EP1048822B1 - Heat shield for a gas turbine - Google Patents

Heat shield for a gas turbine Download PDF

Info

Publication number
EP1048822B1
EP1048822B1 EP00810216A EP00810216A EP1048822B1 EP 1048822 B1 EP1048822 B1 EP 1048822B1 EP 00810216 A EP00810216 A EP 00810216A EP 00810216 A EP00810216 A EP 00810216A EP 1048822 B1 EP1048822 B1 EP 1048822B1
Authority
EP
European Patent Office
Prior art keywords
heat
heat shield
cooling
shield
segments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00810216A
Other languages
German (de)
French (fr)
Other versions
EP1048822A3 (en
EP1048822A2 (en
Inventor
Christoph Nagler
Christof Pfeiffer
Ulrich Wellenkamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1048822A2 publication Critical patent/EP1048822A2/en
Publication of EP1048822A3 publication Critical patent/EP1048822A3/en
Application granted granted Critical
Publication of EP1048822B1 publication Critical patent/EP1048822B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components

Definitions

  • the present invention relates to the field of gas turbines. It relates to a heat shield for a gas turbine according to the preamble of claim 1
  • Such a heat shield is e.g. known from the document US-A-4,650,394. Further heat shields are known from the documents US-A-4,177,004, US-A-4,551,064, US-A-5,071,313, US-A-5,584,651 or EP-A1-0 516 322.
  • Heat shields for gas turbines which surround the blades of a turbine stage annular and on the one hand limit the hot gas channel to the outside and On the other hand keep the gap between the outer wall of the hot gas channel and the ends of the blades for reasons of efficiency as small as possible without causing a sliding contact with changing temperatures, have long been known.
  • Such heat shields usually consist of a plurality of circular segment-shaped curved heat shield segments, which are arranged one behind the other in the circumferential direction form a closed ring.
  • the individual heat shield segments are often releasably attached to a carrier which concentrically surrounds the heat shield. For reasons of different thermal expansion of the various items is taken to ensure that between the heat shield segments and the adjacent elements which define the hot gas channel to the outside, radial gaps or annular gap-shaped cavities.
  • the heat shield or the individual heat shield segments are exposed to a high thermal load during operation of the gas turbine.
  • this thermal load can have negative effects on the heat shield itself.
  • the heat can be directed by the shield to the outside and cause damage there. It is therefore usually taken precautions to cool the heat shield segments from the back or the outside by compressed cooling air, which usually comes from the compressor part of the gas turbine or the plenum, in a suitable manner. This cooling should be as even and efficient as possible and include all exposed areas of the heat shield.
  • hot gas should be prevented from entering the adjacent column in the outer wall of the hot gas channel and undesirably heating the parts of the structure behind it.
  • cooling holes (55) are arranged only in the region of the downstream longitudinal edge of the heat shield segment. Both adjacent to the heat shield segments column (64, 68) are flooded by cooling air streams (59 and 65 in Fig. 1), which are brought by separate holes (63, 67) from outside the heat shield.
  • cooling holes (80) extending further downstream in the case of the heat shield from EP-A1-0 516 322.
  • the downstream longitudinal edge of the heat shields with the inner arms (44) is virtually uncooled.
  • the object is solved by the entirety of the features of claim 1.
  • the essence of the invention is to guide on both longitudinal sides of the heat shields, so both upstream and downstream, from the lying behind the segments cavity cooling air through corresponding cooling holes in the adjacent column and so simultaneously and uniformly to cool the two longitudinal edge portions of the heat shield segments and to flood the column against ingress of hot gases.
  • the entire cooling and flooding devices are arranged (in the form of cooling holes or cooling grooves) on the heat shield segment itself, which makes the production much easier and makes an adjustment of the other parts of the hot gas channel superfluous.
  • the outflow of the cooling air on both longitudinal sides of the heat shield segments also has the consequence that the cooling air sweeps more uniformly over the outer sides of the segments delimiting the cavity and thus uniformly cools the entire segment surface. As a result, the thermal load is uniformly reduced over the entire surface and significantly extends the life of the heat shield segments.
  • the heat shield segments are fastened by means of brackets on the carrier, which engage with brackets with L-shaped inwardly bent ends from both sides under the support in the intermediate spaces formed between the pairs of arms that the effluent from the cooling holes cooling air in the spaces between the L-shaped inwardly bent ends of the brackets and the inner arms of the heat shield segments to the columns is guided, and that for guiding the emerging from the cooling holes cooling air in the outer sides of the inner arms to the cooling holes aligned cooling grooves are recessed.
  • the cooling grooves in the inner arms increase the heat transfer area on the arms and substantially homogenize and improve the cooling of the arms (farthest from the cool air filled cavity).
  • a preferred embodiment of the heat shield according to the invention is characterized in that in order to reduce the bending of the heat shield during temperature changes on the outside of the heat shield segments in the region of the cavity axially extending stiffening ribs are arranged or formed, that spaced within the cavity and from the outside of the heat shield segments is arranged in the circumferential direction, provided with openings impingement cooling plate, and that within the stiffening ribs, radially outwardly projecting lugs or pins are arranged, on which the impingement cooling plate rests.
  • the stiffening ribs with the formed tabs stiffen the heat shield segments in the axial direction and thereby reduce the risk of brushing the blades on the heat shield. They also improve the heat transfer between the segment and the cooling air flowing through the cavity.
  • the lugs that serve to support the baffle plate can be formed together with the stiffening ribs in a simple manner when casting the segments with.
  • FIG. 1 the partially longitudinally-sectioned arrangement of a heat shield in a gas turbine 10 according to a first preferred embodiment of the invention is shown in a section.
  • the figure shows a section of the (rotationally symmetrical) hot gas channel 11 of the gas turbine, which of the hot combustion gases from the (not shown) combustion chamber of the gas turbine flows through in the direction of the drawn four parallel arrows.
  • guide vanes 13 are arranged, which extend in the radial direction and merge at its outer end in an outer ring 14 which limits the hot gas channel 11 in the region of the guide vanes 13 outwardly.
  • the vanes 13 follow downstream blades 12 which are mounted on a (not shown) rotor of the gas turbine and rotate together with this around the turbine axis, when they are charged with the hot gas flowing in the hot gas channel 11 hot gas. Behind the ring of blades 12 can follow downstream more Leitschaufel- and blade rings, which need not be further referred to here. In any case, the hot gas channel 11 is bounded behind the blades 12 to the outside by an intermediate ring 15 or by a downstream vane.
  • the ring of the rotor blades 12 is surrounded concentrically by a heat shield, which is composed of a plurality of circular segment-shaped individual heat shield segments 17 arranged one behind the other in the circumferential direction.
  • a heat shield segment 17 is shown in Fig. 1 within the overall arrangement and in Fig. 2 per se taken in cross section.
  • the heat shield as a whole delimits the hot gas channel 11 in the region of the rotor blades 12 and at the same time determines the gap between the channel wall and the outer end of the rotor blades 12.
  • the individual heat shield segments 17 are curved plates, which have on their longitudinal sides, that is, the transversely oriented to the flow direction or the turbine axis sides, circumferentially extending, possibly provided with incisions, rails, each having a pair in the axial direction protruding, parallel and spaced apart arms 21, 22 and 23, 24 respectively (see also the comparable Fig. 3 of US-A-5,071,313).
  • the heat shield segments 17 are fixed to form a cavity 20 on the inside of a concentrically encircling annular support 16.
  • the attachment takes place in each case via two brackets 18 and 19, with the L-shaped inwardly bent ends from both sides under the support 16 in between engage the arm pairs 21, 22 and 23, 24 formed intermediate spaces 25 and 26 respectively.
  • radial gaps 29 and 30 are left between the brackets 18 and 19 and the respective adjacent wall elements 15 and 14.
  • the cooling of the heat shield segments 17 takes place from the outside via the cavity 20.
  • compressed air from the plenum of the gas turbine is admitted to a (not shown) point, which then arranged by both sides of the heat shield segment 17 cooling holes 27, 28 in the interstices 25 and 26 between the arm pairs 21, 22 and 23, 24 flows out (see the curved arrows in the cavity 20 of FIG. 1).
  • the cooling holes 27, 28 are arranged so that the cooling air between the inner sides (lower sides) of the L-shaped bent ends of the brackets 18, 19 and the outer sides (tops) of the inner arms 21, 23 outwardly into the gaps 29 and 30th flows and exits from there into the hot gas duct 11.
  • cooling grooves 31, 32 are recessed on the outer sides of the inner arms 21, 23 to the cooling holes 27, 28.
  • Fig. 3 shows these cooling grooves 31, 32 in the plan view
  • Figs. 4 and 5 show the cooling grooves and cooling holes in cross section.
  • cooling air guide Due to the described type of cooling air guide several requirements are safely and easily met: Since the cooling air exits uniformly on both sides of the cavity 20, the bottom of the cavity 20 and the outside of the heat shield segment is uniformly and over the entire surface with cooling air applied, so that local overheating can be safely avoided. At the same time it is prevented that too much heat passes through heat conduction into the outer arms 22, 24 and from there into the carrier. Furthermore, the brackets 18, 19 are effectively cooled at their angled end, so that they also conduct only little heat to the outside. In addition, the inner arms 21, 23 are effectively protected against overheating. Finally, the leaking cooling air, the column 29, 30 flooded with cooling air, whereby an undesirable penetration of hot gas is reliably avoided in the column.
  • the position of the heat shield segments 17 decisively determines the gap between the heat shield and the outer end of the rotor blades 12. On the one hand, this gap should be as small as possible to minimize efficiency losses. On the other hand, the gap must be sufficiently large to avoid abrasive contact between the blades and heat shield at different temperatures and the associated different expansions of the elements as far as possible.
  • it is advantageous to reduce the temperature-induced bending of the heat shield segments by arranging, as shown in FIGS. 6 to 10 on the outside of the heat shield segments 17 ', an axial stiffening rib 33 extending to the other longitudinal side. These stiffening ribs 33 can be advantageously formed when casting the heat shield segments 17 '.
  • projections and / or pins 34, 35 projecting radially outwards are also integrally formed with and within the stiffening ribs 33 at the same time, on which then an impingement cooling plate 36 circulating around the heat shield within the cavities 20 (FIG , 10) can support.
  • the impingement cooling plate 36 can thus be placed close to the outside of the heat shield segments 17 'without special shaping, as a result of which the cooling effect of the cooling air flowing through the openings 37 in the impingement cooling plate 36 is markedly increased.
  • a further improvement of the cooling can be achieved or prevent a local overheating by an undesirable cooling air leakage, if undesirable Cooling air losses are effectively limited or completely avoided.
  • axial elastic seals 39, 41 are provided which drain the flowing out of the cooling holes 27, 28 cooling air into the gaps between prevents the brackets 18, 19 and the carrier 16. Since the cooling air flows past the seals 39 directly, the seals are effectively cooled at the same time. Additional axial resilient seals 38, 40 disposed between the brackets 18, 19 and the carrier 16 further enhance the seal.
  • the advantage of this sealed arrangement is that it prevents hot gas from breaking in and leading to local overheating.
  • the cooling air leakage is minimized and the cooling air is used at the cooling points where it is actually required. The reduced leakage and the targeted use of cooling air lead to an improvement in the efficiency of the turbine stage or the machine as a whole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung bezieht sich auf das Gebiet der Technik der Gasturbinen. Sie betrifft ein Hitzeschild für eine Gasturbinegemäss dem Oberbegriff des Anspruchs 1The present invention relates to the field of gas turbines. It relates to a heat shield for a gas turbine according to the preamble of claim 1

