EP1051475A1 - Pastilles detergentes a phases multiples - Google Patents

Pastilles detergentes a phases multiples

Info

Publication number
EP1051475A1
EP1051475A1 EP98954380A EP98954380A EP1051475A1 EP 1051475 A1 EP1051475 A1 EP 1051475A1 EP 98954380 A EP98954380 A EP 98954380A EP 98954380 A EP98954380 A EP 98954380A EP 1051475 A1 EP1051475 A1 EP 1051475A1
Authority
EP
European Patent Office
Prior art keywords
detergent
molded article
weight
surfactant
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98954380A
Other languages
German (de)
English (en)
Other versions
EP1051475B1 (fr
Inventor
Monika Böcker
Andreas Lietzmann
Claus-Peter Thiessies
Gerhard Blasey
Christian Block
Fred Schambil
Heinke Jebens
Hans-Friedrich Kruse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25681927&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1051475(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1051475A1 publication Critical patent/EP1051475A1/fr
Application granted granted Critical
Publication of EP1051475B1 publication Critical patent/EP1051475B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets

Definitions

  • the present invention relates to multi-phase detergent tablets.
  • the invention relates to multiphase detergent tablets which are used for washing textiles in a household washing machine and are referred to for short as detergent tablets.
  • EP-A-0 466 485 (Unilever) describes detergent tablets which have arisen from the molding of two granules containing surfactants. One granulate contains the total amount of anionic surfactants, while the second surfactant granulate is preferably free of anionic surfactants. This document also does not comment on hardness and / or decay depending on the phase composition.
  • the present invention was based on the object of providing multi-phase detergent tablets which overcome the disadvantages mentioned.
  • multi-phase detergent tablets are to be provided, which have a high hardness and a high rate of disintegration and dissolution in all phases.
  • the invention now relates to two-phase or multi-phase washing and cleaning agent molded articles made of compressed particulate washing and cleaning agent, comprising surfactant (s), builder (s) and, if appropriate, further washing and cleaning agent components in which the surfactant content of the individual phases of the molded article is not more than 3 wt .-%, based on the weight of the individual phase, varies.
  • the variation by not more than 3% by weight means that the absolute values of the surfactant content in the phases do not vary by more than 3% by weight. If one phase contains 20% by weight of surfactant (s), the surfactant content of the other phase (s) must be selected so that the width of the variation around the value 20 is a maximum of 3% by weight. In other words, the percentage numerical value of the surfactant content of the phase with the least surfactant content is subtracted from the percentage number value of the surfactant content of the phase richest in surfactant, the result having to be ⁇ 3.
  • the surfactant content of the individual phases varies by less than 3% by weight.
  • Detergent tablets are preferred in which the surfactant content of the individual phases of the tablet is not more than 2% by weight, preferably not more than 1.5% by weight and in particular not more than 1% by weight. , based on the weight of the individual phase, varies.
  • detergent tablets are preferred in which the surfactant content of the individual phases of the tablet is identical. Since the products mentioned are large-scale products that are produced on a tonne scale for unit weights that are usually less than 100 grams, this is a small one Fluctuation in the surfactant content of individual phases cannot be completely excluded. Within the scope of the present invention, an "identical" surfactant content in the individual phases is also present when there are fluctuations of a few tenths by weight.
  • the individual phases of the molded body can have different spatial shapes within the scope of the present invention.
  • the simplest possible implementation is in two- or multi-layer tablets, with each layer of the molded body representing a phase.
  • ring-core tablets coated tablets or combinations of the above-mentioned embodiments are possible, for example.
  • Examples of multi-phase molded bodies can be found in the illustrations in EP-A-0 055 100 (Jeyes), which describes toilet cleaning blocks.
  • the currently most widespread spatial form of multi-phase tablets is the two- or multi-layer tablet. In the context of the present invention it is therefore preferred that the phases of the molded body have the shape of layers.
  • the surfactant content of the individual phases of the molded body does not vary by more than 3% by weight, based on the weight of the individual phase.
  • the sum of the surfactants contained in the phase in question is used, regardless of the type of surfactant involved. For example, if a phase contains anionic and nonionic surfactants, the total surfactant content of the phase is the sum of the amounts of anionic and nonionic surfactants.
  • the surfactants can be incorporated into the individual phases of the molded body in pure form. This is easily possible, for example, with soaps or other easily workable surfactants. With many surfactants, however, it is advisable not to incorporate the pure surfactants, but rather surfactant compounds. These compounds, which should have as high a surfactant content as possible depending on the application, can be produced by customary processes such as spray drying, granulation or compounding. It goes without saying a combination of several surfactant granules or a combination of surfactant granules with pure surfactants is possible.
  • the surfactant (s) are introduced into the phases of the molded body via granules (s) containing surfactant.
  • each phase obtains its surfactant content from a single granulate, which is thus contained in all phases of the molded article.
  • this is a further preferred embodiment in which the same surfactant granules are used in all phases of the molded article.
  • the simplest conceivable embodiment of the present invention now provides a two-phase tablet in which the phases are present as layers and in which the same surfactant granules are used in both layers.
