EP1062397B1 - Doppellagenblech aus zwei deckblechen und einer zwischenlage - Google Patents

Doppellagenblech aus zwei deckblechen und einer zwischenlage Download PDF

Info

Publication number
EP1062397B1
EP1062397B1 EP99915552A EP99915552A EP1062397B1 EP 1062397 B1 EP1062397 B1 EP 1062397B1 EP 99915552 A EP99915552 A EP 99915552A EP 99915552 A EP99915552 A EP 99915552A EP 1062397 B1 EP1062397 B1 EP 1062397B1
Authority
EP
European Patent Office
Prior art keywords
double
layered sheet
sheet according
fill material
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99915552A
Other languages
English (en)
French (fr)
Other versions
EP1062397A1 (de
Inventor
Friedrich Behr
Klaus Blümel
Horst MITTELSTÄDT
Cetin Nazikkol
Werner Hufenbach
Frank Adam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Stahl AG filed Critical ThyssenKrupp Stahl AG
Publication of EP1062397A1 publication Critical patent/EP1062397A1/de
Application granted granted Critical
Publication of EP1062397B1 publication Critical patent/EP1062397B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/292Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and sheet metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/32Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material
    • E04C2/326Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material with corrugations, incisions or reliefs in more than one direction of the element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12347Plural layers discontinuously bonded [e.g., spot-weld, mechanical fastener, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12389All metal or with adjacent metals having variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin

