EP1059420A1 - Stator de compresseur à haute pression - Google Patents

Stator de compresseur à haute pression Download PDF

Info

Publication number
EP1059420A1
EP1059420A1 EP00401609A EP00401609A EP1059420A1 EP 1059420 A1 EP1059420 A1 EP 1059420A1 EP 00401609 A EP00401609 A EP 00401609A EP 00401609 A EP00401609 A EP 00401609A EP 1059420 A1 EP1059420 A1 EP 1059420A1
Authority
EP
European Patent Office
Prior art keywords
ventilation
ferrule
sectors
rings
stator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00401609A
Other languages
German (de)
English (en)
Other versions
EP1059420B1 (fr
Inventor
Pascal Gérard Gervais
Pascal Michel Daniel Lejeune
Carmen Miraucourt
Jacky Serge Naudet
Patrice Suet
Monique Andrée Thore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA Moteurs SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA Moteurs SA filed Critical SNECMA Moteurs SA
Publication of EP1059420A1 publication Critical patent/EP1059420A1/fr
Application granted granted Critical
Publication of EP1059420B1 publication Critical patent/EP1059420B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/16Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means
    • F01D11/18Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means using stator or rotor components with predetermined thermal response, e.g. selective insulation, thermal inertia, differential expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts

Definitions

  • the subject of this invention is a stator heterogeneous structure likely to apply in particular to high pressure compressors of gas turbines.
  • the rotor and stator structure of gas turbine is often cooled or ventilated by the air taken from the flow which flows through the machine.
  • air taken from the flow which flows through the machine There are even double breakdowns associated with double samples, where a breakdown of a downstream part of the stator and rotor follows a first ventilation of the stator and rotor carried out further upstream.
  • the air taken for ventilation in downstream comes from a part of the machine where it has already been compressed, which made it much warmer than the air from the upstream ventilation.
  • the invention consists of a compressor stator fitted with a upstream ventilation and downstream ventilation warmer than upstream ventilation and including a ferrule defining a gas flow stream, characterized in that it comprises a first portion ferrule, subject to upstream ventilation, to continuous ring structure on a circumference and in a first material, and a second portion of ferrule, subjected to downstream ventilation, with structure formed of juxtaposed angular sectors and in one second material having a coefficient of expansion larger than the first material.
  • the first and second materials can be chosen, respectively, from materials with a lower coefficient of expansion such as TA6V and titanium alloys, INC0909, intermetallic of the TiAl type, having an average coefficient of linear expansion of less than 10.10 -6 m per degree; and among materials with a greater coefficient of expansion such as nickel-based alloys of the type INC0718, RENE77 and derivatives, having an average coefficient of linear expansion close to 15.10 -6 m per degree.
  • materials with a lower coefficient of expansion such as TA6V and titanium alloys, INC0909, intermetallic of the TiAl type, having an average coefficient of linear expansion of less than 10.10 -6 m per degree
  • materials with a greater coefficient of expansion such as nickel-based alloys of the type INC0718, RENE77 and derivatives, having an average coefficient of linear expansion close to 15.10 -6 m per degree.
  • figure 1 is an overview of a high pressure compressor a gas turbine
  • Figure 2 is an enlarged view the downstream part of the stator of this compressor
  • Figure 2A a similar view of another embodiment possible of the invention
  • Figures 3 and 4 are two sections of the upstream part and the downstream part of the compressor
  • Figure 5 is an enlarged view of the upstream part of the compressor.
  • a high pressure compressor such as that of FIG. 1 comprises a central rotor 1 driven by a line of trees 2 and composed of a envelope 3 of tapered shape composed of rings 4 juxtaposed and separated by 5 discs at right stages of movable blades 6.
  • a stator 7 surrounds the rotor 1 and comprises, in internal lining of a carcass 8, a portion 9 to which the invention relates and which consists of a support casing 10 and a ferrule 11 supported by the casing 10, facing the rotor 1 and which is used to define an annular vein 12 of gas flow in which the movable blade stages 6 and blade stages stationary 13 flow straightening, which are attached to the ferrule 11 and alternate with the previously mentioned floors.
  • tips of stationary vanes 13, located in front the casing 3 of the rotor 1, carry rings of connection 14 furnished with circular bands of said material abradable 15, formed of a honeycomb structure or more generally of easy erosion, which is dug by facing ribs 16 erected on the casing 3 and which form with it a seal at labyrinth.
  • the tips of the moving blades 6 are free of all equipment and end up close of the shell 11.
  • the internal portion 9 of the stator 7 has discontinuities, which are openings of air sampling from vein 12, noted by references 17, 18 and which give in rooms 19 and 20 respectively established between portion 9 and carcass 8 and through which the air taken from the vein 12 to ventilate in particular the casing 10 and subject it to temperature and expansion determined thermal.
