太阳镜镜片的制造方法及其模具
US11863730B2 (en) 2021-12-07 2024-01-02 Snap Inc. Optical waveguide combiner systems and methods

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA456321A (fr) * 1949-05-03 D. Tillyer Edgar Lentille ophthalmique
USRE17435E (en) 1929-09-17 A voluntary associa
US1354040A (en) * 1919-02-19 1920-09-28 James H Hammon Spectacle-lens
US1332410A (en) * 1919-03-22 1920-03-02 Oscero W Potts Lens and method of making the same
US1536828A (en) * 1921-11-29 1925-05-05 Bausch & Lomb Method of making toric lenses and lens blanks
US1619314A (en) * 1925-09-14 1927-03-01 Reckard Irven Snowplow
US1697030A (en) * 1927-03-09 1929-01-01 American Optical Corp Ophthalmic lens
US1741536A (en) * 1927-05-21 1929-12-31 Bausch & Lomb Goggles
US1942400A (en) * 1929-08-23 1934-01-09 American Optical Corp Ophthalmic lens
US1910466A (en) * 1929-08-30 1933-05-23 American Optical Corp Ophthalmic lens
US2406608A (en) * 1943-08-06 1946-08-27 American Optical Corp Eye protection means and method of making the same
US2442849A (en) * 1944-07-11 1948-06-08 Harry Langsam Ophthalmic lens
US3229303A (en) * 1963-07-16 1966-01-18 Renauld International Inc Sportsman's goggle
US3434781A (en) * 1965-03-15 1969-03-25 American Optical Corp Ophthalmic lens series
US3769755A (en) 1971-08-06 1973-11-06 Gentex Corp Lens cutting and bevel edging machine
US4271537A (en) * 1979-05-14 1981-06-09 Wichita Pro-Tech Inc. Protective helmet with releasable face guard apparatus
US4271538A (en) * 1980-03-24 1981-06-09 Norton Company Safety spectacles
DE3016936C2 (de) * 1980-05-02 1983-12-01 Fa. Carl Zeiss, 7920 Heidenheim Brillenlinse mit astigmatischer Wirkung
US4741611A (en) * 1981-03-26 1988-05-03 Pro-Tec, Inc. Eyeglasses adapted for sports and protective use
US4515448A (en) * 1983-03-28 1985-05-07 Oakley, Inc. Sunglasses
US4617686A (en) * 1984-03-27 1986-10-21 Nahas Arthur G Protective eyewear
US4859048A (en) * 1985-01-11 1989-08-22 Oakley, Inc. Cylindrical lens for sunglasses
US4867550A (en) * 1985-01-11 1989-09-19 Oakley, Inc. Toroidal lens for sunglasses
JPS6338120A (ja) * 1986-08-01 1988-02-18 Matsushita Electric Ind Co Ltd 干渉分光装置
US4761315A (en) * 1986-08-14 1988-08-02 Gerber Scientific Products, Inc. Blank for use in a lens pattern generator
DE3801384A1 (de) 1988-01-19 1989-07-27 Rodenstock Optik G Verfahren zur auswahl von vorgerandeten, beidseitig fertigen brillenglaesern mit minimaler mittendicke
US4964714A (en) 1988-07-14 1990-10-23 Gentex Corporation Safety spectacles and temple therefor
EP0371460B1 (fr) * 1988-11-29 1995-03-01 Seiko Epson Corporation Lentille ophtalmique
US4969649A (en) * 1989-01-23 1990-11-13 Lugiewicz Robert C Performance enhancement apparatus
SU1765802A1 (ru) * 1990-02-21 1992-09-30 Ленинградский Институт Точной Механики И Оптики Офтальмологическа линза
US5208614A (en) * 1990-11-30 1993-05-04 Oakley, Inc. Concavely indented lenses for eyeware
US5131101A (en) * 1991-03-07 1992-07-21 Chin Chen L S Auxiliary shielding device for safety helmets
US5390369A (en) * 1992-05-11 1995-02-21 Scorpion Sunglasses, Inc. Multi-functional protective eyewear
JP2583057Y2 (ja) * 1992-09-16 1998-10-15 株式会社キャットアイ 眼鏡用レンズ
US5444501A (en) * 1992-12-09 1995-08-22 Aloi; Joanne Golf stabilizer for less dominant eye
NZ260250A (en) * 1993-05-25 1997-11-24 James Henry Jannard Lens system for eyeglasses; peripheral zone of lens has its surface modified by grooving
US5555038A (en) * 1994-10-28 1996-09-10 Bausch & Lomb Incorporated Unitary lens for eyewear
US5614964A (en) * 1995-03-13 1997-03-25 9001-6262 Quebec Inc. Unitary spherical flexible eyewear pane having two separate individually optically compensating lens elements and eyewear for sportsmen having such a pane
US5541674A (en) * 1995-04-04 1996-07-30 Oakley, Inc. Dimensionally Stable eyewear
US5815848A (en) 1995-07-14 1998-10-06 Oakley, Inc. Impact resistant face shield for sporting helmets
FR2740231B1 (fr) * 1995-10-20 1998-03-06 Christian Dalloz Sa Ebauche pour oculaire non-correcteur
US5648832A (en) 1995-12-05 1997-07-15 Oakley, Inc. Decentered noncorrective lens for eyewear
WO1997021136A1 (fr) * 1995-12-05 1997-06-12 Oakley, Inc. Verre de lunettes non correcteur decentre
US5638145A (en) * 1996-02-29 1997-06-10 Oakley, Inc. Vented eyeglass lens
JP4195091B2 (ja) * 1996-03-21 2008-12-10 カール・ツァイス・ビジョン・オーストラリア・ホールディングズ・リミテッド 改良単視野レンズ
US6036315A (en) 1998-03-18 2000-03-14 Copeland; Victor L. Optically superior decentered over-the-counter sunglasses
US6129435A (en) 1998-04-09 2000-10-10 Nike, Inc. Decentered protective eyewear

