EP1049862B1 - Dispositif d'estimation de richesse de systeme d'injection pour moteur a combustion interne - Google Patents

Dispositif d'estimation de richesse de systeme d'injection pour moteur a combustion interne Download PDF

Info

Publication number
EP1049862B1
EP1049862B1 EP99900932A EP99900932A EP1049862B1 EP 1049862 B1 EP1049862 B1 EP 1049862B1 EP 99900932 A EP99900932 A EP 99900932A EP 99900932 A EP99900932 A EP 99900932A EP 1049862 B1 EP1049862 B1 EP 1049862B1
Authority
EP
European Patent Office
Prior art keywords
richness
chamber
filter
combustion
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99900932A
Other languages
German (de)
English (en)
Other versions
EP1049862A1 (fr
Inventor
Claudio Carnevale
Mourad Hadji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagem SA
Original Assignee
Sagem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem SA filed Critical Sagem SA
Publication of EP1049862A1 publication Critical patent/EP1049862A1/fr
Application granted granted Critical
Publication of EP1049862B1 publication Critical patent/EP1049862B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1481Using a delaying circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1416Observer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1417Kalman filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system

Definitions

  • the invention relates to fuel injection systems. in the combustion chambers of a combustion engine internal, including a spark ignition engine ; it particularly concerns devices allowing to estimate the air / fuel ratio admitted in combustion chambers usable in such systems.
  • Such a device can be used in particular in a injection system of the kind shown schematically in figure 1.
  • the air admitted to through a filter 14 passes through a throttle body 16 before to arrive at an intake manifold 18.
  • Exhaust gases leave the rooms by individual tubes which connect at a point of confluence to a collector exhaust 20.
  • the injection times are fixed with an advance by relative to the shift to the top dead center of each chamber of combustion, using a synchronization signal supplied by a sensor 28 placed opposite the flywheel 30 of the motor 10.
  • a simple model of wealth representation measured at the confluence point consists in associating, with the measurement made by the sensor 26 at several successive passes combustion chambers at top dead center, a weighting coefficient which is solely a function of the seniority of the passage in the operating cycle of the engine.
  • the entry of the model is the wealth admitted to the combustion chamber which has just shifted to top dead center (current cylinder). Exhaust puffs to the point of confluence are combined together to represent the mixture of gases.
  • the present invention aims in particular to provide a estimation device responding better than those previously known to the requirements of practice, from the fact that it very significantly reduces the incidence of asymmetries and, in precisely the case of asymmetry, the invention improves the correction of the dispersions of injector characteristics.
  • the invention notably proposes a device in which the behavior model includes a particular sub-model per combustion chamber having, for the order chamber i, a Kalman filter having an mxn matrix of coefficients C ij and a own earnings matrix K ij , i being equal to ⁇ 1, ...., n ⁇ corresponding to the room number and j corresponding to the weighting coefficient number, here from 1 to m.
  • the invention proposes a different model for each room i, defined by a set ⁇ j ⁇ of m coefficients, m being able moreover to be equal to n.
  • Such a device which eliminates the asymmetry effect has the advantage of greatly reduce the effect of dispersions of characteristics between the injectors and accordingly authorize the use of injectors with machining less precise.
  • the model can be represented by one or more matrices (C ij ) l each corresponding to an operating zone l of the engine determined by one or more parameters from the load range, the temperature of the exhaust gases, the temperature of the cooling water, engine speed and pressure in the intake manifold.
  • the matrix chosen may also depend on the setpoint richness given by the computer and which can depend on engine operating conditions according to constraints on pollution or driving pleasure.
  • the device according to the invention presents the constitution shown in Figure 2. Most of the functions are fulfilled by the computer 21. However some of them, including functions of filtering of fixed characteristics, can be performed in analog form by wired circuits.
  • the device comprises a compensator 32 intended for compensate for the delay introduced by the sensor 26.
  • Means 34 synchronous wealth acquisition can be looked at as having a Kalman filtering observer 36 and correction means 38 outputting the air / fuel ratios admitted to the rooms during the cycle that has just passed.
  • the correction means receive a synchronization signal constituted by the output of the sensor 28 followed by a circuit 40 of modulo n division, here equal to 4.
  • Synchronization must be initialized, the sensor 28 not allowing to know which combustion chamber just shifted to top dead center. This initialization can be done by various known methods.
  • management means 42 determine the durations opening the injectors 12 from information developed by the computer 21, constituted for example by the air flow admitted and by the required richness, and from corrections provided by the means 38.
  • the model allowing synchronous acquisition means 34 to determine the richness of the mixture admitted to each chamber relies on the measurements provided by the sensor single 26 located at the confluence point. It's important to have, after each shift in top dead center, a representative measure of wealth while a combustion has just shifted to neutral. Now the usual sensors, in particular because they include a pierced protective cover of the probe, introduce a measurement delay.
  • the adopted strategy is represented functionally in Figure 3.
