EP1054922A1 - Composition nanocomposite polymere - Google Patents

Composition nanocomposite polymere

Info

Publication number
EP1054922A1
EP1054922A1 EP98906385A EP98906385A EP1054922A1 EP 1054922 A1 EP1054922 A1 EP 1054922A1 EP 98906385 A EP98906385 A EP 98906385A EP 98906385 A EP98906385 A EP 98906385A EP 1054922 A1 EP1054922 A1 EP 1054922A1
Authority
EP
European Patent Office
Prior art keywords
nylon
poly
ammonium
silicate
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98906385A
Other languages
German (de)
English (en)
Other versions
EP1054922A4 (fr
Inventor
Lloyd A. Goettler
Bruce A. Lysek
Clois E. Powell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solutia Inc
Original Assignee
Solutia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solutia Inc filed Critical Solutia Inc
Publication of EP1054922A1 publication Critical patent/EP1054922A1/fr
Publication of EP1054922A4 publication Critical patent/EP1054922A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • This invention relates to a nanocomposite material comprising a polyamide matrix having dispersed therein a treated silicate. More particularly, this invention relates to a nanocomposite material having dispersed therein a silicate material treated with at least one ammonium ion.
  • the layered material is compatibilized with one or more "effective swelling/compatibilizmg agents" selected from primary ammonium, secondary ammonium and quaternary phosphomum ions.
  • the selected swelling/compatibilizmg agents "...render their surfaces more organophilic than those compatibilized by tertiary and quaternary ammonium ion complexes", facilitate exfoliation, resulting m less shear in mixing and less decomposition of the polymer, and heat stabilize the composite more than other cations (such as quaternary ammonium cation) swelling/compatibilizmg agents.
  • WO 94/22430 discloses a nanocomposite composition having a polymer matrix comprising at least one gamma phase polyamide, and dispersed in the polyamide is a matrix of a nanometer-scale particulate material.
  • the addition of the particulate material to nylon 6 resulted in an improvement of flexural modulus and flexural strength (from 7 to 35%), when compared to. unfilled nylon 6.
  • the addition of the particulate material to nylon 6,6 resulted in very little improvement (1 to 3%) of flexural modulus and flexural strength when compared to unfilled nylon 6,6.
  • International Patent Application WO 95/14733 discloses a method of producing a polymer composite that does not demonstrate melting or glass transition by melt-processing a polymer with a layered gallery-containing crystalline silicate.
  • the examples include intercalated sodium silicate and a crystalline poly (ethylene oxide), montmorillonite intercalated with a quaternary ammonium and polystyrene, and montmorillonite intercalated with a quaternary ammonium and nylon 6.
  • This invention relates to a polymer nanocomposite composition suitable for automotive, electronic, film and fiber applications, where a combination of tensile strength, tensile modulus and flexural modulus are required. Additionally, the claimed polymer nanocomposite composition also has a desirable surface appearance, toughness, ductility and dimensional
  • composition processes well and tolerates a wide range of molding conditions.
  • Such polymer nanocomposite composition comprises a polyamide and a treated silicate, wherein the treated silicate includes a silicate material treated with at least one ammonium ion of the formula:
  • Ri, R 2 , R 3 and R 4 are independently selected from a group consisting of a saturated or unsaturated Ci to C22 hydrocarbon, substituted hydrocarbon and branched hydrocarbon, or where Ri and R 2 form a N,N-cyclic ether.
  • Examples include saturated or unsaturated alkyls, including alkylenes; substituted alkyls such as hydroxyalkyls, alkoxyalkyls, alkoxys, amino alkyls, acid alkyls, halogenated alkyls, sulfonated alkyls, nitrated alkyls and the like; branched alkyls; aryls and substituted aryls, such as alkylaryls, alkyoxyaryls, alkylhydroxyaryls, alkylalkoxyaryls and the like.
  • one of Ri, R 2 , R3 and R 4 is hydrogen.
  • the milligrams of treatment per 100 grams of silicate (MER) of the treated silicate is from about 10 milliequivalents/100 g below the cation exchange capacity of the untreated silicate to about 30 milliequivalents/100 g above the cation exchange capacity of the untreated silicate.
  • the composite polymer matrix material demonstrates, when tested, an improvement in tensile modulus and flexural modulus, without a substantial decrease in tensile strength, when compared to that of the polymer without the treated silicate.
  • substantially decrease means a decrease exceeding the statistically determined deviations.
  • the present invention further relates to a process to prepare the above polymer nanocomposite composition comprising forming a flowable mixture of a polyamide and a treated silicate
  • the treated silicate is a silicate material treated with at least one ammonium ion of the formula: + NR ⁇ R 2 R 3 R4 wherein:
  • Ri, 7 , R3 and R 4 are independently selected from a group consisting of a saturated or unsaturated Ci to C22 hydrocarbon, substituted hydrocarbon and branched hydrocarbon, or where Ri and R 2 form a N,N-cyclic ether.
  • Examples include saturated or unsaturated alkyls, including alkylenes; substituted alkyls such as hydroxyalkyls, alkoxyalkyls, alkoxys, amino alkyls, acid alkyls, halogenated alkyls, sulfonated alkyls, nitrated alkyls and the like; branched alkyls; aryls and substituted aryls, such as alkylaryls, alkyoxyaryls, alkylhydroxyaryls, alkylalkoxyaryls and the like.
  • one of Ri, R 2 , R 3 and R 4 is hydrogen.
  • the milligrams of treatment per 100 grams of silicate (MER) of the treated silicate is from about 10 milliequivalents/100 g below the cation exchange capacity of the untreated silicate to about 30 milliequivalents/100 g above the cation exchange capacity of the untreated silicate.