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD892913S1 (en) 2018-11-05 2020-08-11 Smith Sport Optics, Inc. Goggle
US11726351B2 (en) 2018-11-05 2023-08-15 Smith Sport Optics, Inc. Goggle lens with compound curvature for downward field of view enhancement

Also Published As

Publication number Publication date
JP2002511594A (ja) 2002-04-16
US6755525B2 (en) 2004-06-29
EP1069878A1 (fr) 2001-01-24
CA2327873A1 (fr) 1999-10-21
EP2305189A1 (fr) 2011-04-06
DE69931768T2 (de) 2007-05-16
US20030169397A1 (en) 2003-09-11
WO1999052480A1 (fr) 1999-10-21
ATE328558T1 (de) 2006-06-15
AU3386499A (en) 1999-11-01
EP2305189B1 (fr) 2013-05-29
EP1726277A2 (fr) 2006-11-29
CA2327873C (fr) 2009-10-06
JP4780259B2 (ja) 2011-09-28
DE69931768D1 (de) 2006-07-20
US6129435A (en) 2000-10-10
EP1726277A3 (fr) 2011-03-30
ES2267262T3 (es) 2007-03-01

Similar Documents

Publication Publication Date Title
EP1069878B1 (fr) Lunettes de protection decentrees
AU715443B2 (en) Decentered noncorrective lens for eyewear
EP2404212B1 (fr) Lunettes pour enfant myope
US7210780B1 (en) Method for determination of an ophthalmic lens
AU716474B2 (en) Decentered noncorrective lens for eyewear
US10416475B2 (en) Eyeglasses with one-piece shield and method for designing said shield
AU717888B2 (en) Multifocal spectacle lens
US20090002627A1 (en) Optical elements having variable power prisms
US6505930B1 (en) Spectacles frames for shaped lens elements
US6776480B2 (en) Spectacle frames for shaped lenses defined by monoformal carrier surfaces
WO1997021138A1 (fr) Verre protecteur corrige optiquement pour casque de securite
WO1997021138A9 (fr) Verre protecteur corrige optiquement pour casque de securite
US8092012B2 (en) Single vision spectacle lens
MXPA99008683A (en) Lens with surface correction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040130

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69931768

Country of ref document: DE

Date of ref document: 20060720

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060907

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061107

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2267262

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070407

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20140626 AND 20140702

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69931768

Country of ref document: DE

Representative=s name: BOEHMERT & BOEHMERT ANWALTSPARTNERSCHAFT MBB -, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69931768

Country of ref document: DE

Representative=s name: BOEHMERT & BOEHMERT ANWALTSPARTNERSCHAFT MBB -, DE

Effective date: 20150401

Ref country code: DE

Ref legal event code: R081

Ref document number: 69931768

Country of ref document: DE

Owner name: NIKE INNOVATE C.V. (KOMMANDITGESELLSCHAFT NIED, US

Free format text: FORMER OWNER: NIKE INTERNATIONAL LTD., BEAVERTON, OREG., US

Effective date: 20150401

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: NIKE INNOVATE C.V., US

Effective date: 20150420

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180329

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180315

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180503

Year of fee payment: 20

Ref country code: DE

Payment date: 20180327

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180420

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69931768

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190406

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190408