EP1061641B1 - Système d'entraínement pour moteur sans balais equipé avec des capteurs de Hall reconnaissant la différence de phase entre les capteurs installés - Google Patents

Système d'entraínement pour moteur sans balais equipé avec des capteurs de Hall reconnaissant la différence de phase entre les capteurs installés Download PDF

Info

Publication number
EP1061641B1
EP1061641B1 EP99830243A EP99830243A EP1061641B1 EP 1061641 B1 EP1061641 B1 EP 1061641B1 EP 99830243 A EP99830243 A EP 99830243A EP 99830243 A EP99830243 A EP 99830243A EP 1061641 B1 EP1061641 B1 EP 1061641B1
Authority
EP
European Patent Office
Prior art keywords
phasing
sensors
decoding
logic
effect sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99830243A
Other languages
German (de)
English (en)
Other versions
EP1061641A1 (fr
Inventor
Domenico Arrigo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SRL
Original Assignee
STMicroelectronics SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SRL filed Critical STMicroelectronics SRL
Priority to DE69909449T priority Critical patent/DE69909449T2/de
Priority to EP99830243A priority patent/EP1061641B1/fr
Priority to US09/557,885 priority patent/US6310450B1/en
Publication of EP1061641A1 publication Critical patent/EP1061641A1/fr
Application granted granted Critical
Publication of EP1061641B1 publication Critical patent/EP1061641B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/247Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using time shifts of pulses