  • the inside of rotor 1 is also ventilated, firstly through a bore 21 of the casing 3 located upstream of the rotor 1 and by which fresh air at about the same temperature as whoever enters room 19 is sucked out, then by another bore 22 of the casing 3, substantially at the right of the second opening 18.
  • the rooms 19 and 20 divide stator 7 into two zones of ventilation, in front of which they extend respectively and which are located on both sides of the opening 19 for entry into the downstream chamber 20, which divide portion 9 in half.
  • Sectors 23 and 23 'adjacent are joined by flexible tabs 24 sealing, extending in grooves longitudinal edges of the sectors and joining by their ends 25, between circles of sectors 23 and 23 'consecutive; and other tabs 26 flexible established in grooves purely or obliquely radial from the edges of sectors 23 and 23 ', and extending from the first tabs 24 to the casing 10.
  • This arrangement effectively prevents gases, very hot in this place, from the vein 12 to leak between the sectors 23 and 23 'to reach the housing 10 and risk damaging it.
  • the tabs 24 and 26 isolate empty volumes 27 (which can be filled with insulation at the heat) that appear between each of the circles of sectors 23 and 23 'and associated rings 28 of the casing 10.
  • each of them includes a rear lip 31, projecting towards inside and back, and which is enclosed between a lip 32 of one of the rings 28, located radially outwards, and a lip 33 or 33 ' pointing forward and drawn either in front of sectors 23, either at the front of the ring 28 located on further downstream; and sectors 23 and 23 'include another outer lip 34 at the front, which cooperates with the lips 33 to grip the lips together 31 and 32 directed towards the rear.
  • Sectors 23 ' differ in that they only understand one lip single at the front, bearing the reference 35 and oriented backwards, and which is housed in a groove 36 of the ring 28 located furthest forward.
  • This mode is simpler than a fashion inspired by more traditional ring attachment designs ferrule, illustrated in FIG. 2A, where the lips 31 and 32 are joined by separate seals 37 with a cross-section clip and where the ferrule elements include a relatively high rib 38 ending in a lip 39 facing forward and housed in a groove of the adjacent ring; however, it is possible to adopt this less favorable conception if desired.
  • Of 50 stud systems allow in all the cases of linking sectors 23 and 23 'to the rings 28 in angular direction; many achievements are within the reach of the skilled person.
  • the mode of connection of sectors 23 and 23 'to rings 28 is quite flexible and absorbs deformations without receiving strong constraints.
  • the rings 28 are preferably continuous on the circumference for give a simpler structure and better mechanical resistance.
  • rotor 1 in the same material opposite the rings 28 of the stator 7.
  • a nickel-based alloy, type INCO718, with high coefficient of expansion can be used for this downstream part of the compressor.
  • the housing 10 is at this place composed of 40 rings, united between them by bolts 42 enclosing flanges 41 which complete, as well as the carcass 8, in the manner of rings 28; but these 40 rings still include protrusions 43 and 43 'radially inside, which lead to the air flow vein 12 and are therefore exposed to its temperature. Two of these outgrowths 43 are wide enough to extend opposite a stage of movable blades 6 respective.
  • the ferrule 11 is therefore here formed at the same time by the protrusions 43 and 43 'and by the rings 44 supporting stationary vanes 13; the rings 44 end front and back with lips 45 which enter the grooves of the protuberances 43 and 43 '.
  • mechanical systems 46 with nesting of tenon join the rings 40 to the rings 44 concentric against mutual rotations.
  • the major difference with the downstream design is that the rings 44 are continuous on a circumference while like the rings 40. It is indeed estimated that like the heating is less important upstream, and that the temperature differences between the housing 10 and the ferrule 11 are less important also it's more simple and more advantageous to have a structure similar for both, the risks of deformation and excessive stresses being reduced.
  • the material used has a coefficient of less expansion than that used for build the downstream of the casing, because we observe that the slower expansions these materials undergo slightly regulate the evolution of dilation during the transitional phases and allow finally to better control the games at the end of the blade moving blades 6.
  • An alloy of the Inconel 909 type may be recommended or a TiAl type intermetallic.
  • the rotor 1 can be constructed in a material with a coefficient of expansion close of that used for the stator rings 40 in look, for example a titanium alloy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Le stator proposé ici, et qui peut convenir pour des compresseurs à haute pression de turbine à gaz, comprend deux points de ventilation (17, 18) à des températures différentes. On préconise que le stator soit construit en amont avec un carter (10) et une virole (11) tous deux continus sur une circonférence et en un matériau à faible dilatation thermique, alors que la virole sera construite en secteurs angulaires à l'aval et en matériau aux dilatations thermiques plus importantes.

