EP2310635A1 - Shroud seal segments arrangement in a gas turbine - Google Patents

Shroud seal segments arrangement in a gas turbine

Info

Publication number
EP2310635A1
EP2310635A1 EP09800032A EP09800032A EP2310635A1 EP 2310635 A1 EP2310635 A1 EP 2310635A1 EP 09800032 A EP09800032 A EP 09800032A EP 09800032 A EP09800032 A EP 09800032A EP 2310635 A1 EP2310635 A1 EP 2310635A1
Authority
EP
European Patent Office
Prior art keywords
cooling
gas turbine
heat
turbine according
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09800032A
Other languages
German (de)
French (fr)
Other versions
EP2310635B1 (en
Inventor
Tanguy Arzel
Thomas Heinz-Schwarzmaier
Martin Schnieder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia IP UK Ltd
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP2310635A1 publication Critical patent/EP2310635A1/en
Application granted granted Critical
Publication of EP2310635B1 publication Critical patent/EP2310635B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes

Definitions

  • the present invention relates to the field of thermal machines. It relates to a gas turbine according to the preamble of claim 1.
  • Gas turbines as described, for example, in the document DE-A1-196 19 438, have in the turbine part a rotor blade provided with rows of blades, which is surrounded concentrically at a distance from a housing. On the housing rings are formed, carrying vanes, which - as well as the blades on the rotor - extend into the hot gas channel formed between the rotor and housing. In the axial direction or in the direction of the hot gas flow, vanes and blade rows alternate. Between adjacent guide blade rows are distributed over the periphery to the outer boundary of the hot gas channel
  • Heat damper segments arranged at which the blades with their blade tips move past, and which are supplied from a surrounding the heat shield segments annular space (ring cavity) with cooling air or other cooling medium.
  • a baffle cooling method is used, in which the cooling medium through variously mounted openings in an impingement cooling plate passes through the inside of the hot gas channel limiting wall of the heat exchanger segment.
  • the heat shields behind the turbine's front stage vanes are exposed to high heat flux loads, high heat flux loads occur in the area where the blades rotate past, and high heat flux loads also occur in the area of the stator blade wake Caster pressure waves (31 in Fig. 1 1) reduce the pressure margin (Back Flow Margin BFM), ie the available pressure difference between the hot gas duct and annular cavity, against a hot gas.
  • Back Flow Margin BFM Back Flow Margin BFM
  • a "failsafe design" over rubbing cracks, inter heat shield feather seals, partload, environmental conditions (off-ISO design), impact damage (FOD) and manufacturing tolerances require a significant margin on BFM. which has a negative impact on performance under full load ISO conditions.
  • the number of vanes in the ring in conventional solutions is independent of the number of associated heat shield segments. If possible, the number of parts is minimized. As the thermal and mechanical loads on the vanes are higher, a larger number of vanes is needed compared to the number of heat shield segments.
  • FIGS. 1 to 3 illustrate, in a simplified representation, various impingement cooling schemes in a gas turbine 10 on the basis of the heat accumulation segments 1 1 arranged between the first guide vanes V1 and the second guide vanes V2 in relation to the first moving blades B1.
  • hot gas flows with a mass flow density m HG from right to left, wherein at the leading edge (Leading Edge LE) of the blade B1, a pressure P SILE and at the trailing edge (Trailing Edge TE) there is a pressure P SiTE .
  • the hot gas duct 29 is bounded in the region of the blade B1 on the outside by the heat spreader segment 11, which is fastened by means of hook-shaped fastening elements 12, 13, 14 to a housing (not shown).
  • the heat shield segment 1 1 is externally surrounded by a ring cavity 30 from which a standing under pressure P 1 or P 2 cooling medium, usually cooling air, via perforated
  • Impingement cooling plates 15, 16 flows into two corresponding impingement cooling cavities 17, 18, there cools the heat discharge segment by impingement cooling and then exits through cooling holes 19, 20 in the hot gas channel 29.
  • Pi P 2 , so that the cooling medium with the same mass flow density m c flows into the two impingement cooling cavities.
  • the invention aims to remedy this situation. It is therefore an object of the invention to provide a gas turbine with impingement-cooled heat accumulation segments, which avoids the disadvantages of known solutions and is characterized in particular by a reduction of the cooling medium consumption.
  • Heat dam segments and adjacent vanes in the rings is the same. As a result, maximum loads occurring locally, ie local cooling, are addressed. Margins and total Coolant consumption can be reduced considerably. This allows higher temperatures and lower cooling medium requirements for better performance and flatter temperature profiles for smaller emissions.
