EP1048822B1 - Bouclier thermique pour turbine à gaz - Google Patents
Bouclier thermique pour turbine à gaz Download PDFInfo
- Publication number
- EP1048822B1 EP1048822B1 EP00810216A EP00810216A EP1048822B1 EP 1048822 B1 EP1048822 B1 EP 1048822B1 EP 00810216 A EP00810216 A EP 00810216A EP 00810216 A EP00810216 A EP 00810216A EP 1048822 B1 EP1048822 B1 EP 1048822B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- heat shield
- cooling
- shield
- segments
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/14—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
- F01D11/20—Actively adjusting tip-clearance
- F01D11/24—Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
Definitions
- the present invention relates to the field of gas turbines. It relates to a heat shield for a gas turbine according to the preamble of claim 1
- Such a heat shield is e.g. known from the document US-A-4,650,394. Further heat shields are known from the documents US-A-4,177,004, US-A-4,551,064, US-A-5,071,313, US-A-5,584,651 or EP-A1-0 516 322.
- Heat shields for gas turbines which surround the blades of a turbine stage annular and on the one hand limit the hot gas channel to the outside and On the other hand keep the gap between the outer wall of the hot gas channel and the ends of the blades for reasons of efficiency as small as possible without causing a sliding contact with changing temperatures, have long been known.
- Such heat shields usually consist of a plurality of circular segment-shaped curved heat shield segments, which are arranged one behind the other in the circumferential direction form a closed ring.
- the individual heat shield segments are often releasably attached to a carrier which concentrically surrounds the heat shield. For reasons of different thermal expansion of the various items is taken to ensure that between the heat shield segments and the adjacent elements which define the hot gas channel to the outside, radial gaps or annular gap-shaped cavities.
- the heat shield or the individual heat shield segments are exposed to a high thermal load during operation of the gas turbine.
- this thermal load can have negative effects on the heat shield itself.
- the heat can be directed by the shield to the outside and cause damage there. It is therefore usually taken precautions to cool the heat shield segments from the back or the outside by compressed cooling air, which usually comes from the compressor part of the gas turbine or the plenum, in a suitable manner. This cooling should be as even and efficient as possible and include all exposed areas of the heat shield.
- hot gas should be prevented from entering the adjacent column in the outer wall of the hot gas channel and undesirably heating the parts of the structure behind it.
- cooling holes (55) are arranged only in the region of the downstream longitudinal edge of the heat shield segment. Both adjacent to the heat shield segments column (64, 68) are flooded by cooling air streams (59 and 65 in Fig. 1), which are brought by separate holes (63, 67) from outside the heat shield.
- cooling holes (80) extending further downstream in the case of the heat shield from EP-A1-0 516 322.
- the downstream longitudinal edge of the heat shields with the inner arms (44) is virtually uncooled.
- the object is solved by the entirety of the features of claim 1.
- the essence of the invention is to guide on both longitudinal sides of the heat shields, so both upstream and downstream, from the lying behind the segments cavity cooling air through corresponding cooling holes in the adjacent column and so simultaneously and uniformly to cool the two longitudinal edge portions of the heat shield segments and to flood the column against ingress of hot gases.
- the entire cooling and flooding devices are arranged (in the form of cooling holes or cooling grooves) on the heat shield segment itself, which makes the production much easier and makes an adjustment of the other parts of the hot gas channel superfluous.
- the outflow of the cooling air on both longitudinal sides of the heat shield segments also has the consequence that the cooling air sweeps more uniformly over the outer sides of the segments delimiting the cavity and thus uniformly cools the entire segment surface. As a result, the thermal load is uniformly reduced over the entire surface and significantly extends the life of the heat shield segments.
- the heat shield segments are fastened by means of brackets on the carrier, which engage with brackets with L-shaped inwardly bent ends from both sides under the support in the intermediate spaces formed between the pairs of arms that the effluent from the cooling holes cooling air in the spaces between the L-shaped inwardly bent ends of the brackets and the inner arms of the heat shield segments to the columns is guided, and that for guiding the emerging from the cooling holes cooling air in the outer sides of the inner arms to the cooling holes aligned cooling grooves are recessed.