Definitions

  • the present invention relates to driving techniques of brushless motors equipped with Hall effect sensors to detect the rotor's instantaneous position in order to synchronise the phase switchings commanded by the electronic driving system.
  • the techniques for driving electronically switched multiphase brushless motors consist in forcing currents through the phase windings of the motor according to a voltage or current mode control and using Hall effect sensors for synchronizing the switchings.
  • the driving system must command the phase switchings according to a proper sequential scheme, perfectly synchronised with the rotor position, in order to maximize efficiency and minimize ripple.
  • the switching sequence has six phases, each of 60 electrical degrees.
  • One of the techniques employed for determining the rotor's instantaneous position is that of installing three Hall effect sensors.
  • These sensors are commercially available and provide for three logic signals (codes) whose logic combination permits to establish the rotor's position and the correct phase to be excited.
  • the decoding conventions of the logic signals produced by such sensors consider different schemes, depending on the electrical sensor phasing in terms of electrical degrees of separation, which in turn depends on the sensors' physical position and the number of rotor poles. Therefore, by changing the sensors physical position and the number of rotor poles, there will be different sensor phasing, for example of 60, 120, 240 and 300 electrical degrees.
  • the integrated devices for decoding signals produced by Hall effect sensors installed in brushless motors and for processing the rotor angular position contemplate the possibility to pre-establish which sensor phasing scheme must be selected for correctly decoding and decoding the sensor signals.
  • known devices dedicate one or more pins for presetting the decoding and processing circuit. Through these selection pins or circuit nodes an integrated circuit can be configured such to decode signals originating from Hall effect sensors positioned at intervals of 120 electrical degrees, 60 electrical degrees, or even 240 or 300 electrical degrees.
  • An example of commercially available decoding device is the MC33033 by Motorola wherein the selection of the actual angular separation between sensors of 60 or 120 electrical degrees is made through the pins 3 and 18.
  • Such a decoding method and detection circuit should be capable of self recognizing, depending on the direction of rotation, the actual sensor positions, at intervals of either 60, 120, 300 or 240 electrical degrees, without the need for supplying such phasing information to the decoding circuit.
  • Such a decoding method permits the use of common devices without dedicating pins to effect a pre-setting phasing information, thus facilitating the manufacture of control systems for one or more brushless motors.
  • the invention is based on the fact that the signals provided by the three sensors produce a total of eight possible combinations, six of which are valid for example for a positioning at intervals of 60 electrical degrees of the sensors, while other six are valid for a positioning at intervals of 120 electrical degrees; however, in both cases only two of the six combinations are specific to a 60 or 120 degree positioning, whereas four of the six combinations are identical in both cases.
  • the sample is valid for the other two possible phasings of the sensors, for example at 240 and 300 electrical degrees.
  • the decoder may resolve the motor's position within a window of 60 electrical degrees for phasing of the sensors at 60, 120, 240 or 300 electrical degrees, without first supplying this phasing information to the decoding circuitry.
  • the prior art decoding circuit of the controller MC33033 (cf. Motorola Datasheet MC33033 "Brushless DC Motor Controller", 1996, XP002116342) is pre-conditioned to decode the six combinations relative to a phasing of the sensors at intervals of either 60/300 electrical degrees or of 120/240 electrical degrees.
  • the system of the invention decodes all the eight possible input combinations and recognises from the two dissimilar combinations specific to the different sensors phasing (angular separation), which is the one actually implemented. Therefore, the system processes the input combinations and determines the position of the rotor or the current phase of the runnig motor to permit the generation of the correct driving signals.
  • the decoding is pre-ordered, depending on the type of phasing of the all sensors installed in the motor, for the six drive phases, according to the following decoding tables.
  • FORWARD SEQUENCE LOGIC DECODING FOR A POSITIONING AT INTERVALS OF 60° ELECTRICAL OF THE THREE SENSORS H1 1 1 1 0 0 0 H2 0 1 1 1 0 0 H3 0 0 1 1 1 0 Phase 1 3 2 3 2 1 3 1 3 2 1 2
  • any of the two phasings at 60 or 120 electrical degrees, four out of the six combinations are identical. This means that the decoding logic for such four common combinations may be the same in both cases.
  • the only difference between the two different sensor phasings is that two of the six combinations or codes, i.e., those relative to the operating phases 2 1 and 1 2, are distinct. Table 3 below indicates the respective codes, for these two phases of operation of the motor.
  • a decoder capable of processing all eight possible combinations or codes that may originate from the signals coming from the three sensors, depending on their phasing, may resolve the rotor's position within a 60 electrical degrees window, for sensor phasings of 60 or of 120 electrical degrees, without requiring any selection command.
  • Table 4 shows the logic decoding of all eight combinations of the signals generated by the three sensors H1, H2 and H3, according to the method of the present invention.
  • Each output driving half-bridge stage includes a high-side switch and a low-side switch.
  • the logic state 1 implies a turn-on condition of the respective switch and the logic state 0 represents a cut off condition of the respective switch of each half-bridge.
  • the logic decoding table defining all six driving phases of the six switches for Hall effect sensors phasings of 120 and 60 electrical degrees is shown in the Table 5 below. FORWARD SEQUENCE LOGIC DECODING FOR MOTORS EQUIPPED WITH HALL SENSORS WITH A PHASING OF 120 AND 60 ELECTRICAL DEGREES.
  • the decoding logic permits the selection of the direction of rotation of the motor (forward or reverse) and is capable of decoding the signals produced by the Hall-effect sensors for any phasing (60, 120, 240 and 300 electrical degrees).
  • the first three columns (H1, H2, H3) show the signals produced by the three Hall sensors.
  • the fourth column represents the input signal (DIR) that sets the direction of rotation of the motor.
  • the fifth column shows the excitation of the respective phase windings derived from the decoding the Hall sensor signals.
  • the sixth and seventh columns represent the rotation direction of the motor (forward or reverse) congruent with the respective phasing of the sensor.
  • DIR signal
  • the first six signal combinations of the signals from the Hall-effect sensors are decoded to drive in a forward direction a motor equipped with Hall sensors with a phasing of 60 or of 120 electrical degrees.
  • these six combinations would be decoded to drive the motor in a reverse direction with Hall sensors with a phasing of 300 or of 240 electrical degrees.
  • the decoding of the signals of Hall effect sensors positioned at 60 and 120 electrical degrees with a forward rotating motor corresponds to the decoding of the signals of Hall effect sensors positioned at 300 and 240 electrical degrees, respectively, with a reverse rotating motor.
  • the decoding of the signals of Hall effect sensors with a phasing of 60 and 120 electrical degrees with a reverse rotating motor corresponds to the decoding of the signals of Hall effect sensors with a phasing of 300 and 240 electrical degrees, respectively, with a forward rotating motor rotation.
  • the remaining columns represent the output logic functions of the decoded signals.
  • integrated driving systems such as for example the L6234 device of STMicroelectronics, include a logic input driving stage and power switches.
  • These integrated circuits employ two distinct logic inputs (commands) for each half bridge, respectively INPUT and ENABLE, whose logic function is described in the following table.
  • INPUT 0 1 1 INPUT 0 1 0 1 TOP switch 0 0 0 1 BOTTOM switch 0 0 1 0
  • the logic decoding and driving table becomes as follows: LOGIC DECODING OF A MOTOR EQUIPPED WITH HALL EFFECT SENSORS WITH A PHASING OF 120 AND 60 ELECTRICAL DEGREES AND WITH A PHASING OF 300 AND 240 ELECTRICAL DEGREES FOR FORWARD AND REVERSE ROTATION.
  • X indicates a "don't care" condition, that is, it is not necessary to consider any specific value to be assigned.
  • the correct logic driving sequence is produced by the GAL16V8, by decoding the signals coming from three Hall-effect sensors installed in the motor and generating INPUT and ENABLE signals as shown in the diagrams of Figure 4.
  • An electrical braking function is obtained by conditioning to a low logic level the input signals (IN) in order to turn on the low side diffused metal oxide (DMOS) transistor of the half-bridges enabled by the corresponding enable signal diffused metal oxide (EN).
  • DMOS low side diffused metal oxide
  • the pulse width modulation (PWM) signal is used to effect the "chopping" of the INPUT signals.
  • PWM pulse width modulation
  • the switch SW2 commands the start up and the stop of the motor.