Ein derartiges Hitzeschild ist z.B. aus der Druckschrift US-A-4,650.394 bekannt. Weitere Hitzeschilde sind aus den Druckschriften US-A-4,177,004, US-A-4,551,064, US-A-5,071,313, US-A-5,584,651 oder EP-A1-0 516 322 bekannt.Such a heat shield is e.g. known from the document US-A-4,650,394. Further heat shields are known from the documents US-A-4,177,004, US-A-4,551,064, US-A-5,071,313, US-A-5,584,651 or EP-A1-0 516 322.

STAND DER TECHNIKSTATE OF THE ART

Hitzeschilde für Gasturbinen, welche die Laufschaufeln einer Turbinenstufe ringförmig umgeben und einerseits den Heissgaskanal nach aussen begrenzen und anderseits den Spalt zwischen der Aussenwand des Heissgaskanals und den Enden der Laufschaufeln aus Gründen des Wirkungsgrades möglichst klein halten, ohne bei wechselnden Temperaturen eine schleifende Berührung hervorzurufen, sind seit langem bekannt. Derartige Hitzeschilde bestehen üblicherweise aus einer Vielzahl von kreissegmentförmig gekrümmten Hitzeschildsegmenten, die in Umfangsrichtung hintereinander angeordnet einen geschlossenen Ring bilden.Heat shields for gas turbines, which surround the blades of a turbine stage annular and on the one hand limit the hot gas channel to the outside and On the other hand keep the gap between the outer wall of the hot gas channel and the ends of the blades for reasons of efficiency as small as possible without causing a sliding contact with changing temperatures, have long been known. Such heat shields usually consist of a plurality of circular segment-shaped curved heat shield segments, which are arranged one behind the other in the circumferential direction form a closed ring.

Die einzelnen Hitzeschildsegmente sind häufig an einem Träger lösbar befestigt, der das Hitzeschild konzentrisch umgibt. Aus Gründen der unterschiedlichen thermischen Ausdehnung der verschiedenen Einzelteile wird dabei darauf geachtet, das zwischen den Hitzeschildsegmenten und den benachbarten Elementen, welche den Heissgaskanal nach aussen begrenzen, radiale Spalte bzw. ringspaltförmige Hohlräume frei bleiben.The individual heat shield segments are often releasably attached to a carrier which concentrically surrounds the heat shield. For reasons of different thermal expansion of the various items is taken to ensure that between the heat shield segments and the adjacent elements which define the hot gas channel to the outside, radial gaps or annular gap-shaped cavities.

Das Hitzeschild bzw. die einzelnen Hitzeschildsegmente sind während des Betriebs der Gasturbine einer hohen thermischen Belastung ausgesetzt. Diese thermische Belastung kann einerseits auf das Hitzeschild selbst negative Auswirkungen haben. Andererseits kann die Hitze durch das Schild nach aussen geleitet werden und dort Schaden hervorrufen. Es werden deshalb üblicherweise Vorkehrungen getroffen, um die Hitzeschildsegmente von der Rückseite bzw. Aussenseite her durch komprimierte Kühlluft, welche meist aus dem Kompressorteil der Gasturbine bzw. dem Plenum stammt, in geeigneter Weise zu kühlen. Diese Kühlung soll möglichst gleichmässig und effizient sein und alle belasteten Bereiche des Hitzeschildes einschliessen. Darüber hinaus sollte verhindert werden, dass Heissgas in die angrenzenden Spalte in der Aussenwand des Heissgaskanals eindringt und die dahinter liegenden Teile der Konstruktion in unerwünschter Weise erhitzt.The heat shield or the individual heat shield segments are exposed to a high thermal load during operation of the gas turbine. On the one hand, this thermal load can have negative effects on the heat shield itself. On the other hand, the heat can be directed by the shield to the outside and cause damage there. It is therefore usually taken precautions to cool the heat shield segments from the back or the outside by compressed cooling air, which usually comes from the compressor part of the gas turbine or the plenum, in a suitable manner. This cooling should be as even and efficient as possible and include all exposed areas of the heat shield. In addition, hot gas should be prevented from entering the adjacent column in the outer wall of the hot gas channel and undesirably heating the parts of the structure behind it.