  • the signal from the probe is submitted to a high pass filtering 43 whose characteristics take into account the time constant ⁇ of the sensor cover several tens of ms. So that the filtering is stable, the value taken into account in the high pass filter will be related to the lowest time constant among all those that can be encountered under various conditions engine operation.
  • the high pass filter 43 amplifies the noise which is attenuated or eliminated by a feedback loop including a low pass filter 44, an adder 46 receiving the low pass filtering output and an input signal and a subtraction 48.
  • High pass and low pass filters introduce earnings and are expected so that these earnings will vary depending of the frequency according to laws which can be those indicated respectively by the solid lines and in phantom in Figure 3A.
  • Low pass filtering may just be first-rate.
  • the compensation being provided in digital form, on discrete values, we can limit our to performing a transformation of Euler.
  • denotes the filter gain low pass, designed to eliminate high frequency noise generated or amplified by high-pass inversion filtering.
  • this Kalman filtering is generally performed by adopting the same Kalman gain and the same weights regardless of the room of combustion for which we want to determine the richness.
  • an optimal anticipation gain K ij of Kalman is determined and a set of weighting coefficients C for each of the combustion chambers.
  • Each of these elementary observers can have a relatively classic constitution.
  • the calculation allowing for example to determine the richness of cylinder 1 corresponds to the orientation of switches 52 given in FIG. 4, the switches being in fact constituted by a program permitting the permutation of gain and coefficients for calculation.
  • the successive measurements y mes (k) at the confluence point are accumulated at 54 and processed by an operator z -1 at 56 whose output is brought back, by a gain gain loop 58, to accumulation 54.
  • the value y is (k) obtained at the output 60 is representative of the richness estimated at the point of confluence. It is reintroduced into an input subtractor 62, so as to generate an error signal e (k) which is applied to the input of the Kalman filtering.
  • the weighting coefficients C ij can be obtained experimentally by identification by means of a measurement bench using a set of probes capable of measuring the richnesses on each tubing and the richness at the point of confluence.
  • the richness of the current cylinder is then available at the output 64 of the accumulator 54.
  • each assembly having a Kalman gain K ij and a set of weighting coefficients C ij , each assembly being assigned to a particular engine operating zone.
  • the richness correction to be made to a cylinder to be determined is calculated as a product of two terms, a term 1 + ⁇ g , ⁇ g being a percentage of general correction relating to the richness measured at the point of confluence, a term 1 + ⁇ i, specific to the cylinder of order i in which the injection will be controlled.
  • the first term is developed from a signal error provided by a subtractor 66 which receives on the one hand a signal representative of the wealth setpoint (which depends on engine operating conditions) and on the other hand, the output signal from memory 50.
  • An error management module 68 develops a corrective term, which is processed by a proportional-integral filter 70 intended to stabilize the system. We thus obtain ⁇ g.
  • ⁇ i are each developed using a subtractor 72 which receives on the one hand the output signal 64 modulo 4, developed by a switch 5, and on the other hand a richness set signal specific to the cylinder.
  • This wealth setpoint signal can be the same for all cylinders.
  • the wealth deposit could also be different depending on the cylinder.
  • the error signal obtained is still subject to a proportional-integral filtering 74, known as PI, to obtain a corrector term ⁇ i.
  • a circuit 76 will allow to develop the product (1 + ⁇ i) (1 + ⁇ g) which constitutes a correction factor on the injection time of cylinder i.
  • PI filtering has a role in compensating for the gas path between the injection points and the confluence.
  • the wealth error management module 68 has in particular to make the switchings of the sensor faster by acting on the error injected into the PI 70 filter.
  • a hysteresis only causing a tilting of the sensor that beyond stoichiometry when going towards a rich mixture, below stoichiometry when returns to a lean mixture. Beyond the tilting, the management module has a substantially proportional response.
  • K p and integral K i of the correction filters 74 are chosen as a function of the travel delay between the injectors and the richness sensor, counted in number of TDCs.
  • K p will generally be less than 1 to attenuate the high frequencies.
  • P is an adjustable constant to adjust the dynamics.
  • the management circuit 42 (FIG. 2) allows, at from an input signal 78 indicating the amount of air admitted to the cylinder and from the corrector term received from the means 36, to modify a corresponding basic injection time to the wealth setpoint to set the opening time of each of the injectors 12 and order the injector.
  • This circuit can actually include a digital part of calculation incorporated in the computer 21 and an analog part and of power developing the pulsed supply current injectors.
  • the wealth management circuit can correspond to the block diagram of FIG. 6.
  • the wealth instruction for the injector i is applied to the input 80 and multiplied by a signal 82 representative of the quantity of air admitted.
  • the product is multiplied by the gain of the injector at 84 to obtain a base injection time Ti.
  • the correction signal supplied by the means in FIG. 5 is used to supply Ti (1 + ⁇ i ) (1 + ⁇ g )
  • Establishing the model requires determining the weighting coefficients for a given engine. This determination can be made on a test bench in temporarily equipping the engine with richness sensors at the output of each cylinder, in addition to the final sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