  • These molded articles which have two layers and contain the same surfactant granulate, can be easily produced in conventional tablet presses.
  • Anionic, nonionic, cationic and / or amphoteric surfactants or mixtures of these can be used in the detergent tablets according to the invention. Mixtures of anionic and nonionic surfactants are preferred from an application point of view.
  • the total surfactant content of the molded article is from 5 to 60% by weight, based on the weight of the molded article, with surfactant contents above 15% by weight being preferred.
  • Anionic surfactants used are, for example, those of the sulfonate and sulfate type.
  • the surfactants of the sulfonate type are preferably C 9 . 13 -Alkylbenzolsul- sulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkane sulfonates and disulfide, obtained, for example, from C 12 _ 18 -Monoolefmen with terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent al- receives potassium or acid hydrolysis of the sulfomerization products into consideration.
  • Alkanesulfonates which are derived from C 12 are also suitable.
  • esters of ⁇ -sulfofatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids, are also suitable.
  • sulfonated fatty acid glycerol esters are sulfonated fatty acid glycerol esters.
  • Fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and their mixtures as obtained in the production by esterification of a monoglycerol with 1 to 3 mol of fatty acid or in the transesterification of triglycerides with 0.3 to 2 mol of glycerol become.
  • Preferred sulfated fatty acid glycerol esters are the sulfate products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • Alk (en) yl sulfates are the alkali and especially the sodium salts of the Schwefelhoffreraumester C I2 -C 18 fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol, or C] 0 -C 20 - Oxo alcohols and those half esters of secondary alcohols of this chain length are preferred. Also preferred are alk (en) yl sulfates of the chain length mentioned, which contain a synthetic, petrochemical-based straight-chain alkyl radical which have a degradation behavior similar to that of the adequate compounds based on oleochemical raw materials.
  • the C 12 -C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates and C 14 are - C 15 alkyl sulfates.
  • 2,3-alkyl sulfates which are produced for example according to U.S. Patent No. 3,234,258 or 5,075,041 and can be obtained as commercial products from Shell Oil Company under the name DAN ®, are suitable anionic surfactants.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 . 18 fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols, which in themselves are nonionic surfactants (description see below).
  • alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Soaps are particularly suitable as further anionic surfactants.
  • Saturated fatty acid soaps are suitable, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular from natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants can be in the form of their sodium, potassium or ammonium salts and also as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • the preferred ethoxylated alcohols include, for example, C2 . 14 - alcohols with 3 EO or 4 EO, C 9. ,, - alcohol with 7 EO, C 13 . 15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 . 18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 . 14 alcohol with 3 EO and C I2 " 18 alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow ranks ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of this are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • alkyl glycosides of the general formula RO (G) x can also be used as further nonionic surfactants, in which R denotes a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, carbon atoms and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl ester, as described for example in Japanese patent application JP 58/217598 or which are preferably produced by the process described in international patent application WO-A-90/13533.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half of them.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula (I),
  • RCO stands for an aliphatic acyl radical with 6 to 22 carbon atoms
  • R 1 for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms
  • [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II)
  • R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R 2 represents a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl group having 1 to 8 carbon atoms
  • C, _ 4 - alkyl or phenyl groups being preferred
  • [Z] is a linear polyhydroxyalkyl residue, whose alkyl chain is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this rest. 10
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then, for example according to the teaching of international application WO-A-95/07331, be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • detergent tablets which contain anionic (s) and nonionic (s) surfactant (s), with application technology advantages being able to result from certain quantitative ratios in which the individual classes of surfactants are used.
  • detergent tablets are particularly preferred in which the ratio of anionic surfactant (s) to nonionic surfactant (s) is between 10: 1 and 1:10, preferably between 7.5: 1 and 1: 5 and in particular between 5: 1 and 1: 2.
  • a further important embodiment of the present invention therefore provides that at least one phase of the molded article is free from nonionic surfactants.
  • detergent tablets Similar to the nonionic surfactants, the omission of anionic surfactants from individual or all phases can result in detergent tablets which are better suited for certain areas of application. It is therefore also conceivable within the scope of the present invention for detergent tablets to be made in which at least one phase of the tablet is free from anionic surfactants.
  • the washing and cleaning agent shaped bodies according to the invention can contain all builders normally used in washing and cleaning agents, in particular thus zeolites, silicates, carbonates, organic co-builders and — where there are no ecological prejudices against their use — also the phosphates.