  • An embodiment of the invention is characterized in that two impact cooling cavities, in which the cooling medium flows from the annular cavity, are arranged in the heat accumulation segment in each case in the axial direction, that the downstream impingement cooling cavity is separated from the annular cavity and both annular cavities with the cooling medium at the same pressure
  • the heat accumulation segments each have a central, hook-shaped fastening element, the two impingement cooling cavities are separated from one another by the middle fastening element, and the downstream impingement cooling cavity is separated from the annular cavity by a cover plate arranged between impingement cooling cavity and annular cavity.
  • Another embodiment is characterized in that in the impingement cooling cavities to increase the heat transfer, a plurality of posts is arranged distributed, wherein the plurality of posts spacers for the impingement cooling plates and cooling pins for increasing the heat transfer between the cooling medium and heat shield segment comprises, and wherein the posts in the Impeller cooling cavities are housed in at least partially regular arrangements, and the spacers and cooling pins are arranged offset to one another.
  • a further embodiment is characterized in that the heat accumulation segments in relation to the flow of the hot gas each have a leading edge, a trailing edge and two side regions, and that cooling holes are provided for film cooling of the edges and side portions of the heat termination, which starting from the impingement cooling cavities, the heat rejection segment enforce on all sides and end in the outside space.
  • the cooling bores ending at the opposite side regions of the heat termination segment are thus in this case arranged offset to each other that the exiting cooling medium does not prevent each other at the exit in adjoining michstausegmenten.
  • the coolant holes at the leading edge and in the side regions set back in a recess end for unimpeded leakage of the cooling medium, and when the cooling holes are formed spread in the corners of the heat shield segment for improved cooling of the edge regions.
  • each heat shield segment and the associated upstream vane are positioned relative to one another in the circumferential direction so that the wake pressure wave generated by the vane can be compensated by a corresponding arrangement and supply of the affected cooling holes, preferably those in Open the region of the trailing pressure wave cooling holes above the impingement cooling plates in the impingement cooling cavities.
  • Fig. 1 -3 in a simplified representation in longitudinal section the detail of a gas turbine with a arranged between the first and second row of guide vanes heat accumulation segments, which by means of a simple (Figure 1) of a sequential ( Figure 2) and a countercurrent impingement cooling scheme cooled become; Fig. 4 in a to Fig. 1 -3 comparable representation
  • Impingement cooling scheme according to an embodiment of the invention
  • Fig. 5 is a suitable for the arrangement of Figure 4 heat recovery segment with the arrangement of the various cooling holes and recesses in the plan view from the outside.
  • FIG. 6 in a representation comparable to FIG. 4, the built-in thermal segment according to FIG. 5;
  • Fig. 7 shows the arrangement of posts in the impingement cooling cavities of
  • FIG. 9 in longitudinal section another of the possible posts of Figure 7, which is provided as a cooling pin with additional heat transfer surface.
  • Fig. 10 shows a preferred distribution of the posts of Fig. 8 and 9 in the
  • Fig. 1 1 seen in the radial direction, the important for the pressure margin relative positioning of the vane and heat recovery segment in the circumferential direction and
  • Fig. 12 shows an example of the local reduction of the wall thickness by means of a groove where the cooling holes open into the impingement cooling cavities. Ways to carry out the invention
  • FIG. 4 An embodiment of the invention is shown in FIG. 4 in a representation comparable to FIGS. 1 to 3: assuming the same number of parts in the ring for the guide vanes V1 and the heat accumulation segments 1 1.
  • the heat staging segment 1 1 has two impingement cooling cavities 17 and 18 on, which are separated from each other by the middle hook-shaped fastening element 13 and operated at the same pressure P 1 .
  • the second impingement cooling cavity 17 positioned downstream is isolated from the annular cavity 30 by a cover plate 21.
  • the pressure margin for the impingement cooling and pressure margin for the spring seals between adjacent segments can be adjusted independently of each other. A loss of seal no longer causes the cooling medium pressure to drop.
  • the margin of the cooling medium pressure can be reduced.
  • the pressure above the cover plate 21 (P 2 ) can be adjusted so that the passing of the
  • Blade B1 causes no vibration of the seal and thus no seal failure occurs.
  • a film cooling is preferably provided for the front edge LE, the trailing edge TE and the side regions SW according to FIGS. 5 and 6. Lead to this
  • Cooling bores 19, 19 ', 20, 20', 25 and 26 from the impingement cooling cavities 17, 18 to the outside and open into the outside space.
  • the cooling bores 20, 20 'and 25, 26 are arranged offset back by corresponding recesses 22, 23 and 24 on the end faces, so that when touching the component with the adjacent component, the air can still escape unhindered .