L'invention concerne les systèmes d'injection du combustible dans les chambres de combustion d'un moteur à combustion interne, et notamment d'un moteur à allumage par étincelle ; elle concerne particulièrement des dispositifs permettant d'estimer le rapport air/combustible admis dans les chambres de combustion utilisables dans de tels systèmes.
On connaít en particulier un dispositif permettant d'estimer la richesse du mélange admis dans chacune des n chambres de combustion (n étant un entier supérieur à 1 et généralement égal à 4, 6 ou 8) d'un moteur ayant des injecteurs d'injection dans les cylindres, comprenant :
  • un capteur fournissant un signal de sortie à variation sensiblement linéaire avec la richesse, placé à un point de confluence des échappements des n chambres, et
  • des moyens de calcul pour :
    • mémoriser un modèle de comportement de l'échappement au point de confluence basé sur l'hypothèse que la richesse au point de confluence, ou le rapport air/combustible, est une somme pondérée des contributions des échappements des chambres individuelles, le coefficient de pondération étant d'autant plus faible que la combustion dans la chambre est plus ancienne, et
    • estimer, après chaque passage au point mort haut, le rapport air/combustible à partir des valeurs mesurées et du modèle.
Un tel dispositif est par exemple décrit dans le brevet US 5 548 514 ou dans le document EP-A-0 719 922, auxquels on pourra se reporter.
Un tel dispositif est notamment utilisable dans un système d'injection du genre montré schématiquement en figure 1. Le schéma montre un moteur 10 à n=4 chambres de combustion, munies chacune d'un injecteur 12. L'air admis à travers un filtre 14 traverse un corps de papillon 16 avant d'arriver à un collecteur d'admission 18. Les gaz d'échappement sortent des chambres par des tubulures individuelles qui se raccordent en un point de confluence vers un collecteur d'échappement 20.
Les quantités de combustible fournies à chaque cylindre à des instants d'injection sont fixées par un calculateur 21 à partir de paramètres de fonctionnement qui peuvent notamment comporter :
  • la position angulaire du papillon 16, mesurée par un capteur 22,
  • la pression dans le collecteur d'admission, mesurée par un capteur 24,
  • la température  de l'eau de refroidissement et/ou des gaz d'échappement, et
  • le signal de sortie d'un capteur de mesure de richesse 26, placé au point de confluence.
Les instants d'injection sont fixés avec une avance par rapport au passage au point mort haut de chaque chambre de combustion, en utilisant un signal de synchronisation fourni par un capteur 28 placé en face du volant 30 du moteur 10.
Un modèle simple de représentation de la richesse mesurée au point de confluence consiste à associer, à la mesure faite par le capteur 26 à plusieurs passages successifs des chambres de combustion au point mort haut, un coefficient de pondération qui est uniquement fonction de l'ancienneté du passage dans le cycle de fonctionnement du moteur. L'entrée du modèle est la richesse admise à la chambre de combustion qui vient de passer au point mort haut (cylindre courant). Les bouffées d'échappement vers le point de confluence sont combinées entre elles pour représenter le mélange des gaz.
Il existe d'autre part une dispersion de caractéristiques entre les injecteurs, de sorte qu'une injection de même durée déterminée ne correspond pas aux mêmes quantités de combustible injecté dans les différentes chambres.
Dans le cas par exemple de quatre chambres de combustion, on affecte au capteur un vecteur de coefficients Ci avec i={1,2,3,4), C4 correspondant au cylindre courant et les autres coefficients, plus faibles, correspondant aux autres cylindres, dans l'ordre inverse d'allumage.
Cette solution n'est en fait pas totalement satisfaisante, du fait que les tuyauteries d'échappement sont généralement asymétriques.
La présente invention vise notamment à fournir un dispositif d'estimation répondant mieux que ceux antérieurement connus aux exigences de la pratique, du fait qu'il réduit très notablement l'incidence des asymétries et, dans le cas précisément d'asymétrie, l'invention améliore la correction des dispersions de caractéristiques des injecteurs.
Dans ce but l'invention propose notamment un dispositif dans lequel le modèle de comportement comporte un sous-modèle particulier par chambre de combustion ayant, pour la chambre d'ordre i, un filtre de Kalman ayant une matrice m x n de coefficients Cij et une matrice de gains Kij propres, i étant égal à {1,....,n} correspondant au numéro de chambre et j correspondant au numéro de coefficient de pondération, ici de 1 à m. Autrement dit, l'invention propose un modèle différent pour chaque chambre i, défini par un jeu {j} de m coefficients, m pouvant d'ailleurs être égal à n.
Un tel dispositif, qui permet d'écarter l'effet d'assymétrie d'échappement, présente au surplus l'avantage de réduire très considérablement l'effet des dispersions de caractéristiques entre les injecteurs et en conséquence d'autoriser l'emploi dinjecteurs présentant un usinage moins précis.
Le modèle peut être représenté par une ou plusieurs matrices (Cij) correspondant chacune à une zone de fonctionnement ℓ du moteur déterminée par un ou plusieurs paramètres parmi le domaine de charge, la température des gaz d'échappement, la température de l'eau de refroidissement, la vitesse du moteur et la pression dans le collecteur d'admission.
La matrice choisie peut également dépendre de la richesse de consigne donnée par le calculateur et qui peut dépendre des conditions de fonctionnement du moteur selon les contraintes sur la pollution ou l'agrément de conduite.
Les caractéristiques ci-dessus ainsi que d'autres apparaítront mieux à la lecture de la description qui suit d'un mode particulier de réalisation, donné à titre d'exemple non limitatif. La description se réfère aux dessins qui l'accompagnent, dans lesquels :
  • la figure 1, déjà mentionnée, montre schématiquement les éléments d'un moteur concernés par l'invention ;
  • la figure 2 est un schéma synoptique, montrant les sous-ensembles principaux d'un dispositif suivant l'invention, et fonction de ces sous-ensembles pouvant être réalisé par voie matérielle ou par voie logicielle ;
  • la figure 3 est un schéma fonctionnel de moyens de compensation du retard de mesure introduit par le capteur de richesse ;
  • la figure 3A indique des courbes de réponse type des moyens de la figure 3 ;
  • la figure 3B montre une courbe de réponse en phase en fonction de la fréquence ;