Claims (2)

  1. Procédé de décodage de signaux produits par trois capteurs à effet Hall installés dans un moteur triphasé sans collecteur à commutation électronique selon une séquence de six phases de pilotage à commuter en synchronisme avec la position de rotor, caractérisé par les étapes suivantes :
    déterminer la phase réelle des trois capteurs à effet Hall à 60, 120, 300 ou 240 degrés électriques en :
    décodant un ensemble complet des huit combinaisons possibles des trois signaux logiques produits par les trois capteurs à effet Hall ;
    discriminant le déphasage réel des trois capteurs à effet Hall sur la base de deux combinaisons différentes parmi six combinaisons valides détectées en un tour électrique, dont quatre combinaisons sont en coïncidence ;
    déterminant la position du rotor et produisant des signaux logiques de commande synchrones avec la position détectée du rotor.
  2. Système de commande d'un moteur triphasé sans collecteur à commutation électronique selon une séquence de six phases de pilotage commutées en synchronisme avec la position du rotor, déterminée par un circuit logique de décodage pour des signaux logiques produits par trois capteurs à effet Hall installés dans le moteur, caractérisé en ce qu'il comprend une entrée de circuit logique recevant trois signaux logiques produits par les trois capteurs à effet Hall et un signal de sélection indiquant une direction désirée de rotation, et fournissant trois paires de signaux logiques respectivement pour valider et piloter les trois enroulements du moteur, ce circuit logique de décodage déterminant la phase réelle des trois capteurs à effet Hall en utilisant le procédé selon la revendication 1.
EP99830243A 1999-04-23 1999-04-23 Système d'entraínement pour moteur sans balais equipé avec des capteurs de Hall reconnaissant la différence de phase entre les capteurs installés Expired - Lifetime EP1061641B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69909449T DE69909449T2 (de) 1999-04-23 1999-04-23 Antriebssystem für bürstenlosem Motor mit Hallsensoren und selbsttätiger Bestimmung der Phasenlage der instalierten Sensoren
EP99830243A EP1061641B1 (fr) 1999-04-23 1999-04-23 Système d'entraínement pour moteur sans balais equipé avec des capteurs de Hall reconnaissant la différence de phase entre les capteurs installés
US09/557,885 US6310450B1 (en) 1999-04-23 2000-04-21 Drive system of a brushless motor equipped with hall sensors self-discriminating the actual phasing of the installed sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP99830243A EP1061641B1 (fr) 1999-04-23 1999-04-23 Système d'entraínement pour moteur sans balais equipé avec des capteurs de Hall reconnaissant la différence de phase entre les capteurs installés

Publications (2)

Publication Number Publication Date
EP1061641A1 EP1061641A1 (fr) 2000-12-20
EP1061641B1 true EP1061641B1 (fr) 2003-07-09

Family

ID=8243374

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99830243A Expired - Lifetime EP1061641B1 (fr) 1999-04-23 1999-04-23 Système d'entraínement pour moteur sans balais equipé avec des capteurs de Hall reconnaissant la différence de phase entre les capteurs installés