- the cooling grooves in the inner arms increase the heat transfer area on the arms and substantially homogenize and improve the cooling of the arms (farthest from the cool air filled cavity).
- a preferred embodiment of the heat shield according to the invention is characterized in that in order to reduce the bending of the heat shield during temperature changes on the outside of the heat shield segments in the region of the cavity axially extending stiffening ribs are arranged or formed, that spaced within the cavity and from the outside of the heat shield segments is arranged in the circumferential direction, provided with openings impingement cooling plate, and that within the stiffening ribs, radially outwardly projecting lugs or pins are arranged, on which the impingement cooling plate rests.
- the stiffening ribs with the formed tabs stiffen the heat shield segments in the axial direction and thereby reduce the risk of brushing the blades on the heat shield. They also improve the heat transfer between the segment and the cooling air flowing through the cavity.
- the lugs that serve to support the baffle plate can be formed together with the stiffening ribs in a simple manner when casting the segments with.
- FIG. 1 the partially longitudinally-sectioned arrangement of a heat shield in a gas turbine 10 according to a first preferred embodiment of the invention is shown in a section.
- the figure shows a section of the (rotationally symmetrical) hot gas channel 11 of the gas turbine, which of the hot combustion gases from the (not shown) combustion chamber of the gas turbine flows through in the direction of the drawn four parallel arrows.
- guide vanes 13 are arranged, which extend in the radial direction and merge at its outer end in an outer ring 14 which limits the hot gas channel 11 in the region of the guide vanes 13 outwardly.
- the vanes 13 follow downstream blades 12 which are mounted on a (not shown) rotor of the gas turbine and rotate together with this around the turbine axis, when they are charged with the hot gas flowing in the hot gas channel 11 hot gas. Behind the ring of blades 12 can follow downstream more Leitschaufel- and blade rings, which need not be further referred to here. In any case, the hot gas channel 11 is bounded behind the blades 12 to the outside by an intermediate ring 15 or by a downstream vane.
- the ring of the rotor blades 12 is surrounded concentrically by a heat shield, which is composed of a plurality of circular segment-shaped individual heat shield segments 17 arranged one behind the other in the circumferential direction.
- a heat shield segment 17 is shown in Fig. 1 within the overall arrangement and in Fig. 2 per se taken in cross section.
- the heat shield as a whole delimits the hot gas channel 11 in the region of the rotor blades 12 and at the same time determines the gap between the channel wall and the outer end of the rotor blades 12.
- the individual heat shield segments 17 are curved plates, which have on their longitudinal sides, that is, the transversely oriented to the flow direction or the turbine axis sides, circumferentially extending, possibly provided with incisions, rails, each having a pair in the axial direction protruding, parallel and spaced apart arms 21, 22 and 23, 24 respectively (see also the comparable Fig. 3 of US-A-5,071,313).
- the heat shield segments 17 are fixed to form a cavity 20 on the inside of a concentrically encircling annular support 16.
- the attachment takes place in each case via two brackets 18 and 19, with the L-shaped inwardly bent ends from both sides under the support 16 in between engage the arm pairs 21, 22 and 23, 24 formed intermediate spaces 25 and 26 respectively.
- radial gaps 29 and 30 are left between the brackets 18 and 19 and the respective adjacent wall elements 15 and 14.
- the cooling of the heat shield segments 17 takes place from the outside via the cavity 20.
- compressed air from the plenum of the gas turbine is admitted to a (not shown) point, which then arranged by both sides of the heat shield segment 17 cooling holes 27, 28 in the interstices 25 and 26 between the arm pairs 21, 22 and 23, 24 flows out (see the curved arrows in the cavity 20 of FIG. 1).