In der US-A-4,177,004 wird ein Hitzeschild für eine Gasturbine offenbart (dortige Fig.1, 2 und 4), bei dem nur auf der stromabwärts gelegenen Längsseite der Hitzeschildsegmente Kühlluft aus dem dahinterliegenden Hohlraum (52) durch Kühlbohrungen (66) in den angrenzenden Zwischenraum (48) geschickt wird und von dort durch Kühlnuten (67) im Klammerteil (43) in den Heissgaskanal geleitet wird (Fig. 4, Fig. 5). Die stromaufwärts gelegene Längsseite des Hitzeschildsegmentes (Fig. 3) wird dagegen nur äusserlich von Kühlluft umspült, die auf anderen Wegen in den dahinterliegenden Hohlraum (62) einströmt. Diese Anordnung hat den Nachteil, dass das Hitzeschildsegment insgesamt ungleichmässig gekühlt wird, weil auf der stromaufwärts orientierten Längsseite des Hitzeschildsegmentes eine Kühlung von der Rückseite her praktisch nicht stattfindet. Nachteilig ist weiterhin, dass die Kühlnuten (67) in das Klammerelement (43) eingebracht worden sind, was herstellungstechnisch zu einem erheblichen Mehraufwand führt.In US-A-4,177,004 a heat shield for a gas turbine is disclosed (there Fig.1, 2 and 4), in which only on the downstream longitudinal side of the heat shield segments cooling air from the underlying cavity (52) through cooling holes (66) in the adjacent space (48) is sent and from There is passed through cooling grooves (67) in the clamp part (43) in the hot gas channel (Fig. 4, Fig. 5). The upstream longitudinal side of the heat shield segment (FIG. 3), on the other hand, is only surrounded externally by cooling air which flows in other ways into the cavity (62) lying behind it. This arrangement has the disadvantage that the heat shield segment is cooled unevenly overall, because on the upstream-oriented longitudinal side of the heat shield segment, a cooling from the back practically does not take place. A further disadvantage is that the cooling grooves (67) have been introduced into the clamping element (43), which leads to a considerable additional expenditure in terms of production technology.

Auch bei der in der US-A-4,551,064 beschriebenen Lösung sind (schräge) Kühlbohrungen (55) nur im Bereich der stromabwärts gelegenen Längskante des Hitzeschildsegmentes angeordnet. Beide an die Hitzeschildsegmente angrenzenden Spalte (64, 68) werden durch Kühlluftströme (59 bzw. 65 in Fig. 1) geflutet, die durch separate Bohrungen (63, 67) von ausserhalb des Hitzeschildes herangeführt werden.Also in the solution described in US-A-4,551,064 (oblique) cooling holes (55) are arranged only in the region of the downstream longitudinal edge of the heat shield segment. Both adjacent to the heat shield segments column (64, 68) are flooded by cooling air streams (59 and 65 in Fig. 1), which are brought by separate holes (63, 67) from outside the heat shield.

In der US-A-5,584,651 ist ein Hitzeschild offenbart, bei dessen Segmenten in der stromaufwärts gelegenen Kante ein innerer Hohlraum (38) ausgebildet ist (Fig. 2), durch den Kühlluft strömt und durch direkt an der Kante angeordnete Auslassbohrungen (44) in den Heissgaskanal austritt. Im stromabwärts befindlichen Randbereich bzw. im Bereich der dortigen ist demgegenüber keine spezielle Kühlung vorgesehen, so dass auch in diesem Fall eine sehr ungleichmässige Kühlung der Hitzeschildsegmente zu erwarten ist. Besonders betroffen davon sind die stromabwärts gelegenen inneren Arme der Hitzeschildsegmente mit den Kanten (28b in Fig. 1).In US-A-5,584,651 a heat shield is disclosed in which segments in the upstream edge an internal cavity (38) is formed (Figure 2) through which cooling air flows and through outlet ports (44) located directly at the edge exit the hot gas channel. On the other hand, no special cooling is provided in the downstream edge area or in the region of the area there, so that even in this case a very uneven cooling of the heat shield segments is to be expected. Particularly concerned are the downstream inner arms of the heat shield segments with the edges (28b in Fig. 1).

Eine etwas weitergehende Kühlung wird durch die sich weiter stromabwärts erstreckenden Kühlbohrungen (80) beim Hitzeschild aus der EP-A1-0 516 322 erreicht. Jedoch ist auch hier die stromabwärts liegende Längskante der Hitzeschilde mit den inneren Armen (44) praktisch ungekühlt.A somewhat further cooling is achieved by the cooling holes (80) extending further downstream in the case of the heat shield from EP-A1-0 516 322. However, here too the downstream longitudinal edge of the heat shields with the inner arms (44) is virtually uncooled.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Es ist daher Aufgabe der Erfindung, ein Hitzeschild für eine Gasturbine zu schaffen, das die Nachteile bekannter Hitzeschilde vermeidet und sich bei gleichzeitig einfachem Aufbau durch eine effiziente und gleichmässige Kühlung über die gesamte thermisch belastete Fläche der Hitzeschildsegmente und insbesondere der an den Längskanten axial abstehenden inneren Arme auszeichnet.It is therefore an object of the invention to provide a heat shield for a gas turbine, which avoids the disadvantages of known heat shields and at the same time simple structure by efficient and uniform cooling over the entire thermally loaded surface of the heat shield segments and in particular on the longitudinal edges axially projecting inner Poor character.

Die Aufgabe wird durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst. Der Kern der Erfindung besteht darin, an beiden Längsseiten der Hitzeschilde, also sowohl stromaufwärts als auch stromabwärts, aus dem hinter den Segmenten liegenden Hohlraum Kühlluft durch entsprechende Kühlbohrungen in die angrenzenden Spalte zu führen und so gleichzeitig und gleichmässig auch die beiden Längskantenbereiche der Hitzeschildsegmente zu kühlen und die Spalte gegen ein Eindringen von Heissgasen zu fluten. Die gesamten Kühl- und Flutungsvorrichtungen sind dabei (in Form von Kühlbohrungen bzw. Kühlnuten) am Hitzeschildsegment selbst angeordnet, was die Herstellung wesentlich erleichtert und eine Anpassung der übrigen Teile des Heissgaskanals überflüssig macht. Der Abfluss der Kühlluft an beiden Längsseiten der Hitzeschildsegmente hat auch zur Folge, dass die Kühlluft gleichmässiger über die den Hohlraum begrenzenden Aussenseiten der Segmente streicht und so die gesamte Segmentfläche gleichmässig kühlt. Hierdurch wird die thermische Belastung über die gesamte Fläche gleichmässig verringert und die Lebensdauer der Hitzeschildsegmente deutlich verlängert.The object is solved by the entirety of the features of claim 1. The essence of the invention is to guide on both longitudinal sides of the heat shields, so both upstream and downstream, from the lying behind the segments cavity cooling air through corresponding cooling holes in the adjacent column and so simultaneously and uniformly to cool the two longitudinal edge portions of the heat shield segments and to flood the column against ingress of hot gases. The entire cooling and flooding devices are arranged (in the form of cooling holes or cooling grooves) on the heat shield segment itself, which makes the production much easier and makes an adjustment of the other parts of the hot gas channel superfluous. The outflow of the cooling air on both longitudinal sides of the heat shield segments also has the consequence that the cooling air sweeps more uniformly over the outer sides of the segments delimiting the cavity and thus uniformly cools the entire segment surface. As a result, the thermal load is uniformly reduced over the entire surface and significantly extends the life of the heat shield segments.