  • the cooling holes 19 ', 20' are spread in the region of the corners of the heat spreader segment 1 1 (flared cooling holes) in order to optimally cool the edge regions.
  • the impingement cooling can be further improved if, according to FIG. 7, additional cone-shaped posts 28 are provided in the impingement cooling cavities 17, 18, which are arranged so as to be distributed with the holes 27 in the impingement cooling plates.
  • One type of post ( Figure 8) is formed as a spacer 28a for the impingement cooling plates 15, 16.
  • the other type of post ( Figure 9) serves as a cooling pin 28b to increase turbulence, heat flow and heat transfer area.
  • Both types of posts, the spacers 28a and the cooling pins 28b may be arranged offset to increase the heat transfer according to FIG.
  • the trailing pressure wave 31 is positioned by projecting or resting the components 1 1, V1 in the parting plane relative to each other on the heat spreader segment 11 (displacement arrows in FIG. 11), that the pressure margin of the cooling bores in the leading edges and in the side region, and the annular gap and the total cooling air consumption are optimally adjusted.
  • the size of the impingement cooling cavities 17, 18 is chosen so that optimum cooling occurs.
  • the thermal damper segment 1 1 is preferably provided with a thermal barrier coating (TBC), wherein different thicknesses and tolerances are selected in the regions upstream of the forward rotation of the blade B1 and at the location where the blade B1 passes.
  • TBC thermal barrier coating
  • the cooling bores 19, 19 ', 20, 20', 25, 26 are positioned as close as possible to the hot gas in the hot gas duct 29. Manufacturing tolerances, global wall thicknesses for rubbing and oxidation are subject to minimal criteria. Therefore, locally, where the cooling holes open into the impingement cooling cavities, the wall thickness is preferably reduced by means of a groove 32 (FIG. 12).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The invention relates to a gas turbine (10) comprising a rotor which can be rotated about an axis and is equipped with rotor blades (B1), and which is concentrically surrounded at a distance by a housing equipped with guide vanes (V1, V2) such that a ring-shaped hot gas channel (29) is formed, wherein rings having guide vanes (V1, V2) and rotor blades (B1) are alternately arranged in the axial direction, and heat-exchange segments (11) are provided between adjacent guide vanes (V1, V2). Said heat-exchange segments outwardly bound the hot gas channel (29) in the area of the rotor blades (B1) and are cooled by impingement cooling, wherein a cooling medium, especially cooling air, flows into the heat-exchange segment (11) from an external ring cavity (30). For such a gas turbine (10), more effective cooling is made possible in that the number of heat-exchange segments (11) and adjacent guide vanes (V1, V2) in the rings is equal.

Description

MANTELRINGDICHTUNG IN EINER GASTURBINE COATING SEAL IN A GAS TURBINE
Technisches GebietTechnical area
Die vorliegende Erfindung bezieht sich auf das Gebiet der thermischen Maschinen. Sie betrifft eine Gasturbine gemäss dem Oberbegriff des Anspruchs 1.The present invention relates to the field of thermal machines. It relates to a gas turbine according to the preamble of claim 1.
Stand der TechnikState of the art
Gasturbinen, wie sie beispielsweise in der Druckschrift DE-A1 -196 19 438 beschrieben sind, weisen im Turbinenteil einen mit Laufschaufelreihen versehenen Rotor auf, der mit Abstand von einem Gehäuse konzentrisch umgeben ist. Am Gehäuse sind Ringe ausgebildet, die Leitschaufeln tragen, welche sich - ebenso wie die Laufschaufeln am Rotor - in den zwischen Rotor und Gehäuse gebildeten Heissgaskanal hinein erstrecken. In axialer Richtung bzw. in Richtung der Heissgasströmung wechseln sich Leitschaufel- und Laufschaufelreihen ab. Zwischen benachbarten Leitschaufelreihen sind zur äusseren Begrenzung des Heissgaskanals über den Umfang verteiltGas turbines, as described, for example, in the document DE-A1-196 19 438, have in the turbine part a rotor blade provided with rows of blades, which is surrounded concentrically at a distance from a housing. On the housing rings are formed, carrying vanes, which - as well as the blades on the rotor - extend into the hot gas channel formed between the rotor and housing. In the axial direction or in the direction of the hot gas flow, vanes and blade rows alternate. Between adjacent guide blade rows are distributed over the periphery to the outer boundary of the hot gas channel
Wärmestausegmente angeordnet, an denen sich die Laufschaufeln mit ihren Schaufelspitzen vorbei bewegen, und die aus einem die Wärmestausegmente umgebenden Ringraum (Ringkavität) mit Kühlluft oder einem anderen Kühlmedium versorgt werden. Zur Kühlung wird beispielsweise ein Prallkühlungsverfahren eingesetzt, bei welchem das Kühlmedium durch verschiedentlich angebrachten Öffnungen in einem Prallkühlblech hindurch auf die Innenseite der den Heissgaskanal begrenzenden Wand des Wärmestausegments trifft.Heat damper segments arranged at which the blades with their blade tips move past, and which are supplied from a surrounding the heat shield segments annular space (ring cavity) with cooling air or other cooling medium. For cooling, for example, a baffle cooling method is used, in which the cooling medium through variously mounted openings in an impingement cooling plate passes through the inside of the hot gas channel limiting wall of the heat exchanger segment.