  • the composite polymer matrix material demonstrates, when tested, an improvement in tensile modulus and flexural modulus, without a significant decrease in tensile strength, when compared to that of the polymer without the treated silicate.
  • Polyamides of the present invention are synthetic linear polycarbonamides characterized by the presence of recurring carbonamide groups as an integral part of the polymer chain which are separated from one another by at least two carbon atoms.
  • Polyamides of this type include polymers, generally known in the
  • nylons which can be obtained from diamines and dibasic acids having the recurring unit represented by the general formula :
  • R 5 is an alkylene group of at least 2 carbon atoms, preferably from about 2 to about 11 or arylene having at least about 6 carbon atoms, preferably about 6 to about 17 carbon atoms; and Re is selected from R5 and aryl groups.
  • copolyamides, terpolyamides and the like obtained by known methods, for example, by condensation of hexamethylene diamine and a mixture of dibasic acids consisting of terephthalic acid and adipic acid.
  • Polyamides of the above description are well-known in the art and include, for example, poly (hexamethylene adipamide) (nylon 6,6), poly (hexamethylene sebacamide) (nylon 6,10), poly (hexamethylene isophthalamide) , poly (hexamethylene terephthalamide) , poly (heptamethylene pimelamide) (nylon 7,7), poly (octamethylene suberamide) (nylon 8,8), poly (nonamethylene azelamide) (nylon 9,9), poly (decamethylene sebacamide) (nylon 10,9), poly (decamethylene sebacamide) (nylon 10,10), poly [bis (4-amino cyclohexyl) methane-
  • polystyrene carboxylate 1, 10-decanecarboxamide) ] , poly (m-xylene adipamide), poly (p-xylene sebacamide), poly (2, 2 , 2-trimethyl hexamethylene terephthalamide), poly (piperazine sebacamide), poly (p-phenylene terephthalamide), poly (metaphenylene isophthalamide), and copolymers and terpolymers of the above polymers.
  • Additional polyamides include nylon 4,6, nylon 6,9, nylon 6,10, nylon 6,12, nylon 11, nylon 12, amorphous nylons, aromatic nylons and their copolymers.
  • useful polyamides are those formed by polymerization of amino acids and derivatives thereof, as for example, lactams .
  • Illustrative of these useful polyamides are poly (caprolactam) (nylon 6), poly ( 4-aminobutyric acid) (nylon 4), poly(7- aminoheptanoic acid) (nylon 7), poly ( 8-aminooctanoic acid) (nylon 8), poly ( 9-aminononanoic acid) (nylon 9), poly (10-aminodecanoic
  • nylon 10 poly ( 11-aminoundecanoic acid) (nylon 11), poly (12-aminodocecanoic acid) (nylon 12) and the like.
  • Vydyne® nylon which is poly (hexamethylene adipamide) (nylon 6,6), which gives a composite with the desired combination of tensile strength, tensile modulus and flexural modulus for the applications contemplated herein (Vydyne® is a registered trademark of Solutia, Inc. ) .
  • the preferred molecular weight of the polyamide is in the range of 30,000 to 80,000 D (weight average) with a more preferred molecular weight of at least 40,000 D (weight average).
  • Increasing the weight average molecular weight of the polyamide from about 35,000 to 55,000 D results in an unexpected increase in toughness as indicated by the notched izod impact test.
  • an increase in the weight average molecular weight of from about 35,000 to 55,000 D in the polyamide neat results in a small increase in toughness
  • the same increase in molecular weight in the nanocomposite results about twice the increase in toughness. Therefore, the increase in toughness is enhanced in the nanocomposite when compared to that of the polyamide neat.
  • the polyamide has an amine end group/acid end group ratio greater than one (1) . More preferably, the concentration of amine end groups is at least 10 mole % greater than the concentration of the carboxylic acid end groups. In an even more preferred embodiment, the polyamide has a concentration of amine end groups at least 20 mole % greater than the concentration of the carboxylic acid end groups, and in a most preferred embodiment, the polyamide has a concentration of amine end groups at least 30 mole % greater than the concentration of the carboxylic acid end groups. In another embodiment, the concentration of amine end groups is essentially equal to the concentration of carboxylic acid end groups. Among the preferred embodiments is nylon 6, nylon 6,6, blends thereof and copolymers thereof.
  • the range of ratios of the nylon 6/nylon 6,6 in the blends is from about 1/100 to 100/1. Preferably, the range is from about 1/10 to 10/1.
  • the range of ratios of the nylon 6/nylon 6, 6 in the copolymers is about 1/100 to 100/1. Preferably, the range is from about 1/10 to 10/1.
  • the nanocomposite composition comprises at least one additional polymer.
  • suitable polymers include polyethyleneoxide, polycarbonate, polyethylene, polypropylene, poly (styrene-acrylonitrile) , poly (acrylonitrile- butadiene-styrene) , poly (ethylene terephthalate), poly (butylene terephthalate), poly (trimethylene terephthalate), poly (ethylene naphthalate) , poly (ethylene terephthalate-co-cyclohexane dimethanol terephthalate), polysulphone, poly (phenylene oxide) or poly (phenylene ether), poly (hydroxybenzoic acid-co-ethylene terephthalate), poly (hydroxybenzoic acid-co-hydroxynaphthenic acid), poly (esteramide) , poly (etherimide) , poly (phenylene sulfide), poly (phenylene terephthalamide).
  • the mixture may include various optional components which are additives commonly employed with polymers.
  • Such optional components include surfactants, nucleating agents, coupling agents, fillers, impact modifiers, chain extenders, plasticizers, compatibilizers, colorants, mold release lubricants, antistatic agents, pigments, fire retardants, and the like.
  • Suitable examples of fillers include carbon fiber, glass fiber, kaolin clay, wollastonite and talc.