Dazu gehört, dass die Hitzeschildsegmente mittels Klammern am Träger befestigt sind, welche Klammern mit L-förmig nach innen abgebogenen Enden von beiden Seiten unter dem Träger in die zwischen den Armpaaren gebildeten Zwischenräume eingreifen, dass die aus den Kühlbohrungen ausströmende Kühlluft in den Zwischenräumen zwischen den L-förmig nach innen abgebogenen Enden der Klammern und den innenliegenden Armen der Hitzeschildsegmente zu den Spalten geführt wird, und dass zur Führung der aus den Kühlbohrungen austretenden Kühlluft in die Aussenseiten der innenliegenden Arme zu den Kühlbohrungen fluchtende Kühlnuten eingelassen sind. Durch die Kühlnuten in den inneren Armen wird die Wärmeübergangsfläche an den Armen erhöht und die Kühlung der (vom kühlluftgefüllten Hohlraum am weitesten entfernten) Arme wesentlich vergleichmässigt und verbessert.This includes that the heat shield segments are fastened by means of brackets on the carrier, which engage with brackets with L-shaped inwardly bent ends from both sides under the support in the intermediate spaces formed between the pairs of arms that the effluent from the cooling holes cooling air in the spaces between the L-shaped inwardly bent ends of the brackets and the inner arms of the heat shield segments to the columns is guided, and that for guiding the emerging from the cooling holes cooling air in the outer sides of the inner arms to the cooling holes aligned cooling grooves are recessed. The cooling grooves in the inner arms increase the heat transfer area on the arms and substantially homogenize and improve the cooling of the arms (farthest from the cool air filled cavity).

Eine bevorzugte Ausführungsform des erfindungsgemässen Hitzeschildes zeichnet sich dadurch aus, dass zur Verringerung des Durchbiegens des Hitzeschildes bei Temperaturwechseln auf der Aussenseite der Hitzeschildsegmente im Bereich des Hohlraumes axial verlaufende Versteifungsrippen angeordnet bzw. angeformt sind, dass innerhalb des Hohlraumes und von der Aussenseite der Hitzeschildsegmente beabstandet ein in Umfangsrichtung verlaufendes, mit Oeffnungen versehenes Prallkühlblech angeordnet ist, und dass innerhalb der Versteifungsrippen einzelne, radial nach aussen abstehende Nasen bzw. Pins angeordnet sind, auf welchen das Prallkühlblech aufliegt. Die Versteifungsrippen mit den ausgeformten Nasen versteifen die Hitzeschildsegmente in axialer Richtung und verringern dadurch die Gefahr eines Anstreifens der Laufschaufeln am Hitzeschild. Sie verbessern darüber hinaus den Wärmeübergang zwischen dem Segment und der durch den Hohlraum strömenden Kühlluft. Die Nasen, die zur Auflage des Prallkühlbleches dienen, können dabei zusammen mit den Versteifungsrippen auf einfache Art und Weise beim Giessen der Segmente mit ausgeformt werden.A preferred embodiment of the heat shield according to the invention is characterized in that in order to reduce the bending of the heat shield during temperature changes on the outside of the heat shield segments in the region of the cavity axially extending stiffening ribs are arranged or formed, that spaced within the cavity and from the outside of the heat shield segments is arranged in the circumferential direction, provided with openings impingement cooling plate, and that within the stiffening ribs, radially outwardly projecting lugs or pins are arranged, on which the impingement cooling plate rests. The stiffening ribs with the formed tabs stiffen the heat shield segments in the axial direction and thereby reduce the risk of brushing the blades on the heat shield. They also improve the heat transfer between the segment and the cooling air flowing through the cavity. The lugs that serve to support the baffle plate, can be formed together with the stiffening ribs in a simple manner when casting the segments with.

Ein unerwünschtes Abfliessen der Kühlluft aus den Spalten nach aussen wird effektiv verhindert, wenn gemäss einer weiteren bevorzugten Ausführungsform der Erfindung oberhalb der Kühlbohrungen zwischen den Klammern und den Längsseiten der Hitzeschildsegmente erste axiale elastische Dichtungen angeordnet sind.An undesirable outflow of the cooling air from the gaps to the outside is effectively prevented if, according to a further preferred embodiment of the invention above the cooling holes between the brackets and the longitudinal sides of the heat shield segments first axial elastic seals are arranged.

Weitere Ausführungsformen ergeben sich aus den abhängigen Ansprüchen.Further embodiments emerge from the dependent claims.

KURZE ERLÄUTERUNG DER FIGURENBRIEF EXPLANATION OF THE FIGURES

Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen

Fig. 1
in einer teilweise längsgeschnittenen Darstellung in einem Ausschnitt die Anordnung eines Hitzeschildes in einer Gasturbine gemäss einem ersten bevorzugten Ausführungsbeispiel der Erfindung;
Fig. 2
den Querschnitt durch ein Segment des Hitzeschildes nach Fig. 1 (ohne Darstellung der Kühlbohrungen und -nuten);
Fig. 3
den Längsschnitt durch das Hitzeschildsegment nach Fig. 2 in der Schnittebene A - A;
Fig. 4
den Schnitt durch die Längskanten des Segmentes aus Fig. 3 in der Schnittebene B - B;
Fig. 5
den Schnitt durch die Längskanten des Segmentes aus Fig. 3 in der Schnittebene C - C;
Fig. 6
den zu Fig. 2 vergleichbaren Querschnitt durch eine Hitzeschildsegment gemäss einem weiteren bevorzugten Ausführungsbeispiel der Erfindung mit angeformter, rückseitiger, axialer Versteifungsrippe und Auflagepins für eine Prallkühlblech;
Fig. 7
den Schnitt durch das Hitzeschildsegment aus Fig. 6 in der Schnittebene B - B;
Fig. 8
den Schnitt durch das Hitzeschildsegment aus Fig. 6 in der Schnittebene A - A;
Fig. 9
das Hitzeschildsegment aus Fig. 6 mit aufliegendem Prallkühlblech;
Fig. 10
den Schnitt durch das Hitzeschildsegment aus Fig. 9 in der Schnittebene B - B; und
Fig. 11
ein anderes Ausführungsbeispiel eines Hitzeschildes nach der Erfindung mit mehrfachen axialen Dichtungen zur Verhinderung eines Kühlluftverlustes in den Spalten.
The invention will be explained in more detail with reference to embodiments in conjunction with the drawings. Show it
Fig. 1
in a partially cutaway view in a detail of the arrangement of a heat shield in a gas turbine according to a first preferred embodiment of the invention;
Fig. 2
the cross section through a segment of the heat shield of Figure 1 (without representation of the cooling holes and -nuten).
Fig. 3
the longitudinal section through the heat shield segment of Figure 2 in the sectional plane A - A.
Fig. 4
the section through the longitudinal edges of the segment of Figure 3 in the sectional plane B - B.
Fig. 5
the section through the longitudinal edges of the segment of Figure 3 in the sectional plane C - C;
Fig. 6
comparable to Figure 2 cross-section through a heat shield segment according to a further preferred embodiment of the invention with integrally formed, rear, axial stiffening rib and support pins for an impingement cooling plate.
Fig. 7
the section through the heat shield segment of Figure 6 in the sectional plane B - B.
Fig. 8
the section through the heat shield segment of Figure 6 in the sectional plane A - A.
Fig. 9
the heat shield segment of Figure 6 with resting impingement cooling plate.
Fig. 10
the section through the heat shield segment of Figure 9 in the sectional plane B - B. and
Fig. 11
another embodiment of a heat shield according to the invention with multiple axial seals for preventing a cooling air loss in the columns.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