  • la figure 4 est un schéma fonctionnel de moyens d'acquisition synchrone des richesses, chambre de combustion par chambre de combustion ;
  • la figure 5 est un schéma de moyens de correction de richesse.
  • la figure 6 montre un bloc de gestion d'erreur de richesse incorporant les moyens de la fig. 5.
  • Le dispositif suivant l'invention présente la constitution de principe montrée en figure 2. La plupart des fonctions sont remplies par le calculateur 21. Toutefois certaines d'entre elles, et notamment des fonctions de filtrage de caractéristiques fixes, peuvent être réalisées sous forme analogique par des circuits câblés.
    Le dispositif comporte un compensateur 32 destiné à compenser le retard introduit par le capteur 26. Des moyens 34 d'acquisition synchrone des richesses peuvent être regardés comme ayant un observateur 36 à filtrage de Kalman et des moyens de correction 38 fournissant en sortie les rapports air/combustible admis aux chambres au cours du cycle qui vient de s'écouler. Pour affecter les richesses aux chambres appropriées, les moyens de correction reçoivent un signal de synchronisation constitué par la sortie du capteur 28 suivi d'un circuit 40 de division modulo n, ici égal à 4.
    La synchronisation doit être initialisée, le capteur 28 ne permettant pas de savoir quelle chambre de combustion vient de passer au point mort haut. Cette initialisation peut s'effectuer par diverses méthodes connues.
    Enfin, des moyens de gestion 42 déterminent les durées d'ouverture des injecteurs 12 à partir d'informations élaborées par le calculateur 21, constitué par exemple par le débit d'air admis et par la richesse requise, et à partir des corrections fournies par les moyens 38.
    Le modèle permettant aux moyens d'acquisition synchrone 34 de déterminer la richesse du mélange admis à chaque chambre repose sur les mesures fournies par le capteur unique 26 situé au point de confluence. Il est important de disposer, après chaque passage au point mort haut, d'une mesure représentative de la richesse alors qu'une chambre de combustion vient juste de passer au point mort. Or les capteurs habituels, du fait notamment qu'ils comportent un capot percé de protection de la sonde, introduisent un retard de mesure.
    On connaít déjà divers montages destinés à compenser le retard de mesure. Toutefois il est avantageux d'utiliser les moyens de compensation schématisés en figure 3, qui sont applicables non seulement aux moyens d'acquisition synchrone qui sont décrits plus loin, mais aussi à des moyens d'acquisition synchrone de tout autre type antérieurement connu.
    La stratégie adoptée est représentée fonctionnellement sur la figure 3. Le signal provenant de la sonde est soumis à un filtrage passe haut 43 dont les caractéristiques tiennent compte de la constante de temps τ du capot du capteur de plusieurs dizaines de ms. Pour que le filtrage soit stable, la valeur prise en compte dans le filtre passe haut sera liée à la constante de temps la plus faible parmi toutes celles que l'on peut rencontrer aux diverses conditions de fonctionnement du moteur.
    Le filtrage passe haut 43 amplifie le bruit qui est atténué ou éliminé par une boucle de contre-réaction comprenant un filtrage passe bas 44, un additionneur 46 recevant la sortie du filtrage passe bas et un signal d'entrée et une soustraction 48.
    On obtient ainsi des informations de richesse mesurées et compensées qui peuvent être stockées dans une mémoire vive 50, pouvant éventuellement être organisée en registre à décalage.
    Dans la pratique, les fonctions représentées en figure 3 seront implémentées de façon numérique. Le courant de sortie du capteur 26 est échantillonné, à une cadence qui peut être de l'ordre de 2 ms. Le filtrage dans son ensemble peut être prévu pour implémenter une fonction d'inversion de la forme : G(s)=[1+capot-1 (s). Passe bas (s)]/[1+ passe bas(s)
    Dans cette expression, la fonction d'inversion capot-1(s) peut être de la forme suivante, β désignant un pôle : Capot -1(s) = τ × β × s + 1τ s + β
    Les filtrages passe haut et passe bas introduisent des gains et sont prévus pour que ces gains varient en fonction de la fréquence suivant des lois qui peuvent être celles indiquées respectivement par les courbes en traits pleins et en traits mixtes de la figure 3A. Le filtrage passe bas pourra être simplement du premier ordre.
    La compensation étant assurée sous forme numérique, sur des valeurs discrètes, on peut se borner à effectuer une transformation d'Euler.
    On peut utiliser les notations habituelles :
  • x(k):variable d'état
  • u(k):valeur mesurée
  • y(k):valeur de sortie
  • k:instant considéré (échantillonnage 2 ms par exemple) la fonction d'inversion du capot est :
    Figure 00070001
       et le filtrage passe-bas devient :
    Figure 00070002
  • Dans la seconde formule,  désigne le gain de filtrage passe bas, destiné à écarter le bruit haute-fréquence généré ou amplifié par le filtrage passe-haut d'inversion.
    A la sortie du compensateur 32, on dispose d'une carte des richesses qui permet de retrouver les richesses instantanées en fonction du signal compensé instantané.
    Les richesses ainsi mesurées et compensées sont utilisées comme entrées pour l'observateur 36 à filtrage de Kalman.
    A l'heure actuelle, ce filtrage de Kalman est généralement effectué en adoptant le même gain de Kalman et les mêmes coefficients de pondération quelle que soit la chambre de combustion pour laquelle on veut déterminer la richesse.
    Suivant un aspect de l'invention, on détermine un gain Kij de Kalman optimal d'anticipation et un jeu de coefficients C de pondération pour chacune des chambres de combustion.
    Le schéma fonctionnel de l'observateur peut alors être celui représenté schématiquement en figure 4. Cet observateur peut être considéré comme constitué de n=4 observateurs élémentaires.
    Chacun de ces observateurs élémentaires peut avoir une constitution relativement classique. Le calcul permettant par exemple de déterminer la richesse du cylindre 1 correspond à l'orientation de commutateurs 52 donnée en figure 4, les commutateurs étant en fait constitués par un programme permettant d'effectuer la permutation des gain et coefficients en vue du calcul.
    Les mesures successives ymes(k)au point de confluence sont accumulées en 54 et traitées par un opérateur z-1 en 56 dont la sortie est ramenée, par une boucle 58 de gain A, à l'accumulation 54.