  • Suitable examples of compatibilizers include acid-modified hydrocarbon polymer, such as maleic anhydride-grafted propylethylene, maleic anhydride- grafted polypropylene, maleic anhydride-grafted ethylenebutylene- styrene block copoly er.
  • Suitable examples of mold release lubricant includes alkyl amine, stearamide, and di-or tri- aluminum stearate.
  • Suitable examples of impact modifiers include ethylene- propylene rubber, ethylene-propylene diene rubber, methacrylate- butadiene-styrene (with core-shell morphology) , poly (butylacrylate) with or without carboxyl modification, poly (ethylene acrylate) , poly (ethylene methylacrylate) , poly (ethylene acrylic acid), poly (ethylene acrylate) ionomers, poly (ethylene methacrylate acrylic acid) terpolymer, poly (styrene-butadiene) block copolymers, poly ( styrene-butadiene- styrene) block terpolymers, poly (styrene-ethylene/butylene- styrene) block terpolymers and poly (styrene-ethylene/butylene- styrene
  • Silane coupling agents are well-known in the art and are useful in the present invention.
  • suitable coupling agents include octadecyltrimethoxysilane, gamma- aminopropyltriethoxysilane, gamma-aminopropyltrimethoxysilane, gamma-aminopropylphenyldimethoxysilane, gamma-glycidoxypropyl tripropoxysilane, 3, 3-epoxycyclohexylethyl trimethoxysilane, gamma-proprionamido trithoxysilane, N-trimethoxysilylpropyl- N (beta-aminoethyl) amine, trimethoxysilylundecylamine, trimethoxysilyl-2-chloromethylphenylethane, trimethoxysilylethylphenylsulfonylazide, N-trimethoxysilyl
  • the preferred silane is gamma-aminopropyltriethoxysilane .
  • the silane coupling agent is optionally added to the polymer composite in the range of about 0.5 to 5 weight % of the layered silicate.
  • the preferred concentration range of silane coupling agent is about 1 to 3 weight % of the layered silicate in the composite .
  • the nanocomposite composition further comprises a composition wherein an acid end group of the polyamide is bonded to a surface of the treated layered silicate by a silane coupling agent.
  • the silicate materials of the present invention are selected from the group consisting of layered silicates and fibrous, chain-like silicates, and include phyllosilicates .
  • fibrous, chain-like silicates include chain-like minerals, for example sepiolite and attapulgite, with sepiolite being preferred.
  • Such silicates are described, for example, in Japanese Patent Application Kokoku 6-84435 published October 26, 1994.
  • layered silicates include layered smectite clay minerals such as montmorillonite, nontronite, beidellite, volkonskoite, Laponite® synthetic hectorite, natural hectorite, saponite, sauconite, magadiite, and kenyaite; vermiculite; and the like.
  • Other useful materials include layered illite minerals such as ledikite and admixtures of illites with one or more of the clay minerals named above.
  • the preferred layered silicates are the smectite clay minerals such as montmorillonite, nontronite, beidellite, volkonskoite, Laponite® synthetic hectorite, natural hectorite, saponite, sauconite, magadite, and kenyaite.
  • layered silicate materials suitable for use in the present invention are well-known in the art, and are sometimes referred to as "swellable layered material". A further description of the claimed layered silicates and the platelets formed when melt processed with the polyamide is found in
  • the layered silicate materials typically have planar layers arrayed in a coherent, coplanar structure, where the bonding within the layers is stronger than the bonding between the layers such that the materials exhibit increased interlayer spacing when treated.
  • interlayer spacing refers to the distance between the faces of the layers as they are assembled in the treated material before any delamination (or exfoliation) takes place.
  • the preferred clay materials generally include interlayer or exchangeable cations such as Li + , Na + , Ca +2 , K + , Mg +2 and the like. In this state, these materials have interlayer spacings usually equal to or less than about 4 A and only delaminate to a low extent in host polymer melts regardless of mixing.
  • the cationic treatment is a ammonium species which is capable of exchanging with the interlayer cations such as Li + , Na + , Ca + , K + , Mg + and the like in order to improve delamination of the layered silicate.
  • the treated silicate of the present invention is a silicate material as described above which is treated with at least one ammonium ion of the formula
  • NR1R2R3R4 wherein: Ri, R 2 , R3 and R are independently selected from a group consisting of a saturated or unsaturated Ci to C22 hydrocarbon, substituted hydrocarbon and branched hydrocarbon, or where Ri and R2 form a N,N-cyclic ether.
  • Examples include saturated or unsaturated alkyls, including alkylenes; substituted alkyls such as hydroxyalkyls, alkoxyalkyls, alkoxys, amino alkyls, acid alkyls, halogenated alkyls, sulfonated alkyls, nitrated alkyls and the like; branched alkyls; aryls and substituted aryls, such as alkylaryls, alkyoxyaryls, alkylhydroxyaryls, alkylalkoxyaryls and the like.
  • one of Ri, R 2 , R3 and R 4 is hydrogen.
  • a mixture of two or more ammonium ions is contemplated by the present invention.
  • Ri is selected from the group consisting of hydrogenated tallow,
  • Tallow is composed predominantly of octadecyl chains with small amounts of lower homologues, with an average of from 1 to 2 degrees of unsaturation .
  • the approximate composition is 70% Cis, 25% Ci 6 , 4% C ⁇ 4 and 1% C ⁇ 2 .
  • Ri and R2 are independently selected from the group consisting of hydrogenated tallow, unsaturated tallow or a hydrocarbon having at least 6 carbons and R 3 and R 4 independently have from one to twelve carbons.
  • Ri, R 2 , R3 and R 4 groups are alkyl such as methyl, ethyl, octyl, nonyl, tert-butyl, ethylhexyl, neopentyl, isopropyl, sec-butyl, dodecyl and the like; alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 1-heptenyl, 1-octenyl and the like; cycloalkyl such as cyclohexyl, cyclopentyl, cyclooctyl, cycloheptyl and the like; alkoxy such as ethoxy; hydroxyalkyl; alkoxyalkyl such as methoxymethyl, ethoxymethyl, butoxymethyl, propoxyethyl, pentoxybutyl and the like; aryloxyalkyl and aryloxyaryl such as phenoxyphen