  • Suitable crystalline, layered sodium silicates have the general formula NaMSi x O 2x + 1 H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2 , 3 or 4 are.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicate Na ⁇ i ⁇ "yH 2 O are preferred, wherein ⁇ -sodium disilicate can be obtained, for example, by the method described in international patent application WO-A-91/08171.
  • Amorphous sodium silicates with a Na ⁇ : SiO 2 modulus of 1: 2 to 1: 3.3, preferably 1: 2 to 1: 2.8 and in particular 1: 2 to 1: 2.6, which delay the dissolution, can also be used are and have secondary washing properties.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amo ⁇ h” is also understood to mean “roentgenamo ⁇ h”. This means that the silicates do not give sharp X-ray reflections in X-ray diffraction experiments as they do for crystalline substances. 12
  • zen are typical, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • the silicate particles deliver washed-out or even sharp diffraction maxima in electron diffraction experiments.
  • This is to be integrated in such a way that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE-A-44 00 024.
  • Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray silicates.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • Commercially available and can preferably be used in the context of the present invention for example a co-crystallizate of zeolite X and zeolite A (about 80% by weight of zeolite X) ), which is sold by CONDEA Augusta SpA under the brand name VEGOBOND AX ® and by the formula
  • the zeolite can be used both as a builder in a granular compound and can also be used for a kind of "powdering" of the entire mixture to be ve ⁇ ressed, usually both ways of inco ⁇ oration of the zeolite in the premix.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • the sodium salts of orthophosphates, pyrophosphates and in particular tripolyphosphates are particularly suitable.
  • Usable organic builders are, for example, the polycarboxylic acids that can be used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), as long as such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • tablet disintegrants In order to facilitate the disintegration of highly compressed moldings, it is possible to incorporate disintegration aids, so-called tablet disintegrants, in order to shorten the disintegration times.
  • tablet disintegrants or accelerators of decay are understood as auxiliary substances which are necessary for rapid disintegration of tablets in water or gastric juice and ensure the release of the pharmaceuticals in absorbable form.
  • Preferred detergent tablets contain 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular 4 to 6% by weight of one or more disintegration auxiliaries, in each case based on the molded article weight. 14
  • Disintegrants based on cellulose are used as preferred disintegrants in the context of the present invention, so that preferred washing and cleaning agent shaped bodies such a disintegrant based on cellulose in amounts of 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular 4 contain up to 6 wt .-%.
  • Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and, formally speaking, represents a ß-1,4-polyacetal of cellobiose, which in turn is made up of two molecules of glucose.
  • Suitable celluloses consist of approximately 500 to 5000 glucose units and consequently have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrants which can be used in the context of the present invention are also cellulose derivatives which can be obtained from cellulose by polymer-analogous reactions.
  • Such chemically modified celluloses include, for example, products from esterifications or etherifications in which hydroxyl hydrogen atoms have been substituted.
  • celluloses in which the hydroxyl groups have been replaced by functional groups which are not bound via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali celluloses, carboxymethyl cellulose (CMC), cellulose esters and ethers and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as a cellulose-based disintegrant, but are used in a mixture with cellulose.
  • the content of cellulose derivatives in these mixtures is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrant. Pure cellulose which is free of cellulose derivatives is particularly preferably used as the disintegrant based on cellulose.
  • the cellulose used as disintegration aid is preferably not used in finely divided form, but is converted into a coarser form, for example granulated or compacted, before being added to the premixes to be treated.
  • Detergent tablets containing disintegrants in granular or, if appropriate, cogranulated form are described in German patent applications DE 197 09 991 (Stefan Herzog) and DE 197 10 254 (Henkel) and in international patent application PCT / EP 98/1203 (Henkel) . These documents can also be found in more detail on the production of granulated, compacted or cogranulated cellulose disintegrants.
  • Such disintegrants are usually above 200 ⁇ m, preferably at least 90% by weight between 300 and 1600 ⁇ m and in particular at least 90% by weight between 400 and 1200 ⁇ m.
  • the above and described in more detail in the documents cited coarser disintegration aids, are preferred as disintegration aids and are commercially available, for example under the name of Arbocel ® TF-30-HG from Rettenmaier available in the present invention.
  • Microcrystalline cellulose can be used as a further cellulose-based disintegrant or as a component of this component.
  • This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which only attack and completely dissolve the amorphous areas (approx. 30% of the total cellulose mass) of the celluloses, but leave the crystalline areas (approx. 70%) undamaged.
  • a subsequent disaggregation of the microfine celluloses produced by the hydrolysis provides the microcrystalline celluloses, which have primary particle sizes of approximately 5 ⁇ m and can be compacted, for example, into granules with an average particle size of 200 ⁇ m.
  • Detergent tablets which additionally contain a disintegration aid, preferably a cellulose-based disintegration aid, preferably in granular, cogranulated or compacted form, in amounts of 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular of 4 to 6% by weight, based in each case on the weight of the molded body, are particularly preferred in the context of the present invention.