    Les données obtenues à l'issue des points morts hauts de n=4 cycles successifs sont multipliées par les coefficients de pondération (Cij) correspondant au cylindre i.La valeur yest(k) obtenue à la sortie 60 est représentative de la richesse estimée au point de confluence. Elle est réintroduite dans un soustracteur d'entrée 62, de façon à générer un signal d'erreur e(k) qui est appliqué à l'entrée du filtrage de Kalman.
    Les équations représentatives de l'estimation, pour un cylindre donné, sont alors les suivantes, avec les notations utilisées sur la figure 4 et si X(k) désigne la variable d'état. e(k) = ymes (k) - yest (k) E KALMAN (k) = G KALMAN e(k)
    Figure 00090001
    avec
    Figure 00090002
    Les coefficients de pondération Cij peuvent être obtenues expérimentalement par identification au moyen d'un banc de mesure utilisant un jeu de sondes capable de mesurer les richesses sur chaque tubulure et la richesse au point de confluence.
    La richesse du cylindre courant est alors disponible à la sortie 64 de l'accumulateur 54.
    Pour un même cylindre, on prévoira souvent plusieurs ensembles ayant chacun un gain de Kalman Kij et un jeu de coefficients de pondération Cij, chaque ensemble étant affecté à une zone particulière de fonctionnement du moteur.
    L'élaboration des corrections peut s'effectuer suivant le schéma fonctionnel de la figure 5. Les moyens de correction reçoivent, en tant qu'entrées :
  • le signal de richesse mesurée et compensée,au point de confluence, provenant de la mémoire 50,
  • des signaux indiquant la richesse estimée du cylindre courant, provenant de la sortie 64 del'observateur,
  • et le signal de synchronisation provenant du diviseur 40 modulo 4.
  • La correction de richesse à apporter à un cylindre à déterminer est calculée sous forme d'un produit de deux termes,
       un terme 1+λg, λg étant un pourcentage de correction générale portant sur la richesse mesurée au point de confluence,
       un terme 1+λi, particulier au cylindre d'ordre i dans lequel l'injection va être commandée.
    Le premier terme est élaboré à partir d'un signal d'erreur fourni par un soustracteur 66 qui recoit d'une part un signal représentatif de la consigne de richesse (qui dépend des conditions de fonctionnement du moteur) et d'autre part le signal de sortie provenant de la mémoire 50. Un module 68 de gestion d'erreur élabore un terme correctif, qui est traité par un filtre proportionnel-intégral 70 destiné à stabiliser le système. On obtient ainsi λg.
    Les termes λi sont élaborés chacun à l'aide d'un soustracteur 72 qui reçoit d'une part le signal de sortie 64 modulo 4, élaboré par un commutateur 5, et d'autre part un signal de consigne de richesse propre au cylindre.
    Ce signal de consigne de richesse peut être le même pour tous les cylindres. La consigne de richesse pourrait aussi être différente suivant le cylindre.
    Le signal d'erreur obtenu est soumis encore à un filtrage proportionnel-intégral 74, dit PI, pour obtenir un terme correcteur λi. Un circuit 76 permettra d'élaborer le produit (1+λi) (1+λg) qui constitue un facteur de correction sur la durée d'injection du cylindre i.
    Le filtrage PI a un rôle de compensation du temps de parcours des gaz entre les points d'injection et le point de confluence.
    Le module 68 de gestion d'erreur de richesse a notamment pour rôle de rendre plus rapide les commutations du capteur en agissant sur l'erreur injectée dans le filtre PI 70. Il introduit, en plus d'une amplification de l'erreur de richesse,une hystérésis ne provoquant un basculement du capteur qu'au delà de la stoechiométrie lorsqu'on va vers un mélange riche, en deça de la stoechiométrie lorsqu'on revient vers un mélange pauvre. Au delà des basculements, le module de gestion a une réponse sensiblement proportionnelle.
    Les facteurs de gain proportionnel Kp et intégral Ki des filtres de correction 74 sont choisis en fonction du retard de parcours entre les injecteurs et le capteur de richesse, compté en nombre de PMH.
    Kp sera généralement inférieur à 1 pour atténuer les hautes fréquences.
    Ki peut être de la forme : Ki = Kp x P x (2/temps de retard) pour un moteur à 4 cylindres. P est une constante ajustable pour régler la dynamique.
    Enfin, le circuit de gestion 42 (figure 2) permet, à partir d'un signal d'entrée 78 indiquant la quantité d'air admise au cylindre et du terme correcteur reçu des moyens 36, de modifier un temps d'injection de base correspondant à la consigne de richesse pour fixer le temps d'ouverture de chacun des injecteurs 12 et commander l'injecteur. Ce circuit peut en fait comprendre une partie numérique de calcul incorporée au calculateur 21 et une partie analogique et de puissance élaborant le courant pulsé d'alimentation des injecteurs.
    Le circuit de gestion de richesse peut correspondre au synoptique de la figure 6. La consigne de richesse pour l'injecteur i est appliquée à l'entrée 80 et multipliée par un signal 82 représentatif de la quantité d'air admise. Le produit est multiplié par le gain de l'injecteur en 84 pour obtenir un temps d'injection de base Ti. Dans le module 86, le signal de correction fourni par les moyens de la figure 5 est utilisé pour fournir Ti (1+λi) (1+λg)
    L'établissement du modèle exige de déterminer les coefficients de pondération pour un moteur donné. Cette détermination peut être faite sur un banc d'essai en équipant temporairement le moteur de sondes de richesse à la sortie de chaque cylindre, en plus du capteur définitif.
    La stratégie d'établissement de la consigne de richesse, à partir du démarrage à fond, mémorisée dans le calculateur 21, peut être la suivante.
    • immédiatement après lancement du moteur, richesse supérieure à la stoechiométrie permettant une fin de démarrage et un départ optimal, la richesse étant fonction de la température du liquide de refroidissement est d'autant plus important que la température est basse.
    • à la fin d'une période initiale (21 secondes par exemple) calcul d'un rapport R/combustible correspondant à une "limite" pauvre et de la durée d'un palier de maintien à cette valeur, uniquement en fonction de la température du liquide de refroidissement (supposée représentative de l'état du catalyseur)
    • décroissance quasi exponentielle vers la limite pauvre, pour réduire la pollution, suivie d'un palier
    • à l'issue du palier, au cours duquel il y a réchauffement du catalyseur, remontée vers la stoechiométrie, suivant une loi qui peut être linéaire pour assurer un bon agrément de conduite, la pente de croissance étant calibrable.