Description

Le sujet de cette invention est un stator à structure hétérogène susceptible de s'appliquer en particulier aux compresseurs à haute pression de turbines à gaz.
La structure du rotor et du stator des turbines à gaz est souvent refroidie ou ventilée par de l'air prélevé de l'écoulement qui parcourt la machine. On rencontre même des doubles ventilations associées à des doubles prélèvements, où une ventilation d'une partie aval du stator et du rotor fait suite à une première ventilation du stator et du rotor effectuée plus en amont. L'air prélevé pour la ventilation en aval est originaire d'une partie de la machine où il a déjà été comprimé, ce qui l'a beaucoup plus échauffé que l'air de la ventilation en amont. Le problème habituel d'obtenir un réglage correct des diamètres du stator et du rotor afin d'éviter l'augmentation excessive des jeux au bout des aubes, qui accroítrait les fuites d'air et les pertes de rendement, ou au contraire la disparition de ces jeux, qui aurait pour conséquence un frottement des aubes du rotor sur le stator, devient alors bien difficile à résoudre à cause de ces conditions hétérogènes de ventilation, qui induisent des températures et des dilatations thermiques différentes entre les portions respectivement soumises aux deux ventilations. Une autre source de difficultés provient de ce que les différentes parties de la machine, même celles qui sont situées à un même niveau du compresseur, sont portées à des températures différentes selon qu'elles sont proches de l'air de ventilation ou de l'air plus chaud de la veine d'écoulement : il en résulte des dilatations inégales, des déformations et des contraintes dans le stator. Enfin, les variations de température sont plus rapides à certains endroits, de sorte que les problèmes précédents peuvent devenir plus ou moins aigus localement, pendant les phases de changement de régime. Aucune structure connue de stator ne donne entière satisfaction dans ces conditions.
L'idée de l'invention consiste à scinder la structure du stator de part et d'autre de la jonction des zones de ventilations et de construire différemment le stator entre les portions soumises à la ventilation en amont et celles qui sont soumises à la ventilation en aval. Sous sa forme la plus générale, l'invention consiste en un stator de compresseur muni d'une ventilation en amont et une ventilation en aval d'air plus chaud qu'à la ventilation amont et comprenant une virole délimitant une veine d'écoulement de gaz, caractérisé en ce qu'il comprend une première portion de virole, soumise à la ventilation en amont, à structure annulaire continue sur une circonférence et en un premier matériau, et une deuxième portion de virole, soumise à la ventilation aval, à structure formée de secteurs angulaires juxtaposés et en un deuxième matériau ayant un coefficient de dilatation plus grand que le premier matériau.
Les premier et deuxième matériaux peuvent être choisis, respectivement parmi des matériaux à coefficient de dilatation plus bas tels que TA6V et alliages de titane, INC0909, intermétalliques du type TiAl, ayant un coefficient moyen de dilatation linéique inférieur à 10.10-6 m par degré ; et parmi des matériaux à coefficient de dilatation plus grand tels que des alliages à base de nickel du type INC0718, RENE77 et dérivés, ayant un coefficient moyen de dilatation linéique voisin de 15.10-6 m par degré.
Une explication plus détaillée de l'invention, de ses caractéristiques, buts et avantages sera fournie à l'aide des figures, dont la figure 1 est une vue d'ensemble d'un compresseur à haute pression d'une turbine à gaz ; la figure 2 est une vue agrandie de la partie aval du stator de ce compresseur ; la figure 2A une vue analogue d'une autre réalisation possible de l'invention ; les figures 3 et 4 sont deux coupes de la partie amont et de la partie aval du compresseur ; et la figure 5 est une vue agrandie de la partie amont du compresseur.
Un compresseur à haute pression tel que celui de la figure 1 comprend un rotor central 1 entraíné par une ligne d'arbres 2 et composé d'une enveloppe 3 de forme fuselée composée d'anneaux 4 juxtaposés et séparés par des disques 5 au droit d'étages d'aubes mobiles 6. Un stator 7 entoure le rotor 1 et comprend, en doublure interne d'une carcasse 8, une portion 9 sur laquelle porte l'invention et qui se compose d'un carter 10 de support et d'une virole 11 soutenue par le carter 10, tournée vers le rotor 1 et qui sert à délimiter une veine 12 annulaire d'écoulement des gaz dans laquelle s'étendent les étages d'aubes mobiles 6 et des étages d'aubes stationnaires 13 de redressement de l'écoulement, qui sont accrochés à la virole 11 et alternent avec les étages précédemment mentionnés. Il est habituel que les bouts des aubes stationnaires 13, situés devant l'enveloppe 3 du rotor 1, portent des anneaux de liaison 14 garnis de bandes circulaires de matière dite abradable 15, formée d'une structure en nid d'abeilles ou plus généralement d'érosion facile, qui est creusée par des nervures 16 en regard érigées sur l'enveloppe 3 et qui forment avec elle un joint d'étanchéité à labyrinthe. Cependant, les bouts des aubes mobiles 6 sont libres de tout équipement et finissent tout près de la virole 11.