Definitions

  • the invention relates to a double-layer sheet made of two a space between the cover plates that form, at least one cover plate as a knobbed plate trained and at the tips of his nubs with the other Cover plate is welded or soldered, and from one filling material filling the space from at least two different types of fabric.
  • Double-layer sheets of this type are available in different Versions known (DE 195 03 166 A1; DE 196 06 981 A1; US-A 4,559,274; Stahl und Eisen 117 (1997), No. 10, page 46).
  • Double-layer sheets are mainly used in Vehicle construction because of its high rigidity at relatively light weight and still in certain limits can be formed, especially deep-drawing, are.
  • the characteristic thickness of the cover plates lies less than 1 mm, especially less than 0.5 mm, and that of Filling material between 1 and 5 mm.
  • Filling material are different in the known double-layer sheets Materials, for example perforated mats, in particular made of plastic or cellulose, or perforated Aluminum sheets, inserted. With perforated mats or Aluminum sheets grip the knobs of the knobbed sheet through the holes in the mat.
  • a double-layer sheet is known (US-A 4,559,274), whose cover plates are designed as double plates and on the Studs are welded together.
  • Filling material made of two different substances, namely from a medium flexible layer of foam, jute, Metal wool or the like and outer layers from one synthetic foamable material.
  • the double-layer sheet foams the foamable Material and completely fills the cavities.
  • the invention is based on the object To create double-layer sheet of the type mentioned at the outset, that's a better ratio of area moment of inertia to Basis weight than the conventional one Double-layer sheets and not to fail due to buckling inclines.
  • Double layer sheet of the type mentioned above solved that the behavior of the filler at Compression of the double-layer sheet by one Bending load by at least two in the direction perpendicular to Significant moduli of elasticity are marked in the sheet plane is, with the filling material Plastic as a matrix with particles embedded in it from one that determines the harder modulus of elasticity Material exists and the expansion of the particles in Direction perpendicular to the sheet plane 2% to 8% smaller than is the distance of the cover plates.
  • the proportion of the filling material with the soft modulus of elasticity the bending line of the Double-layered sheet. If the bending force increases, then the proportion of the filling material with the harder Elastic modulus effective, which prevents the Closer cover plates and thereby the Moment of inertia of the double-layer sheet continues is reduced. Because the extension of the harder particles perpendicular to the sheet plane smaller than the distance of the Cover plates is at the beginning of the bending load Proportion of plastic in the filling material for determining the bending stiffness of the double-layer sheet, during the influence of the harder particles to bear comes when this after mutual approximation of the Cover plates due to increasing bending stress on it Plant come.
  • the softer modulus of elasticity should be perpendicular to Sheet plane (Z direction) may be less than 50 MPa while the harder one is much larger than 50 MPa and much more should be less than 210,000 MPa. He should preferably at least 500, more preferably 1,500 MPa.
  • a plastic is particularly suitable, whose modulus of elasticity in the Z direction is less than 20 MPa
  • a plastic is preferably used in which dispersed plastic hollow spheres are distributed that at a medium temperature that is below temperature for full curing (crosslinking), melt.
  • This is in particular a thermosetting one Material, because then the melting of the pore-forming hollow spheres are thermosetting Foam used as an intermediate layer in the double-layer sheet because of its dimensional stability a reshaping of the Double-layer sheet, especially deep drawing, without significant impairment of the rigidity of the Double layer sheet as a result of detachments and Cracks in the filler allowed and also Resistant to baking temperatures of up to approx. 220 ° C.
  • the Invention provided that as a plastic matrix serving portion of the filler dispersed Contains plastic hollow beads with up to 70 vol%, by melting in the filling material of the finished Partially distributed, closed pores produce.
  • the harder modulus of elasticity of the filling material is preferably determined by hard bodies in the Filling material with up to 10 vol% can be included or up to 5% of the weight of the double-layer sheet can be.
  • the mutual distance of all Hard body in the sheet metal level should on average 3 to 7 times the distance between the cover plates.
  • Hard bodies are those made of hollow glass spheres, Hollow ceramic balls or metal.
  • Hard body made of glass or Ceramics can only be used if that Double-layer sheet need not be weldable for assembly, that is, no current bridge for one Resistance welding of the cover plates is required. in the otherwise you will use metallic hard bodies.
  • the hard bodies should, however, have a lower hardness than the cover plates, so that they can Double-layer sheets do not damage the cover sheets.
  • As Mold for the hard body are hollow bodies, such as Example curved chips, speckled grain, fragments of Metal foam, for example from cast potted Melting steel, or hollow aluminum powder.
  • hollow bodies such as Example curved chips, speckled grain, fragments of Metal foam, for example from cast potted Melting steel, or hollow aluminum powder.
  • sharp-edged metal hard bodies for example curved steel or aluminum chips Carry out assembly welding without any problems, because with the Resistance welding the metal hard body that Plastic, not yet hardened Filling material when compressing the cover sheets cut through and then an electrical contact bridge between the cover plates at the welding site.
  • the filling material under heat to a tough state curing plastic can be used.
  • a tough state curing plastic Preferably should complete curing (crosslinking) between 150 ° C and 230 ° C.
  • the full curing in this Temperature range is advantageous in that Temperature range also the temperature for the branding of a varnish. Burning in the paint on the Double layer sheet and the full curing of the Plastic can then be done in one step.
  • the double-layer sheet is to be formed, should the transformation between the partial and Full hardening of the plastic of the filling material take place because in the partially cured state the forming without affecting the moment of inertia can be done.
  • the full curing can be done with epoxy resin be designed so that cracks and detachments heal.
  • Applying the filler with deformable Hard bodies can be extruded or in the form of a perforated mat according to the knob distribution partially cured plastic.
  • a plastic have thermosetting adhesives as more suitable than thermoplastic adhesive exposed.
  • epoxy glue is beneficial because this glue one, albeit low electrical conductivity have, which ensures that at a electrostatic painting also the cut edges of the Accept double-layer sheet of lacquer.
  • Embodiment shows on average Double-layer plate.
  • the double-layer sheet consists of two spaces between the forming cover plates 1,2 made of galvanized Steel sheet with a thickness of less than each 0.5 mm, in particular 0.30 mm, and from one Intermediate filling material 3. While the a cover plate 1, which when used as a body panel the outer skin forms, is smooth, shows the other Cover plate 2 truncated cones 4 on the End faces 4a welded to the smooth cover plate 1 or are soldered. The height of the knobs 4 and thus the Distance d of the cover plates 1,2 is between 1 and 5 mm. The knobs 4 have a distance of 15 mm to 40 mm.
  • the filler 3 consists of plastic, in particular an epoxy resin, a hardener, an accelerator and a hydrocarbon resin and serves as a matrix for various bodies embedded in it.
  • the Plastic 3 is designed so that it is at room temperature or slightly elevated temperature incomplete and glassy and at elevated temperatures of approx. 170 ° C to 210 ° C cures completely (cross-linked) to a tough state.
  • Such a plastic allows in the partially cured Condition of the forming, especially the deep drawing.
  • On such plastic is glued to the cover plates 1,2, which increases the shear strength of the double-layer sheet and thus the shear stress on the double-layer sheet relieved on the welded end faces of the knobs 4 becomes.
  • thermosetting Plastic made of thermoplastic or thermosetting Plastic up to a volume share of 70% embedded.
  • A is used as the material for the hollow spheres Plastic used at medium temperatures of approx. 140 ° C melts.
  • the hollow spheres then leave in the preferably thermosetting plastic closed cavities so that a thermoset foam is created.
  • Hard bodies in the plastic filling material embedded in the same or different types.
  • This Hard bodies preferably made of metal, can contain hollow spheres 6, Metal foam fragments 7, short curved metal chips 8 or so-called sputtering metal grain 9.
  • these hard bodies are finished in 6-9 Component perpendicular to the plane of the double-layer sheet one smaller expansion than the distance d of the cover plates 1.2 to have.
  • the individual hard bodies should be in the sheet metal plane a larger diameter than the distance d Cover plates have 1.2, while their distances in geometric mean in the sheet plane 3 to 7 times the distance d of the cover plates should be 1.2.
  • the Sum of the two possible distances in the Z direction Hard body 6-9 to cover plates 1.2 should be 2% to 8% the distance of the cover plates 1.2 in the finished formed Component.
  • the hard body at least 6-9 are sometimes sharp-edged to serve as a matrix Cut through filler 3 and before full curing the cover plates 1,2 in the paint baking device to be able to contact electrically.
  • the hard body As particularly suitable has evolved from the manufacture and use of chips Die-cast aluminum exposed because it becomes one Break off the 3 ⁇ 4 circle (3 to 8 mm diameter) and are sufficiently sharp with chip thicknesses of 0.2 to 0.4 mm.
  • the production of the double-layer sheet described takes place in such a way that with on the cover plate 2 knobs 4 facing the filling material 3 either by extrusion or in the form of a partially cured according to the distribution of the knobs 4 perforated mat is applied.
  • the metal hard body 6-9 which for Example 1-3% of the weight of the entire double-layer sheet make up, have a larger diameter or height than the later distance d the Cover plates 1,2.
  • the filling material is compared to the End faces 5 of the knobs 4 are applied somewhat exaggerated. Then the cover plate 1 is placed on the knobs pressurized and on the end faces 5 of the knobs welded, then completely up to the distance d pressurized to distribute the filling compound.
  • double-layer sheet is to be formed to it for example in vehicle construction Forming, especially deep drawing, before full Curing after partial curing. That state is well suited for forming.
  • vehicle construction Forming especially deep drawing
  • full Curing after partial curing That state is well suited for forming.
  • reshaping breakage and partial detachment of the intermediate layer of the cover layers take place, but this will Reversed the appearance because the Expand pores linearly by approx. 10% and that still Press adhesive mass onto the straps.
  • Duroplastic foam produced during full curing Temperatures not exceeding 200 ° C for 20 minutes flows out, so that the paint when baking the paint is not damaged by dripping.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)