Die Wärmestausegmente („heat shields") hinter den Frontstufen- Leitschaufeln der Turbine sind hohen Wärmestromlasten ausgesetzt. Im Bereich, wo die Laufschaufeln vorbei drehen, treten hohe Wärmestromlasten auf. Auch im Bereich des Leitschaufelnachlaufes treten hohe Wärmestromlasten auf. Die mit dem Nachlauf verbundenen Nachlaufdruckwellen (31 in Fig. 1 1 ) reduzieren die Druckmarge (Back Flow Margin BFM), d.h. die zur Verfügung stehende Druckdifferenz zwischen Heissgaskanal und Ringkavität, gegenüber einem Heissgaseinbruch.The heat shields behind the turbine's front stage vanes are exposed to high heat flux loads, high heat flux loads occur in the area where the blades rotate past, and high heat flux loads also occur in the area of the stator blade wake Caster pressure waves (31 in Fig. 1 1) reduce the pressure margin (Back Flow Margin BFM), ie the available pressure difference between the hot gas duct and annular cavity, against a hot gas.
Ein „Failsafe Design" gegenüber Reiben (rubbing cracks), Dichtungsverlust (inter heat shield feather seals), Teillast (partload), Umgebungsbedingungen (off-ISO design), Beschädigung durch Aufschlag (FOD) und Fertigungstoleranzen erfordern eine beträchtliche Marge bzgl. BFM, welche sich bei ISO-Vollast-Bedingungen negativ auf die Performance auswirkt.A "failsafe design" over rubbing cracks, inter heat shield feather seals, partload, environmental conditions (off-ISO design), impact damage (FOD) and manufacturing tolerances require a significant margin on BFM. which has a negative impact on performance under full load ISO conditions.
Die Anzahl der Leitschaufeln im Ring ist bei herkömmlichen Lösungen unabhängig von der Anzahl der zugehörigen Wärmestausegmente. Es wird möglichst die Anzahl der Teile minimiert. Da die thermischen und mechanischen Belastungen der Leitschaufeln höher sind, wird eine grossere Anzahl Leitschaufeln im Vergleich zur Anzahl der Wärmestausegmente benötigt.The number of vanes in the ring in conventional solutions is independent of the number of associated heat shield segments. If possible, the number of parts is minimized. As the thermal and mechanical loads on the vanes are higher, a larger number of vanes is needed compared to the number of heat shield segments.
In den Fig. 1 bis 3 sind in vereinfachter Darstellung verschiedene Prallkühlungsschemata in einer Gasturbine 10 anhand der zwischen den ersten Leitschaufeln V1 und den zweiten Leitschaufeln V2 gegenüber den ersten Laufschaufeln B1 angeordneten Wärmestausegmenten 1 1 erläutert. Im Heissgaskanal 29 strömt Heissgas mit einer Massenstromdichte mHG von rechts nach links, wobei an der Vorderkante (Leading Edge LE) der Laufschaufel B1 ein Druck PSILE und an der Hinterkante (Trailing Edge TE) ein Druck PSiTE herrscht. Der Heissgaskanal 29 wird im Bereich der Laufschaufel B1 aussen von dem Wärmestausegment 11 begrenzt, das mittels hakenförmigen Befestigungselementen 12, 13, 14 an einem (nicht dargestellten) Gehäuse befestigt ist. Das Wärmestausegment 1 1 ist aussen von einer Ringkavität 30 umgeben, aus der ein unter Druck P1 bzw. P2 stehendes Kühlmedium, in der Regel Kühlluft, über gelochteFIGS. 1 to 3 illustrate, in a simplified representation, various impingement cooling schemes in a gas turbine 10 on the basis of the heat accumulation segments 1 1 arranged between the first guide vanes V1 and the second guide vanes V2 in relation to the first moving blades B1. In the hot gas channel 29 hot gas flows with a mass flow density m HG from right to left, wherein at the leading edge (Leading Edge LE) of the blade B1, a pressure P SILE and at the trailing edge (Trailing Edge TE) there is a pressure P SiTE . The hot gas duct 29 is bounded in the region of the blade B1 on the outside by the heat spreader segment 11, which is fastened by means of hook-shaped fastening elements 12, 13, 14 to a housing (not shown). The heat shield segment 1 1 is externally surrounded by a ring cavity 30 from which a standing under pressure P 1 or P 2 cooling medium, usually cooling air, via perforated