Country Status (3)

Country Link
US (1) US6310450B1 (fr)
EP (1) EP1061641B1 (fr)
DE (1) DE69909449T2 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1061641B1 (fr) * 1999-04-23 2003-07-09 STMicroelectronics S.r.l. Système d'entraínement pour moteur sans balais equipé avec des capteurs de Hall reconnaissant la différence de phase entre les capteurs installés
US20060153714A1 (en) * 2005-01-10 2006-07-13 Hsiang-Yuan Hsu Brushless motor pump
US8152485B2 (en) * 2005-01-10 2012-04-10 Hsia-Yuan Hsu DC brushless motor pump
EP1848897A1 (fr) * 2005-02-15 2007-10-31 Aktiebolaget SKF (publ) Dispositif de roulement codeur et machine tournante
US7265512B2 (en) 2005-08-30 2007-09-04 Honeywell International Inc. Actuator with feedback for end stop positioning
US7106020B1 (en) 2005-08-30 2006-09-12 Honeywell International Inc. Method of operating a brushless DC motor
FR2896036B1 (fr) * 2006-01-06 2008-11-07 Skf Ab Systeme de detection de position angulaire absolue par comparaison differentielle, roulement et machine tournante
DE102006025906A1 (de) * 2006-06-02 2007-12-06 Robert Bosch Gmbh Verfahren zur Erkennung der Sensorzuordnung innerhalb einer elektrischen Maschine
FR2902699B1 (fr) * 2006-06-26 2010-10-22 Skf Ab Dispositif de butee de suspension et jambe de force.
FR2906587B1 (fr) 2006-10-03 2009-07-10 Skf Ab Dispositif de galet tendeur.
FR2910129B1 (fr) * 2006-12-15 2009-07-10 Skf Ab Dispositif de palier a roulement instrumente
CN101227162B (zh) * 2007-01-17 2011-11-16 凌阳科技股份有限公司 无刷直流电机自动辨相及在任意接线下驱动的方法和装置
FR2913081B1 (fr) * 2007-02-27 2009-05-15 Skf Ab Dispositif de poulie debrayable
US8084980B2 (en) 2009-01-30 2011-12-27 Honeywell International Inc. HVAC actuator with internal heating
US10821591B2 (en) 2012-11-13 2020-11-03 Milwaukee Electric Tool Corporation High-power cordless, hand-held power tool including a brushless direct current motor

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678358A (en) * 1970-07-14 1972-07-18 Gen Electric Brushless dc adjustable speed drive with static regenerative dc motor control
DE2305033A1 (de) * 1973-02-02 1974-08-15 Fritz Stahlecker Vorrichtung zum befestigen von spindellagergehaeusen
JPS5610094A (en) * 1979-07-03 1981-02-02 Toshiba Corp Controlling device for commutatorless electric motor
US4763049A (en) * 1986-03-17 1988-08-09 Magee Harold H Brushless drive system
WO1990010973A1 (fr) * 1989-03-15 1990-09-20 International Business Machines Corporation Demarrage d'un motor a courant continu sans balais
US5001405A (en) * 1989-09-27 1991-03-19 Seagate Technology, Inc. Position detection for a brushless DC motor
FR2667168B1 (fr) * 1990-09-24 1994-01-21 Fabrication Instruments Mesure Verin asservi en position pour commande de vol d'un helicoptere.
DE4141000B4 (de) * 1990-12-13 2010-11-25 Papst Licensing Gmbh & Co. Kg Anordnungen und Verfahren zur Messung von Drehwinkeln
US5367234A (en) * 1993-08-26 1994-11-22 Ditucci Joseph Control system for sensorless brushless DC motor
US5841252A (en) * 1995-03-31 1998-11-24 Seagate Technology, Inc. Detection of starting motor position in a brushless DC motor
US5905348A (en) * 1995-06-06 1999-05-18 Sl Montevideo Technology, Inc. Powering and control of a brushless DC motor
JP3419157B2 (ja) * 1995-07-20 2003-06-23 株式会社日立製作所 モータ駆動方法及びそれを用いた電気機器
GB2305033A (en) * 1995-08-25 1997-03-26 Norcroft Dynamics Ltd Controlling brushless dc motors
KR0177948B1 (ko) * 1995-09-22 1999-05-15 구자홍 브러쉬레스 직류모터 제어용 인버터 제어장치
US5804936A (en) * 1995-10-31 1998-09-08 Smith & Nephew, Inc. Motor controlled surgical system
US5767643A (en) * 1996-02-02 1998-06-16 Siliconix Incorporated Commutation delay generator for a multiphase brushless DC motor
EP0800262B1 (fr) * 1996-04-04 2001-07-11 STMicroelectronics S.r.l. Commande synchrone des enroulements de phase d'un moteur à courant continu selon des profils de commande numérisés prédéfinis et mémorisés de façon permanente, dont la lecture est synchronisée avec la position du rotor pour optimiser les caractéristiques de couple
US5796194A (en) * 1996-07-15 1998-08-18 General Electric Company Quadrature axis winding for sensorless rotor angular position control of single phase permanent magnet motor
US5982122A (en) * 1996-12-05 1999-11-09 General Electric Company Capacitively powered motor and constant speed control therefor
US5949204A (en) * 1997-08-18 1999-09-07 Alliedsignal Inc. Method and apparatus for driving a brushless DC motor without rotor position sensors
US5910716A (en) * 1997-12-16 1999-06-08 Reliance Electric Industrial Company Brushless DC motor drive
EP1061641B1 (fr) * 1999-04-23 2003-07-09 STMicroelectronics S.r.l. Système d'entraínement pour moteur sans balais equipé avec des capteurs de Hall reconnaissant la différence de phase entre les capteurs installés