  • the preferred ammoniums used in treating the silicate materials include oniums such as dimethyldi (hydrogenated tallow) ammonium, dimethylbenzyl hydrogenated tallow ammonium, dimethyl (ethylhexyl) hydrogenated tallow ammonium, trimethyl hydrogenated tallow ammonium, methylbenzyldi (hydrogenated tallow) ammonium, N, N-2-cyclobutoxydi (hydrogenated tallow) ammonium, trimethyl tallow ammonium, methyldihydroxyethyl tallow ammonium, octadecylmethyldihydroxyethyl ammonium, dimethyl (ethylhexyl) hydrogenated tallow ammonium and mixtures thereof.
  • Particularly preferred ammoniums include quaternary ammoniums, for example,
  • the treatment with the ammonium ⁇ on(s), also called “cationic treatments”, may include introduction of the ions into the silicate material by ion exchange.
  • the cationic treatments may be introduced into the spaces between every layer, nearly every layer, or a large fraction of the layers of the layered material such that the resulting platelet layers comprise less than about 20 particles in thickness.
  • the platelet layers are preferably less than about 8 particles in thickness, more preferably less than about 5 particles m thickness, and most preferably, about 1 or 2 particles in thickness.
  • the treated silicate has a MER of from about 10 m ⁇ ll ⁇ equ ⁇ valents/100 g below the cation exchange capacity of the untreated silicate to about 30 m ⁇ ll ⁇ equ ⁇ valents/100 g above the cation exchange capacity of the untreated silicate.
  • the MER is the milliequivalents of treatment per 100 g of silicate.
  • Each untreated silicate has a cation exchange capacity, which is the milliequivalents of cations available for exchange per 100 g of silicate.
  • the cation exchange capacity of the layered silicate montmorillonite can be about 95, and the exchange capacity of sepiolite is in the range of about 25 to 40.
  • the 12 nanocomposite sample may have a higher concentration of treated silicate but a lower concentration of silicate, than a second nanocomposite sample, because the first sample has a higher MER than the second sample.
  • the MER value of the treated silicate is substantially less than its exchange capacity, for example about 85 MER for the preferred montmorillonite, there is too little of the cationic treatment to have a beneficial effect. If the MER exceeds about 125, the excess ammonium may be detrimental to the properties of the nylon.
  • the untreated montmorillonite has an exchange capacity of 95
  • the treated layered silicate has a cation exchange capacity of from about 85 to about 125.
  • the amount of treated silicate included in the composition is in the range of about 0.1 to 12 weight % of the composite.
  • the concentration is adjusted to provide a composite polymer matrix material which demonstrates, when tested, an increase in tensile modulus and flexural modulus, without a decrease in tensile strength.
  • the increase in tensile modulus and flexural modulus is at least about 10%. More preferably, the increase in tensile modulus and flexural modulus is at least about 20%. Too little treated silicate fails to provide the desired increase in tensile modulus and flexural modulus. Too much treated silicate provides a polyamide composite with a decreased tensile strength. Further, it may be desirable to have the crystalline regions of the polyamide in the nanocomposite composition be less than l.O ⁇ m.
  • the particle size of the treated silicate is such that optimal contact between the polymer and the treated silicate is facilitated.
  • the range of particle size can vary from about 10 microns to about 100 microns.
  • the particle size is in the range of from about 20 to 80 microns.
  • the particle size is below about 30 microns, such as those that
  • the silicate can be treated with a mixture of one or more quaternary ammonium ions with one or more ammonium ions of the formula
  • R a , Rb and R cR wherein at least one of R a , Rb and R c is hydrogen (H) and Rd is selected from a group consisting of a saturated or unsaturated Ci to C 22 hydrocarbon, substituted hydrocarbon and branched hydrocarbon.
  • Examples include saturated or unsaturated alkyls, including alkylenes; substituted alkyls such as hydroxyalkyls, alkoxyalkyls, alkoxys, ammo alkyls, acid alkyls, halogenated alkyls, sulfonated alkyls, nitrated alkyls and the like; branched alkyls; aryls and substituted aryls, such as alkylaryls, alkyoxyaryls, alkylhydroxyaryls, alkylalkoxyaryls and the like.
  • the definition of the Ra group for the ammonium ion above is generally the same as the definition for the R 4 group m the ammonium ion, which in this embodiment is a quaternary ammonium, the Examples set forth above for the R 4 group are also exemplary of the R group.
  • the Rd group further contains a carboxylic acid moiety such that the ammonium ion
  • NR a R b RcRd is an ammo acid, for example 12-ammolau ⁇ c acid ammonium.
  • amme end groups/acid end groups ratio of the polyamide is greater than one
  • a preferred mixture includes at least one of dimethyldi (hydrogenated tallow) ammonium, methyl dihydroxyethyl tallow ammonium and/or dimethyl (ethylhexyl) hydrogenated tallow ammonium, either alone or in combination with 12-ammolaur ⁇ c acid ammonium.
  • the treated silicate can be further treated with azme cationic dyes, such as mgrosmes or anthracmes.
  • azme cationic dyes such as mgrosmes or anthracmes.
  • Said cationic dyes would impart color-fastness and uniformity of color in addition to increasing the intercalation of the polymer molecules .
  • the preferred nanocomposite contains a concentration of treated silicate of from about 0.1 to about 12.0 weight % of the composite.
  • the most preferred nanocomposite contains a concentration of treated silicate of from about 0.5 to about 6.0 weight % of the composite.