La portion 9 interne du stator 7 présente des discontinuités, qui sont des ouvertures de prélèvement d'air de la veine 12, notées par les références 17, 18 et qui donnent dans des chambres respectives 19 et 20 établies entre la portion 9 et la carcasse 8 et par lesquelles transite l'air prélevé de la veine 12 pour ventiler en particulier le carter 10 et le soumettre à une température et une dilatation thermique déterminée. L'intérieur du rotor 1 est lui aussi ventilé, tout d'abord à travers un perçage 21 de l'enveloppe 3 situé en amont du rotor 1 et par lequel de l'air frais, sensiblement à la même température que celui qui entre dans la chambre 19, est aspiré, puis par un autre perçage 22 de l'enveloppe 3, sensiblement au droit de la deuxième ouverture 18. Les chambres 19 et 20 divisent la stator 7 en deux zones de ventilation, devant lesquelles elles s'étendent respectivement et qui sont situées de part et d'autre de l'ouverture 19 d'entrée dans la chambre aval 20, qui sépare la portion 9 en deux. Deux zones de ventilation de positions semblables existent sur le rotor 1, de part et d'autre du perçage 22.
Malgré les précautions prises pour égaliser les dilatations thermiques entre les diverses parties du rotor 1 et du stator 7, notamment en prévoyant pour chacun d'eux des conditions de ventilation identiques, l'expérience montre qu'on est embarrassé pour trouver des conditions de fonctionnement satisfaisantes, en ne laissant subsister que des jeux modérés entre les aubes mobiles 6 et la virole 11. Le problème est plus aigu pour la partie aval, parcourue par de l'air plus chaud et soumise à une ventilation également plus chaude. On préconise alors (figures 2 et 3) de construire la virole 11 sous forme de secteurs 23, dont on peut trouver un nombre variable sur une circonférence, peut-être une dizaine, et dont l'extension longitudinale peut aussi être variable ; dans le cas présent, on propose deux cercles de secteurs 23 présentant une partie avant de support d'aube stationnaire 13 et une partie arrière située au droit d'un étage d'aubes mobiles 6, et un troisième cercle de secteurs 23' qui est plus court et ne comprend qu'une portion faisant face à un étage d'aubes mobiles 6. Les secteurs 23 et 23' adjacents sont unis par des languettes 24 souples d'étanchéité, s'étendant dans des rainures longitudinales des bords des secteurs et se joignant par leurs extrémités 25, entre des cercles de secteurs 23 et 23' consécutifs ; et par d'autres languettes 26 souples établies dans des rainures purement ou obliquement radiales des bords des secteurs 23 et 23', et s'étendant des premières languettes 24 au carter 10. Cette disposition empêche efficacement les gaz, très chauds à cet endroit, de la veine 12 de fuir entre les secteurs 23 et 23' pour atteindre le carter 10 et risquer de l'endommager. En particulier, on remarque que les languettes 24 et 26 isolent des volumes vides 27 (pouvant d'ailleurs être emplis d'un isolant à la chaleur) qui apparaissent entre chacun des cercles de secteurs 23 et 23' et des anneaux 28 associés du carter 10. Le carter 10 est donc exposé uniquement à l'air entrant dans la chambre avant 20, et la virole 11 à l'air de la veine 12. Les anneaux 28 successifs sont joints entre eux et à la carcasse 8 en unissant des brides 29 qui les terminent au moyen de boulons 30. Il est intéressant de remarquer aussi le mode de liaison et d'assemblage des secteurs 23 et 23' : chacun d'eux comprend une lèvre arrière 31, saillant vers l'intérieur et vers l'arrière, et qui est enserrée entre une lèvre 32 d'un des anneaux 28, située radialement vers l'extérieur, et une lèvre 33 ou 33' pointant vers l'avant et établie soit à l'avant des secteurs 23, soit à l'avant de l'anneau 28 situé le plus en aval ; et les secteurs 23 et 23' comprennent encore une lèvre extérieure 34 à l'avant, qui coopère avec les lèvres 33 pour enserrer entre elles les lèvres 31 et 32 dirigées vers l'arrière. Les secteurs 23' diffèrent en ce qu'ils ne comprennent qu'une lèvre unique à l'avant, portant la référence 35 et