EP1062061B1 - Laminoir a chaud pour fines bandes avec enroulement a grande vitesse de chaque bande - Google Patents

Laminoir a chaud pour fines bandes avec enroulement a grande vitesse de chaque bande Download PDF

Info

Publication number
EP1062061B1
EP1062061B1 EP00901321A EP00901321A EP1062061B1 EP 1062061 B1 EP1062061 B1 EP 1062061B1 EP 00901321 A EP00901321 A EP 00901321A EP 00901321 A EP00901321 A EP 00901321A EP 1062061 B1 EP1062061 B1 EP 1062061B1
Authority
EP
European Patent Office
Prior art keywords
strip
rolling mill
output section
rollers
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00901321A
Other languages
German (de)
English (en)
Other versions
EP1062061A1 (fr
Inventor
Joachim SCHÖNBECK
Antonino Rossi
Corrado Rovelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group SpA
Original Assignee
SMS Demag Innse SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11381428&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1062061(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SMS Demag Innse SpA filed Critical SMS Demag Innse SpA
Publication of EP1062061A1 publication Critical patent/EP1062061A1/fr
Application granted granted Critical
Publication of EP1062061B1 publication Critical patent/EP1062061B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B39/00Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B39/02Feeding or supporting work; Braking or tensioning arrangements, e.g. threading arrangements
    • B21B39/12Arrangement or installation of roller tables in relation to a roll stand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips

Definitions

  • the invention relates to the hot rolling of thin strip, i.e. metal strip of a thickness of less than 1 ⁇ 1.5 mm.
  • Hot working requires, however, particular measures: for instance the speed of output of the strip must in certain cases be kept below predetermined limits because otherwise the head of the strip might be lifted as a result of air resistance.
  • the strip advances too rapidly in the output section of the rolling mill (i.e. the part of the mill which is downstream the last rolling stand), there is a risk that its head might strike the guide rolls on which it is moving: following such impacts, it would be deflected upwards so that a part of the strip would be raised from the roll train as a result of air resistance, thereby making its control and subsequent winding on the reel problematic.
  • a continuous rolling technique (also called “endless”), in which a single initial strip is cut at the end of rolling, into sections of predetermined length which are then wound as respective coils.
  • the strip is obtained from a bar of multiple weight than that of the final coils to be produced, which may in turn be obtained either by joining smaller bars using conventional roughing plants or by thin slab casting.
  • This special equipment generally entails some increase in costs, such that plants for the endless rolling of thin strip can be considered rather expensive.
  • JP-A-09192717 discloses a rolling mill according to this state of the art.
  • the technical problem underlying this invention is therefore that of providing a hot rolling mill with structural and operational features suitable to overcome the limits of the state of the art described above.
  • the invention aims to provide a rolling mill for hot working of thin strip, in which the strip is fed in a controlled manner in order to avoid any risk of its lifting in the case of high speeds; a rolling mill of this type is therefore an alternative to rolling mills of endless type and is able to produce successive batches of strip without the drawbacks described above.
  • reference 1 indicates overall the output section of a rolling mill according to the invention, upstream and downstream of which there are disposed finishing stands 2 (known per se) for the final rolling of a strip N.
  • the section 1 comprises a series of driven rollers 3 adapted to feed the strip, and a station 4 for the detection of its geometrical characteristics (thickness, shape, width) upstream and downstream of which there are located generators of air jets 5, 6, which will be better described below.
  • a cooling station 8 Downstream the first drive unit 7 there is provided a cooling station 8 which, in accordance with a preferred embodiment of the invention, is of the ultra-fast cooling type or UFC; this kind of station, indeed, is able to remove large quantities of heat by supplying relevant flows of cooling fluid and are generally used in the rolling of large thickness plates, in order to improve their mechanical properties (likewise a hardening treatment).
  • a second drive unit 9 similar to the first one but with its operating rolls oriented so as to deflect the plane of movement of the strip N towards a winding reel 10, is arranged after the cooling station 8; as can be seen from the accompanying drawings, this winding reel is advantageously disposed above the horizontal feeding direction of the strip coming out from the stands 2. This positioning allows for simple installation on the roll trains of existing plants, without the need for excessive modification of their foundations or of the collection duct for the fluid used to cool the strip.
  • the position of the reel could however be different from that described above; for instance it could also be disposed lower with respect to the horizontal feeding direction of the strip, as shown by the dashed line in Fig. 1.
  • the reel 10 comprises a spindle 11 wherein the strips arriving one after the other are wound and around which pressure rolls 12 are arranged in a known manner; between the second drive unit 9 and the reel 10 there are disposed guides 13, adapted to direct the head of each strip N towards the spindle 11 on which it is then wound.
  • the generators of air jets 5, 6, may take the form of fans or compressors appropriately provided with air supply ducts, or of nozzles supplied with compressed air from the distribution network of the industrial plant in which the rolling mill is located.
  • the task of these generators is to exert a pressure on the upper surface of the strip N being fed along the output section of the rolling mill 1, in order to keep it flattened against the rollers way formed by the rollers 3; the air velocity thus has a vertical downwardly facing component (with reference to the drawings).
  • the blown air may also have a horizontal velocity component parallel to the surface of the strip and greater than the feeding speed of the latter: the generators 5 and 6 thus direct the air jets in an inclined manner with respect to the strip in order to obtain the effects referred before.
  • the rolling mill in which the output section 1 described above is located operates as follows; it should be stressed that the rolling mill structure upstream of this section has not been considered in detail here, since it is of secondary importance for the purposes of understanding the present invention.
  • a strip N being processed reaches the output section 1 on the rollers way 3 from which it is caused to advance towards the winding reel 10; at this stage the generators 5, 6 are actuated so that the air jets they produce, keep the strip pressed against the rolls 3.