  • the nanocomposite composition is prepared using a two step process.
  • One step includes forming a flowable mixture of the polyamide as a polymer melt and the treated silicate material.
  • the other step includes dissociating at least 50% but not all of the treated silicate material.
  • the term "dissociating", as utilized herein, means delaminating or separating treated silicate material into submicron-scale structures comprising individual or small multiple units.
  • this dissociating step includes delaminating the treated silicate material into submicron scale platelets comprising individual or small multiple layers.
  • this dissociating step includes separating the treated silicate material into submicron scale fibrous structures comprising individual or small multiple units.
  • a flowable mixture is a mixture which is capable of dispersing dissociated treated silicate material at the submicron scale.
  • a polymer melt is a melt processable polymer or mixture of polymers which has been heated to a temperature sufficiently high to produce a
  • the process temperature should be at least as high as the melting point of the polyamide employed and below the degradation temperature of the polyamide and of the organic treatment of the silicate.
  • the actual extruder temperature may be below the melting point of the polyamide employed, because heat is generated by the flow.
  • the process temperature is high enough that the polymer will remain in the polymer melt during the conduct of the process. In the case of a crystalline polyamide, that temperature is above the polymer's melting temperature.
  • a typical nylon 6, having a melting point of about 225°C can be melted in an extruder at any temperature equal to or greater than about 225°C, as for example between about 225°C and about 260°C.
  • nylon 6,6 a temperature of preferably from about 260°C to about 320°C is normally employed.
  • the flowable mixture can be prepared through use of conventional polymer and additive blending means, in which the polymer is heated to a temperature sufficient to form a polymer melt and combined with the desired amount of the treated silicate material in a granulated or powdered form in a suitable mixer, as for example an extruder, a Banbury® type mixer, a Brabender® type mixer, Farrel® continuous mixers, and the like.
  • a suitable mixer as for example an extruder, a Banbury® type mixer, a Brabender® type mixer, Farrel® continuous mixers, and the like.
  • the flowable mixture may be formed by mixing the polyamide with a previously formed treated silicate- containing concentrate.
  • the concentrate includes the treated silicate and a polymer carrier.
  • the concentration of the treated silicate material in the concentrate is selected to provide the desired treated silicate concentration for the final nanocomposite composition.
  • suitable polymers for the carrier polymer of the concentrate include polyamide, ethylene propylene rubber, ethylene propylene diene rubber, ethylene-
  • the polyamide polymers suitable for the carrier polymer include nylons such as nylon 6, nylon 6,6, nylon 4,6, nylon 6,9, nylon 6,10, nylon 6,12, nylon 11, nylon 12, amorphous nylons, aromatic nylons and their copolymers.
  • the polymer of the carrier may be the same as or different from the polyamide of the flowable mixture.
  • both polymers may be a polyamide, particularly nylon 6,6, but may have the same or different molecular weight.
  • the preferred weight average molecular weight of the carrier polymer of the concentrate is in the range of about 5,000 D to about 60,000 D.
  • the most preferred range of the weight average molecular weight for the carrier polymer is in the range of about 10,000 to about 40,000 D.
  • the dissociation step of the present process may occur at least in part via the forming of the concentrate such that the dissociation step may precede the step of forming the flowable mixture. It is therefore understood that the process steps (e.g., forming and dissociating) may occur sequentially without regard to order, simultaneously or a combination thereof.
  • the flowable mixture is sufficiently mixed to form the dispersed nanocomposite structure of dissociated silicate in the polymer melt, and it is thereafter cooled.
  • the silicate can be dissociated by being subjected to a shear having an effective shear rate.
  • an effective shear rate is a shear rate which is effective to aid in dissociation of the silicate and provide a composition comprising a polyamide matrix having silicate substantially homogeneously dispersed therein without substantially breaking the individual units (e.g., platelets or fibrous chains) .
  • the flowable polymer mixture is sheared by mechanical methods in which portions of the melt are caused to flow past other portions of the mixture by use of mechanical means such as stirrers, Banbury® type mixers, Brabender® type mixers, Farrel® continuous mixers, and extruders.
  • the mixture is subjected to multiple shearings.
  • increased residence time is also provided, which results in improved performance properties.
  • Another procedure employs thermal shock in which shearing is achieved by alternatively raising or lowering the temperature of the mixture causing thermal expansions and resulting in internal stresses which cause the shear.
  • shear is achieved by sudden pressure changes in pressure alteration methods; by ultrasonic techniques in which cavitation or resonant vibrations which cause portions of the mixture to vibrate or to be excited at different phases and thus subjected to shear.
  • Shearing can be achieved by introducing the polymer pellets at one end of the extruder (single or twin screw) and receiving the sheared polymer at the other end of the extruder.
  • a preferred twin screw extruder is a co-rotating fully intermeshing type, such as the ZSK series manufactured by Werner and Pfleiderer Company.
  • the layered silicate can be fed into the twin screw extruder at the feed throat or at the downstream vent.