orientée vers l'arrière, et qui est logée dans une rainure 36 de l'anneau 28 situé le plus en avant. Ce mode d'assemblage est plus simple qu'un mode inspiré de conceptions plus traditionnelles de fixation d'anneaux de virole, illustré à la figure 2A, où les lèvres 31 et 32 sont unies par des joints séparés 37 à section en agrafe et où les éléments de virole comprennent une nervure 38 relativement haute finissant en une lèvre 39 orientée vers l'avant et logée dans une rainure de l'anneau adjacent ; il est toutefois possible d'adopter cette conception moins favorable si on le souhaite. Des systèmes 50 à imbrication de tenon permettent dans tous les cas de lier les secteurs 23 et 23' aux anneaux 28 en direction angulaire ; de nombreuses réalisations sont à la portée de l'homme du métier.
La construction de la virole 11 en secteurs angulaires 23 et 23' permet de ne pas créer des contraintes de compression sensibles le long de la circonférence et qui proviendrait de l'élévation de température plus rapide de la virole 11 que du carter 10. Les dilatations plus importantes de la virole 11 qu'on subit tout de même se traduisent simplement par une diminution des jeux entre secteurs angulaires 23 et 23' adjacents et par une flexion éventuelle des languettes 24 et 26, qui sont souples. Le risque de déformations irrégulières de la virole 11 par ovalisation ou création d'ondulations, qui conduiraient à des jeux variables en bout des aubes mobiles 6, ou même à un frettage de la virole 11 contre le carter 10 consécutif à une expansion radiale excessive, est ainsi évité. Le mode de liaison des secteurs 23 et 23' aux anneaux 28 est assez souple et absorbe les déformations sans recevoir de fortes contraintes. Les anneaux 28 sont de préférence continus sur la circonférence pour donner une structure plus simple et une meilleure résistance mécanique. De plus, on préconise que les anneaux 28 comme les secteurs 23 et 23' soient construits en une matière ayant un coefficient de dilatation élevé, c'est-à-dire d'une matière qui conduise bien la chaleur, afin de subir aussi rapidement que possible les dilatations entraínées par l'échauffement au cours des changements de régime. On conseille de construire le rotor 1 dans le même matériau en regard des anneaux 28 du stator 7. Un alliage à base de nickel, du type INCO718, à haut coefficient de dilatation peut être employé pour cette partie aval du compresseur.
Les moindres variations de température auxquelles la partie amont du stator 7 est exposée justifient qu'on lui donne une structure différente, comme on le voit sur les figures 4 et 5. Le carter 10 est à cet endroit composé d'anneaux 40, unis entre eux par des boulons 42 enserrant des brides 41 qui les terminent, ainsi que la carcasse 8, à la façon des anneaux 28 ; mais ces anneaux-ci 40 comprennent encore des excroissances 43 et 43' radialement à l'intérieur, qui débouchent sur la veine 12 d'écoulement d'air et sont donc exposées à sa température. Deux de ces excroissances 43 sont suffisamment larges pour s'étendre en regard d'un étage d'aubes mobiles 6 respectif.
La virole 11 est donc ici formée à la fois par les excroissances 43 et 43' et par des anneaux 44 de support des aubes stationnaires 13 ; les anneaux 44 finissent à l'avant et à l'arrière par des lèvres 45 qui entrent dans des rainures des excroissances 43 et 43'. Enfin, des systèmes mécaniques 46 à imbrication de tenon unissent les anneaux 40 aux anneaux 44 concentriques contre les rotations mutuelles. La différence majeure avec la conception en aval est que les anneaux 44 sont continus sur une circonférence tout comme les anneaux 40. On estime en effet que comme les échauffements sont moins importants en amont, et que les différences de température entre le carter 10 et la virole 11 sont moins importantes également, il est plus simple et plus avantageux d'avoir une structure analogue pour les deux, les risques de déformations et de contraintes excessives étant réduits. De plus, on préconise que le matériau employé ait un coefficient de dilatation moins important que celui qu'on emploie pour construire l'aval du carter, car on observe que les dilatations plus lentes que ces matériaux subissent régularisent un peu l'évolution de la dilatation pendant les phases transitoires et permettent finalement de mieux maítriser les jeux en bout de pale des aubes mobiles 6. Un alliage du type Inconel 909 peut être conseillé ou un intermétallique du type TiAl. Ici encore, le rotor 1 peut être construit dans un matériau dont le coefficient de dilatation est proche de celui utilisé pour les anneaux 40 de stator en regard, par exemple un alliage de titane.