  • a disintegration aid preferably a cellulose-based disintegration aid, preferably in granular, cogranulated or compacted form, in amounts of 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular of 4 to 6% by weight, based in each case on the weight of the molded body, are particularly preferred in the context of the present invention.
  • the usual way of producing detergent tablets is therefore based on powdery components (“primary particles”) which are agglomerated or granulated by suitable processes to form secondary particles with a larger particle diameter. These granules or mixtures of different granules are then mixed with individual powdery additives and fed to the tableting. Depending on the design of the phases of the multi-phase detergent tablets, the die is gradually filled with different premixes. In the manufacture of multi-layer tablets, a slight application of pressure between the pre-mix filling can have advantages for the next layer. In the production of ring-core shaped bodies or coated tablets, such pre-evaporation with shaping is almost indispensable.
  • Preferred detergent tablets in the context of the present invention are obtained by squeezing particulate premixes from at least one surfactant-containing granulate and at least one subsequently admixed powdery component.
  • the surfactant-containing granules can be produced using conventional granulation processes such as mixer and plate granulation, fluidized bed granulation, extrusion, pelletizing or compacting. It is of advantage for the later detergent and molded product bodies if the premixes to be dispensed have a bulk density that comes close to that of conventional compact detergents.
  • the premix to be ve ⁇ ress has a bulk density of at least 500 g / 1, preferably at least 600 g / 1 and in particular above 700 g / 1.
  • detergent tablets are preferred in which the granules have particle sizes between 10 and 4000 ⁇ m, preferably between 100 and 2000 ⁇ m and in particular between 600 and 1400 ⁇ m. 17
  • the particle size distribution of the subsequently admixed pulverulent preparation components can also be varied, preference being given to detergent tablets in which the subsequently admixed pulverulent component (s) have the same particle size distribution as the granules used.
  • zeolite-type zeolite denotes all three zeolites which form the faujasite subgroup of the zeolite structure group 4 (see Donald W. Breck: “Zeolite Molecular Sieves”, John Wiley & Sons, New York) , London, Sydney, Toronto, 1974, page 92).
  • zeolite X zeolite Y and faujasite and mixtures of these compounds can also be used, the pure zeolite X being preferred.
  • Mixtures or cocrystallizates of faujasite-type zeolites with other zeolites which do not necessarily have to belong to structure group 4 of the zeolite can also be used as powdering agents, it being advantageous if at least 50% by weight of the powdering agent is removed a zeolite of the faujasite type.
  • detergent tablets consist of a particulate premix which contains granular components and subsequently admixed powdery substances, the or one of the subsequently admixed powdery components being a zeolite of the faujasite type with particle sizes below 100 ⁇ m, is preferably below 10 ⁇ m and in particular below 5 ⁇ m and is at least 0.2% by weight, preferably at least 0.5% by weight and in particular more than 1% by weight of the premix to be treated.
  • the finely divided processing components with the above-mentioned particle sizes can be dry mixed into the premix to be treated. However, it is also possible and preferred to "stick" them to the surface of the coarser particles by adding small amounts of liquid substances.
  • Non-ionic surfactants or aqueous solutions of surfactants or other detergent ingredients can be used, for example, as liquid components which are suitable for promoting the adhesion of the powdering agents. In the context of the present invention, it is preferred to use perfume as the liquid adhesion promoter between the finely divided powdering agent and the coarse-grained particles.
  • the detergent tablets according to the invention can contain further ingredients customary in detergents and cleaning agents from the group of bleaching agents, bleach activators, enzymes, fragrances, perfume carriers, fluorescent agents, dyes, foam inhibitors, silicone oils, anti-redeposition agents, optical agents Brighteners, graying inhibitors, color transfer inhibitors and corrosion inhibitors included.
  • bleaching agents which serve as bleaching agents and supply H 2 O 2 in water
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Further bleaching agents which can be used are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracid salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • bleach activators can be incorporated as the sole constituent or as an ingredient of component b).
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Substances containing O- and / or N-acyl groups are suitable 19
  • Multi-acylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular l, 5-diacetyl-2,4-dioxohexahydro-l, 3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetoxy and 2,5-diacetyloxy
  • bleach catalysts can also be incorporated into the moldings.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands as well as Co, Fe, Cu and Ru amine complexes can also be used as bleaching catalysts.
  • Suitable enzymes are those from the class of proteases, lipases, amylases, cellulases or mixtures thereof. Enzymatic active substances obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis and Streptomyces griseus are particularly suitable. Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures for example of protease and amylase or protease and lipase or protease and cellulase or of cellulase and lipase or of protease, amylase and lipase or protease, lipase and cellulase, but in particular mixtures containing cellulase, are of particular interest.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
  • the proportion of enzymes, enzyme mixtures or enzyme granules in the shaped bodies according to the invention can be, for example, about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight. 20th