Description

Die Erfindung betrifft ein Doppellagenblech aus zwei einen Zwischenraum zwischen sich bildenden Deckblechen, von denen mindestens ein Deckblech als Noppenblech ausgebildet und an seinen Noppenspitzen mit dem anderen Deckblech verschweißt oder angelötet ist, und aus einem den Zwischenraum ausfüllenden Füllmaterial aus mindestens zwei verschiedenartigen Stoffen.
Doppellagenbleche dieser Art sind in verschiedenen Ausführungen bekannt (DE 195 03 166 A1; DE 196 06 981 A1; US-A 4,559,274; Stahl und Eisen 117 (1997), Nr. 10, Seite 46).
Solche auch als Noppenbleche bezeichneten Doppellagenbleche finden vor allem Anwendung im Fahrzeugbau, weil sie sich durch eine hohe Steifigkeit bei relativ geringem Gewicht auszeichnen und noch in gewissen Grenzen umformbar, insbesondere tiefziehfähig, sind. Die charakteristische Dicke der Deckbleche liegt unter 1 mm, insbesondere unter 0,5 mm, und die des Füllmaterials zwischen 1 und 5 mm. Als Füllmaterial werden bei den bekannten Doppellagenblechen verschiedene Materialien, zum Beispiel gelochte Matten, insbesondere aus Kunststoff oder Zellulose, oder aber auch gelochte Aluminiumbleche, eingelegt. Bei gelochten Matten oder Aluminiumblechen greifen die Noppen des Noppenbleches durch die Löcher der Matte.
Bei einem weichen Füllmaterial wie Zellulose wird das Füllmaterial bei einer Biegebelastung des Bleches zusammengedrückt, so daß schon bei verhältnismäßig leichten Lasten die Biegesteifigkeit des Bleches schnell abnimmt. Bei einem gelochten Aluminiumblech als Füllmaterial verhindert das Aluminiumblech, daß sich die Deckbleche stark annähern, weil das Aluminiumblech die Deckbleche abstützt. Bei zunehmender Biegebelastung besteht allerdings die Gefahr, daß das dem Angriffspunkt der Biegekraft gegenüberliegende, als Zuggurt wirkende Deckblech sich strafft und über das Aluminiumblech das als Druckgurt wirkende, dem Angriffspunkt der Biegekraft zugewandte Deckblech entgegen der Kraftrichtung der Biegekraft ausknickt.
Neben der Forderung, ein Doppellagenblech mit hoher Steifigkeit bei geringem Flächengewicht zu schaffen, besteht eine Forderung darin, es mit möglichst geringem Aufwand herzustellen. Es versteht sich, daß der Aufwand um so geringer ist, je weiter die Schweißstellen an den Noppenspitzen auseinander liegen.
Ferner ist ein Doppellagenblech bekannt (US-A 4,559,274), dessen Deckbleche als Noppelbleche ausgebildet und an den Noppen miteinander verschweißt sind. In den Zwischenräumen zwischen den Deckblechen ist ein Füllmaterial aus zwei verschiedenen Stoffen, und zwar aus einer mittleren flexiblen Lage aus Schaumstoff, Jute, Metallwolle oder dergleichen und äußeren Lagen aus einem synthetischen schäumbaren Material angeordnet. Beim Erwärmen des Doppellagenbleches schäumt das aufschäumbare Material auf und füllt die Hohlräume vollständig aus. Über das individuelle Umformverhalten der verschiedenartigen Stoffe findet sich im Stand der Technik keine Aussage.
Der Erfindung liegt die Aufgabe zugrunde, ein Doppellagenblech der eingangs genannten Art zu schaffen, das ein besseres Verhältnis von Flächenträgheitsmoment zu Flächengewicht hat als die herkömmlichen Doppellagenbleche und nicht zum Versagen durch Ausknicken neigt.
Diese Aufgabe wird erfindungsgemäß mit einem Doppellagenblech der eingangs genannten Art dadurch gelöst, daß das Verhalten des Füllmaterials beim Zusammendrücken des Doppellagenbleches durch eine Biegelast durch mindestens zwei in Richtung senkrecht zur Blechebene maßgebende Elastizitätsmoduli gekennzeichnet ist, wobei das Füllmaterial aus Kunststoff als Matrix mit darin eingebetteten Partikeln aus einem den härteren Elastizitätsmodul bestimmenden Material besteht und die Ausdehnung der Partikel in Richtung senkrecht zur Blechebene 2% bis 8% kleiner als der Abstand der Deckbleche ist.
Bei dem erfindungsgemäßen Doppellagenblech bestimmt bei leichter Biegekraft der Anteil des Füllmaterials mit dem weichen Elastizitätsmodul die Biegelinie des Doppellagenbleches. Steigt die Biegekraft an, dann wird der Anteil des Füllmaterials mit dem härteren Elastizitätsmodul wirksam, der verhindert, daß sich die Deckbleche weiter annähern und dadurch das Trägheitsmoment des Doppellagenbleches immer weiter vermindert wird. Da die Erstreckung der härteren Partikel senkrecht zur Blechebene kleiner als der Abstand der Deckbleche ist, ist am Anfang der Biegebelastung der Anteil an Kunststoff des Füllmaterials für die Biegesteifigkeit des Doppellagenbleches bestimmend, während der Einfluß der härteren Partikel zum Tragen kommt, wenn diese nach gegenseitiger Annäherung der Deckbleche infolge zunehmender Biegebelastung daran zur Anlage kommen.
Um die durch Biegung hervorgerufene Schubbelastung der Gurte gegeneinander bei einem Minimum an Schweißstellen an den Noppenspitzen besser vertragen zu können, ist nach einer Ausgestaltung der Erfindung vorgesehen, daß das Füllmaterial mit den Deckblechen vollflächig verklebt ist.
Der weichere Elastizitätsmodul sollte senkrecht zur Blechebene (Z-Richtung) kleiner als 50 MPa sein, während der härtere wesentlich größer als 50 MPa und wesentlich kleiner als 210.000 MPa sein sollte. Er sollte vorzugsweise mindestens 500, besser 1.500 MPa, betragen.