  • the movement of the strip N is thus controlled by the air in order to enable its correct engagement with the first drive unit 7, which helps to feed it in a guided manner; in this respect it should be noted that these units are provided with guide members (not shown) adapted to guide the free end of the strip towards the rolls. It should also be noted that at this stage water is sprayed on the strip in the cooling station 8, thereby helping to hold it pressed against the motor-driven rollers 3 up to the second drive unit 9.
  • This unit 9 then deflects the direction of feed of the strip N towards the reel 10; this result is obtained by means of the inclination of its rolls as shown in the drawings, which deflect the strip who is then conveyed by the guides 13 towards the spindle 11 and the pressure rollers 12 so that it can be wound in a manner similar to that normally used in the art.
  • the wound strip is then removed from the spindle and the reel is ready to receive a new strip as it arrives; it should be noted in this respect that in the rolling mill of the invention there is a dead time between a strip and the next one, during which the last coil wound can be removed.
  • the strip is controlled aerodynamically in the output section 1, by exerting a pressure on it that avoid separation thereof from the roller way; this solution is very efficient and operationally flexible and can be applied in the case of high strip speeds (the speed of the air flow can be adjusted at will to increase or decrease the pressure on the strip).
  • the aerodynamic control of the strip according to the teaching of the present invention can therefore be advantageously used in new rolling mill plant and in existing plants as well.
  • the air jets may be readily adjusted to improve the control of the strip; for instance, it is possible to adjust the pressure exerted by the air in the direction of the width of the strip so as to curve its section and make it more resistant to longitudinal bending and less sensitive to the destabilising phenomena described above.
  • a velocity component of the air parallel to that of feeding the strip is created in this way; as this component is greater than the feeding speed of the strip, it prevents the latter from being lifted since it forces the fore head thereof downwards when it is deflected upwards by the impacts with the rolls 3.
  • the horizontal velocity component also makes it possible to avoid exerting an excessive pressure on the strip perpendicular thereto.
  • FIGs. 2 and 3 An example of this is shown in Figs. 2 and 3, wherein the first one shows a number of positions in which it is possible to locate a device for measuring planarity 20 with a tensiometric roller 21 along the output section of Fig. 1, while the second shows a particular embodiment of this roller in greater detail.
  • tensiometric rollers are already known in the field of rolling where they are used to measure the planarity of strips, i.e. the presence of undulations in their configuration due to differing deformation between their edge and their centre.
  • tensiometric rollers are rollers split longitudinally into cylindrical sections, adjacent to one another and idle with respect to a same axis transverse to the strip; the tensiometric roller is brought into contact with the strip by urging it against the strip and slightly deflecting its run.
  • tensiometric rollers are usually disposed between the final rolling stands (i.e., with reference to Fig. 1, between the stands 2 shown therein); this means, however, that the planarity measurement carried out does not take account of the deformation due to the final stand, which must be evaluated using theoretical models and algorithms with all the limitations arising therefrom.
  • the time interval that can be used to carry out the planarity measurement and make the necessary corrections to rolling before the strip is wound on the spindle of the reel is around 10 seconds.
  • This device may preferably be disposed immediately after the final rolling stand 2 or immediately before the second drive unit 9, as shown in Fig. 2 in which the tensiometric roller is shown respectively by 21' in the former case and by 21" in the latter case.
  • the above-mentioned device is formed by the tensiometric roller 21 and by a returning roller 22 which is disposed on the opposite side of the former with respect to the strip N, in a position facing the adjacent motor-driven roll 3.
  • both rollers 21 and 22 are spaced from the strip; when the planarity measurement is to be carried out the tensiometric roller 21 is urged upwards and the returning roller 22 downwards so as to bring the strip immediately back into the normal plane of feed.
  • the tensiometric roller 21 provides the desired measurement according to its normal operation.
  • FIG. 3 A possible embodiment of the device 20 is shown on an enlarged scale in Fig. 3, where reference is made to its position immediately downstream of the final stand 2.
  • the roller 3' When it is not necessary to measure the planarity of the strip, the roller 3' is in the position aligned with the other adjacent rollers 3 (as shown in dashed lines in Fig. 3) and the strip slides on it while the tensiometric roller is distanced; vice versa, when this measurement is to be carried out the tensiometric roller 21 is raised causing the frame 23 to oscillate, and at the same time distancing the roller 3'.
  • the returning roller 22 is mounted on an arm 28 that also oscillates with respect to a base 29 secured to the bearing structure S of the rolling stand 2.
  • planarity measurement device as designed above has the advantage of limiting the wear of the tensiometric roller, thereby ensuring that the measurements provided are reliable; it will be appreciated that this device may also he subject to many variants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)
  • Laminated Bodies (AREA)