Prallkühlungsbleche 15, 16 in zwei entsprechende Prallkühlungskavitäten 17, 18 einströmt, dort das Wärmestausegment durch Prallkühlung kühlt und dann durch Kühlbohrungen 19, 20 in den Heissgaskanal 29 austritt. Im einfachen Fall der Fig. 1 ist Pi = P2, so dass das Kühlmedium mit derselben Massenstromdichte mc in die beiden Prallkühlungskavitäten einströmt. Um bei den unterschiedlichen Drücken im Heissgaskanal die notwendige Druckmarge aufrecht zu erhalten, muss mit einer sehr hohen Druckdifferenz über die gesamte Länge des Wärmestausegmentes 1 1 gearbeitet werden. Die Leckageverluste sind deshalb hoch.Impingement cooling plates 15, 16 flows into two corresponding impingement cooling cavities 17, 18, there cools the heat discharge segment by impingement cooling and then exits through cooling holes 19, 20 in the hot gas channel 29. In the simple case of FIG. 1, Pi = P 2 , so that the cooling medium with the same mass flow density m c flows into the two impingement cooling cavities. In order to maintain the necessary pressure margin at the different pressures in the hot gas duct, it is necessary to work with a very high pressure difference over the entire length of the heat recovery segment 11. The leakage losses are therefore high.
Beim sequentiellen Prallkühlungsschema der Fig. 2 wird dieser Nachteil korrigiert, indem P1 > P2 gewählt wird. Jedoch wird das System durch mögliche Querströmungen zwischen den Prallkühlungskavitäten 15, 16 (oberer breiter Pfeil in Fig. 2) sensitiv gegenüber den (nicht gezeigten) Dichtungen, die an der Stirnseite des Befestigungselements 13 zur Abdichtung der Spalte zwischen benachbarten Wärmestausegmenten vorgesehen sind.In the sequential impingement cooling scheme of Fig. 2, this disadvantage is corrected by choosing P 1 > P 2 . However, the system becomes sensitive to the seals (not shown) provided on the face of the fastener 13 for sealing the gaps between adjacent heat shield segments by possible cross flows between the impingement cooling cavities 15, 16 (upper broad arrow in Fig. 2).
Beim Gegenstrom-Prallkühlungsschema der Fig. 3 wird auch dies korrigiert, indem P1 < P2 gewählt wird. Jedoch erweist sich dabei das Einstellen der Druckmarge gegenüber dem Nachlaufmaximum des Druckes (vgl. 31 in Fig. 1 1 ) als kritisch.In the countercurrent impingement cooling scheme of Fig. 3, this is also corrected by choosing P 1 <P 2 . However, setting the pressure margin with respect to the post-maximum of the pressure (see Fig. 31 in Fig. 11) proves to be critical.
Darstellung der ErfindungPresentation of the invention
Hier will die Erfindung Abhilfe schaffen. Es ist daher Aufgabe der Erfindung, eine Gasturbine mit prallgekühlten Wärmestausegmenten zu schaffen, welche die Nachteile bekannter Lösungen vermeidet und sich insbesondere durch eine Verringerung des Kühlmediumsverbrauchs auszeichnet.The invention aims to remedy this situation. It is therefore an object of the invention to provide a gas turbine with impingement-cooled heat accumulation segments, which avoids the disadvantages of known solutions and is characterized in particular by a reduction of the cooling medium consumption.
Die Aufgabe wird durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst. Wesentlich für die Erfindung ist dabei, dass die Anzahl derThe object is solved by the entirety of the features of claim 1. Essential to the invention is that the number of
Wärmestausegmente und benachbarten Leitschaufeln in den Ringen gleich ist. Hierdurch können maximal auftretende Belastungen lokal, d.h. mittels lokaler Kühlung, adressiert werden. Margen und Gesamt- Kühlmediumsverbrauch können beträchtlich reduziert werden. Dies erlaubt höhere Temperaturen und einen niedrigeren Kühlmediumsbedarf für eine bessere Performance sowie flachere Temperaturprofile für kleinere Emissionen.Heat dam segments and adjacent vanes in the rings is the same. As a result, maximum loads occurring locally, ie local cooling, are addressed. Margins and total Coolant consumption can be reduced considerably. This allows higher temperatures and lower cooling medium requirements for better performance and flatter temperature profiles for smaller emissions.