Als den die Matrix bildenden Kunststoffanteil des Füllmaterials eignet sich besonders ein Kunststoff, dessen Elastizitätsmodul in Z-Richtung kleiner als 20 MPa ist.Vorzugsweise wird ein Kunststoff verwendet, in dem dispergierte Kunststoff-Hohlkügelchen verteilt sind, die bei einer mittleren Temperatur, die unter der Temperatur für die Vollaushärtung (Vernetzung) liegt, schmelzen. Dabei handelt es sich insbesondere um ein duroplastisches Material, denn dann entsteht durch das Aufschmelzen der die Poren bildenden Hohlkügelchen ein duroplastischer Schaumstoff, der als Zwischenlage in dem Doppellagenblech wegen seiner Formstabilität ein Umformen des Doppellagenbleches, insbesondere Tiefziehen, ohne wesentliche Beeinträchtigung der Steifigkeit des Doppellagenbleches infolge von Ablösungen und Rißbildungen im Füllstoff erlaubt und außerdem Lackeinbrenntemperaturen von bis zu ca. 220°C verträgt.
Um das Flächengewicht des Doppellagenbleches möglichst niedrig zu halten, ist nach einer Ausgestaltung der Erfindung vorgesehen, daß der als Matrix aus Kunststoff dienende Anteil des Füllmaterials dispergierte Hohlkügelchen aus Kunststoff mit bis zu 70 Vol% enthält, die durch Aufschmelzen im Füllmaterial des fertigen Bauteils verteilte, gegeneinander abgeschlossene Poren erzeugen.
Der härtere Elastizitätsmodul des Füllmaterials wird vorzugsweise von Hartkörpern bestimmt, die in dem Füllmaterial mit bis zu 10 Vol% enthalten sein können oder bis zu 5 % des Gewichtes des Doppellagenbleches betragen können. Der gegenseitige Abstand aller Hartkörper in der Blechebene sollte im Durchschnitt das 3 bis 7fache des Abstandes der Deckbleche betragen. Als Hartkörper eignen sich solche aus Glashohlkugeln, Keramikhohlkugeln oder Metall. Hartkörper aus Glas oder Keramik sind allerdings nur dann verwendbar, wenn das Doppellagenblech nicht montageschweißbar zu sein braucht, das heißt, keine Strombrücke für eine Widerstandsschweißung der Deckbleche benötigt wird. Im anderen Fall wird man metallische Hartkörper verwenden. Die Hartkörper sollten allerdings eine geringere Härte als die Deckbleche haben, damit sie bei der Umformung des Doppellagenbleches nicht die Deckbleche beschädigen. Als Form fur die Hartkörper eignen sich Hohlkörper, wie zum Beispiel gebogene Späne, spratziges Korn, Bruchstücke von Metallschaum, zum Beispiel aus unberuhigt vergossener Stahlschmelze, oder Aluminium-Hohlpulver. Im Falle von scharfkantigen metallenen Hartkörpern, zum Beispiel aus gebogenen Stahl- oder Aluminiumspänen, lassen sich problemlos Montageschweißungen durchführen, weil bei der Widerstandsschweißung die metallenen Hartkörper das aus Kunststoff bestehende, noch nicht ausgehärtete Füllmaterial beim Zusammendrücken der Deckbleche durchschneiden und dann eine elektrische Kontaktbrücke zwischen den Deckblechen am Schweißort bilden.
Nach einem weiteren Vorschlag der Erfindung sollte für das Füllmaterial ein unter Wärme zu einem zähen Zustand aushärtender Kunststoff verwendet werden. Vorzugsweise sollte die vollständige Aushärtung (Vernetzung) zwischen 150°C und 230°C erfolgen. Die volle Aushärtung in diesem Temperaturbereich ist insofern von Vorteil, als in diesem Temperaturbereich auch die Temperatur für das Einbrennen eines Lackes liegt. Das Einbrennen des Lackes auf dem Doppellagenblech und die volle Aushärtung des Kunststoffes kann dann in einem Arbeitsschritt erfolgen.
Gegenstand der Erfindung ist ferner ein Verfahren zum Herstellen eines Doppellagenbleches, das unter Verwendung von metallischen Hartkörpern durch folgende Schritte gekennzeichnet ist:
  • a) Auf die genoppte Seite des als Noppenblech ausgebildeten Deckbleches wird das Füllmaterial aus Kunststoff mit darin als Hartkörpern eingebetteten Partikeln aufgetragen, deren senkrecht zur Blechebene maßgebender Elastizitätsmodul härter als der des Kunststoffes ist und die eine Erstreckung senkrecht zur Blechebene haben, die mindestens so groß wie der Abstand der Deckbleche ist.
  • b) Das andere Deckblech wird aufgelegt, angedrückt, damit die Füllmenge ausgebreitet wird, und an das Noppenblech im Bereich der Noppenspitzen angeschweißt oder hartgelötet.
  • c) Nach einer Teilaushärtung des Kunststoffes wird das Doppellagenblech mit Druck. derart beaufschlagt, daß die Partikel verformt und auf eine unter dem Abstand der Deckbleche liegende Größe verkleinert werden, sodaß sie nach Druckentlastung eine um 2% bis 8% unter dem Abstand der Deckbleche liegende Erstreckung senkrecht zur Blechebene haben.
  • d) Nach Druckentlastung wird das Füllmaterial zu einem zähen Zustand ausgehärtet.
  • Nach dem Anschweißen beziehungsweise Hartlöten im Bereich der Noppenspitzen sollte das Deckblech nachgedrückt werden, um das Füllmaterial in verbliebene Zwischenräume zu verteilen.
    Sofern das Doppellagenblech umgeformt werden soll, sollte die Umformung zwischen der Teil- und Vollaushärtung des Kunststoffes des Füllmaterials erfolgen, weil im teilausgehärteten Zustand das Umformen ohne Beeinträchtigung des Flächenträgheitsmomentes erfolgen kann. Würde man vollausgehärtet umformen, könnten Risse in der Füllmasse und Ablösungen von den Gurten auftreten. Die Vollaushärtung kann mit Epoxidharz so ausgestaltet werden, daß Risse und Ablösungen ausheilen.
    Das Auftragen des Füllmaterials mit verformbaren Hartkörpern kann durch Extrudieren oder in Form einer entsprechend der Noppenverteilung gelochten Matte aus teilausgehärtetem Kunststoff erfolgen. Als Kunststoff haben sich duroplastische Kleber als geeigneter als thermoplastische Kleber herausgestellt. Die Verwendung von Epoxidklebern ist von Vorteil, weil diese Kleber eine, wenn auch geringe elektrische Leitfähigkeit aufweisen, die gewährleistet, daß bei einem elektrostatischen Lackieren auch die Schnittkanten des Doppellagenbleches Lack annehmen.
    Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles näher erläutert. Das Ausführungsbeispiel zeigt im Schnitt ein Doppellagenblech.
    Das Doppellagenblech besteht aus zwei einen Zwischenraum zwischen sich bildenden Deckblechen 1,2 aus verzinktem Stahlblech mit einer Dicke von jeweils weniger als 0,5 mm, insbesondere 0,30 mm, und aus einem den Zwischenraum ausfüllenden Füllmaterial 3. Während das eine Deckblech 1, das bei Verwendung als Karosserieblech die Außenhaut bildet, glatt ist, weist das andere Deckblech 2 kegelstumpfförmige Noppen 4 auf, die an den Stirnflächen 4a mit dem glatten Deckblech 1 verschweißt oder angelötet sind. Die Höhe der Noppen 4 und damit der Abstand d der Deckbleche 1,2 liegt zwischen 1 und 5 mm. Die Noppen 4 haben einen Abstand von 15 mm bis 40 mm.
    Das Füllmaterial 3 besteht aus Kunststoff, insbesondere einem Epoxidharz, einem Härter, einem Beschleuniger und einem Kohlenwasserstoffharz und dient als Matrix für darin eingebettete verschiedenartige Körper. Der Kunststoff 3 ist so beschaffen, daß er bei Raumtemperatur oder leicht erhöhter Temperatur unvollständig und glasig und bei erhöhten Temperaturen von ca. 170°C bis 210°C vollständig (vernetzt) zu einem zähen Zustand aushärtet. Ein derartiger Kunststoff erlaubt im teilausgehärteten Zustand die Umformung, insbesondere das Tiefziehen. Ein solcher Kunststoff ist mit den Deckblechen 1,2 verklebt, wodurch die Schubfestigkeit des Doppellagenbleches erhöht und damit die Scherbeanspruchung des Doppellagenbleches an den verschweißten Stirnseiten der Noppen 4 entlastet wird.
    Zur Verminderung des Flächengewichtes sind in dem Kunststoff-Füllmaterial 3 eine Vielzahl von sehr kleinen Hohlkügelchen aus thermoplastischem oder duroplastischem Kunststoff bis zu einem Volumenanteil von 70% eingebettet. Als Material für die Hohlkügelchen wird ein Kunststoff verwendet, der bei mittleren Temperaturen von ca. 140°C schmilzt. Die Hohlkügelchen hinterlassen dann in dem vorzugsweise duroplastischen Kunststoff gegeneinander abgeschlossene Hohlräume, so daß ein duroplastischer Schaumstoff entsteht.
    Außerdem sind in dem Kunststoff-Füllmaterial 3 Hartkörper derselben Art oder verschiedener Art eingebettet. Diese Hartkörper, vorzugsweise aus Metall, können Hohlkugeln 6, Metallschaumbruchstücke 7, kurze gebogene Metallspäne 8 oder sogenanntes spratziges Metallkorn 9 sein. Wichtig ist, daß diese Hartkörper 6-9 im umgeformten fertigen Bauteil senkrecht zur Ebene des Doppellagenbleches eine geringere Ausdehnung als der Abstand d der Deckbleche 1,2 haben. In der Blechebene sollten die einzelnen Hartkörper einen größeren Durchmesser als den Abstand d der Deckbleche 1,2 haben, während ihre Abstände im geometrischen Mittel in der Blechebene das 3 bis 7fache des Abstandes d der Deckbleche 1,2 betragen sollte. Die Summe der in Z-Richtung zwei möglichen Abstände der Hartkörper 6-9 zu den Deckblechen 1,2 sollte 2% bis 8% des Abstandes der Deckbleche 1,2 im fertig umgeformten Bauteil betragen.
    Auch ist von Bedeutung, daß die Hartkörper 6-9 zumindest teilweise scharfkantig sind, um das als Matrix dienende Füllmaterial 3 durchschneiden und vor der Vollaushärtung in der Lackeinbrenneinrichtung die Deckbleche 1,2 elektrisch kontaktieren zu können. Als besonders geeignet hat sich die Herstellung und Verwendung von Spänen aus Aluminiumdruckguß herausgestellt, weil sie zu einem ¾-Kreis (3 bis 8 mm Durchmesser) gebogen abbrechen und genügend scharfkantig sind bei Spandicken von 0,2 bis 0,4 mm.
    Die Herstellung des beschriebenen Doppellagenbleches erfolgt in der Weise, daß auf das Deckblech 2 mit nach oben gerichteten Noppen 4 das Füllmaterial 3 entweder durch Extrusion oder in Form einer teilausgehärteten entsprechend der Verteilung der Noppen 4 gelochten Matte aufgetragen wird. Die metallenen Hartkörper 6-9, die zum Beispiel 1-3% des Gewichts des ganzen Doppellagenbleches ausmachen, haben einen größeren Durchmesser beziehungsweise Höhe als der spätere Abstand d der Deckbleche 1,2. Das Füllmaterial wird gegenüber den Stirnflächen 5 der Noppen 4 etwas überhöht aufgetragen. Dann wird das Deckblech 1 aufgelegt, an den Noppen druckbeaufschlagt und an den Stirnflächen 5 der Noppen verschweißt, dann vollständig bis auf den Abstand d druckbeaufschlagt, um die Füllmasse zu verteilen. Nach einer Teilaushärtung des Füllmaterials 3 erfolgt eine erneute Druckbeaufschlagung in einem geeigneten Werkzeug (Tiefziehwerkzeug, Walzenpaar, Presse) derart, daß die zu großen Hartkörper 6-9 auf eine Größe verkleinert werden, die kleiner als der spätere Abstand d der Deckbleche 1,2 ist. Aufgrund der Noppen- und Schaum-Elastizität federt es nach Druckentlastung bis auf die Dicke d zurück. Die volle Aushärtung erfolgt entweder sofort danach oder beim späteren Einbrennlackieren.
    Sofern das Doppellagenblech umgeformt werden soll, um es zum Beispiel im Fahrzeugbau einzusetzen, erfolgt die Umformung, insbesondere das Tiefziehen, vor der vollen Aushärtung nach der Teilaushärtung. Dieser Zustand ist für das Umformen gut geeignet. Beim Umformen kann zwar ein Brechen und teilweises Ablösen der Zwischenschicht von den Deckschichten stattfinden, doch wird diese Erscheinung wieder rückgängig gemacht, weil sich die Poren um ca. 10% linear ausdehnen und die noch klebefähige Masse an die Gurte drücken. Es hat sich auch gezeigt, daß insbesondere ein wie oben beschrieben hergestellter Duroplastschaum bei der Vollaushärtung bei Temperaturen bis über 200°C über 20 Minuten nicht ausfließt, so daß die Lackierung bei der Lackeinbrennung nicht durch Tropfenlauf beschädigt wird.