In Fig. 1 ist in einem Ausschnitt die teilweise längsgeschnittene Anordnung eines Hitzeschildes in einer Gasturbine 10 gemäss einem ersten bevorzugten Ausführungsbeispiel der Erfindung dargestellt. Die Figur zeigt einen Ausschnitt aus dem (rotationssymmetrischen) Heissgaskanal 11 der Gasturbine, welcher von den heissen Verbrennungsgasen aus der (nicht dargestellten) Brennkammer der Gasturbine in Richtung der eingezeichneten vier parallelen Pfeile durchströmt wird. Im Heissgaskanal 11 sind Leitschaufeln 13 angeordnet, die sich in radialer Richtung erstrecken und an ihrem äusseren Ende in einen Aussenring 14 übergehen, der den Heissgaskanal 11 im Bereich der Leitschaufeln 13 nach aussen hin begrenzt. Auf die Leitschaufeln 13 folgen stromabwärts Laufschaufeln 12, die auf einem (nicht dargestellten) Rotor der Gasturbine befestigt sind und zusammen mit diesem um die Turbinenachse rotieren, wenn sie mit dem im Heissgaskanal 11 strömenden Heissgas beaufschlagt werden. Hinter dem Kranz von Laufschaufeln 12 können stromabwärts weitere Leitschaufel- und Laufschaufelkränze folgen, auf die hier nicht weiter Bezug genommen werden muss. In jedem Fall ist der Heissgaskanal 11 hinter den Laufschaufeln 12 nach aussen hin durch einen Zwischenring 15 oder durch eine dahinterfolgende Leitschaufel begrenzt.In Fig. 1, the partially longitudinally-sectioned arrangement of a heat shield in a gas turbine 10 according to a first preferred embodiment of the invention is shown in a section. The figure shows a section of the (rotationally symmetrical) hot gas channel 11 of the gas turbine, which of the hot combustion gases from the (not shown) combustion chamber of the gas turbine flows through in the direction of the drawn four parallel arrows. In the hot gas duct 11 guide vanes 13 are arranged, which extend in the radial direction and merge at its outer end in an outer ring 14 which limits the hot gas channel 11 in the region of the guide vanes 13 outwardly. On the vanes 13 follow downstream blades 12 which are mounted on a (not shown) rotor of the gas turbine and rotate together with this around the turbine axis, when they are charged with the hot gas flowing in the hot gas channel 11 hot gas. Behind the ring of blades 12 can follow downstream more Leitschaufel- and blade rings, which need not be further referred to here. In any case, the hot gas channel 11 is bounded behind the blades 12 to the outside by an intermediate ring 15 or by a downstream vane.

Der Kranz der Laufschaufeln 12 ist von einem Hitzeschild konzentrisch umgeben, das sich aus einer Vielzahl von kreissegmentförmig gekrümmten einzelnen, in Umfangsrichtung hintereinander angeordneten, Hitzeschildsegmenten 17 zusammensetzt. Ein solches Hitzeschildsegment 17 ist in Fig. 1 innerhalb der Gesamtanordnung und in Fig. 2 für sich genommen im Querschnitt wiedergegeben. Das Hitzeschild insgesamt begrenzt den Heissgaskanal 11 im Bereich der Laufschaufeln 12 und bestimmt gleichzeitig den Spalt zwischen der Kanalwand und dem äusseren Ende der Laufschaufeln 12.The ring of the rotor blades 12 is surrounded concentrically by a heat shield, which is composed of a plurality of circular segment-shaped individual heat shield segments 17 arranged one behind the other in the circumferential direction. Such a heat shield segment 17 is shown in Fig. 1 within the overall arrangement and in Fig. 2 per se taken in cross section. The heat shield as a whole delimits the hot gas channel 11 in the region of the rotor blades 12 and at the same time determines the gap between the channel wall and the outer end of the rotor blades 12.

Die einzelnen Hitzeschildsegmente 17 sind gekrümmte Platten, die an ihren Längsseiten, d.h., den quer zur Strömungsrichtung bzw. zur Turbinenachse orientierten Seiten, in Umfangsrichtung verlaufende, möglicherweise mit Einschnitten versehene, Schienen aufweisen, die jeweils ein Paar in axialer Richtung abstehender, parallel verlaufender und voneinander beabstandeter Arme 21, 22 bzw. 23, 24 umfassen (siehe dazu auch die vergleichbare Fig. 3 der US-A-5,071,313). Die Hitzeschildsegmente 17 sind unter Bildung eines Hohlraumes 20 auf der Innenseite eines konzentrisch umlaufenden, ringförmigen Trägers 16 befestigt. Die Befestigung erfolgt jeweils über zwei Klammern 18 und 19, die mit L-förmig nach innen abgebogenen Enden von beiden Seiten unter dem Träger 16 in die zwischen den Armpaaren 21, 22 bzw. 23, 24 gebildeten Zwischenräume 25 bzw. 26 eingreifen. Um ausreichend Spiel für unterschiedliche thermische Ausdehnung zu haben, sind zwischen den Klammern 18 und 19 und den jeweils angrenzenden Wandelementen 15 und 14 radiale Spalte 29 und 30 freigelassen.The individual heat shield segments 17 are curved plates, which have on their longitudinal sides, that is, the transversely oriented to the flow direction or the turbine axis sides, circumferentially extending, possibly provided with incisions, rails, each having a pair in the axial direction protruding, parallel and spaced apart arms 21, 22 and 23, 24 respectively (see also the comparable Fig. 3 of US-A-5,071,313). The heat shield segments 17 are fixed to form a cavity 20 on the inside of a concentrically encircling annular support 16. The attachment takes place in each case via two brackets 18 and 19, with the L-shaped inwardly bent ends from both sides under the support 16 in between engage the arm pairs 21, 22 and 23, 24 formed intermediate spaces 25 and 26 respectively. In order to have sufficient clearance for different thermal expansion, radial gaps 29 and 30 are left between the brackets 18 and 19 and the respective adjacent wall elements 15 and 14.

Die Kühlung der Hitzeschildsegmente 17 erfolgt von aussen über den Hohlraum 20. In diesen Hohlraum wird an einer (nicht gezeigten) Stelle komprimierte Kühlluft aus dem Plenum der Gasturbine eingelassen, die dann durch an beiden Längsseiten des Hitzeschildsegmentes 17 angeordnete Kühlbohrungen 27, 28 in die Zwischenräume 25 und 26 zwischen den Armpaaren 21, 22 und 23, 24 ausströmt (siehe die gekrümmten Pfeile im Hohlraum 20 der Fig. 1). Die Kühlbohrungen 27, 28 sind so angeordnet, dass die Kühlluft zwischen den Innenseiten (Unterseiten) der L-förmig abgebogenen Enden der Klammern 18, 19 und den Aussenseiten (Oberseiten) der innenliegenden Arme 21, 23 hindurch nach aussen in die Spalte 29 und 30 strömt und von dort in den Heissgaskanal 11 austritt. Damit die Kühlluftströmung weitgehend ungehindert stattfinden kann, sind auf den Aussenseiten der innenliegenden Arme 21, 23 zu den Kühlbohrungen 27, 28 fluchtend Kühlnuten 31, 32 eingelassen. Fig. 3 zeigt diese Kühlnuten 31, 32 in der Draufsicht, die Fig. 4 und 5 zeigen die Kühlnuten bzw. Kühlbohrungen im Querschnitt.The cooling of the heat shield segments 17 takes place from the outside via the cavity 20. In this cavity compressed air from the plenum of the gas turbine is admitted to a (not shown) point, which then arranged by both sides of the heat shield segment 17 cooling holes 27, 28 in the interstices 25 and 26 between the arm pairs 21, 22 and 23, 24 flows out (see the curved arrows in the cavity 20 of FIG. 1). The cooling holes 27, 28 are arranged so that the cooling air between the inner sides (lower sides) of the L-shaped bent ends of the brackets 18, 19 and the outer sides (tops) of the inner arms 21, 23 outwardly into the gaps 29 and 30th flows and exits from there into the hot gas duct 11. Thus, the cooling air flow can take place largely unhindered, cooling grooves 31, 32 are recessed on the outer sides of the inner arms 21, 23 to the cooling holes 27, 28. Fig. 3 shows these cooling grooves 31, 32 in the plan view, Figs. 4 and 5 show the cooling grooves and cooling holes in cross section.