Claims (8)

  1. Stator de compresseur muni d'une ventilation en amont (17, 19) et une ventilation en aval (18, 20) d'air plus chaud qu'à la ventilation amont et comprenant une virole (11) délimitant une veine (12) d'écoulement de gaz, caractérisé en ce qu'il comprend une première portion de virole, soumise à la ventilation en amont (17), à structure annulaire (44) continue sur une circonférence et en un premier matériau, et une deuxième portion de virole, soumise à la ventilation aval, à structure formée de secteurs (23) angulaires juxtaposés et en un deuxième matériau ayant un coefficient de dilatation plus grand que le premier matériau.
  2. Stator suivant la revendication 1, caractérisé en ce que les premier et deuxième matériaux sont choisis, respectivement, parmi un groupe de matériaux à coefficient de dilatation plus bas tels que TA6V et alliages de titane, INC0909, intermétalliques du type TiAl, ayant un coefficient moyen de dilatation linéique inférieur à 10.10-6 m par degré ; et parmi un groupe de matériaux à coefficient de dilatation plus grand tels que des alliages à base de nickel du type INC0718, RENE77 et dérivés, ayant un coefficient moyen de dilatation linéique voisin de 15.10-6 m par degré.
  3. Stator suivant l'une quelconque des revendications 1 ou 2, caractérisé en ce qu'il comprend un carter (10) soutenant la virole (11), le carter (10) délimitant une chambre (19) appartenant à la ventilation amont et une chambre (20) appartenant à la ventilation aval, et en ce que le carter est formé en structure annulaire continue (28, 40) sur une circonférence devant les deux chambres.
  4. Stator suivant la revendication 3, caractérisé en ce que le carter (10) est composé d'anneaux (28, 40) venant en prolongement et formant un ensemble continu devant la première portion de virole et devant la deuxième portion de virole.
  5. Stator suivant la revendication 4, caractérisé en ce que les anneaux du carter devant la deuxième partie de la virole sont respectivement associés à des ensembles annulaires des secteurs juxtaposés (23, 23') de la virole, et les secteurs (23) comprennent pour la plupart une paire de lèvres concentriques (33, 34) à une extrémité, enserrant une lèvre (31) d'une extrémité opposée de secteurs (23, 23') d'un ensemble annulaire voisin et une lèvre (32) d'un anneau du carter associé audit ensemble annulaire voisin.
  6. Stator suivant la revendication 3, caractérisé en ce que les anneaux du carter devant la première partie de la virole présentent des excroissances (43, 43') s'étendant entre les anneaux de virole et délimitant aussi la veine d'écoulement (12), les anneaux de virole étant imbriqués entre les excroissances.
  7. Stator suivant l'une quelconque des revendications 1 à 6, caractérisé en ce que les secteurs (23, 23') sont réunis par des languettes souples (24, 26).
  8. Stator suivant l'une quelconque des revendication 1 à 7, caractérisé en ce que les première et deuxième portions de virole sont situées devant des portions d'un rotor (1) respectivement construites dans le premier matériau et le second matériau.
EP00401609A 1999-06-10 2000-06-08 Stator de compresseur à haute pression Expired - Lifetime EP1059420B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9907315A FR2794816B1 (fr) 1999-06-10 1999-06-10 Stator de compresseur a haute pression
FR9907315 1999-06-10

Publications (2)

Publication Number Publication Date
EP1059420A1 true EP1059420A1 (fr) 2000-12-13
EP1059420B1 EP1059420B1 (fr) 2004-12-08

Family

ID=9546602

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00401609A Expired - Lifetime EP1059420B1 (fr) 1999-06-10 2000-06-08 Stator de compresseur à haute pression

Country Status (5)

Country Link
US (1) US6390771B1 (fr)
EP (1) EP1059420B1 (fr)
JP (1) JP4124552B2 (fr)
DE (1) DE60016505T2 (fr)
FR (1) FR2794816B1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1561998A1 (fr) 2004-02-05 2005-08-10 Snecma Moteurs Diffuseur pour turboréacteur
FR2913051A1 (fr) * 2007-02-28 2008-08-29 Snecma Sa Etage de turbine dans une turbomachine
EP2071133A1 (fr) * 2007-12-14 2009-06-17 Snecma Module de turbomachine muni d'un dispositif d'amélioration des jeux radiaux
WO2009123301A2 (fr) * 2008-03-31 2009-10-08 Mitsubishi Heavy Industries, Ltd. Machine rotative
WO2010026181A1 (fr) * 2008-09-05 2010-03-11 Snecma Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede
WO2010026182A1 (fr) * 2008-09-05 2010-03-11 Snecma Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede
WO2010026179A1 (fr) * 2008-09-05 2010-03-11 Snecma Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede
CN102705254A (zh) * 2010-11-05 2012-10-03 通用电气公司 防护罩渗漏盖
WO2013162752A1 (fr) 2012-04-24 2013-10-31 United Technologies Corporation Système de gestion thermique pour turbine à gaz
FR3086323A1 (fr) 2018-09-24 2020-03-27 Safran Aircraft Engines Carter interne de turmomachine a isolation thermique amelioree

