EP1056687A1 - Procede d'epuration des eaux usees par combinaison d'une oxydation soutenue par du peroxyde d'hydrogene avec un processus de separation sur membrane - Google Patents

Procede d'epuration des eaux usees par combinaison d'une oxydation soutenue par du peroxyde d'hydrogene avec un processus de separation sur membrane

Info

Publication number
EP1056687A1
EP1056687A1 EP99906196A EP99906196A EP1056687A1 EP 1056687 A1 EP1056687 A1 EP 1056687A1 EP 99906196 A EP99906196 A EP 99906196A EP 99906196 A EP99906196 A EP 99906196A EP 1056687 A1 EP1056687 A1 EP 1056687A1
Authority
EP
European Patent Office
Prior art keywords
membrane
membrane separation
mixture
separation stage
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99906196A
Other languages
German (de)
English (en)
Inventor
Jürgen PATZLAFF
Rüdiger KNAUF
Joachim Semel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Axiva GmbH and Co KG
Original Assignee
Axiva GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axiva GmbH filed Critical Axiva GmbH
Publication of EP1056687A1 publication Critical patent/EP1056687A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment

Definitions

  • the invention relates to a process for the oxidative treatment of water containing organic compounds, in which the water is mixed with a reagent containing hydrogen peroxide and dissolved iron or titanium ions.
  • D1 discloses a process for the chemical-oxidative purification of waste water by means of Fenton's reagent by the action of hydrogen peroxide and iron (II) compounds in the acidic range and subsequent precipitation of the iron (III) compounds in the slightly acidic to alkaline range.
  • the iron ions are precipitated, filtered off and dissolved in sulfuric acid.
  • Fe (III) is reduced electrochemically or chemically (SO 2 , sulfites) to Fe (II).
  • the Fentons oxidation is carried out by adding fresh Fe (III) salt.
  • EP 0 806 398 A1 discloses a method for cleaning waste water, in which a membrane filter device - preferably one
  • Nanofiltration device - used to separate the waste water constituents.
  • the retentate stream is used to concentrate the waste water components in the 2
  • the object of the invention was to improve or simplify the method mentioned at the outset.
  • the invention therefore relates to a process for the oxidative treatment of water containing organic compounds, in which the water is mixed with a reagent containing hydrogen peroxide and dissolved iron or titanium ions, characterized in that the mixture is passed through a membrane separation stage in which the Mixture deprives a permeate as treated wastewater.
  • the oxidative treatment is preferably carried out at pH values from 2 to 3, at temperatures from 5 to 100 ° C., particularly preferably 40 to 60 ° C. and at pressures from 1 to 51 bar (abs).
  • a preferred embodiment is characterized in that the mixing of the water with the reagent is carried out in a container in that 3 withdraws the mixture from the container and feeds the membrane separation stage and that the retentate of the membrane separation stage is wholly or partly returned to the container.
  • the dwell time for protecting the membrane can be such that the
  • the hydrogen peroxide can be catalytically decomposed after the container.
  • Metal oxide alloys and noble metals on supports are particularly suitable as catalysts. If chemically resistant membranes are used, catalytic decomposition of H 2 O 2 can be dispensed with.
  • the membranes used preferably have a separation limit which is greater than 100 and less than 1000 g / mol, preferably it is between 200 and 500 g / mol, measured by the method R. Rautenbach, A. Gröschl, published in Separation Potential on Nanofiltration Membranes Desalination 77 (1990).
  • Suitable membrane materials are polymers or ceramic materials, preferably polysulfone, polyether sulfone, modified polyamides or aluminum oxide, zirconium oxide or silicon carbide.
  • the Fe (II) and Fe (III) can be kept in solution and returned directly as a concentrate.
  • the Fe (II) / Fe (III) can be continuously recovered from the waste water and recycled.
  • the process according to the invention can preferably be carried out without subjecting the mixture to precipitation or reduction of the Fe (III) to Fe (II) prior to membrane separation.
  • the advantages of the method according to the invention are essentially the reduction of the wastewater-specific amount of metal salts and thus the metal sludge to be disposed of by recovering the iron, and the increase in the space-time yield of the chemical reactor by recycling not 4 implemented wastewater constituents, and the reliable reduction of problematic wastewater constituents by chemical conversion into biodegradable components.
  • FIGS. 1 and 2 An exemplary embodiment of the invention is described in more detail below with reference to FIGS. 1 and 2. It is not intended to limit the invention in any way.