Durch die beschriebene Art der Kühlluftführung werden mehrere Anforderungen sicher und auf einfache Weise erfüllt: Da die Kühlluft gleichmässig an beiden Längsseiten aus dem Hohlraum 20 austritt, ist der Boden des Hohlraumes 20 bzw. die Aussenseite des Hitzeschildsegmentes gleichmässig und ganzflächig mit Kühlluft beaufschlagt, so dass lokale Ueberhitzungen sicher vermieden werden. Gleichzeitig wird verhindert, dass zu viel Hitze durch Wärmeleitung in die äusseren Arme 22, 24 und von dort weiter in den Träger gelangt. Weiterhin werden die Klammern 18, 19 an ihrem abgewinkelten Ende effektiv gekühlt, so dass auch sie nur wenig Wärme nach aussen leiten. Darüber hinaus sind auch die innenliegenden Arme 21, 23 effektiv gegen Ueberhitzung geschützt. Schliesslich werden durch die austretende Kühlluft die Spalte 29, 30 mit Kühlluft geflutet, wodurch eine unerwünschtes Eindringen von Heissgas in die Spalte sicher vermieden wird. In diesem Zusammenhang ist es strömungstechnisch besonders günstig, wenn die Kühlbohrungen 27, 28 und die damit fluchtenden Kühlnuten 31, 32 - wie aus der Darstellung in Fig. 3 ersichtlich ist - in der Ebene des Hitzeschildsegmentes 17 aus der axialen Richtung heraus zur Drehrichtung 42 der Laufschaufel 12 bzw. Gasturbine hin verkippt angeordnet sind.Due to the described type of cooling air guide several requirements are safely and easily met: Since the cooling air exits uniformly on both sides of the cavity 20, the bottom of the cavity 20 and the outside of the heat shield segment is uniformly and over the entire surface with cooling air applied, so that local overheating can be safely avoided. At the same time it is prevented that too much heat passes through heat conduction into the outer arms 22, 24 and from there into the carrier. Furthermore, the brackets 18, 19 are effectively cooled at their angled end, so that they also conduct only little heat to the outside. In addition, the inner arms 21, 23 are effectively protected against overheating. Finally, the leaking cooling air, the column 29, 30 flooded with cooling air, whereby an undesirable penetration of hot gas is reliably avoided in the column. In In this context, it is particularly favorable in terms of flow when the cooling bores 27, 28 and the cooling grooves 31, 32 aligned therewith - as can be seen in the illustration in FIG. 3 - in the plane of the heat shield segment 17 from the axial direction to the direction of rotation 42 of the blade 12 and gas turbine are arranged tilted out.

Wie bereits weiter oben erwähnt, bestimmt die Lage der Hitzeschildsegmente 17 massgeblich den Spalt zwischen Hitzeschild und dem äusseren Ende der Laufschaufeln 12. Dieser Spalt soll einerseits möglichst klein sein, Wirkungsgradverluste zu minimieren. Andererseits muss der Spalt ausreichend gross sein, um bei verschiedenen Temperaturen und den damit verbundenen unterschiedlichen Ausdehnungen der Elemente eine schleifendes Berühren zwischen Laufschaufeln und Hitzeschild nach Möglichkeit zu vermeiden. Um die Toleranzen eng halten zu können, ist es von Vorteil, das temperaturbedingte Verbiegen der Hitzeschildsegmente dadurch zu verringern, dass gemäss Fig. 6 bis 10 auf der Aussenseite der Hitzeschildsegmente 17' von einer zur anderen Längsseite verlaufende axiale Versteifungsrippen 33 angeordnet werden. Diese Versteifungsrippen 33 können beim Giessen der Hitzeschildsegmente 17' vorteilhafterweise mit angeformt werden.As already mentioned above, the position of the heat shield segments 17 decisively determines the gap between the heat shield and the outer end of the rotor blades 12. On the one hand, this gap should be as small as possible to minimize efficiency losses. On the other hand, the gap must be sufficiently large to avoid abrasive contact between the blades and heat shield at different temperatures and the associated different expansions of the elements as far as possible. In order to be able to keep the tolerances tight, it is advantageous to reduce the temperature-induced bending of the heat shield segments by arranging, as shown in FIGS. 6 to 10 on the outside of the heat shield segments 17 ', an axial stiffening rib 33 extending to the other longitudinal side. These stiffening ribs 33 can be advantageously formed when casting the heat shield segments 17 '.

Besonders günstig ist es, wenn mit den und innerhalb der Versteifungsrippen 33 gleichzeitig auch noch verteilt radial nach aussen abstehende Nasen bzw. Pins 34, 35 angeformt werden, auf denen sich dann ein innerhalb der Hohlräume 20 um das Hitzeschild umlaufendes Prallkühlblech 36 (Fig. 9, 10) abstützen kann. Das Prallkühlblech 36 kann so ohne spezielle Formgebung nahe an der Aussenseite der Hitzeschildsegmente 17' plaziert werden, wodurch die Kühlwirkung der durch die Oeffnungen 37 im Prallkühlblech 36 strömenden Kühlluft deutlich erhöht wird. Gleichzeitig erhöhen die Nasen bzw. Pins 34 die Wärmeübergangsfläche und sorgen für eine zusätzliche Verwirbelung der Kühlluft.It is particularly advantageous if projections and / or pins 34, 35 projecting radially outwards are also integrally formed with and within the stiffening ribs 33 at the same time, on which then an impingement cooling plate 36 circulating around the heat shield within the cavities 20 (FIG , 10) can support. The impingement cooling plate 36 can thus be placed close to the outside of the heat shield segments 17 'without special shaping, as a result of which the cooling effect of the cooling air flowing through the openings 37 in the impingement cooling plate 36 is markedly increased. At the same time increase the lugs or pins 34, the heat transfer surface and provide additional turbulence of the cooling air.

Eine weitere Verbesserung der Kühlung lässt sich erreichen bzw. eine örtliche Ueberhitzung durch einen unerwünschten Kühlluftaustritt verhindern, wenn unerwünschte Kühlluftverluste wirksam begrenzt oder ganz vermieden werden. Hierzu können gemäss Fig. 11 zwischen den L-förmig gebogenen Enden der Klammern 18, 19 und den gegenüberliegenden Längsseiten der Hitzeschildsegmente 17 axiale elastische Dichtungen 39, 41 vorgesehen werden, die ein Abfliessen der aus den Kühlbohrungen 27, 28 ausströmenden Kühlluft in die Spalte zwischen den Klammern 18, 19 und dem Träger 16 verhindert. Da die Kühlluft an den Dichtungen 39 direkt vorbeistreicht, sind die Dichtungen gleichzeitig wirksam gekühlt. Zusätzliche axiale elastische Dichtungen 38, 40, die zwischen den Klammern 18, 19 und dem Träger 16 angeordnet sind, verbessern die Abdichtung weiter. Der Vorteil dieser abgedichteten Anordnung besteht einerseits darin, dass verhindert wird, dass Heissgas einbrechen kann und zu örtlicher Ueberhitzung führt. Andererseits wird die Kühlluftleckage minimiert und die Kühlluft an den Stellen zum Kühlen verwendet, an denen sie tatsächlich erforderlich ist. Die reduzierte Leckage und die gezielte Verwendung von Kühlluft führen zu einer Verbesserung des Wirkungsgrades der Turbinenstufe bzw. der Maschine insgesamt.A further improvement of the cooling can be achieved or prevent a local overheating by an undesirable cooling air leakage, if undesirable Cooling air losses are effectively limited or completely avoided. For this purpose, as shown in FIG. 11 between the L-shaped bent ends of the brackets 18, 19 and the opposite longitudinal sides of the heat shield segments 17 axial elastic seals 39, 41 are provided which drain the flowing out of the cooling holes 27, 28 cooling air into the gaps between prevents the brackets 18, 19 and the carrier 16. Since the cooling air flows past the seals 39 directly, the seals are effectively cooled at the same time. Additional axial resilient seals 38, 40 disposed between the brackets 18, 19 and the carrier 16 further enhance the seal. On the one hand, the advantage of this sealed arrangement is that it prevents hot gas from breaking in and leading to local overheating. On the other hand, the cooling air leakage is minimized and the cooling air is used at the cooling points where it is actually required. The reduced leakage and the targeted use of cooling air lead to an improvement in the efficiency of the turbine stage or the machine as a whole.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