Eine Ausgestaltung der Erfindung zeichnet sich dadurch aus, dass im Wärmestausegment jeweils in axialer Richtung hintereinander zwei Prallkühlungskavitäten angeordnet sind, in welche das Kühlmedium aus der Ringkavität einströmt, dass die stromabwärts liegende Prallkühlungskavität von der Ringkavität abgetrennt ist und beide Ringkavitäten mit dem Kühlmedium bei gleichem Druck beaufschlagt werden, wobei die Wärmestausegmente jeweils ein mittleres, hakenförmiges Befestigungselement aufweisen, die beiden Prallkühlungskavitäten durch das mittlere Befestigungselement voneinander getrennt sind, und die stromabwärts liegende Prallkühlungskavität von der Ringkavität durch eine zwischen Prallkühlungskavität und Ringkavität angeordnete Abdeckplatte abgetrennt ist.An embodiment of the invention is characterized in that two impact cooling cavities, in which the cooling medium flows from the annular cavity, are arranged in the heat accumulation segment in each case in the axial direction, that the downstream impingement cooling cavity is separated from the annular cavity and both annular cavities with the cooling medium at the same pressure The heat accumulation segments each have a central, hook-shaped fastening element, the two impingement cooling cavities are separated from one another by the middle fastening element, and the downstream impingement cooling cavity is separated from the annular cavity by a cover plate arranged between impingement cooling cavity and annular cavity.
Eine andere Ausgestaltung ist dadurch gekennzeichnet, dass in den Prallkühlungskavitäten zur Erhöhung des Wärmeübergangs eine Vielzahl von Pfosten verteilt angeordnet ist, wobei die Vielzahl der Pfosten Abstandshalter für die Prallkühlungsbleche und Kühlpins zur Erhöhung des Wärmeübergangs zwischen Kühlmedium und Wärmestausegment umfasst, und wobei die Pfosten in den Prallkühlungskavitäten in zumindest bereichsweise regelmässigen Anordnungen untergebracht sind, und die Abstandshalter und Kühlpins zueinander versetzt angeordnet sind.Another embodiment is characterized in that in the impingement cooling cavities to increase the heat transfer, a plurality of posts is arranged distributed, wherein the plurality of posts spacers for the impingement cooling plates and cooling pins for increasing the heat transfer between the cooling medium and heat shield segment comprises, and wherein the posts in the Impeller cooling cavities are housed in at least partially regular arrangements, and the spacers and cooling pins are arranged offset to one another.
Eine weitere Ausgestaltung zeichnet sich dadurch aus, dass die Wärmestausegmente im Bezug auf die Strömung des Heissgases jeweils eine Vorderkante, eine Hinterkante und zwei Seitenbereiche aufweisen, und dass zur Filmkühlung der Kanten und Seitenbereiche des Wärmestausegments Kühlbohrungen vorgesehen sind, welche von den Prallkühlungskavitäten ausgehend das Wärmestausegment zu allen Seiten hin durchsetzen und im Aussenraum enden. Insbesondere sind dabei die an den gegenüberliegenden Seitenbereichen des Wärmestausegments endenden Kühlbohrungen so zueinander versetzt angeordnet, dass das austretende Kühlmedium in aneinander grenzenden Wärmestausegmenten sich nicht gegenseitig am Austritt hindert.A further embodiment is characterized in that the heat accumulation segments in relation to the flow of the hot gas each have a leading edge, a trailing edge and two side regions, and that cooling holes are provided for film cooling of the edges and side portions of the heat termination, which starting from the impingement cooling cavities, the heat rejection segment enforce on all sides and end in the outside space. In particular, the cooling bores ending at the opposite side regions of the heat termination segment are thus in this case arranged offset to each other that the exiting cooling medium does not prevent each other at the exit in adjoining Wärmestausegmenten.
Weiterhin ist es von Vorteil, wenn zum ungehinderten Austreten des Kühlmediums die Kühlbohrungen an der Vorderkante und in den Seitenbereichen zurückversetzt in einer Ausnehmung enden, und wenn die Kühlbohrungen im Bereich der Ecken des Wärmestausegments zur verbesserten Kühlung der Kantenbereiche gespreizt ausgebildet sind.Furthermore, it is advantageous if the coolant holes at the leading edge and in the side regions set back in a recess end for unimpeded leakage of the cooling medium, and when the cooling holes are formed spread in the corners of the heat shield segment for improved cooling of the edge regions.