  • Fig. 1 wastewater c AO ⁇ , hydrogen peroxide c H2 o2 and Fe (II) solution c F ⁇ (iron salt) is mixed in a reactor and by means of a pump 2 via a catalyst 3 to a downstream membrane separation 4 Retention of iron ions supplied.
  • the retentate 5 which is enriched in iron ions and insufficiently oxidized organic compounds (waste water constituents)
  • a partial flow can be discharged at any point in the process cycle.
  • a permeate 6 leaves the membrane separation 4 as treated waste water.
  • the direct feeding of the waste water into the reactor 1 for oxidation, as shown in Fig. 1, is particularly suitable for highly concentrated waste water.
  • For diluted 5 Waste water is recommended as a further embodiment, the direct feeding of the waste water into the membrane separation.
  • the hydrogen peroxide is mixed with the retentate in a mixer 7 and fed to the reactor 1.
  • the oxidatively treated model wastewater was treated by the membrane separation process nanofiltration.
  • nanofiltration is a pressure-driven membrane process for working up aqueous solutions down to the molecular range and can be used with regard to operating pressure (5-30 bar) and Place a 6 molecular separation limit (200-500 g / mol) between these processes.
  • operating pressure 5-30 bar
  • 6 molecular separation limit 200-500 g / mol
  • 2 liters of the model wastewater that had already largely reacted were submitted. This waste water was adjusted to pH 2 by concentrated sulfuric acid.
  • the iron salt (10.58 g / l FeSO 4 ) had dissolved in the model wastewater 42.5 g H 2 O 2 solution (50% by weight) was slowly added, the temperature rising to 40 ° C. as a result of the oxidation reaction.
  • the amount of H 2 O 2 corresponds to 100% of the active oxygen, ie the H 2 O 2 is theoretically sufficient to completely degrade the initial COD.
  • the test set-up was put into operation with the amount of wastewater presented and the nanofiltration membrane C (separation limit approx. 200-300 g / mol) was conditioned for several hours, the permeate flow was 39.5 l / m 2 h.
  • the experiments were then continued by continuously adding model wastewater and H 2 O 2 .
  • the metering was carried out at constant volume, ie the amount of waste water corresponding to the permeate flow was determined
  • the steady-state degradation rates in the circuit are, as expected, well below the values of the freight-related degradation rates. While the latter are essentially determined by the initial state of the fully reacted wastewater, in the steady state the selective separation of the nanofiltration leads to an increase in the AOX and COD concentration in the circuit and thus to a higher reaction rate in the system and a higher space-time yield Reactor.
  • the iron retention capacity of the membrane means that the wastewater-specific amount of iron salt used can be reduced between 90% and 98% depending on the selectivity.
  • the iron retention capacity of the membranes was 95% on average in the tests.
  • An exemplary estimate of the expected performance characteristics of the method according to the invention can be carried out numerically, assuming idealizing conditions.
  • 3 and 4 show results of the simulation calculations of an oxidation reaction in a continuous stirred tank and a process according to the invention consisting of a stirred tank and membrane separation (process according to FIG. 1 without catalytic decomposition).
  • the system of equations was drawn up from mass and mass balances for the sub-balance areas and solved numerically using the MathCad 5.0 program. This system of equations can be used to estimate the influence of certain operating parameters and the potential of the method.
  • the following simplifications were made:
  • the AOX discharge values can be reduced by a factor of 10-15 compared to a stirred tank.
  • the return of unreacted AOX components to the reactor leads to an increase in the AOX concentration (w A ox, R ⁇ ak process according to the invention) and thus to an increase in the average reaction rate in the reactor. This results in an additional increase in the efficiency of the method.
  • the tests carried out show that the use of the process according to the invention enables efficient treatment of waste water with water constituents which are difficult to biodegrade or are toxic to bacteria with AOX elimination rates of over 99.5% and COD injection rates of over 98%.
  • the amount of iron salt used in the wastewater can be reduced between 90% and 98% depending on the selectivity.
  • the test results achieved are confirmed by an exemplary simulation of the method according to the invention. On the basis of these calculations, it is clear that the space-time yield of a reactor can be increased by a factor of 10-15 by using the method according to the invention.
  • Table 1 Freights, concentrations and performance of the process according to the invention integral overall balance model concentration permeate degradation rate total freights wastewater in the system elimination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