1010
Gasturbinegas turbine
1111
HeissgaskanalHot-gas duct
1212
Laufschaufelblade
1313
Leitschaufelvane
1414
Aussenringouter ring
1515
Zwischenringintermediate ring
1616
Trägercarrier
17,17'17.17 '
HitzeschildsegmentHeat shield segment
18,1918.19
Klammerclip
2020
Hohlraum (für Kühlluft)Cavity (for cooling air)
21,2221.22
Armpoor
23,2423.24
Armpoor
25,2625.26
Zwischenraumgap
27,2827.28
Kühlbohrungcooling hole
29,3029.30
Spaltgap
31,3231.32
Kühlnutcooling groove
3333
Versteifungsrippe (axial)Stiffening rib (axial)
34,3534.35
Nase (Pin)Nose (pin)
3636
PrallkühlblechImpingement plate
3737
OeffnungOpening
38-4138-41
axiale Dichtung (elastisch)axial seal (elastic)
4242
Drehrichtung (Laufschaufel 12)Direction of rotation (blade 12)

Claims (6)

  1. Heat shield for a gas turbine (10), which heat shield encloses in an annular manner the moving blades (12), rotating in the hot-gas duct (11) of the gas turbine (10), of a stage of the gas turbine (10) and consists of a plurality of heat-shield segments (17, 17') which are arranged one behind the other in the circumferential direction, are curved in the shape of a segment of a circle and are cooled from outside, and the longitudinal sides of which are designed as correspondingly curved rails running in the circumferential direction and having in each case a pair of arms (21, 22 and 23, 24 resp.) which project in the axial direction, run in parallel and are at a distance from one another, the heat-shield segments (17, 17'), while forming a cavity (20) to which cooling air can be admitted, are fastened to the inside of an annular carrier (16), which concentrically surrounds the heat shield in such a way that in each case a radial gap (29, 30) is formed between the longitudinal sides of the heat-shield segments (17, 17') and the adjacent elements (14, 15) which define the hot-gas duct (11) on the outside, cooling holes (27, 28) being provided in both longitudinal sides of the heat-shield segments, through which cooling holes (27, 28) cooling air flows from the cavity (20) into the intermediate spaces (25, 26) formed between the arm pairs (21, 22 and 23, 24 resp.) and flows from there into the gaps (29, 30) and can counteract the ingress of hot gases from the hot-gas duct (11) into the gaps (29, 30), the heat-shield segments (17, 17') being fastened to the carrier (16) by means of clamps (18, 19), which, with ends bent inward in an L-shape, engage from both sides under the carrier (16) in the intermediate spaces (25, 26) formed between the arm pairs (21, 22 and 23, 24 resp.), and the cooling air flowing out of the cooling holes (27, 28) being directed in the intermediate spaces (25, 26) between the ends, bent inward in an L-shape, of the clamps (18, 19) and the inner arms (21, 23) of the heat-shield segments (17, 17') to the gaps (29, 30), characterized in that cooling slots (31, 32) in alignment with the cooling holes (27, 28) are made in the outsides of the inner arms (21, 23) in order to direct the cooling air discharging from the cooling holes (27, 28).
  2. Heat shield according to Claim 1, characterized in that the cooling holes (27, 28) and cooling slots (31, 32) are arranged in the plane of the heat-shield segment (17, 17') in such a way as to slant away from the axial direction in the direction of rotation of the gas turbine (10).
  3. Heat shield according to Claim 1 or 2, characterized in that, to reduce the deflection of the heat shield during temperature changes, axially running stiffening ribs (33) are arranged or integrally formed on the outside of the heat-shield segments (17, 17') in the region of the cavity (20).
  4. Heat shield according to Claim 3, characterized in that an impingement-cooling plate (36) running in the circumferential direction and provided with openings (37) is arranged inside the cavity (20) and at a distance from the outside of the heat-shield segments (17, 17'), and in that individual lugs or pins (34, 35), which project radially outward and on which the impingement-cooling plate (36) is supported, are arranged inside the stiffening ribs (33).
  5. Heat shield according to Claim 1, characterized in that, to prevent the cooling air from flowing off to the outside, first axial elastic seals (39, 41) are arranged above the cooling holes (27, 28) between the clamps (18, 19) and the longitudinal sides of the heat-shield segments (17, 17').
  6. Heat shield according to Claim 5, characterized in that second axial, elastic seals (38, 40) are additionally arranged between the clamps (18, 19) and the carrier (16).
EP00810216A 1999-04-29 2000-03-15 Heat shield for a gas turbine Expired - Lifetime EP1048822B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19919654 1999-04-29
DE19919654A DE19919654A1 (en) 1999-04-29 1999-04-29 Heat shield for a gas turbine

Publications (3)

Publication Number Publication Date
EP1048822A2 EP1048822A2 (en) 2000-11-02
EP1048822A3 EP1048822A3 (en) 2002-07-31
EP1048822B1 true EP1048822B1 (en) 2006-05-17

Family

ID=7906382

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00810216A Expired - Lifetime EP1048822B1 (en) 1999-04-29 2000-03-15 Heat shield for a gas turbine

Country Status (3)