Eine andere Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass jedes Wärmestausegment und die zugehörige stromaufwärts angeordnete Leitschaufel im Umfangsrichtung relativ zueinander so positioniert sind, dass die von der Leitschaufel erzeugte Nachlaufdruckwelle durch eine entsprechende Anordnung und Versorgung der betroffenen Kühlbohrungen kompensiert werden kann, wobei vorzugsweise die im Bereich der Nachlaufdruckwelle liegenden Kühlbohrungen oberhalb der Prallkühlungsbleche in die Prallkühlungskavitäten münden.Another embodiment of the invention is characterized in that each heat shield segment and the associated upstream vane are positioned relative to one another in the circumferential direction so that the wake pressure wave generated by the vane can be compensated by a corresponding arrangement and supply of the affected cooling holes, preferably those in Open the region of the trailing pressure wave cooling holes above the impingement cooling plates in the impingement cooling cavities.
Kurze Erläuterung der FigurenBrief explanation of the figures
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Alle für das unmittelbare Verständnis der Erfindung nicht wesentlichen Elemente sind weggelassen worden. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben. Es zeigenThe invention will be explained in more detail with reference to embodiments in conjunction with the drawings. All elements not essential to the instant understanding of the invention have been omitted. The same elements are provided in the various figures with the same reference numerals. The flow direction of the media is indicated by arrows. Show it
Fig. 1 -3 in einer vereinfachten Darstellung im Längsschnitt den Ausschnitt aus einer Gasturbine mit einem zwischen der ersten und zweiten Leitschaufelreihe angeordneten Wärmestausegmenten, die mittels eines einfachen (Fig. 1 ) eines sequentiellen (Fig. 2) und eines mit Gegenstrom arbeitenden Prallkühlungsschemas gekühlt werden; Fig. 4 in einer zu Fig. 1 -3 vergleichbaren Darstellung einFig. 1 -3 in a simplified representation in longitudinal section the detail of a gas turbine with a arranged between the first and second row of guide vanes heat accumulation segments, which by means of a simple (Figure 1) of a sequential (Figure 2) and a countercurrent impingement cooling scheme cooled become; Fig. 4 in a to Fig. 1 -3 comparable representation
Prallkühlungsschema gemäss einem Ausführungsbeispiel der Erfindung;Impingement cooling scheme according to an embodiment of the invention;
Fig. 5 ein für die Anordnung nach Fig. 4 geeignetes Wärmestausegment mit der Anordnung der verschiedenen Kühlbohrungen und Ausnehmungen in der Draufsicht von aussen;Fig. 5 is a suitable for the arrangement of Figure 4 heat recovery segment with the arrangement of the various cooling holes and recesses in the plan view from the outside.
Fig. 6 in einer zu Fig. 4 vergleichbaren Darstellung das eingebaute Wärmestausegment gemäss Fig. 5;FIG. 6 in a representation comparable to FIG. 4, the built-in thermal segment according to FIG. 5; FIG.
Fig. 7 die Anordnung von Pfosten in den Prallkühlungskavitäten desFig. 7 shows the arrangement of posts in the impingement cooling cavities of
Wärmestausegments, gemäss einem anderen Ausführungsbeispiel der Erfindung;Heat release, according to another embodiment of the invention;
Fig. 8 im Längsschnitt einen der möglichen Pfosten aus Fig. 7, der alsFig. 8 in longitudinal section one of the possible posts from Fig. 7, as
Abstandshalter für die Prallkühlungsbleche vorgesehen ist;Spacer is provided for the impingement cooling plates;
Fig. 9 im Längsschnitt einen anderen der möglichen Pfosten aus Fig. 7, der als Kühlpin mit zusätzlicher Wärmeübergangsfläche vorgesehen ist;Fig. 9 in longitudinal section another of the possible posts of Figure 7, which is provided as a cooling pin with additional heat transfer surface.