  • the detergent tablets can also contain components that positively influence the oil and fat washability from textiles (so-called soil repellents). This effect becomes particularly clear when a textile is soiled that has already been washed several times beforehand with a detergent according to the invention which contains this oil and fat-dissolving component.
  • the preferred oil and fat-dissolving components include, for example, nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups of 15 to 30% by weight and of hydroxypropoxyl groups of 1 to 15% by weight in each case based on the nonionic cellulose ether, and the polymers of phthalic acid and / or terephthalic acid or their derivatives known from the prior art, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives thereof. Of these, the sulfonated derivatives of phthalic acid and terephthalic acid polymers are particularly preferred.
  • the shaped bodies can contain derivatives of diaminostilbenedisulfonic acid or their alkali metal salts as optical brighteners. Suitable are e.g. Salts of 4,4'-bis (2-anilino-4-mo ⁇ holino-l, 3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of the same structure which, instead of the Mo ⁇ holino group, have a diethanolamino group , a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • brighteners of the substituted diphenylstyryl type may be present, e.g.
  • Dyes and fragrances are added to the agents according to the invention in order to improve the aesthetic impression of the products and, in addition to the softness, to provide the consumer with a visually and sensorially "typical and unmistakable" product.
  • Individual fragrance compounds for example the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type, can be used as perfume oils or fragrances.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzyl 21
  • the ethers include, for example, benzyl ethyl ether, the aldehydes e.g. the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones e.g.
  • the Jonone, oc-isomethylionon and methyl cedryl ketone, to the alcohols anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and Te ⁇ ineol, to the hydrocarbons belong mainly the Te ⁇ ene like Limonen and Pinen.
  • perfume oils can also contain natural fragrance mixtures as are available from plant sources, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • muscatel sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, lentil flower oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • the dye content of the plasticizers according to the invention is usually less than 0.01% by weight, while fragrances can make up up to 2% by weight of the entire formulation.
  • the fragrances can be incorporated directly into the agents according to the invention, but it can also be advantageous to apply the fragrances to carriers which increase the adhesion of the perfume to the laundry and ensure a long-lasting fragrance of the textiles due to a slower fragrance release.
  • Cyclodextrins for example, have proven useful as such carrier materials, and the cyclodextrin-perfume complexes can additionally be coated with further auxiliaries.
  • the detergent tablets can be colored with suitable dyes.
  • Preferred dyes the selection of which is not difficult for the person skilled in the art, have a long shelf life and are insensitive to the other ingredients of the compositions and to light, and also have no pronounced substantivity towards textile fibers 22
  • the molded articles according to the invention are first produced by dry mixing the constituents of the individual phases, which can be wholly or partially pre-granulated, and then providing information, in particular compresses to tablets, whereby conventional methods for producing multi-phase molded articles can be used.
  • the premixes are compressed in a so-called die between two punches to form a solid compact. This process, which is briefly referred to as tableting in the following, is divided into four sections: metering, compression (elastic deformation), plastic deformation and ejection.
  • Tableting takes place in commercially available tablet presses, which can in principle be equipped with single or double punches. In the latter case, not only is the upper stamp used to build up pressure, the lower stamp also moves towards the upper stamp during the pressing process, while the upper stamp presses down.
  • eccentric tablet presses are preferably used, in which the punch or stamps are fastened to an eccentric disc, which in turn is mounted on an axis with a certain rotational speed. The movement of these rams is comparable to that of a conventional four-stroke engine.
  • the pressing can take place with one upper and one lower stamp, but several stamps can also be attached to one eccentric disc, the number of die holes being correspondingly increased.
  • the throughputs of eccentric presses vary depending on the type from a few hundred to a maximum of 3000 tablets per hour.
  • rotary tablet presses are selected in which a larger number of dies is arranged in a circle on a so-called die table.
  • Matrices vary between 6 and 55 depending on the model, although larger matrices are also commercially available.
  • Each die on the die table is assigned an upper and lower punch, and again the pressure can be built up actively only by the upper or lower punch, but also by both stamps.
  • the die table and the stamps move around a common vertical axis, the stamps being brought into the positions for filling, compression, plastic deformation and ejection by means of rail-like curved tracks during the rotation.
  • these cam tracks are supported by additional low-pressure pieces, low-pressure rails and lifting tracks.
  • the die is filled via a rigidly arranged feed device, the so-called filling shoe, which is connected to a storage container for the premixes.
  • the pressing pressure on the respective premix can be individually adjusted via the pressing paths for the upper and lower punches, the pressure building up by the rolling of the punch shaft heads past adjustable pressure rollers.
  • Rotary presses can also be equipped with two or more filling shoes to increase the throughput.
  • two filling shoes are arranged one behind the other without the slightly pressed first layer being ejected before further filling.
  • jacket and dot tablets can also be produced in this way, which have an onion-shell-like structure, the top side of the core or the core layers not being covered in the case of the dot tablets and thus remaining visible.