    Claims (17)

    1. Doppellagenblech aus zwei einen Zwischenraum zwischen sich bildenden Deckblechen, von denen mindestens ein Deckblech als Noppenblech ausgebildet und an seinen Noppenspitzen mit dem anderen Deckblech verschweißt oder angelötet ist, und aus einem den Zwischenraum ausfüllenden Füllmaterial aus mindestens zwei verschiedenartigen Stoffen,
      dadurch gekennzeichnet, daß das Verhalten des Füllmaterials beim Zusammendrücken des Doppellagenbleches durch eine Biegelast durch mindestens zwei in Richtung senkrecht zur Blechebene maßgebende Elastizitätsmoduli gekennzeichnet ist, wobei das Füllmaterial aus Kunststoff als Matrix mit darin eingebetteten Partikeln aus einem den härteren Elastizitätsmodul bestimmenden Material ausgebildet ist und die Ausdehnung der Partikel in Richtung senkrecht zur Blechebene 2% bis 8% kleiner als der Abstand der Deckbleche ist.
    2. Doppellagenblech nach Anspruch 1,
      dadurch gekennzeichnet, daß das Füllmaterial mit den Deckblechen vollflächig verklebt ist.
    3. Doppellagenblech nach Anspruch 1 oder 2,
      dadurch gekennzeichnet, daß der weichere Elastizitätsmodul kleiner als 50 MPa ist.
    4. Doppellagenblech nach einem der Ansprüche 1 bis 3,
      dadurch gekennzeichnet, daß der härtere Elastizitätsmodul größer als 500 MPa ist.
    5. Doppellagenblech nach einem der Ansprüche 1 bis 4,
      dadurch gekennzeichnet, daß der härtere Elastizitätsmodul wesentlich kleiner als 210.000 MPa ist.
    6. Doppellagenblech nach einem der Ansprüche 1 bis 5,
      dadurch gekennzeichnet, daß der elastische Kunststoff porös ist.
    7. Doppellagenblech nach einem der Ansprüche 1 bis 6,
      dadurch gekennzeichnet, daß der Elastizitätsmodul des Füllmaterials ohne die eingebetteten Partikel kleiner als 20 MPa ist.
    8. Doppellagenblech nach Anspruch 6 ,
      dadurch gekennzeichnet, daß der poröse Kunststoffeinen Anteil an gegeneinander abgeschlossene Poren von bis zu 70 Vol% enthält.
    9. Doppellagenblech nach einem der Ansprüche 1 bis 8,
      dadurch gekennzeichnet, daß das Füllmaterial als eingebettete Partikel, die den im wesentlichen härteren Elastizitätsmodul bestimmen, Hartkörper bis zu 10 Vol% oder bis zu 5% des Gewichtes des Doppellagenbleches enthält.
    10. Doppellagenblech nach Anspruch 9,
      dadurch gekennzeichnet, daß die Hartkörper aus Glas, Keramik oder Metall bestehen.
    11. Doppellagenblech nach Anspruche 9 oder 10,
      dadurch gekennzeichnet, daß der gegenseitige Abstand aller Hartkörper in der Blechebene im Durchschnitt das 3- bis 7-fache des Abstandes der Deckbleche beträgt.
    12. Doppellagenblech nach Anspruch 11,
      dadurch gekennzeichnet, daß die Hartkörper als Hohlkörper, gebogene Späne, Schaum, spratziges Korn oder Hohlpulver ausgebildet sind.
    13. Doppellagenblech nach einem der Ansprüche 10 bis 12,
      dadurch gekennzeichnet, daß die metallenen Hartkörper aus Stahl, Titan, Aluminium oder Magnesium bestehen.
    14. Doppellagenblech nach einem der Ansprüche 1 bis 13,
      dadurch gekennzeichnet, daß der Kunststoff für das Füllmaterial unter Wärme zu einem zähen Zustand aushärtet.
    15. Doppellagenblech nach Anspruch 14,
      dadurch gekennzeichnet, daß der Kunststoff bei Temperaturen zwischen 150°C und 230°C voll aushärtet.
    16. Verfahren zum Herstellen eines Doppellagenbleches nach Anspruch 1,
      gekennzeichnet durch folgende Schritte:
      a) Auf die genoppte Seite des Noppenbleches wird das Füllmaterial aus Kunststoff mit den darin eingebetteten Partikeln aufgetragen, deren Elastizitätsmodul härter als der des Kunststoffes ist und die eine Erstreckung senkrecht zur Blechebene haben, die mindestens so groß wie der Abstand der Deckbleche ist.
      b) Das andere Deckblech wird aufgelegt, angedrückt und an das Noppenblech im Bereich der Noppenspitzen angeschweißt oder hartgelötet.
      c) Nach einer Teilaushärtung des Kunststoffes wird das Doppellagenblech mit Druck derart beaufschlagt, daß die Partikel verformt und auf eine unter dem Abstand der Deckbleche liegende Größe verkleinert werden, so daß sie nach Druckentlastung eine um 2% bis 8% unter dem Abstand der Deckbleche liegende Erstreckung senkrecht zur Blechebene haben.
      d) Nach Druckentlastung wird das Füllmaterial zu einem zähen Zustand ausgehärtet.
    17. Verfahren nach Anspruch 16,
      dadurch gekennzeichnet, daß nach Anschweißen oder Anlöten des Deckbleches an den Noppenspitzen das Füllmaterial durch Nachdrücken des Deckbleches in verbliebene Zwischenräume verteilt wird.
    EP99915552A 1998-03-12 1999-03-09 Doppellagenblech aus zwei deckblechen und einer zwischenlage Expired - Lifetime EP1062397B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19810706 1998-03-12
    DE19810706A DE19810706C2 (de) 1998-03-12 1998-03-12 Doppellagenblech aus zwei Deckblechen und einer Zwischenlage
    PCT/EP1999/001513 WO1999046461A1 (de) 1998-03-12 1999-03-09 Doppellagenblech aus zwei deckblechen und einer zwischenlage