- the cooling holes 27, 28 are arranged so that the cooling air between the inner sides (lower sides) of the L-shaped bent ends of the brackets 18, 19 and the outer sides (tops) of the inner arms 21, 23 outwardly into the gaps 29 and 30th flows and exits from there into the hot gas duct 11.
- cooling grooves 31, 32 are recessed on the outer sides of the inner arms 21, 23 to the cooling holes 27, 28.
- Fig. 3 shows these cooling grooves 31, 32 in the plan view
- Figs. 4 and 5 show the cooling grooves and cooling holes in cross section.
- cooling air guide Due to the described type of cooling air guide several requirements are safely and easily met: Since the cooling air exits uniformly on both sides of the cavity 20, the bottom of the cavity 20 and the outside of the heat shield segment is uniformly and over the entire surface with cooling air applied, so that local overheating can be safely avoided. At the same time it is prevented that too much heat passes through heat conduction into the outer arms 22, 24 and from there into the carrier. Furthermore, the brackets 18, 19 are effectively cooled at their angled end, so that they also conduct only little heat to the outside. In addition, the inner arms 21, 23 are effectively protected against overheating. Finally, the leaking cooling air, the column 29, 30 flooded with cooling air, whereby an undesirable penetration of hot gas is reliably avoided in the column.
- the position of the heat shield segments 17 decisively determines the gap between the heat shield and the outer end of the rotor blades 12. On the one hand, this gap should be as small as possible to minimize efficiency losses. On the other hand, the gap must be sufficiently large to avoid abrasive contact between the blades and heat shield at different temperatures and the associated different expansions of the elements as far as possible.
- it is advantageous to reduce the temperature-induced bending of the heat shield segments by arranging, as shown in FIGS. 6 to 10 on the outside of the heat shield segments 17 ', an axial stiffening rib 33 extending to the other longitudinal side. These stiffening ribs 33 can be advantageously formed when casting the heat shield segments 17 '.
- projections and / or pins 34, 35 projecting radially outwards are also integrally formed with and within the stiffening ribs 33 at the same time, on which then an impingement cooling plate 36 circulating around the heat shield within the cavities 20 (FIG , 10) can support.
- the impingement cooling plate 36 can thus be placed close to the outside of the heat shield segments 17 'without special shaping, as a result of which the cooling effect of the cooling air flowing through the openings 37 in the impingement cooling plate 36 is markedly increased.
- a further improvement of the cooling can be achieved or prevent a local overheating by an undesirable cooling air leakage, if undesirable Cooling air losses are effectively limited or completely avoided.
- axial elastic seals 39, 41 are provided which drain the flowing out of the cooling holes 27, 28 cooling air into the gaps between prevents the brackets 18, 19 and the carrier 16. Since the cooling air flows past the seals 39 directly, the seals are effectively cooled at the same time. Additional axial resilient seals 38, 40 disposed between the brackets 18, 19 and the carrier 16 further enhance the seal.
- the advantage of this sealed arrangement is that it prevents hot gas from breaking in and leading to local overheating.