Claims (14)

  1. Laminoir à chaud pour fines bandes (N), comprenant une section de sortie (1) s'étendant entre une cage de laminoir finale (2) et au moins un enrouleur (10), un chemin de rouleaux commandés (3) disposé longitudinalement par rapport à cette section et le long duquel la bande est avancée, des moyens (5, 6) du type aérodynamique disposés le long de ladite section de sortie pour empêcher la bande d'être soulevée du chemin de rouleaux, caractérisé en ce que
    la section de sortie comprend une unité d'entraínement (9) disposée le long du chemin de rouleaux (3) et avant ledit au moins un enrouleur (10), et dans lequel
    l'enrouleur (10) est disposé à une hauteur supérieure à celle du chemin de rouleaux (3) et l'unité d'entraínement est d'un type qui peut être orientée pour dévier les bandes (N) vers l'enrouleur.
  2. Laminoir selon la revendication 1, dans lequel les moyens du type aérodynamique comprennent des jets de fluide gazeux dirigés sur la surface supérieure de la bande (N) se déplaçant le long du chemin de rouleaux (3).
  3. Laminoir selon la revendication 2, dans lequel les jets de fluide gazeux sont inclinés par rapport à la surface supérieure de la bande (N) et la composante de vitesse du fluide parallèle à la vitesse de déplacement de la bande est supérieure à cette dernière.
  4. Laminoir selon la revendication 3, dans lequel il y a des jets de fluide dirigés perpendiculairement à la surface supérieure de la bande (N) et des jets de fluide dirigés parallèlement à celle-ci, ces derniers ayant une vitesse du fluide supérieure à celle de la bande (N).
  5. Laminoir selon l'une quelconque des revendications 2 à 4, dans lequel le fluide gazeux est de l'air.
  6. Laminoir selon l'une quelconque des revendications précédentes, dans lequel les moyens du type aérodynamique adaptés pour empêcher la bande (N) d'être soulevée du chemin de rouleaux (3) comprennent des moyens destinés à produire le vide sous la bande.
  7. Laminoir selon l'une quelconque des revendications précédentes, dans lequel la section de sortie (1) comprend un poste de refroidissement (8) du type ultra-rapide.
  8. Laminoir selon la revendication 7, dans lequel la section de sortie (1) comprend un première unité d'entraínement (7) située en amont du poste de refroidissement (8) le long du chemin de rouleaux (3).
  9. Laminoir selon l'une quelconque des revendications précédentes, dans lequel un dispositif de mesure (20) qui mesure la planéité des bandes (N) et qui comprend un rouleau tensiométrique (21), est agencé dans la section de sortie (1).
  10. Laminoir selon la revendication 9, dans lequel le dispositif de mesure (20) est disposé au début de la section de sortie (1) dans une position adjacente à la cage de laminoir finale (2).
  11. Laminoir selon la revendication 9, dans lequel le dispositif de mesure (20) est disposé à la fin de la section de sortie (1) avant la seconde unité d'entraínement (9).
  12. Laminoir selon la revendication 9, dans lequel le dispositif de mesure (20) est disposé en aval de la seconde unité d'entraínement (9).
  13. Laminoir selon l'une quelconque des revendications 9, 10 et 11, dans lequel le dispositif de mesure (20) comprend un cadre (23) mobile par rapport à la bande (N) devant être mesurée, sur lequel sont montés le rouleau tensiométrique (21) et un rouleau (3') similaire aux rouleaux (3) qui forment le chemin de rouleaux le long duquel la bande est avancée.
  14. Laminoir selon l'une quelconque des revendications 9, 10, 11 et 13, dans lequel le rouleau tensiométrique (21) agit sur la surface inférieure de la bande (N) devant être mesurée et le dispositif de mesure (20) comprend en outre un rouleau de retour (22) agissant sur la surface supérieure de la bande, en face d'un rouleau (3) du chemin de rouleaux le long duquel la bande est avancée.
EP00901321A 1999-01-11 2000-01-07 Laminoir a chaud pour fines bandes avec enroulement a grande vitesse de chaque bande Expired - Lifetime EP1062061B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI990021 1999-01-11
IT1999MI000021A IT1306927B1 (it) 1999-01-11 1999-01-11 Laminatoio a caldo per nastri sottili con avvolgimento ad altavelocita' di nastri singoli
PCT/IT2000/000006 WO2000041823A1 (fr) 1999-01-11 2000-01-07 Laminoir a chaud pour fines bandes avec enroulement a grande vitesse de chaque bande

Publications (2)

Publication Number Publication Date
EP1062061A1 EP1062061A1 (fr) 2000-12-27
EP1062061B1 true EP1062061B1 (fr) 2004-03-24

Family

ID=11381428

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00901321A Expired - Lifetime EP1062061B1 (fr) 1999-01-11 2000-01-07 Laminoir a chaud pour fines bandes avec enroulement a grande vitesse de chaque bande

Country Status (6)

Country Link
EP (1) EP1062061B1 (fr)
AT (1) ATE262384T1 (fr)
DE (1) DE60009212T2 (fr)
ES (1) ES2218105T3 (fr)
IT (1) IT1306927B1 (fr)
WO (1) WO2000041823A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10001074A1 (de) * 2000-01-13 2001-07-19 Sms Demag Ag Warmwalzwerk mit Planheitsmeßrolle
DE10131850B4 (de) 2001-06-30 2013-04-25 Sms Siemag Aktiengesellschaft Dünnbandhaspel mit Planheitsmeßrolle
DE102007045698A1 (de) * 2006-09-25 2008-04-03 Sms Demag Ag Verfahren und Vorrichtung zum Aufwickeln von Metallbändern auf einen Wickeldorn
CN105695727B (zh) * 2014-11-28 2018-01-30 宝山钢铁股份有限公司 一种钢板在线固溶处理的板形控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1153708B (de) * 1962-06-08 1963-09-05 Schloemann Ag Foerderrollgang zum Fuehren von duennen Baendern zwischen kontinuierlicher Walzenstrasse und Horizontalhaspel
DE3721746A1 (de) * 1987-07-01 1989-01-19 Schloemann Siemag Ag Verfahren und vorrichtung zur messung der planheit von walzband in warmbreitbandstrassen
JP2763641B2 (ja) * 1990-01-31 1998-06-11 日新製鋼株式会社 ホットランテーブル上のストリップのループ除去制御方法
JPH07323321A (ja) * 1994-05-31 1995-12-12 Kawasaki Steel Corp 熱延鋼帯の通板方法
JPH08174031A (ja) * 1994-12-22 1996-07-09 Kawasaki Steel Corp 熱間圧延ラインのホットランテーブル上における通板方法
JP3389395B2 (ja) * 1996-01-10 2003-03-24 新日本製鐵株式会社 熱間圧延におけるストリップ搬送方法および装置