L'invention concerne un procédé pour le traitement par oxydation de composés organiques renfermant de l'eau, dans lequel l'eau est mélangée (1) avec un réactif renfermant du peroxyde d'hydrogène et des ions fer ou titane dissous, caractérisé en ce que le mélange est envoyé à une étape de séparation sur membrane (4) au cours de laquelle on extrait du mélange un perméat constituant les eaux usées traitées (6).
EP99906196A 1998-02-20 1999-01-23 Procede d'epuration des eaux usees par combinaison d'une oxydation soutenue par du peroxyde d'hydrogene avec un processus de separation sur membrane Withdrawn EP1056687A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19807155A DE19807155C2 (de) 1998-02-20 1998-02-20 Verfahren zur Reinigung von Abwasser durch Kombination einer homogenen katalytischen Oxidation mittels Wasserstoffperoxid mit einem Membrantrennverfahren
DE19807155 1998-02-20
PCT/EP1999/000440 WO1999042407A1 (fr) 1998-02-20 1999-01-23 Procede d'epuration des eaux usees par combinaison d'une oxydation soutenue par du peroxyde d'hydrogene avec un processus de separation sur membrane

Publications (1)

Publication Number Publication Date
EP1056687A1 true EP1056687A1 (fr) 2000-12-06

Family

ID=7858402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99906196A Withdrawn EP1056687A1 (fr) 1998-02-20 1999-01-23 Procede d'epuration des eaux usees par combinaison d'une oxydation soutenue par du peroxyde d'hydrogene avec un processus de separation sur membrane

Country Status (6)

Country Link
EP (1) EP1056687A1 (fr)
JP (1) JP2002503553A (fr)
AU (1) AU2621399A (fr)
CA (1) CA2321503A1 (fr)
DE (1) DE19807155C2 (fr)
WO (1) WO1999042407A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105293756A (zh) * 2015-10-12 2016-02-03 丁建林 一种酸析-过氧化氢催化氧化处理高浓度废乳化液的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1172335B1 (fr) * 2000-07-11 2006-09-13 E.On Engineering GmbH Procédé pour nettoyer des filtres à bougie et des installations à membranes
US20100147765A1 (en) * 2007-02-05 2010-06-17 Christopher Peter Jones Method of treating liquid waste
KR101035649B1 (ko) * 2009-06-23 2011-05-19 명지대학교 산학협력단 수계 내 할로겐 탄소화합물 제거 방법 및 그 장치
SG10201706401PA (en) 2017-08-04 2019-03-28 Citic Envirotech Ltd Method and system for treatment of organic contaminants by coupling fenton reaction with membrane filtration
CN108046458A (zh) * 2017-09-15 2018-05-18 中信环境技术(广州)有限公司 一种膜过滤与芬顿氧化结合的污水处理方法和系统
CN110255773A (zh) * 2019-07-04 2019-09-20 浙江德强科技有限公司 一种在环氧树脂生产过程中产生的高盐有机废水的处理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687402A (en) * 1979-12-14 1981-07-16 Ebara Infilco Co Ltd Membrane separation method
JPS5721996A (en) * 1980-07-11 1982-02-04 Ebara Infilco Co Ltd Treating method for waste liquid containing reducible substance
SE441932B (sv) * 1981-01-14 1985-11-18 Danske Sukkerfab Forfarande for rening av sockersaft framstelld genom extraktion av sockerbetssnitsel
DE3815271A1 (de) * 1988-05-05 1989-11-16 Sandoz Ag Verfahren zur reinigung von industrieabwaessern
DE4134003A1 (de) * 1991-10-14 1993-04-15 Peroxid Chemie Gmbh Chemisch-oxidatives verfahren zur reinigung hochbelasteter abwaesser
US5310486A (en) * 1993-05-25 1994-05-10 Harrison Western Environmental Services, Inc. Multi-stage water treatment system and method for operating the same
DE19614214C2 (de) * 1996-04-10 1998-01-29 Herhof Umwelttechnik Gmbh Verfahren und Vorrichtung zur Aufbereitung von Wasser aus einem biologischen Abbauprozeß
EP0806399A1 (fr) * 1996-05-10 1997-11-12 Wehrle-Werk Ag Procédé et dispositif pour la purification d'eaux résiduaires