    Claims (5)

    1. Dispositif d'estimation de la richesse du mélange admis dans chacune des n chambres de combustion (n étant un entier supérieur à 1) d'un moteur ayant des injecteurs d'injection dans les cylindres, comprenant :
      un capteur (26) fournissant un signal de sortie à variation sensiblement linéaire avec la richesse, placé à un point de confluence des échappements des n chambres, et
      des moyens de calcul pour :
      mémoriser un modèle de comportement de l'échappement au point de confluence basé sur l'hypothèse que la richesse au point de confluence, ou le rapport air/combustible, est une somme pondérée des contributions des échappements des chambres individuelles, le coefficient de pondération étant d'autant plus faible que la combustion dans la chambre est plus ancienne, et
      estimer, après chaque passage au point mort haut, le rapport air/combustible à partir des valeurs mesurées et du modèle.
      caractérisé en ce que le modèle de comportement comporte un sous-modèle particulier par chambre de combustion ayant, pour la chambre d'ordre i, un filtre de Kalman ayant une matrice m.n, de coefficients Cij et une matrice de gains Kij propre, i étant égal à {1,....,n} et correspondant au numéro de chambre et j allant de 1 à m et correspondant au numéro du coefficient de pondération.
    2. Dispositif selon la revendication 1, caractérisé en ce que chaque sous-modèle est affecté de plusieurs jeux de matrice et gain correspondant chacun à des zones de fonctionnement du moteur déterminées par un ou plusieurs paramètres parmi le domaine de charge, la température des gaz d'échappement, la température de l'eau de refroidissement, la vitesse du moteur et la pression dans le collecteur d'admission.
    3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le capteur de richesse comprend, en plus d'une sonde (26) placée au point de conluence, des moyens de compensation du retard de réponse de la sonde, comprenant un filtre passe-haut (42) suivi d'une boucle de contre-réaction ayant un filtre passe-bas (48), un additionneur (46) recevant la sortie du filtre passe-bas et le signal d'entrée provenant de la sonde et un soustracteur (48) recevant le signal de sortie de l'additionneur et le signal de sortie du filtre passe-haut, alimentant le filtre passe-bas.
    4. Dispositif selon la revendication 3, caractérisé en ce que les moyens de compensation sont numériques, en ce que les fonctions de filtrage passe-haut sont de la forme :
      Figure 00160001
      tandis que le filtrage passe-bas est de la forme :
      Figure 00160002
      ou
         x()k : variable d'état
         u(k) : valeur mesurée
         y (k) : valeur de sortie
         k : instant considéré
          = gain de filtrage passe-bas
         β = pôle du filtre
    5. Système d'injection du combustible dans les chambres de combustion d'un moteur à combustion interne, comprenant :
      un dispositif selon l'une quelconque des revendications 1 à 4,
      un module de gestion d'erreur de richesse recevant le signal de sortie du capteur de richesse et le soumettant à un filtrage proportionnel-intégral, pour former un terme de correction général λg,
         un filtre (74) ajustable affecté à chaque chambre de combustion, recevant la différence entre la sortie des moyens d'estimation correspondant à ladite chambre et une consigne propre au cylindre, de façon à fournir un facteur de correction λi propre à la chambre,
         un multiplicateur (76) fournissant le produit de (1 + λg) et (1 + λi),
         et un circuit de gestion commandant les injecteurs à partir d'un signal représentant la quantité d'air aspiré et de la sortie du multiplicateur.
    EP99900932A 1998-01-19 1999-01-15 Dispositif d'estimation de richesse de systeme d'injection pour moteur a combustion interne Expired - Lifetime EP1049862B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9800502A FR2773847B1 (fr) 1998-01-19 1998-01-19 Dispositif d'estimation de richesse de systeme d'injection pour moteur a combustion interne
    FR9800502 1998-01-19
    PCT/FR1999/000072 WO1999036690A1 (fr) 1998-01-19 1999-01-15 Dispositif d'estimation de richesse de systeme d'injection pour moteur a combustion interne