  • Rotary tablet presses can also be equipped with single or multiple tools, so that, for example, an outer circle with 50 and an inner circle with 35 holes can be used simultaneously for pressing.
  • the throughputs of modern rotary tablet presses are over one million molded articles per hour.
  • Tableting machines suitable within the scope of the present invention are available, for example, from the companies Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Cologne, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) and Courtoy NV, Halle 24
  • the hydraulic double pressure press HPF 630 from LAEIS, D. is particularly suitable.
  • the shaped bodies can be manufactured in a predetermined spatial shape and size, whereby they always consist of several phases, i.e. Layers, inclusions or cores and rings exist. Practically all practical configurations can be considered as the spatial shape, for example, the design as a board, the bar or bar shape, cubes, cuboids and corresponding spatial elements with flat side surfaces, and in particular cylindrical configurations with a circular or oval cross section. This last embodiment covers the presentation form from the tablet to compact cylinder pieces with a ratio of height to diameter above 1.
  • the portioned compacts can each be designed as separate individual elements that correspond to the predetermined dosage of the detergents and / or cleaning agents. It is also possible, however, to form compacts which connect a plurality of such mass units in one compact, the portioned smaller units being easy to separate, in particular by predetermined predetermined breaking points.
  • the portioned compacts as tablets, in cylinder or cuboid form can be expedient, with a diameter / height ratio in the range from about 0.5: 2 to 2: 0.5 is preferred.
  • Commercial hydraulic presses, eccentric presses or rotary presses are suitable devices, in particular for the production of such pressed articles.
  • the spatial shape of another embodiment of the molded body is adapted in its dimensions to the detergent dispenser of commercially available household washing machines, so that the molded body can be metered directly into the dispenser without metering aid, where it dissolves during the dispensing process.
  • the detergent tablets can also be used without problems using a dosing aid.
  • Another preferred multi-phase molded body that can be produced has a plate-like or panel-like structure with alternately thick long and thin short segments, so that individual segments of this "multi-phase lock" are broken off at the predetermined breaking points, which represent the short thin segments and can be entered into the machine.
  • This principle of the "bar-shaped" shaped body detergent can also be realized in other geometric shapes, for example vertically standing triangles, which are connected to one another only on one of their sides along the side. For optical reasons, it makes sense to design the triangular base that connects the individual segments as one phase, while the triangle tip forms the second phase. Different coloring of both phases is particularly attractive in this embodiment.
  • the breaking strength of cylindrical shaped bodies can be determined via the measured variable of the diametrical breaking load. This can be determined according to
  • stands for diametral fracture stress (DFS) in Pa
  • P is the force in N that leads to the pressure exerted on the molded body that causes the molded body to break
  • D is the molded body diameter in meters and t the height of the molded body.
  • Premixes were prepared by mixing surfactant-containing granules with pulverulent preparation components, which were pressed in a Korsch tablet press into two-phase detergent tablets.
  • the surfactant granules 1, 2 and 3 were produced in a 130-liter ploughshare mixer (Gebrüder Lödige, Paderborn) and then dried in a fluidized bed dryer. After the coarse particles (> 1.6 mm) and the fine particles ( ⁇ 0.4 mm) had been sieved, the surfactant granules were mixed with the processing components in a paddle mixer.
  • the composition of the surfactant granules is shown in Table 1.
  • Table 1 Surfactant granules [% by weight]
  • Zeolite A anhydrous active substance 28.5 29.9 28.5
  • Two-layer detergent tablets were produced from the premixes (surfactant granules + processing components) on a Korsch rotary press, the proportion of the first layer being 75% by weight of the total mass and the proportion of the second layer being 25% by weight of the total mass of the tablet.
  • the diameter of the tablets was 44 mm.
  • Tables 2, 3 and 4 below show the compositions of the detergent tablets broken down by phase. The values in the columns of the table indicate the amount of the substance in question in the respective phase of the tablet, ie the values in one column add up to 100%. The amount of the substance in question in the entire tablet can be easily calculated from the proportion of the individual phases.
  • the tablet hardness and disintegration times are listed in the respective tables.
  • Repelotex-SRP-4 is a terephthalic acid-ethylene glycol-polyethylene glycol ester of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne des corps moulés détergents et nettoyants à deux phases ou plus, à base de détergent et nettoyant particulaire compacté, comprenant un(des) tensioactif(s), un(des) adjuvant(s) de lavage, ainsi qu'éventuellement d'autres constituants détergents et nettoyants, où la teneur en tensioactifs des phases individuelles du corps moulé ne varie pas de plus de 3 % en poids par rapport au poids de la phase individuelle. Cet équilibrage extrêmement large de la teneur en tensioactifs dans les phases individuelles du corps moulé permet d'obtenir des corps moulés à phases multiples dont le profil de propriétés est patent.
EP98954380A 1998-01-28 1998-10-08 Pastilles detergentes a phases multiples Revoked EP1051475B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19803409A DE19803409A1 (de) 1998-01-28 1998-01-28 Mehrphasige Waschmitteltabletten
DE19803409 1998-01-28
PCT/EP1998/006406 WO1999038949A1 (fr) 1998-01-28 1998-10-08 Pastilles detergentes a phases multiples
CA002313294A CA2313294A1 (fr) 1998-01-28 2000-07-28 Tablettes de detergent polyphasiques