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9942407A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105293756A (zh) * 2015-10-12 2016-02-03 丁建林 一种酸析-过氧化氢催化氧化处理高浓度废乳化液的方法
CN105293756B (zh) * 2015-10-12 2018-02-06 丁建林 一种酸析‑过氧化氢催化氧化处理高浓度废乳化液的方法

Also Published As

Publication number Publication date
CA2321503A1 (fr) 1999-08-26
JP2002503553A (ja) 2002-02-05
DE19807155A1 (de) 1999-09-09
DE19807155C2 (de) 2001-05-03
WO1999042407A1 (fr) 1999-08-26
AU2621399A (en) 1999-09-06

Similar Documents

Publication Publication Date Title
DE4125541C2 (de) Anlage zum Reinigen von Wasser
EP0604904B1 (fr) Procédé de traitement des eaux usées par l'oxydation chimique
DE69828821T2 (de) Wasserbehandlungsverfahren
EP1935479B1 (fr) Procédé hybride destiné à la désalinisation de l'eau de mer
DE10114177A1 (de) Verfahren zur Aufbereitung schadstoffhaltiger Wässer
DE4131596C2 (de) Verfahren zum Reinigen eines durch organische und anorganische Inhaltsstoffe belasteten wäßrigen Fluids
DE19837723A1 (de) Verfahren zur Reinigung von Abwässern aus dem Hock-Verfahren
DE19807155C2 (de) Verfahren zur Reinigung von Abwasser durch Kombination einer homogenen katalytischen Oxidation mittels Wasserstoffperoxid mit einem Membrantrennverfahren
DE60319803T2 (de) Verfahren zur behandlung von industrieabwasserenthaltende organische schadstoffe
DE60222700T2 (de) Verwendung eines bimetallkatalysators zur behandlung von nitrathaltigem wasser
EP0579623B1 (fr) Procede d'epuration d'air d'echappement
DE2050874B2 (de) Verfahren zum Reinigen von Abwässern aus der Papier-, Leder-, Textil-, Reinigungs-, Nahrungsmittel- und Kunststoffindustrie
DE10319044A1 (de) Vorrichtung zur elektrolytischen und oxidativen Behandlung von Abwässern, hierbei eingesetzte Filtrationsmembranen, deren Herstellung sowie Verfahren zur Behandlung von Abwässern mittels dieser Anlage und/oder dieser Filtrationsmembranen
DE10308111A1 (de) Verfahren zum Abtrennen von gelösten oder kolloidalen Feststoffen aus nicht wässrigen Lösungen
DE60317652T2 (de) Verfahren zur Reinigung von Polyetherpolyolen
EP0360989A1 (fr) Procédé pour le traitement par oxydation chimique d'eau, qui contient des substances toxiques et/ou par ou difficilement dégradables biologiquement
EP1805151B1 (fr) Procede de traitement d'une eau contenant des triazines dans une usine de melamine
EP1620363B1 (fr) Procede de traitement des eaux usees contenant du nitrate
DE4446211C1 (de) Verfahren und Anlage zur Aufbereitung kampfstoffvergifteter Wässer
DE2845797A1 (de) Anisotrope, synthetische membran und verfahren zu ihrer herstellung
EP3201139B1 (fr) Dispositif et procede de filtration de l'eau
AT410314B (de) Verfahren und vorrichtung zur aufbereitung von organisch belasteten abwässern
DE19508786C2 (de) Verfahren zur Verringerung der organischen Bestandteile von Feststoffsuspensionen
EP0796228B1 (fr) Procede de traitement catalytique d'eaux usees contenant des composes organiques et inorganiques
EP0854844B1 (fr) Traitement biologique des eaux usees contenant des concentrations elevees en boues

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB IT LI NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AXIVA GMBH & CO. KG

17Q First examination report despatched

Effective date: 20020213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040107