    Publications (2)

    Publication Number Publication Date
    EP1062397A1 EP1062397A1 (de) 2000-12-27
    EP1062397B1 true EP1062397B1 (de) 2003-05-21

    Family

    ID=7860614

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99915552A Expired - Lifetime EP1062397B1 (de) 1998-03-12 1999-03-09 Doppellagenblech aus zwei deckblechen und einer zwischenlage

    Country Status (4)

    Country Link
    US (1) US6428905B1 (de)
    EP (1) EP1062397B1 (de)
    DE (2) DE19810706C2 (de)
    WO (1) WO1999046461A1 (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2019158396A1 (de) 2018-02-19 2019-08-22 Audi Ag Verstärkungsmittel und verfahren zur hohlraumverstärkung einer rohbaustruktur

    Families Citing this family (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AU6100200A (en) * 1999-07-14 2001-02-05 Material Sciences Corporation Vibration isolating construction
    DE10223367A1 (de) * 2002-05-25 2003-12-04 Bosch Gmbh Robert Kraftfahrzeug und Karosserieelement
    DE10321752B3 (de) * 2003-05-15 2005-01-13 Thyssenkrupp Automotive Ag Relativ ebenes Blech oder Blechabschnitt
    NL1023811C2 (nl) * 2003-07-03 2005-01-04 Stork Fokker Aesp Bv Laminaat met plaatselijke versterking.
    DE102006043197B3 (de) * 2006-09-11 2008-04-30 Thyssenkrupp Steel Ag Strukturiertes Verbundblech
    US7810875B2 (en) * 2007-10-05 2010-10-12 Mark Von Edward Genaddi Gerisch Structural pan-chassis stabilization system
    US7819452B2 (en) * 2008-05-12 2010-10-26 United States Council For Automotive Research Automotive structural joint and method of making same
    EP2328749B1 (de) 2008-08-18 2019-09-25 Productive Research LLC. Formbare leichte verbundstoffe
    DE102009029814C5 (de) * 2009-06-18 2017-01-26 Rheinmetall Landsysteme Gmbh Vorrichtung zur Energieabsorption und Verwendung der Vorrichtung als Minen-Schutzvorrichtung oder Aufpralldämpfer für ein Kraftfahrzeug
    KR20170103030A (ko) 2009-12-28 2017-09-12 프로덕티브 리서치 엘엘씨 복합 재료의 용접 공정 및 그로부터 제조된 제품
    KR102032405B1 (ko) 2010-02-15 2019-10-16 프로덕티브 리서치 엘엘씨 성형가능한 경량 복합 재료 시스템 및 방법
    CN105415769B (zh) 2011-02-21 2019-07-16 多产研究有限责任公司 包括不同性能的区域的复合材料和方法
    US9233526B2 (en) 2012-08-03 2016-01-12 Productive Research Llc Composites having improved interlayer adhesion and methods thereof
    DE102014005262A1 (de) * 2014-04-10 2015-10-15 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Flächenbauteilanordnung für eine Fahrzeugkarosserie, Fahrzeugkarosserie mit der Flächenbauteilanordnung und Verfahren zum Verschweißen eines Flächenbauteils der Flächenbauteilanordnung
    US9527370B2 (en) * 2014-06-26 2016-12-27 Ford Global Technologies, Llc Damping and stiffening of a vehicle body panel
    DE102014017689A1 (de) * 2014-11-24 2016-05-25 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Verbundwerkstoffes mit schweißbarem Flansch
    CN105135199B (zh) * 2015-07-16 2018-07-13 大连理工大学 能够集中振动响应的结构、变厚度减振降噪结构及减振板材
    US11338552B2 (en) 2019-02-15 2022-05-24 Productive Research Llc Composite materials, vehicle applications and methods thereof
    CN114147084B (zh) * 2021-11-09 2024-04-30 湖北塑金复合材料有限责任公司 一种复合管用涂胶打孔铝带及其制备方法