Also Published As

Publication number Publication date
EP1061641A1 (fr) 2000-12-20
US6310450B1 (en) 2001-10-30
DE69909449D1 (de) 2003-08-14
DE69909449T2 (de) 2004-04-15

Similar Documents

Publication Publication Date Title
EP1061641B1 (fr) Système d'entraínement pour moteur sans balais equipé avec des capteurs de Hall reconnaissant la différence de phase entre les capteurs installés
US6362581B1 (en) Device and method for starting a brushless motor
JP2006136194A (ja) ブラシレス直流モータ
US7023173B2 (en) Apparatus for driving brushless motor and method of controlling the motor
KR950010325A (ko) 직류 브러쉬리스(brushless)모터의 구동장치 및 그 좋고나쁨의 식별방법
US6181093B1 (en) Commutation circuit for a sensorless three-phase brushless direct curent motor
JPWO2008120737A1 (ja) ブラシレスモータ、ブラシレスモータ制御システム、およびブラシレスモータ制御方法
CN107820671B (zh) 电动助力转向装置的控制装置以及电动助力转向装置
US20050077854A1 (en) Method for the commutation of brushless direct current motor
JPH11146685A (ja) Dcブラシレスモータの制御装置
US6504328B1 (en) Sensorless motor driver with BEMF mask extender
US6249101B1 (en) Start-up procedure for brushless DC motors having position sensors with angular resolution lower than the resolution of the driving system
US6737820B2 (en) Electronically commutated multi-phase synchronous machine
KR960036278A (ko) 브러시리스 직류 모터의 구동 장치
JP2007215281A (ja) ブラシレスモータの駆動制御装置
KR102270725B1 (ko) Bldc 모터 제어시스템 및 그 제어방법
JP5330728B2 (ja) ブラシレスモータの駆動装置
KR100636795B1 (ko) 브러시리스 dc 모터의 역기전력 검출 장치 및 이를이용한 브러시리스 dc 모터의 구동 장치
JP2005102349A (ja) 電流検出装置
JPH07255194A (ja) 位置センサレスブラシレスdcモータの駆動装置
JP3389300B2 (ja) ブラシレスモータの運転方法
JP6730488B2 (ja) 三相同期電動機の制御装置および駆動装置、並びに電動パワーステアリング装置
JP2005027391A (ja) ブラシレスモータの駆動装置
US20230037186A1 (en) Determination device
JPH05308794A (ja) モータの異常検出回路

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010118

AKX Designation fees paid

Free format text: DE FR GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69909449

Country of ref document: DE

Date of ref document: 20030814

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20040414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070328

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070608

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070426

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080423

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140321

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69909449

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103