Publications (2)

Publication Number Publication Date
EP1051475A1 true EP1051475A1 (fr) 2000-11-15
EP1051475B1 EP1051475B1 (fr) 2005-02-02

Family

ID=25681927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98954380A Revoked EP1051475B1 (fr) 1998-01-28 1998-10-08 Pastilles detergentes a phases multiples

Country Status (12)

Country Link
EP (1) EP1051475B1 (fr)
JP (1) JP2002501978A (fr)
CN (1) CN1284125A (fr)
AT (1) ATE288470T1 (fr)
CA (1) CA2313294A1 (fr)
CZ (1) CZ20002779A3 (fr)
DE (2) DE19803409A1 (fr)
ES (1) ES2236957T3 (fr)
HU (1) HUP0101577A2 (fr)
PL (1) PL341767A1 (fr)
SK (1) SK11132000A3 (fr)
WO (1) WO1999038949A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19944218A1 (de) * 1999-09-15 2001-03-29 Cognis Deutschland Gmbh Waschmitteltabletten
DE10006306A1 (de) * 2000-02-12 2001-08-23 Buck Chemie Gmbh Wirkstoff-Tablette, insbesondere als Reiniger- und/oder Entkalkertablette
EP1319058B1 (fr) * 2000-09-20 2006-02-01 Reckitt Benckiser Inc. Ameliorations apportees a des pastilles contenant une enzyme
US6852681B1 (en) * 2004-01-13 2005-02-08 Unilever Home & Personal Care Usa, A Division Of Conopco, Inc. Compositions and process for preparing cleansing bars comprising low levels of soluble surfactant for enhanced fragrance deposition/longevity
CN102782112A (zh) * 2009-12-31 2012-11-14 罗地亚(中国)投资有限公司 用于改进洗衣性能的聚合物和表面活性剂的组合
CN106281736A (zh) * 2016-08-11 2017-01-04 孔令超 一种超浓缩清水型洗衣片及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3541146A1 (de) * 1985-11-21 1987-05-27 Henkel Kgaa Mehrschichtige reinigungsmitteltabletten fuer das maschinelle geschirrspuelen
JPH0674440B2 (ja) * 1986-03-27 1994-09-21 ライオン株式会社 錠剤型洗剤
JPH06108099A (ja) * 1992-09-30 1994-04-19 Lion Corp タブレット洗剤組成物
CA2226143C (fr) * 1995-07-13 2007-11-20 Joh. A. Benckiser Gmbh Produit vaisselle sous forme de pastilles pour lave-vaisselle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9938949A1 *