    Publications (2)

    Publication Number Publication Date
    EP1049862A1 EP1049862A1 (fr) 2000-11-08
    EP1049862B1 true EP1049862B1 (fr) 2002-09-18

    Family

    ID=9521903

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99900932A Expired - Lifetime EP1049862B1 (fr) 1998-01-19 1999-01-15 Dispositif d'estimation de richesse de systeme d'injection pour moteur a combustion interne

    Country Status (7)

    Country Link
    US (1) US6357429B1 (fr)
    EP (1) EP1049862B1 (fr)
    JP (1) JP2002527657A (fr)
    BR (1) BR9907102B1 (fr)
    DE (1) DE69902992T2 (fr)
    FR (1) FR2773847B1 (fr)
    WO (1) WO1999036690A1 (fr)

    Families Citing this family (22)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    IT1321203B1 (it) * 2000-02-01 2003-12-31 Magneti Marelli Spa Metodo per il controllo del titolo della miscela aria - carburante inun motore a scoppio .
    DE10027410C2 (de) 2000-06-02 2003-12-04 Emitec Emissionstechnologie Abgasreinigungssystem mit verzögerter Meßwerterfassung
    FR2817294B1 (fr) * 2000-11-27 2003-04-11 Renault Procede d'annulation des variations de richesse pour un moteur a allumage commande
    DE10131179A1 (de) * 2001-06-29 2003-01-16 Bosch Gmbh Robert Verfahren zur Bestimmung des Kraftstoff/Luftverhältnisses in einzelnen Zylindern eines mehrzylindrigen Verbrennungsmotors
    FR2834314B1 (fr) 2001-12-31 2005-01-07 Peugeot Citroen Automobiles Sa Procede d'estimation de la richesse en carburant d'un melange combustible consomme par un moteur a injection, utilisable quel que soit le regime moteur
    EP1378655B1 (fr) 2002-07-02 2010-11-03 BorgWarner, Inc. Soupape à gaz
    JP3998136B2 (ja) * 2002-11-28 2007-10-24 本田技研工業株式会社 内燃機関の空燃比制御装置
    JP4184058B2 (ja) * 2002-12-05 2008-11-19 本田技研工業株式会社 制御装置
    FR2867232B1 (fr) * 2004-03-05 2006-05-05 Inst Francais Du Petrole Methode d'estimation de la richesse en carburant dans un cylindre d'un moteur a combustion
    US8396670B2 (en) * 2004-08-16 2013-03-12 Venture Milling, Inc. Process, system and method for improving the determination of digestive effects upon an ingestable substance
    US7607638B2 (en) 2005-03-08 2009-10-27 Borgwarner Inc. EGR valve having rest position
    FR2886346B1 (fr) * 2005-05-30 2010-08-27 Inst Francais Du Petrole Methode d'estimation par un filtre de kalman etendu de la richesse dans un cylindre d'un moteur a combustion
    FR2886345B1 (fr) * 2005-05-30 2010-08-27 Inst Francais Du Petrole Methode d'estimation par un filtre non-lineaire adaptatif de la richesse dans un cylindre d'un moteur a combustion
    JP4280931B2 (ja) 2005-10-19 2009-06-17 トヨタ自動車株式会社 内燃機関の空燃比制御装置
    US7581390B2 (en) * 2006-04-26 2009-09-01 Cummins Inc. Method and system for improving sensor accuracy
    JP5035223B2 (ja) * 2008-12-01 2012-09-26 トヨタ自動車株式会社 内燃機関の制御装置
    FR2983244B1 (fr) * 2011-11-28 2013-12-20 Peugeot Citroen Automobiles Sa Procede et dispositif permettant d'estimer en continu la richesse cylindre d'un moteur
    US10496775B2 (en) * 2013-01-31 2019-12-03 General Electric Company Method and system for use in dynamically configuring data acquisition systems
    US10718286B2 (en) * 2016-08-23 2020-07-21 Ford Global Technologies, Llc System and method for controlling fuel supplied to an engine
    US10995688B2 (en) * 2019-06-04 2021-05-04 GM Global Technology Operations LLC Method and system for determining thermal state
    KR102191834B1 (ko) * 2019-10-30 2020-12-16 현대자동차주식회사 차량의 엔진 신호 처리 방법
    CN115183273A (zh) * 2022-07-21 2022-10-14 中国航发沈阳发动机研究所 一种加力发动机燃烧室