- the cooling air leakage is minimized and the cooling air is used at the cooling points where it is actually required. The reduced leakage and the targeted use of cooling air lead to an improvement in the efficiency of the turbine stage or the machine as a whole.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Claims (6)
- Bouclier thermique pour une turbine à gaz (10), lequel bouclier thermique entoure annulairement les aubes mobiles (12) en rotation dans le canal de gaz chauds (11) de la turbine à gaz (10) d'un étage de la turbine à gaz (10) et se compose d'une pluralité de segments de bouclier thermique (17, 17') disposés les uns derrière les autres dans la direction périphérique, de courbure en forme de segments de cercle et refroidis depuis l'extérieur, dont les longs côtés sont réalisés sous forme de rails s'étendant dans la direction périphérique, de courbure correspondante, ayant chacun une paire de bras (21, 22, respectivement 23, 24) saillant dans la direction axiale, s'étendant parallèlement et espacés les uns des autres, les segments de bouclier thermique (17, 17') étant fixés, en formant un espace creux (20) sollicité par de l'air de refroidissement, au côté interne d'un support annulaire (16) qui entoure concentriquement le bouclier thermique, de telle sorte qu'entre les longs côtés des segments de bouclier thermique (17, 17') et les éléments adjacents (14, 15), qui délimitent le canal de gaz chauds (11) vers l'extérieur, une fente radiale respective (29, 30) soit formée, des alésages de refroidissement (27, 28) étant prévus dans les deux longs côtés des segments de bouclier thermique, à travers lesquels de l'air de refroidissement peut s'écouler hors de l'espace creux (20) dans les espaces intermédiaires (25, 26) formés entre les paires de bras (21, 22, respectivement 23, 24) et de là dans les fentes (29, 30) et peut s'opposer à la pénétration de gaz chauds hors du canal de gaz chauds (11) dans les fentes (29, 30), les segments de bouclier thermique (17, 17') étant fixés au support (16) au moyen de pinces (18, 19), lesquelles viennent en prise par des extrémités recourbées en forme de L vers l'intérieur des deux côtés sous le support (16) dans les espaces intermédiaires (25, 26) formés entre les paires de bras (21, 22, respectivement 23, 24), et l'air de refroidissement s'écoulant hors des alésages de refroidissement (17, 28) étant guidé dans les espaces intermédiaires (25, 26) entre les extrémités recourbées vers l'intérieur en forme de L des pinces (18, 19) et les bras situés à l'intérieur (21, 23) des segments de bouclier thermique (17, 17') vers les fentes (29, 30), caractérisé en ce que pour le guidage de l'air de refroidissement sortant des alésages de refroidissement (27, 28), des rainures de refroidissement (31, 32) en affleurement avec les alésages de refroidissement (27, 28) sont pratiquées dans les côtés extérieurs des bras situés à l'intérieur (21, 23).
- Bouclier thermique selon la revendication 1, caractérisé en ce que les alésages de refroidissement (27, 28) et les rainures de refroidissement (31, 32) sont disposés de manière basculée hors de la direction axiale vers la direction de rotation de la turbine à gaz (10) dans le plan du segment de bouclier thermique (17, 17').
- Bouclier thermique selon la revendication 1 ou 2, caractérisé en ce que pour réduire la flexion du bouclier thermique en cas de changements de températures, on dispose ou on forme sur le côté extérieur des segments de bouclier thermique (17, 17') des nervures de renforcement (33) s'étendant axialement (20) dans la région de l'espace creux.
- Bouclier thermique selon la revendication 3, caractérisé en ce qu'à l'intérieur de l'espace creux (20) et à distance du côté extérieur des segments de bouclier thermique (17, 17') est disposée une tôle de refroidissement par impact (36) pourvue d'ouvertures (37) et s'étendant dans la direction périphérique, et en ce qu'à l'intérieur des nervures de renforcement (33) sont disposés des ergots ou des goupilles (34, 35) individuels saillants radialement vers l'extérieur, sur lesquels repose la tôle de refroidissement par impact (36).
- Bouclier thermique selon la revendication 1, caractérisé en ce que pour empêcher l'écoulement d'air de refroidissement vers l'extérieur au-dessus des alésages de refroidissement (27, 28) on dispose entre les pinces (18, 19) et les côtés longs des segments de bouclier thermique (17, 17') des premiers joints d'étanchéité axiaux élastiques (39, 41).