Also Published As

Publication number Publication date
WO2000041823A1 (fr) 2000-07-20
DE60009212D1 (de) 2004-04-29
IT1306927B1 (it) 2001-10-11
EP1062061A1 (fr) 2000-12-27
ITMI990021A1 (it) 2000-07-11
ATE262384T1 (de) 2004-04-15
ES2218105T3 (es) 2004-11-16
DE60009212T2 (de) 2004-08-19

Similar Documents

Publication Publication Date Title
JP3929147B2 (ja) 巻き取り設備
US20060010679A1 (en) Apparatus for continuously producing a rolled metal strip from a metal melt
US8459083B2 (en) Guiding system for a metal strip at a rolling mill outlet
EP2623221A1 (fr) Dispositif de fabrication et procédé de fabrication d'acier en bandes laminé à chaud
KR100216641B1 (ko) 열간압연 방법 및 장치
US6332492B1 (en) Method to control the axial position of slabs emerging from continuous casting and relative device
EP1062061B1 (fr) Laminoir a chaud pour fines bandes avec enroulement a grande vitesse de chaque bande
US10583473B2 (en) Method and device for stabilizing a movement of a rolled metal band on a roller table
JP4114701B2 (ja) 熱延鋼帯の冷却装置と、その冷却方法および熱延鋼帯の製造方法
US7318267B2 (en) Strip production equipment
US20230294153A1 (en) Straightening machine and method for straightening a metal strip or a flat metal part
CN111229835B (zh) 一种包角可调式拉伸弯曲矫直机
US6519990B1 (en) Method and a device for controlling a rolling mill
JP3004780B2 (ja) 圧延材の先端曲り矯正方法及び装置並びに熱間薄板圧延設備
US2796908A (en) Multiple roller levellers for metal strip
JP7343819B2 (ja) 曲げ加工装置、鋼矢板の製造設備、曲げ加工方法、及び、鋼矢板の製造方法
JP7332995B2 (ja) デフレクターロール及びそのデフレクターロールを用いた鋼板の製造方法
US5860311A (en) Method to guide the strip between the stands in a rolling mill finishing train and relative device
KR101353790B1 (ko) 스트립 장력조정 장치
EP0032766B1 (fr) Procédé et dispositif pour laminer des longueurs de barres ou de fils métalliques
JPH08300010A (ja) 熱間圧延方法および装置
JP2023503902A (ja) 圧延装置及び、圧延装置を用いた圧延方法
CN115591954A (zh) 一种灵活生产金属带的冷却系统、生产线及生产方法
KR20170012641A (ko) 핀치롤 장치 및 이를 포함하는 스트립 권취 설비
JP2000225410A (ja) 熱間圧延におけるストリップ搬送方法および装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030227

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60009212

Country of ref document: DE

Date of ref document: 20040429

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040624

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040624

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040624

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2218105

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050107

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050107

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050107

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

26 Opposition filed

Opponent name: SIEMENSABTEILUNG: CT IP TS

Effective date: 20041213

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040824

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20091221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160127

Year of fee payment: 17

Ref country code: ES

Payment date: 20160126

Year of fee payment: 17

Ref country code: IT

Payment date: 20160125

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160127

Year of fee payment: 17

Ref country code: GB

Payment date: 20160127

Year of fee payment: 17

Ref country code: FR

Payment date: 20160126

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60009212

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170107

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170107

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170108

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181113