Country Link
US (1) US6302642B1 (en)
EP (1) EP1048822B1 (en)
DE (2) DE19919654A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19938443A1 (en) * 1999-08-13 2001-02-15 Abb Alstom Power Ch Ag Fastening and fixing device
DE19945581B4 (en) * 1999-09-23 2014-04-03 Alstom Technology Ltd. turbomachinery
JP3632003B2 (en) * 2000-03-07 2005-03-23 三菱重工業株式会社 Gas turbine split ring
JP4698847B2 (en) * 2001-01-19 2011-06-08 三菱重工業株式会社 Gas turbine split ring
GB2378730B (en) * 2001-08-18 2005-03-16 Rolls Royce Plc Cooled segments surrounding turbine blades
US6783324B2 (en) * 2002-08-15 2004-08-31 General Electric Company Compressor bleed case
US6899518B2 (en) 2002-12-23 2005-05-31 Pratt & Whitney Canada Corp. Turbine shroud segment apparatus for reusing cooling air
JP4191552B2 (en) * 2003-07-14 2008-12-03 三菱重工業株式会社 Cooling structure of gas turbine tail tube
US7165937B2 (en) * 2004-12-06 2007-01-23 General Electric Company Methods and apparatus for maintaining rotor assembly tip clearances
US7520715B2 (en) * 2005-07-19 2009-04-21 Pratt & Whitney Canada Corp. Turbine shroud segment transpiration cooling with individual cast inlet and outlet cavities
US20070020088A1 (en) * 2005-07-20 2007-01-25 Pratt & Whitney Canada Corp. Turbine shroud segment impingement cooling on vane outer shroud
US7278820B2 (en) * 2005-10-04 2007-10-09 Siemens Power Generation, Inc. Ring seal system with reduced cooling requirements
US7334985B2 (en) * 2005-10-11 2008-02-26 United Technologies Corporation Shroud with aero-effective cooling
US7665953B2 (en) * 2006-11-30 2010-02-23 General Electric Company Methods and system for recuperated cooling of integral turbine nozzle and shroud assemblies
US7740444B2 (en) * 2006-11-30 2010-06-22 General Electric Company Methods and system for cooling integral turbine shround assemblies
US7740442B2 (en) * 2006-11-30 2010-06-22 General Electric Company Methods and system for cooling integral turbine nozzle and shroud assemblies
US7722315B2 (en) * 2006-11-30 2010-05-25 General Electric Company Method and system to facilitate preferentially distributed recuperated film cooling of turbine shroud assembly
CA2684371C (en) * 2007-04-19 2014-10-21 Alstom Technology Ltd Stator heat shield
US8240980B1 (en) 2007-10-19 2012-08-14 Florida Turbine Technologies, Inc. Turbine inter-stage gap cooling and sealing arrangement
US8251637B2 (en) * 2008-05-16 2012-08-28 General Electric Company Systems and methods for modifying modal vibration associated with a turbine
US8128344B2 (en) * 2008-11-05 2012-03-06 General Electric Company Methods and apparatus involving shroud cooling
US8556575B2 (en) * 2010-03-26 2013-10-15 United Technologies Corporation Blade outer seal for a gas turbine engine
RU2543101C2 (en) * 2010-11-29 2015-02-27 Альстом Текнолоджи Лтд Axial gas turbine
EP2508713A1 (en) * 2011-04-04 2012-10-10 Siemens Aktiengesellschaft Gas turbine comprising a heat shield and method of operation
US9574455B2 (en) * 2012-07-16 2017-02-21 United Technologies Corporation Blade outer air seal with cooling features
EP2949873A1 (en) * 2014-05-27 2015-12-02 Siemens Aktiengesellschaft Turbomachine with an ingestion shield and use of the turbomachine
WO2015191185A1 (en) * 2014-06-12 2015-12-17 General Electric Company Shroud hanger assembly
FR3036436B1 (en) 2015-05-22 2020-01-24 Safran Ceramics TURBINE RING ASSEMBLY WITH HOLDING BY FLANGES
US10221713B2 (en) * 2015-05-26 2019-03-05 Rolls-Royce Corporation Shroud cartridge having a ceramic matrix composite seal segment
ES2723400T3 (en) 2015-12-07 2019-08-27 MTU Aero Engines AG Housing structure of a turbomachine with thermal protection screen
US20170198602A1 (en) * 2016-01-11 2017-07-13 General Electric Company Gas turbine engine with a cooled nozzle segment
KR101965500B1 (en) * 2017-09-11 2019-04-03 두산중공업 주식회사 Seal structure of turbine blade and turbine and gas turbine comprising the same
FR3112806B1 (en) * 2020-07-23 2022-10-21 Safran Aircraft Engines Crown for maintaining sealing sectors of a low pressure turbine

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE756582A (en) * 1969-10-02 1971-03-01 Gen Electric CIRCULAR SCREEN AND SCREEN HOLDER WITH TEMPERATURE ADJUSTMENT FOR TURBOMACHINE
US3864056A (en) * 1973-07-27 1975-02-04 Westinghouse Electric Corp Cooled turbine blade ring assembly
GB1484288A (en) * 1975-12-03 1977-09-01 Rolls Royce Gas turbine engines
US4087199A (en) * 1976-11-22 1978-05-02 General Electric Company Ceramic turbine shroud assembly
FR2401310A1 (en) * 1977-08-26 1979-03-23 Snecma REACTION ENGINE TURBINE CASE
US4177004A (en) 1977-10-31 1979-12-04 General Electric Company Combined turbine shroud and vane support structure
JPS5857658B2 (en) * 1980-04-02 1983-12-21 工業技術院長 Heat shielding structure for walls exposed to high heat using ceramics
US4573865A (en) * 1981-08-31 1986-03-04 General Electric Company Multiple-impingement cooled structure
US4526226A (en) * 1981-08-31 1985-07-02 General Electric Company Multiple-impingement cooled structure
US4551064A (en) 1982-03-05 1985-11-05 Rolls-Royce Limited Turbine shroud and turbine shroud assembly
US4650394A (en) * 1984-11-13 1987-03-17 United Technologies Corporation Coolable seal assembly for a gas turbine engine
US4642024A (en) * 1984-12-05 1987-02-10 United Technologies Corporation Coolable stator assembly for a rotary machine
US5039562A (en) * 1988-10-20 1991-08-13 The United States Of America As Represented By The Secretary Of The Air Force Method and apparatus for cooling high temperature ceramic turbine blade portions
US5071313A (en) 1990-01-16 1991-12-10 General Electric Company Rotor blade shroud segment
US5169287A (en) 1991-05-20 1992-12-08 General Electric Company Shroud cooling assembly for gas turbine engine
US5584651A (en) 1994-10-31 1996-12-17 General Electric Company Cooled shroud
US6126389A (en) * 1998-09-02 2000-10-03 General Electric Co. Impingement cooling for the shroud of a gas turbine
US6224329B1 (en) * 1999-01-07 2001-05-01 Siemens Westinghouse Power Corporation Method of cooling a combustion turbine

Also Published As

Publication number Publication date
EP1048822A3 (en) 2002-07-31
EP1048822A2 (en) 2000-11-02
DE19919654A1 (en) 2000-11-02
US6302642B1 (en) 2001-10-16
DE50012746D1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
EP1048822B1 (en) Heat shield for a gas turbine
DE60128865T2 (en) Cooling for a turbine shroud ring
DE2718661C2 (en) Guide vane grille for a gas turbine with an axial flow
DE69931844T2 (en) Shroud cooling for a gas turbine
DE60210684T2 (en) Seal of a turbine shroud ring
DE602004011859T2 (en) Device for the control of gaps in a gas turbine
DE3541606C2 (en) Stator assembly
EP1451450B1 (en) Gas turbo group
EP2310635A1 (en) Shroud seal segments arrangement in a gas turbine
CH642428A5 (en) COVER ARRANGEMENT IN A TURBINE.
DE102008002890A1 (en) Alternately cooled turbine stator
EP1183444B1 (en) Turbomachine and sealing element for a rotor thereof
DE102004054294A1 (en) Cooling system for platform edges of stator segments
DE3231689A1 (en) MULTIPLE IMPACT-COOLED PRODUCT, IN PARTICULAR COATING A GAS FLOW PATH
EP1270874A1 (en) Gas turbine with an air compressor
DE1953047A1 (en) Axial design gas or steam turbine for high working medium temperatures
EP1130218A1 (en) Turbine with sealings for the stator platforms
DE60117337T2 (en) Arrangement of the Leitschaufelplattformen in an axial turbine to reduce the gap losses
EP2049840A1 (en) Combustion chamber of a combustion installation
DE1300346B (en) Gas turbine
DE1601561B2 (en) Cooled airfoil blade for an axial flow machine
DE112011101253T5 (en) Turbine inlet nozzle guide vane mounting structure for gas turbine radial engine
DE1078814B (en) Arrangement for cooling gas turbine rotors
EP0040267B1 (en) Cooled turbine stator
WO2001009553A1 (en) Baffle cooling device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 01D 25/12 A, 7F 01D 25/24 B, 7F 01D 11/24 B, 7F 01D 11/08 B

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

17P Request for examination filed

Effective date: 20030130

AKX Designation fees paid

Designated state(s): DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17Q First examination report despatched

Effective date: 20050311

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50012746

Country of ref document: DE

Date of ref document: 20060622

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060814

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50012746

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50012746

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50012746

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170322

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170322

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50012746

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50012746

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012746

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180315