- Bouclier thermique selon la revendication 5, caractérisé en ce qu'en outre des deuxièmes joints d'étanchéité axiaux élastiques (38, 40) sont disposé entre les pinces (18, 19) et le support (16).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19919654A DE19919654A1 (de) | 1999-04-29 | 1999-04-29 | Hitzeschild für eine Gasturbine |
DE19919654 | 1999-04-29 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1048822A2 EP1048822A2 (fr) | 2000-11-02 |
EP1048822A3 EP1048822A3 (fr) | 2002-07-31 |
EP1048822B1 true EP1048822B1 (fr) | 2006-05-17 |
Family
ID=7906382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00810216A Expired - Lifetime EP1048822B1 (fr) | 1999-04-29 | 2000-03-15 | Bouclier thermique pour turbine à gaz |
Country Status (3)
Country | Link |
---|---|
US (1) | US6302642B1 (fr) |
EP (1) | EP1048822B1 (fr) |
DE (2) | DE19919654A1 (fr) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19938443A1 (de) * | 1999-08-13 | 2001-02-15 | Abb Alstom Power Ch Ag | Befestigungs- und Fixierungsvorrichtung |
DE19945581B4 (de) * | 1999-09-23 | 2014-04-03 | Alstom Technology Ltd. | Turbomaschine |
CA2372984C (fr) * | 2000-03-07 | 2005-05-10 | Mitsubishi Heavy Industries, Ltd. | Anneau fendu de turbine a gaz |
JP4698847B2 (ja) * | 2001-01-19 | 2011-06-08 | 三菱重工業株式会社 | ガスタービン分割環 |
GB2378730B (en) * | 2001-08-18 | 2005-03-16 | Rolls Royce Plc | Cooled segments surrounding turbine blades |
US6783324B2 (en) * | 2002-08-15 | 2004-08-31 | General Electric Company | Compressor bleed case |
US6899518B2 (en) | 2002-12-23 | 2005-05-31 | Pratt & Whitney Canada Corp. | Turbine shroud segment apparatus for reusing cooling air |
JP4191552B2 (ja) * | 2003-07-14 | 2008-12-03 | 三菱重工業株式会社 | ガスタービン尾筒の冷却構造 |
US7165937B2 (en) * | 2004-12-06 | 2007-01-23 | General Electric Company | Methods and apparatus for maintaining rotor assembly tip clearances |
US7520715B2 (en) * | 2005-07-19 | 2009-04-21 | Pratt & Whitney Canada Corp. | Turbine shroud segment transpiration cooling with individual cast inlet and outlet cavities |
US20070020088A1 (en) * | 2005-07-20 | 2007-01-25 | Pratt & Whitney Canada Corp. | Turbine shroud segment impingement cooling on vane outer shroud |
US7278820B2 (en) * | 2005-10-04 | 2007-10-09 | Siemens Power Generation, Inc. | Ring seal system with reduced cooling requirements |
US7334985B2 (en) * | 2005-10-11 | 2008-02-26 | United Technologies Corporation | Shroud with aero-effective cooling |
US7740442B2 (en) * | 2006-11-30 | 2010-06-22 | General Electric Company | Methods and system for cooling integral turbine nozzle and shroud assemblies |
US7722315B2 (en) * | 2006-11-30 | 2010-05-25 | General Electric Company | Method and system to facilitate preferentially distributed recuperated film cooling of turbine shroud assembly |
US7740444B2 (en) * | 2006-11-30 | 2010-06-22 | General Electric Company | Methods and system for cooling integral turbine shround assemblies |
US7665953B2 (en) * | 2006-11-30 | 2010-02-23 | General Electric Company | Methods and system for recuperated cooling of integral turbine nozzle and shroud assemblies |
WO2008128876A1 (fr) * | 2007-04-19 | 2008-10-30 | Alstom Technology Ltd | Écran thermique de stator |
US8240980B1 (en) | 2007-10-19 | 2012-08-14 | Florida Turbine Technologies, Inc. | Turbine inter-stage gap cooling and sealing arrangement |
US8251637B2 (en) * | 2008-05-16 | 2012-08-28 | General Electric Company | Systems and methods for modifying modal vibration associated with a turbine |
US8128344B2 (en) * | 2008-11-05 | 2012-03-06 | General Electric Company | Methods and apparatus involving shroud cooling |