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE69225212T2 (de) * 1991-12-27 1998-08-13 Honda Motor Co Ltd Verfahren zum Feststellen und Steuern des Luft/Kraftstoffverhältnisses in einer Brennkraftmaschine
    US5535135A (en) * 1993-08-24 1996-07-09 Motorola, Inc. State estimator based exhaust gas chemistry measurement system and method
    EP0670419B1 (fr) * 1994-02-04 1999-12-29 Honda Giken Kogyo Kabushiki Kaisha Système d'estimation du rapport air/carburant pour un moteur à combustion interne
    US5600056A (en) * 1994-06-20 1997-02-04 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio detection system for multicylinder internal combustion engine
    US5657736A (en) 1994-12-30 1997-08-19 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
    JPH1073040A (ja) * 1996-08-29 1998-03-17 Honda Motor Co Ltd 内燃機関の空燃比制御装置
    JP3046948B2 (ja) * 1997-08-20 2000-05-29 本田技研工業株式会社 内燃機関の空燃比制御装置

    Also Published As

    Publication number Publication date
    FR2773847B1 (fr) 2000-03-24
    EP1049862A1 (fr) 2000-11-08
    FR2773847A1 (fr) 1999-07-23
    BR9907102A (pt) 2000-10-24
    WO1999036690A1 (fr) 1999-07-22
    DE69902992T2 (de) 2003-05-28
    US6357429B1 (en) 2002-03-19
    JP2002527657A (ja) 2002-08-27
    DE69902992D1 (de) 2002-10-24
    BR9907102B1 (pt) 2012-02-07

    Similar Documents

    Publication Publication Date Title
    EP1049862B1 (fr) Dispositif d'estimation de richesse de systeme d'injection pour moteur a combustion interne
    FR2657397A1 (fr) Systeme de controle du rapport air/carburant du type a capteur double pour un moteur a combustion interne et procede pour son fonctionnement.
    FR2524557A1 (fr) Dispositif de controle de cognement pour un moteur a combustion interne
    FR2857410A1 (fr) Systeme de controle du bruit de combustion d'un moteur diesel de vehicule automobile
    FR2524554A1 (fr) Appareil de reglage du fonctionnement d'un moteur a combustion interne
    WO2004099750A1 (fr) Procede de determination de l’ energie d’ un signal cliquetis pour moteur a combustion interne
    EP0030491A1 (fr) Correcteur électronique d'angle d'avance à l'allumage en fonction du cliquetis
    EP0534813B1 (fr) Procédé de correction des paramètres de contrôle d'un moteur à combustion interne et dispositif de mise en oeuvre du procédé
    EP1687515B1 (fr) Procede d'estimation de quantites de particules emises dans les gaz d'echappement d'un moteur diesel d'un vehicule automobile
    FR2783017A1 (fr) Procede de commande d'un moteur a combustion interne
    EP1799983B1 (fr) Procede et systeme ameliores d'estimation d'une temperature des gaz d'echappement et moteur a combustion interne equipe d'un tel systeme
    WO2007034057A1 (fr) Methode d’estimation du regime instantane produit par chacun des cylindres d'un moteur a combustion interne
    EP0953754B1 (fr) Procédé d'annulation des variations de richesse du mélange gazeux issu des cylindres d'un moteur à combustion interne
    EP0908608B1 (fr) Procédé de surveillance du fonctionnement et du vieillissement d'un pot catalytique pour un moteur fonctionnant en mélange pauvre et système de mise en oeuvre
    EP0145602B1 (fr) Procédé de visualisation de grandeurs physiques variables dans le temps, et système permettant la mise en oeuvre de ce procédé
    FR2718191A1 (fr) Procédé et dispositif de suppression des oscillations longitudinales d'un véhicule automobile à moteur.
    EP0948711B1 (fr) Systeme de regulation de la richesse d'un moteur thermique a injection avec consigne de richesse adaptative
    FR3107367A1 (fr) Mesure de fonction de transferts dans un système mécatronique
    EP2650516B1 (fr) Procédé d'estimation de la richesse dans un moteur à combustion de véhicule automobile
    WO2020182808A1 (fr) Correction de la mesure de pression d'un capteur de pression de cylindre
    FR2901840A1 (fr) Procede et systeme de controle d'un dispositif de post-traitement des gaz d'echappement
    FR2830277A1 (fr) Procede de controle d'un moteur a combustion lors d'un demarrage au froid
    WO2007034095A1 (fr) Procede de traitement d'un signal de mesure representatif de la richesse en oxygene d'un gaz et dispositif correspondant
    FR2817294A1 (fr) Procede d'annulation des variations de richesse pour un moteur a allumage commande
    FR3006375A1 (fr) Systeme et procede de determination de la fraction massique de gaz frais dans le collecteur d'admission d'un moteur a combustion interne de vehicule automobile.

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000623

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE DE ES FR GB IT PT SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20010822

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE DE ES FR GB IT PT SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 69902992

    Country of ref document: DE

    Date of ref document: 20021024

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20021108

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20021218

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20021219

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030131

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: SAGEM S.A.

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030328

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030619

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20160113

    Year of fee payment: 18

    Ref country code: DE

    Payment date: 20160108

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20160118

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69902992

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20170115

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170115

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170801

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170115

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20180119

    Year of fee payment: 20