  • the preferred method is to feed the layered silicate at the downstream vent, which produces a composite polymer with improved performance properties.
  • an additional processing step can be added, such as solid state polymerization, wherein the compounded pellets are held for several hours at a high temperature below the melting point of the polymer.
  • typical solid state polymerization conditions are heating the solid polymer in the range of about 200 to 240°C for a period of from about two (2) to five (5) hours.
  • Said additional processing step results in an increase in molecular weight and an improvement in toughness, ductility and tensile strength of the nanocomposite.
  • Another optional processing step can be a heat treatment step, where the composition is heated to improve intercalation of the nylon molecules into the silicate structure. Said heat treatment step is performed by heating the composition at a temperature in the range of about 200 to 240°C for a period of about two (2) to five (5) hours.
  • FCM Farrel Continuous Mixer
  • the polymer melt containing nano-dispersed dissociated silicate material may also be formed by reactive extrusion in which the silicate material is initially dispersed as aggregates or at the nanoscale in a liquid or solid monomer and this monomer is subsequently polymerized in an extruder or the like.
  • the polymer may be granulated and dry mixed with the treated silicate material, and thereafter, the composition may be heated in a mixer until the polymer is melted forming the flowable mixture.
  • the process to form the nanocomposite is preferably carried out in the absence of air, as for example in the presence of an inert gas, such as argon, neon or nitrogen.
  • 19 can be carried out in a batchwise or discontinuous fashion, as for example, carrying out the process in a sealed container.
  • the process can be carried out in a continuous fashion in a single processing zone, as for example, by use of an extruder, from which air is largely excluded, or in a plurality of such reaction zones in series or in parallel.
  • the process to prepare a polymer nanocomposite composition comprises forming a first flowable mixture of a polyamide, at least one monomer, and a treated silicate material; dissociating at least
  • At least one monomer of the third embodiment includes monomers such as ⁇ - caprolactam, lauryllactam, and their corresponding lactones.
  • the process to prepare a polymer nanocomposite composition comprises forming a flowable mixture of a polyamide and a treated silicate material; dissociating the at least about 50% but not all of the treated silicate material; and adding an additional amount of said polyamide, most preferably during said dissociating step.
  • composition of the present invention can be made into, but is not limited to, the form of a fiber, film or a molded article .
  • nylon 6 6 was nylon h, manufactured by Solutia, Inc, and characterized in the Table of Nylon Types, below. Unless otherwise indicated, all percents are weight percent.
  • the % clay is the total weight of pristine clay in the final composite, be it pristine or pre-treated.
  • Tensile strength and Young's Modulus are measured according to ASTM method D638 and are reported in kpsi and MPa .
  • Flexural modulus is measured according to ASTM method D790 and is reported in kpsi and MPa. The runs numbered with a "-C" are control runs.
  • R octadecylmethyldiethoxy 95 S trimethyl C 22 110 T dimethyldi (hydrogenated tallow) , better dispersing form 95 U dimethyldi (hydrogenated tallow), processed 95 V item U, above, with 1% surfactant 95
  • Items GG through NN are examples of montmorillonite, unless otherwise indicated, treated with the blends of more than one quaternary ammonium or of a quaternary ammonium and ammonium of the present invention.
  • Items 00 through TT are examples of the tertiary ammonium silicates of the present invention.
  • KK 10.5/89.5 blend of 12-aminolauric acid and dimethydi (hydrogenated tallow) 95 LL 16/84 blend of 12-aminolauric acid and dimethydi (hydrogenated tallow) , 95
  • the amine ends and the acid ends are the equivalents of unreacted amine and acid functional groups on the nylon.
  • the M w is the weight average molecular weight as measured in Daltons.
  • nylon 6,6 products were used to prepare composites: nylon d, nylon c, nylon b, nylon h, shown in the Table of Nylon Types.
  • the nylons are presented above in order of decreasing average molecular weight.
  • the composites were processed using a ZSK twin screw extruder.
  • All composites show an increase in tensile modulus and flexural modulus without a decrease in tensile strength when compared to samples without treated clay.
  • the weight ratio of nylon blend h/b was 70/30
  • the other polymer used was Iotek 971 ionomer.
  • the other polymer used was ATX 320 acid terpolymer.
  • the runs in Table 8 vary the feed points for processing the nylon with the treated clay.
  • the clay was fed into the ZSK twin screw extruder at the throat or downstream of the throat.
  • the nylon used was a copolymer of 80% nylon 6,6 and 20% nylon 6.
  • composites are prepared from eight (8) different quaternary ammonium/ammonium blend-treated silicates.
  • the composites are processed using a ZSK twin screw extruder. Taking into account the standard deviations of the tensile strength measurements, all of the samples show an increase in tensile modulus and flex modulus without a decrease in tensile strength. Samples 125 through 135 show the effect of varying the nylon type.
  • composites are prepared from six (6) different tertiary ammonium-treated silicates.
  • the composites are processed using a ZSK twin screw extruder. Taking into effect the standard deviation of the tensile strength measurements, all of the samples show an increase in tensile modulus and flex modulus without a decrease in tensile strength,
  • Samples 145 to 147 and 151 to 156 use nylon a. Samples 148 to 150 use nylon c. oo