US8556575B2 (en) * | 2010-03-26 | 2013-10-15 | United Technologies Corporation | Blade outer seal for a gas turbine engine |
RU2543101C2 (ru) * | 2010-11-29 | 2015-02-27 | Альстом Текнолоджи Лтд | Осевая газовая турбина |
EP2508713A1 (fr) * | 2011-04-04 | 2012-10-10 | Siemens Aktiengesellschaft | Turbine à gaz comprenant un écran thermique et procédé d'opération |
US9574455B2 (en) * | 2012-07-16 | 2017-02-21 | United Technologies Corporation | Blade outer air seal with cooling features |
EP2949873A1 (fr) * | 2014-05-27 | 2015-12-02 | Siemens Aktiengesellschaft | Turbomachine avec blindage à l'ingestion et utilisation de la turbomachine |
US10400619B2 (en) | 2014-06-12 | 2019-09-03 | General Electric Company | Shroud hanger assembly |
FR3036436B1 (fr) | 2015-05-22 | 2020-01-24 | Safran Ceramics | Ensemble d'anneau de turbine avec maintien par brides |
US10221713B2 (en) * | 2015-05-26 | 2019-03-05 | Rolls-Royce Corporation | Shroud cartridge having a ceramic matrix composite seal segment |
EP3179053B1 (fr) | 2015-12-07 | 2019-04-03 | MTU Aero Engines GmbH | Structure de carter de turbomachine avec écran de protection thermique |
US20170198602A1 (en) * | 2016-01-11 | 2017-07-13 | General Electric Company | Gas turbine engine with a cooled nozzle segment |
KR101965500B1 (ko) * | 2017-09-11 | 2019-04-03 | 두산중공업 주식회사 | 터빈의 블레이드 시일 구조 및 이를 포함하는 터빈 및 가스터빈 |
FR3112806B1 (fr) * | 2020-07-23 | 2022-10-21 | Safran Aircraft Engines | Couronne de maintien de secteurs d’étanchéité d’une turbine basse pression |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE756582A (fr) * | 1969-10-02 | 1971-03-01 | Gen Electric | Ecran circulaire et support d'ecran avec dispositif de reglage de la temperature pour turbomachine |
US3864056A (en) * | 1973-07-27 | 1975-02-04 | Westinghouse Electric Corp | Cooled turbine blade ring assembly |
GB1484288A (en) * | 1975-12-03 | 1977-09-01 | Rolls Royce | Gas turbine engines |
US4087199A (en) * | 1976-11-22 | 1978-05-02 | General Electric Company | Ceramic turbine shroud assembly |
FR2401310A1 (fr) * | 1977-08-26 | 1979-03-23 | Snecma | Carter de turbine de moteur a reaction |
US4177004A (en) | 1977-10-31 | 1979-12-04 | General Electric Company | Combined turbine shroud and vane support structure |
JPS5857658B2 (ja) * | 1980-04-02 | 1983-12-21 | 工業技術院長 | セラミツクスによる高熱曝露壁面の熱遮断構造 |
US4573865A (en) * | 1981-08-31 | 1986-03-04 | General Electric Company | Multiple-impingement cooled structure |
US4526226A (en) * | 1981-08-31 | 1985-07-02 | General Electric Company | Multiple-impingement cooled structure |
US4551064A (en) | 1982-03-05 | 1985-11-05 | Rolls-Royce Limited | Turbine shroud and turbine shroud assembly |
US4650394A (en) * | 1984-11-13 | 1987-03-17 | United Technologies Corporation | Coolable seal assembly for a gas turbine engine |
US4642024A (en) * | 1984-12-05 | 1987-02-10 | United Technologies Corporation | Coolable stator assembly for a rotary machine |
US5039562A (en) * | 1988-10-20 | 1991-08-13 | The United States Of America As Represented By The Secretary Of The Air Force | Method and apparatus for cooling high temperature ceramic turbine blade portions |
US5071313A (en) | 1990-01-16 | 1991-12-10 | General Electric Company | Rotor blade shroud segment |
US5169287A (en) | 1991-05-20 | 1992-12-08 | General Electric Company | Shroud cooling assembly for gas turbine engine |
US5584651A (en) | 1994-10-31 | 1996-12-17 | General Electric Company | Cooled shroud |
US6126389A (en) * | 1998-09-02 | 2000-10-03 | General Electric Co. | Impingement cooling for the shroud of a gas turbine |