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1118806A1 (fr) * 2000-01-20 2001-07-25 Siemens Aktiengesellschaft Structure de paroi sous charge thermique et méthode pour fermer des fentes dans une tel structure
DE102004016222A1 (de) * 2004-03-26 2005-10-06 Rolls-Royce Deutschland Ltd & Co Kg Anordnung zur selbsttätigen Laufspalteinstellung bei einer zwei- oder mehrstufigen Turbine
FR2887939B1 (fr) * 2005-06-29 2016-09-30 Soc Nat D'etude Et De Construction De Moteurs D'aviation Snecma Compresseur multi-etages de turbomachine
US7604455B2 (en) * 2006-08-15 2009-10-20 Siemens Energy, Inc. Rotor disc assembly with abrasive insert
US7704038B2 (en) * 2006-11-28 2010-04-27 General Electric Company Method and apparatus to facilitate reducing losses in turbine engines
FR2925108B1 (fr) * 2007-12-14 2013-05-03 Snecma Module de turbomachine muni d'un dispositif d'amelioration des jeux radiaux
US8613593B2 (en) * 2008-12-30 2013-12-24 Rolls-Royce North American Technologies Inc. Engine case system for a gas turbine engine
JP4856257B2 (ja) * 2010-03-24 2012-01-18 川崎重工業株式会社 タービンロータのシール構造
US9091172B2 (en) 2010-12-28 2015-07-28 Rolls-Royce Corporation Rotor with cooling passage
US9115600B2 (en) * 2011-08-30 2015-08-25 Siemens Energy, Inc. Insulated wall section
US20140286766A1 (en) * 2012-09-11 2014-09-25 General Electric Company Compressor Casing Assembly Providing Access To Compressor Blade Sealing Assembly
US10539153B2 (en) * 2017-03-14 2020-01-21 General Electric Company Clipped heat shield assembly
US10767485B2 (en) * 2018-01-08 2020-09-08 Raytheon Technologies Corporation Radial cooling system for gas turbine engine compressors
US20200072070A1 (en) * 2018-09-05 2020-03-05 United Technologies Corporation Unified boas support and vane platform
US11174742B2 (en) 2019-07-19 2021-11-16 Rolls-Royce Plc Turbine section of a gas turbine engine with ceramic matrix composite vanes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854843A (en) * 1971-12-01 1974-12-17 R Penny Composite elongate member having a predetermined effective coefficient of linear expansion
US4101242A (en) * 1975-06-20 1978-07-18 Rolls-Royce Limited Matching thermal expansion of components of turbo-machines
US4578942A (en) * 1983-05-02 1986-04-01 Mtu Motoren-Und Turbinen-Union Muenchen Gmbh Gas turbine engine having a minimal blade tip clearance
US4805398A (en) * 1986-10-01 1989-02-21 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "S. N. E. C. M. A." Turbo-machine with device for automatically controlling the rate of flow of turbine ventilation air
US5127794A (en) * 1990-09-12 1992-07-07 United Technologies Corporation Compressor case with controlled thermal environment
US5160241A (en) * 1991-09-09 1992-11-03 General Electric Company Multi-port air channeling assembly
US5314303A (en) * 1992-01-08 1994-05-24 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Device for checking the clearances of a gas turbine compressor casing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1285255B (de) * 1964-10-28 1968-12-12 Bergmann Borsig Veb Waermebeweglich aufgehaengte Leitgittersegmente von Axialgasturbinen
US5351478A (en) * 1992-05-29 1994-10-04 General Electric Company Compressor casing assembly
FR2695164B1 (fr) * 1992-08-26 1994-11-04 Snecma Turbomachine munie d'un dispositif empêchant une circulation longitudinale de gaz autour des étages d'aubes de redressement.
US5653581A (en) * 1994-11-29 1997-08-05 United Technologies Corporation Case-tied joint for compressor stators
US5553999A (en) * 1995-06-06 1996-09-10 General Electric Company Sealable turbine shroud hanger
US6109868A (en) * 1998-12-07 2000-08-29 General Electric Company Reduced-length high flow interstage air extraction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854843A (en) * 1971-12-01 1974-12-17 R Penny Composite elongate member having a predetermined effective coefficient of linear expansion
US4101242A (en) * 1975-06-20 1978-07-18 Rolls-Royce Limited Matching thermal expansion of components of turbo-machines
US4578942A (en) * 1983-05-02 1986-04-01 Mtu Motoren-Und Turbinen-Union Muenchen Gmbh Gas turbine engine having a minimal blade tip clearance
US4805398A (en) * 1986-10-01 1989-02-21 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "S. N. E. C. M. A." Turbo-machine with device for automatically controlling the rate of flow of turbine ventilation air
US5127794A (en) * 1990-09-12 1992-07-07 United Technologies Corporation Compressor case with controlled thermal environment
US5160241A (en) * 1991-09-09 1992-11-03 General Electric Company Multi-port air channeling assembly
US5314303A (en) * 1992-01-08 1994-05-24 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Device for checking the clearances of a gas turbine compressor casing