Abstract

L'invention concerne une composition nanocomposite polymère d'un polyamide et d'un silicate traité, ledit silicate traité comprenant un matériau à base de silicate traité avec au moins un ion ammonium de formule +NR1R2R3R4, dans laquelle R1, R2, R3 et R4 sont indépendamment sélectionnés dans un groupe formé d'hydrocarbure en C1-C4 saturé ou insaturé, un hydrocarbure substitué et un hydrocarbure ramifié ou dans laquelle R1 et R2 forment un éther N,N-cyclique et éventuellement un des R1, R2, R3 et R4 désigne un hydrogène.
EP98906385A 1998-02-13 1998-02-13 Composition nanocomposite polymere Withdrawn EP1054922A4 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1998/002768 WO1999041299A1 (fr) 1998-02-13 1998-02-13 Composition nanocomposite polymere

Publications (2)

Publication Number Publication Date
EP1054922A1 true EP1054922A1 (fr) 2000-11-29
EP1054922A4 EP1054922A4 (fr) 2001-08-08

Family

ID=22266382

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98906385A Withdrawn EP1054922A4 (fr) 1998-02-13 1998-02-13 Composition nanocomposite polymere

Country Status (8)

Country Link
EP (1) EP1054922A4 (fr)
JP (1) JP2003517488A (fr)
KR (1) KR20010040964A (fr)
CN (1) CN1301278A (fr)
AU (1) AU6162398A (fr)
BR (1) BR9815778A (fr)
CA (1) CA2320988A1 (fr)
WO (1) WO1999041299A1 (fr)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514490B2 (en) 1997-08-08 2009-04-07 Nederlandse Oganisatie Voor Toegepastnatuurwetenschappelijk Onderzoek Tno Nanocomposite material
US6552114B2 (en) * 1998-12-07 2003-04-22 University Of South Carolina Research Foundation Process for preparing a high barrier amorphous polyamide-clay nanocomposite
CA2390418A1 (fr) * 1999-12-02 2001-06-07 Eugenia Kumacheva Materiaux nanocomposites polymeres a matrice fonctionnelle et procede de lecture et d'ecriture correspondant
US7033524B2 (en) 2000-02-22 2006-04-25 Eugenia Kumacheva Polymer-based nanocomposite materials and methods of production thereof
EP1213129B1 (fr) * 2000-12-11 2004-09-15 Roth Werke GmbH Nanocomposite présentant une perméabilité réduite, son procédé de fabrication et récipient obtenu avec ce nanocomposite
EP1216810A1 (fr) * 2000-12-11 2002-06-26 Roth Werke GmbH Matière plastique et son procédé de fabrication
US6884833B2 (en) 2001-06-29 2005-04-26 3M Innovative Properties Company Devices, compositions, and methods incorporating adhesives whose performance is enhanced by organophilic clay constituents
WO2003002651A1 (fr) 2001-06-29 2003-01-09 Ciba Specialty Chemicals Holding Inc. Combinaisons synergetiques de nano-charges et de photostabilisants aminiques inhibes
KR100441283B1 (ko) * 2001-09-11 2004-07-22 한국과학기술원 박리형 고분자/실리케이트 나노복합체의 제조방법
CA2456918C (fr) 2001-09-28 2011-02-22 Edward Parsonage Dispositifs medicaux a nanocomposites
KR100792115B1 (ko) * 2001-12-27 2008-01-04 삼성토탈 주식회사 강도 및 내열성이 우수한 폴리프로필렌 수지 조성물
KR100441900B1 (ko) * 2002-02-08 2004-07-27 나재운 천연향을 담지한 나노캡슐 및 그의 제조방법
KR100707047B1 (ko) * 2002-02-18 2007-04-13 에스케이 주식회사 나일론계 나노복합재를 이용한 고분자 얼로이 조성물
JP4535223B2 (ja) * 2002-04-24 2010-09-01 三菱瓦斯化学株式会社 ポリアミド複合材料及びその製造方法
DE10222169A1 (de) * 2002-05-18 2003-12-04 Thueringisches Inst Textil Nanocomposites auf Polyolefin-Basis und Verfahren zu deren Herstellung sowie Verwendung
AU2002952373A0 (en) 2002-10-31 2002-11-14 Commonwealth Scientific And Industrial Research Organisation Fire resistant material
KR100542273B1 (ko) * 2003-04-07 2006-01-11 금호타이어 주식회사 고분자 나노복합체를 적용한 타이어용 인너라이너고무조성물
US7691932B2 (en) 2004-09-27 2010-04-06 3M Innovative Properties Company Method of making a composition and nanocomposites therefrom
US7329702B2 (en) 2004-09-27 2008-02-12 3M Innovative Properties Company Composition and method of making the same
US7495051B2 (en) 2004-09-27 2009-02-24 3M Innovative Properties Company Nanocomposite and method of making the same
DE102005005023A1 (de) * 2005-02-03 2006-08-10 Trw Automotive Safety Systems Gmbh & Co. Kg Gassack
JP4997704B2 (ja) 2005-02-24 2012-08-08 富士ゼロックス株式会社 表面被覆難燃性粒子及びその製造方法、並びに難燃性樹脂組成物及びその製造方法
JP2006265417A (ja) 2005-03-24 2006-10-05 Fuji Xerox Co Ltd 難燃性樹脂組成物及び難燃性樹脂成形品
KR100616723B1 (ko) * 2005-04-15 2006-08-28 주식회사 이폴리머 재생 폴리아미드 나노복합체 조성물
US7504472B2 (en) * 2005-06-02 2009-03-17 E. I. Du Pont De Nemours + Company Rapidly crystallizing polycarbonate composition
CN100395287C (zh) * 2005-12-16 2008-06-18 攀钢集团攀枝花钢铁研究院 一种户外灯具专用的纳米复合母粒及其制备方法
US8198355B2 (en) * 2006-06-15 2012-06-12 E. I. Du Pont De Nemours And Company Nanocomposite compositions of polyamides and sepiolite-type clays
US8713906B2 (en) 2006-11-16 2014-05-06 Applied Nanotech Holdings, Inc. Composite coating for strings
US8003726B2 (en) * 2007-02-16 2011-08-23 Polyone Corporation Method to establish viscosity as a function of shear rate for in-situ polymerized nanonylon via chain extension
US20080206559A1 (en) * 2007-02-26 2008-08-28 Yunjun Li Lubricant enhanced nanocomposites
CN101759950B (zh) * 2008-12-23 2013-01-30 上海普利特复合材料股份有限公司 一种低气味、低散发的abs树脂复合物及制备方法
CN101760010B (zh) * 2008-12-26 2013-09-18 上海普利特复合材料股份有限公司 低气味、低散发的尼龙6组合物及其制备方法
CN102712809B (zh) * 2010-03-31 2015-03-18 尤尼吉可株式会社 聚酰胺树脂组合物、该组合物的制造方法和使用该组合物而得的成型体
JP2011208105A (ja) * 2010-03-31 2011-10-20 Unitika Ltd ポリアミド樹脂組成物、該ポリアミド樹脂組成物の製造方法および該ポリアミド樹脂組成物を用いてなる成形体
CN102675864B (zh) * 2012-05-22 2014-06-25 太仓市临江农场专业合作社 一种耐低温聚酰胺的配方
CN103571181A (zh) * 2012-07-19 2014-02-12 杜邦公司 噪声阻尼性热塑性组合物
CN102977595B (zh) * 2012-08-17 2014-06-25 安徽凯迪电气有限公司 一种用于汽车的塑料连接器及其制造方法
CN102993727B (zh) * 2012-08-20 2014-07-02 安徽凯迪电气有限公司 一种原料含有改性海泡石粉的仪表托架
SG11201503859RA (en) * 2012-12-18 2015-06-29 Agency Science Tech & Res Method of preparing fiber-reinforced polymer composites and fiber-reinforced polymer composites prepared thereof
JP6234738B2 (ja) * 2013-09-03 2017-11-22 ユニチカ株式会社 ポリアミド樹脂組成物、およびそれより得られるブロー成形体
CN106009639A (zh) * 2016-06-17 2016-10-12 无锡英普林纳米科技有限公司 一种纳米尼龙复合材料及其制备方法
CN114507438A (zh) * 2021-09-02 2022-05-17 广东泰塑新材料科技有限公司 一种聚酰胺和硅酸盐复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004117A1 (fr) * 1991-08-12 1993-03-04 Allied-Signal Inc. Formation par traitement en fusion d'un nanocomposite polymere en materiau stratifie ecaille
WO1993004118A1 (fr) * 1991-08-12 1993-03-04 Allied-Signal Inc. Formation par traitement en fusion d'un nanocomposite polymere en materiau stratifie ecaille
US5385776A (en) * 1992-11-16 1995-01-31 Alliedsignal Inc. Nanocomposites of gamma phase polymers containing inorganic particulate material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3806548C2 (de) * 1987-03-04 1996-10-02 Toyoda Chuo Kenkyusho Kk Verbundmaterial und Verfahren zu dessen Herstellung
JPH0747644B2 (ja) * 1989-05-19 1995-05-24 宇部興産株式会社 ポリアミド複合材料及びその製造方法
WO1995006090A1 (fr) * 1993-08-23 1995-03-02 Alliedsignal Inc. Nanocomposites polymeres comportant un polymere et un materiau particulaire exfolie derive a l'aide d'organosilanes, d'organotitanates et d'organozirconates disperses dans ledit materiau et leurs procedes de fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004117A1 (fr) * 1991-08-12 1993-03-04 Allied-Signal Inc. Formation par traitement en fusion d'un nanocomposite polymere en materiau stratifie ecaille
WO1993004118A1 (fr) * 1991-08-12 1993-03-04 Allied-Signal Inc. Formation par traitement en fusion d'un nanocomposite polymere en materiau stratifie ecaille
US5385776A (en) * 1992-11-16 1995-01-31 Alliedsignal Inc. Nanocomposites of gamma phase polymers containing inorganic particulate material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9941299A1 *