US6224329B1 (en) * | 1999-01-07 | 2001-05-01 | Siemens Westinghouse Power Corporation | Method of cooling a combustion turbine |
-
1999
- 1999-04-29 DE DE19919654A patent/DE19919654A1/de not_active Withdrawn
-
2000
- 2000-03-15 EP EP00810216A patent/EP1048822B1/fr not_active Expired - Lifetime
- 2000-03-15 DE DE50012746T patent/DE50012746D1/de not_active Expired - Lifetime
- 2000-04-18 US US09/551,565 patent/US6302642B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US6302642B1 (en) | 2001-10-16 |
DE50012746D1 (de) | 2006-06-22 |
EP1048822A3 (fr) | 2002-07-31 |
DE19919654A1 (de) | 2000-11-02 |
EP1048822A2 (fr) | 2000-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1048822B1 (fr) | Bouclier thermique pour turbine à gaz | |
DE69205889T2 (de) | Kühlung für einen Gasturbinen-Statorring. | |
DE60128865T2 (de) | Kühlung für einen Turbinenmantelring | |
DE2718661C2 (de) | Leitschaufelgitter für eine axial durchströmte Gasturbine | |
DE60210684T2 (de) | Dichtung eines Turbinenmantelrings | |
DE602004011859T2 (de) | Vorrichtung für die Regelung von Spalten in einer Gasturbine | |
DE69517306T2 (de) | Turbinenschaufel mit dichtungselement und einem integralen hitzeschild | |
DE3541606C2 (de) | Statorbaugruppe | |
EP1451450B1 (fr) | Ensemble turbine a gaz | |
WO2010009997A1 (fr) | Joint annulaire d'enveloppe pour turbine à gaz | |
EP1276972B1 (fr) | Turbine | |
CH642428A5 (de) | Abdeckanordnung in einer turbine. | |
DE102008002890A1 (de) | Wechselseitig gekühltes Turbinenleitrad | |
EP1183444B1 (fr) | Turbomachine ainsi qu'element d'etancheite pour un rotor d'une turbomachine | |
DE102004054294A1 (de) | Kühlsystem für Plattformkanten von Leitradsegmenten | |
DE3231689A1 (de) | Mehrfach prallgekuehltes gebilde, insbesondere ummantelung eines gasstroemungsweges | |
EP1270874A1 (fr) | Turbine à gaz avec un compresseur d'air | |
DE1953047A1 (de) | Gas- oder Dampfturbine der Axialbauart fuer hohe Arbeitsmitteltemperaturen | |
DE60117337T2 (de) | Anordnung der Leitschaufelplattformen in einer Axialturbine zur Verminderung der Spaltverluste | |
WO2008017550A1 (fr) | Chambre de combustion d'une installation de combustion | |
DE1300346B (de) | Gasturbine | |
DE112011101253T5 (de) | Turbineneinlassdüsenführungsschaufelbefestigungsstruktur für Gasturbinenradialtriebwerk | |
DE3602644A1 (de) | Gasturbinentriebwerk | |
EP0040267B1 (fr) | Stator refroidi pour turbines | |
EP1409926A1 (fr) | Dispositif de refroidissement par choc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7F 01D 25/12 A, 7F 01D 25/24 B, 7F 01D 11/24 B, 7F 01D 11/08 B |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
17P | Request for examination filed |
Effective date: 20030130 |
|
AKX | Designation fees paid |
Designated state(s): DE GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
17Q | First examination report despatched |
Effective date: 20050311 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50012746 Country of ref document: DE Date of ref document: 20060622 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060814 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070220 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50012746 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50012746 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 50012746 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170322 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170322 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50012746 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50012746 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50012746 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180315 |