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1561998A1 (fr) 2004-02-05 2005-08-10 Snecma Moteurs Diffuseur pour turboréacteur
EP1561998B1 (fr) * 2004-02-05 2012-03-07 Snecma Diffuseur pour turboréacteur
FR2913051A1 (fr) * 2007-02-28 2008-08-29 Snecma Sa Etage de turbine dans une turbomachine
EP1965034A1 (fr) 2007-02-28 2008-09-03 Snecma Etage de turbine dans une turbomachine
US8403636B2 (en) 2007-02-28 2013-03-26 Snecma Turbine stage in a turbomachine
EP2071133A1 (fr) * 2007-12-14 2009-06-17 Snecma Module de turbomachine muni d'un dispositif d'amélioration des jeux radiaux
FR2925109A1 (fr) * 2007-12-14 2009-06-19 Snecma Sa Module de turbomachine muni d'un dispositif d'amelioration des jeux radiaux
CN101952557A (zh) * 2008-03-31 2011-01-19 三菱重工业株式会社 回转机械
WO2009123301A2 (fr) * 2008-03-31 2009-10-08 Mitsubishi Heavy Industries, Ltd. Machine rotative
WO2009123301A3 (fr) * 2008-03-31 2010-09-16 Mitsubishi Heavy Industries, Ltd. Machine rotative
RU2483218C2 (ru) * 2008-03-31 2013-05-27 Мицубиси Хеви Индастрис, Лтд. Турбина
WO2010026181A1 (fr) * 2008-09-05 2010-03-11 Snecma Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede
WO2010026179A1 (fr) * 2008-09-05 2010-03-11 Snecma Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede
WO2010026182A1 (fr) * 2008-09-05 2010-03-11 Snecma Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede
US8888448B2 (en) 2008-09-05 2014-11-18 Snecma Method for the manufacture of a circular revolution thermomechanical part including a titanium-based load-bearing substrate lined with steel or superalloy, a turbomachine compressor housing which is resistant to titanium fire obtained according to this method
CN102705254A (zh) * 2010-11-05 2012-10-03 通用电气公司 防护罩渗漏盖
CN102705254B (zh) * 2010-11-05 2016-08-31 通用电气公司 用于引导漏出空气的系统及方法
WO2013162752A1 (fr) 2012-04-24 2013-10-31 United Technologies Corporation Système de gestion thermique pour turbine à gaz
EP2841753A4 (fr) * 2012-04-24 2016-10-19 United Technologies Corp Système de gestion thermique pour turbine à gaz
FR3086323A1 (fr) 2018-09-24 2020-03-27 Safran Aircraft Engines Carter interne de turmomachine a isolation thermique amelioree
WO2020065178A1 (fr) 2018-09-24 2020-04-02 Safran Aircraft Engines Carter interne de turbomachine à isolation thermique améliorée
US11566538B2 (en) 2018-09-24 2023-01-31 Safran Aircraft Engines Internal turbomachine casing having improved thermal insulation

Also Published As

Publication number Publication date
DE60016505T2 (de) 2005-11-03
JP4124552B2 (ja) 2008-07-23
DE60016505D1 (de) 2005-01-13
EP1059420B1 (fr) 2004-12-08
FR2794816B1 (fr) 2001-07-06
US6390771B1 (en) 2002-05-21
JP2001012396A (ja) 2001-01-16
FR2794816A1 (fr) 2000-12-15

Similar Documents

Publication Publication Date Title
EP1059420B1 (fr) Stator de compresseur à haute pression
EP0967364B1 (fr) Anneau de stator de turbine haute pression d'une turbomachine
CA2457892C (fr) Carter de stator de turbomachine
US4537024A (en) Turbine engines
EP1571294B1 (fr) Flasque-crochet annulaire pour un disque de rotor
FR2870884A1 (fr) Joint d'etancheite pour dispositifs de retenue d'aubages de turbines
FR2636094A1 (fr) Dispositif ou ensemble d'etancheite entre etages d'un turbomoteur comprenant plusieurs segments et segment d'etancheite du dispositif ou ensemble d'etancheite
FR2479900A1 (fr) Garniture interieure de chambre de combustion
FR2607892A1 (fr) Assemblage d'etancheite
EP0110757B1 (fr) Dispositif de suspension d'aubes statoriques de compresseur axial pour le contrôle actif des jeux entre rotor et stator
FR2955898A1 (fr) Etancheite amont d'un anneau en cmc dans une turbine de turbomachine
FR2557212A1 (fr) Structure de stator pour un moteur a turbine a gaz
FR2490722A1 (fr) Joints d'etancheite a l'air pour turbomachines
FR3011031A1 (fr) Ensemble rotatif pour turbomachine
FR2483008A1 (fr) Dispositif pour minimiser et maintenir constant le jeu d'extremite des aubes de turbines axiales de moteurs a turbines a gaz
FR3020408A1 (fr) Ensemble rotatif pour turbomachine
FR2593233A1 (fr) Structure de joint d'etancheite pour un conduit de transition, destinee a etre mise en place entre les rotors de turbines haute pression et basse pression d'un moteur a plusieurs rotors
FR2690965A1 (fr) Dispositif pour assurer l'étanchéité de pièces, notamment dans des turbomachines.
EP0651139B1 (fr) Turbomachine équipée de moyens de pilotage des jeux entre rotor et stator
FR2926612A1 (fr) Tambour de rotor pour une turbomachine
FR2534982A1 (fr) Dispositif de controle des jeux d'un compresseur haute pression
FR3067405A1 (fr) Turbomachine et procede d'etancheite par soufflage d'air
FR2468073A1 (fr) Chambre de combustion annulaire de turbomoteur
FR2895766A1 (fr) Perfectionnements a un systeme de commande du jeu en bout d'ailette
FR3108367A1 (fr) Ensemble de turbine et turbomachine munie d’un tel ensemble

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20031219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60016505

Country of ref document: DE

Date of ref document: 20050113

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050113

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SNECMA

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050909

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190522

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190522

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60016505

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200607