Also Published As

Publication number Publication date
AU6162398A (en) 1999-08-30
CN1301278A (zh) 2001-06-27
WO1999041299A1 (fr) 1999-08-19
KR20010040964A (ko) 2001-05-15
BR9815778A (pt) 2001-10-30
CA2320988A1 (fr) 1999-08-19
JP2003517488A (ja) 2003-05-27
EP1054922A4 (fr) 2001-08-08

Similar Documents

Publication Publication Date Title
EP1054922A1 (fr) Composition nanocomposite polymere
US5385776A (en) Nanocomposites of gamma phase polymers containing inorganic particulate material
US6399690B2 (en) Layered compositions with multi-charged onium ions as exchange cations, and their application to prepare monomer, oligomer, and polymer intercalates and nanocomposites prepared with the layered compositions of the intercalates
WO1999041060A1 (fr) Procede d'elaboration d'une composition polymere nanocomposite
US5747560A (en) Melt process formation of polymer nanocomposite of exfoliated layered material
WO2001012678A1 (fr) Procedes pour la preparation de compositions de nanocomposites de polyamide par polymerisation in situ
US6407155B1 (en) Intercalates formed via coupling agent-reaction and onium ion-intercalation pre-treatment of layered material for polymer intercalation
US6232388B1 (en) Intercalates formed by co-intercalation of onium ion spacing/coupling agents and monomer, oligomer or polymer MXD6 nylon intercalants and nanocomposites prepared with the intercalates
US6225394B1 (en) Intercalates formed by co-intercalation of onium ion spacing/coupling agents and monomer, oligomer or polymer ethylene vinyl alcohol (EVOH) intercalants and nanocomposites prepared with the intercalates
US6906127B2 (en) Intercalates, exfoliates and concentrates thereof formed with low molecular weight; nylon intercalants polymerized in-situ via ring-opening polymerization
WO1993004118A1 (fr) Formation par traitement en fusion d'un nanocomposite polymere en materiau stratifie ecaille
WO2000009571A1 (fr) Procedes de preparation de compositions de nanocomposites de polyamide par des polymerisations in situ et a l'etat solide
JP2004521980A (ja) ポリアミドをベースとした熱可塑性重合体組成物
MXPA00007917A (en) Polymer nanocomposite composition
JPH0812881A (ja) ポリアミド樹脂組成物及びその製造方法
JP3261872B2 (ja) ポリフェニレンエーテル系樹脂組成物
JPH11172102A (ja) ポリアミド複合材料及びその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

A4 Supplementary search report drawn up and despatched

Effective date: 20010622

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 08J 5/10 A, 7C 08K 3/34 B, 7C 08L 77/00 B, 7C 08K 9/04 B

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030901