Also Published As

Publication number Publication date
JP2002501978A (ja) 2002-01-22
DE29824160U1 (de) 2000-08-10
HUP0101577A2 (hu) 2001-09-28
PL341767A1 (en) 2001-05-07
ATE288470T1 (de) 2005-02-15
SK11132000A3 (sk) 2001-02-12
EP1051475B1 (fr) 2005-02-02
DE19803409A1 (de) 1999-07-29
WO1999038949A1 (fr) 1999-08-05
CA2313294A1 (fr) 2000-10-09
ES2236957T3 (es) 2005-07-16
CZ20002779A3 (cs) 2001-10-17
CN1284125A (zh) 2001-02-14

Similar Documents

Publication Publication Date Title
WO1999045091A1 (fr) Perles parfumees sous forme de corps moules detergents
DE19739384A1 (de) Wasch- und Reinigungsmittelformkörper mit verbesserter Löslichkeit
EP1056833B1 (fr) Corps moules nettoyants et detergents contenant des agents de blanchiment
EP1056832B1 (fr) Corps moules a plusieurs phases presentant une division de phases optimisee
EP1051474B1 (fr) Comprimes detergents a phases multiples
DE19739383A1 (de) Wasch- und Reinigungsmittelformkörper mit verbesserter Löslichkeit
EP1037960B1 (fr) Corps moules de detergent a desintegration amelioree
WO2000044873A1 (fr) Pastilles detergentes a phases multiples
EP1051475B1 (fr) Pastilles detergentes a phases multiples
WO1999042556A1 (fr) Detergents et nettoyants sous forme de corps moules dont les proprietes presentent un profil renforce
WO1999055812A1 (fr) Corps moules detergents a proprietes de decomposition ameliorees
WO2000050559A1 (fr) Corps moules de produits de lavage et de nettoyage stables a l'abrasion et contenant des additifs solides
DE19843778A1 (de) Wasch- und Reinigungsmittelformkörper mit Natriumpercarbonat
EP1037961A1 (fr) Corps moules de detergent a desintegration amelioree
DE19847281A1 (de) Wasch- und Reinigungsmittelformkörper mit organischen Oligocarbonsäuren
WO2000027985A1 (fr) Corps moules d'agents nettoyants et detergents avec agents de solubilisation finement divises
WO2000004114A2 (fr) Procede de fabrication de corps moules de produits de lavage et detergents renfermant des sulfates d'alcools gras
WO2000050548A2 (fr) Procede de production de corps moules de produits de lavage et de nettoyage de degradation rapide
DE19847277A1 (de) Bleichaktivator-haltige Wasch- und Reinigungsmittelformkörper
WO2000027984A1 (fr) Corps moules de detergent a forme optimisee
DE19849630A1 (de) FAS-haltige Wasch- und Reinigungsmittelformkörper
DE19841362A1 (de) ABS-haltige Wasch- und Reinigungsmittelformkörper
WO2000027959A1 (fr) Corps moules de lessive et de detergent a granulat antimousse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050202

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59812546

Country of ref document: DE

Date of ref document: 20050310

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050413

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2236957

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

ET Fr: translation filed
26 Opposition filed

Opponent name: UNILEVER N.V.

Effective date: 20051102

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: UNILEVER N.V.

Effective date: 20051102

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 20051031

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HENKEL AG & CO. KGAA

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20091117

Year of fee payment: 12

Ref country code: DE

Payment date: 20091001

Year of fee payment: 12

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20091202

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20091202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091016

Year of fee payment: 12

Ref country code: GB

Payment date: 20091007

Year of fee payment: 12

Ref country code: FR

Payment date: 20091029

Year of fee payment: 12