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3256669A (en) * 1963-10-08 1966-06-21 Ohio Metalsmiths Corp Sandwich panel
    JPS4865168A (de) * 1971-12-06 1973-09-08
    DE3215616C2 (de) 1982-04-27 1984-12-13 Ford-Werke AG, 5000 Köln Verfahren zum Herstellen von Verbundbauteilen in Sandwichbauweise, insbesondere für Kraftfahrzeuge
    US5401347A (en) * 1992-12-18 1995-03-28 Shuert; Lyle H. Method of making a panel structure and pallet utilizing same
    CH680994A5 (de) * 1989-07-31 1992-12-31 Tesch G H
    US5228252A (en) * 1992-01-02 1993-07-20 Unistrut International Corp. Floor panel used in raised flooring with interlocking domes
    DE19503166C2 (de) * 1995-02-01 1997-03-13 Thyssen Stahl Ag Verfahren zur Herstellung von Doppellagenblechen
    DE19606981C2 (de) * 1996-02-24 2001-12-13 Thyssenkrupp Stahl Ag Verfahren zur Herstellung von Leichtbaubändern oder Leichtbaublechen
    DE19735421C2 (de) * 1997-08-15 2001-12-06 Thyssenkrupp Stahl Ag Doppellagenblech, Verfahren zu seiner Herstellung und Verwendung eines derartigen Doppellagenblechs

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2019158396A1 (de) 2018-02-19 2019-08-22 Audi Ag Verstärkungsmittel und verfahren zur hohlraumverstärkung einer rohbaustruktur

    Also Published As

    Publication number Publication date
    EP1062397A1 (de) 2000-12-27
    DE19810706C2 (de) 2002-09-12
    DE19810706A1 (de) 1999-09-16
    DE59905644D1 (de) 2003-06-26
    WO1999046461A1 (de) 1999-09-16
    US6428905B1 (en) 2002-08-06

    Similar Documents

    Publication Publication Date Title
    EP1062397B1 (de) Doppellagenblech aus zwei deckblechen und einer zwischenlage
    DE102006043197B3 (de) Strukturiertes Verbundblech
    DE2821194C2 (de) Bremskörper für Scheibenbremsen
    DE2753559C2 (de) Schichtkörper aus zwei Schichten aus Grundmaterialien mit Poren oder Zwischenräumen
    WO2002002963A1 (de) Belag, insbesondere reibbelag für scheibenbremsen
    DE1205343B (de) Gleitlagerteil oder Dichtung
    DE60214661T2 (de) Radausgleichsgewicht und Methode dessen Herstellung
    EP1129300B1 (de) Gerollte gleitlagerbuchse
    CH704363A1 (de) Verbundprofil für Fenster, Türen und Fassaden sowie Verfahren zu dessen Herstellung.
    DE19901313C1 (de) Verbundwerkstoff in Band- oder Tafelform aus zwei miteinander widerstandsverschweißbaren Deckblechen aus Stahl und einer Zwischenlage aus einem Füllstoff, Verfahren zu seiner Herstellung und Anlage zur Durchführung des Verfahrens
    DE10021975A1 (de) Metallische Flachdichtung
    DE2927247A1 (de) Metallisches bauteil mit gleitschicht und verfahren zum aufbringen von dicken auflagen aus kunststoffen mit geringem reibungsbeiwert auf eine metallflaeche
    EP0442052B1 (de) Reibbelag für Scheibenbremsen, insbesondere für Strassenfahrzeuge und Schienenfahrzeuge
    DE102013007700A1 (de) Verbundplatte
    DE112006003338T5 (de) Verfahren zur Herstellung einer Dichtung sowie die Dichtungen
    DE8203435U1 (de) Haltekörper zum Befestigen einer Abdichtungsfolie aus Kunststoff auf einer Unterlage
    DE3225420A1 (de) Dichtungsanordnung und verfahren zu ihrer herstellung
    DE4033780A1 (de) Sandwichbauteil mit einer formgebungsschicht fuer ski
    DE102020208930B4 (de) Brennstoffzellengehäuse, Brennstoffzelle und Verfahren zum Herstellen eines Brennstoffzellengehäuses
    DE1960916C3 (de) Verfahren zur Herstellung eines biegungssteifen Sandwichgebildes
    AT407279B (de) Verfahren zum zusammenbauen von isolierglas mit einem thermoplastischen abstandhalter
    EP3217102A1 (de) Wärmetauschervorrichtung
    EP1611262B1 (de) Verfahren zur versteifung eines bauteils aus verformbarem zellularmaterial, der bauteil und seine verwendung
    DE69915032T2 (de) Verfahren zur herstellung eines sandwichelements und kernmaterial hierfür
    DE3741692C2 (de) Verfahren zur Herstellung eines Verbundteiles sowie Verbundteil

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE GB

    17P Request for examination filed

    Effective date: 20000831

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: THYSSENKRUPP STAHL AG

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): DE GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59905644

    Country of ref document: DE

    Date of ref document: 20030626

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040309

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040224

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041001

    GBPC Gb: european patent ceased through non-payment of renewal fee