Fig. 10 eine bevorzugte Verteilung der Pfosten aus Fig. 8 und 9 in denFig. 10 shows a preferred distribution of the posts of Fig. 8 and 9 in the
PrallkühlungskavitätenPrallkühlungskavitäten
Fig. 1 1 in radialer Richtung gesehen die für die Druckmarge wichtige relative Positionierung von Leitschaufel und Wärmestausegment in Umfangsrichtung undFig. 1 1 seen in the radial direction, the important for the pressure margin relative positioning of the vane and heat recovery segment in the circumferential direction and
Fig. 12 ein Beispiel für die lokale Verringerung der Wandstärke mittels einer Nut dort, wo die Kühlbohrungen in die Prallkühlungskavitäten münden. Wege zur Ausführung der ErfindungFig. 12 shows an example of the local reduction of the wall thickness by means of a groove where the cooling holes open into the impingement cooling cavities. Ways to carry out the invention
In Fig. 4 ist in einer zu Fig. 1 bis 3 vergleichbaren Darstellung ein Ausführungsbeispiel der Erfindung wiedergegeben: Vorausgesetzt wird dabei die gleiche Anzahl Teile im Ring für die Leitschaufeln V1 und die Wärmestausegmente 1 1. Das Wärmestausegment 1 1 weist zwei Prallkühlungskavitäten 17 und 18 auf, die durch das mittlere hakenförmige Befestigungselement 13 voneinander getrennt sind und mit dem gleichen Druck P1 betrieben werden. Die zweite, stromab positionierte Prallkühlungskavität 17 wird durch eine Abdeckplatte 21 von der Ringkavität 30 isoliert. Die Druckmarge für die Prallkühlung und Druckmarge für die Federdichtungen zwischen benachbarten Segmenten können unabhängig voneinander eingestellt werden. Ein Dichtungsverlust führt nicht mehr zum Absinken des Kühlmediumsdruckes. Die Marge des Kühlmediumsdruckes kann reduziert werden. Der Druck oberhalb der Abdeckplatte 21 (P2) kann so eingestellt werden, dass das Vorbeilaufen derAn embodiment of the invention is shown in FIG. 4 in a representation comparable to FIGS. 1 to 3: assuming the same number of parts in the ring for the guide vanes V1 and the heat accumulation segments 1 1. The heat staging segment 1 1 has two impingement cooling cavities 17 and 18 on, which are separated from each other by the middle hook-shaped fastening element 13 and operated at the same pressure P 1 . The second impingement cooling cavity 17 positioned downstream is isolated from the annular cavity 30 by a cover plate 21. The pressure margin for the impingement cooling and pressure margin for the spring seals between adjacent segments can be adjusted independently of each other. A loss of seal no longer causes the cooling medium pressure to drop. The margin of the cooling medium pressure can be reduced. The pressure above the cover plate 21 (P 2 ) can be adjusted so that the passing of the
Laufschaufel B1 keine Schwingung der Dichtung verursacht und damit auch kein Dichtungsversagen auftritt.Blade B1 causes no vibration of the seal and thus no seal failure occurs.
Zur Verbesserung der Kühlung des Wärmestausegments 1 1 ist vorzugsweise eine Filmkühlung für die Vorderkante LE, die Hinterkante TE und die Seitenbereiche SW gemäss Fig. 5 und 6 vorgesehen. Hierzu führenTo improve the cooling of the heat release segment 1 1, a film cooling is preferably provided for the front edge LE, the trailing edge TE and the side regions SW according to FIGS. 5 and 6. Lead to this
Kühlbohrungen 19, 19', 20, 20', 25 und 26 von den Prallkühlungskavitäten 17, 18 nach aussen und münden in den Aussenraum. Die Kühlbohrungen 25 und 26 in den Seitenbereichen SW sind (in Umfangsrichtung gesehen) zueinander versetzt (staggered) angeordnet, so dass die austretende Luft in den aneinander angrenzenden Wärmestausegmenten 1 1 sich nicht gegenseitig am Austritt behindert.Cooling bores 19, 19 ', 20, 20', 25 and 26 from the impingement cooling cavities 17, 18 to the outside and open into the outside space. The cooling holes 25 and 26 in the side areas SW (staggered) arranged in the circumferential direction (staggered), so that the escaping air in the adjoining heat accumulation segments 1 1 does not interfere with each other at the outlet.
Im Vorderkantenbereich LE und im Seitenbereich SW sind die Kühlbohrungen 20, 20' und 25, 26 durch entsprechende Ausnehmungen 22, 23 und 24 an den Stirnseiten zurückversetzt angeordnet, so dass beim Berühren des Bauteiles mit dem benachbarten Bauteil die Luft nach wie vor ungehindert austreten kann. Die Kühlbohrungen 19', 20' werden im Bereich der Ecken des Wärmestausegmentes 1 1 gespreizt (flared cooling holes), um die Kantenbereiche optimal zu kühlen. Die Prallkühlung lässt sich weiter verbessern, wenn gemäss Fig. 7 in den Prallkühlungskavitäten 17, 18 zusätzliche kegelförmige Pfosten 28 vorgesehen werden, die auf Lücke mit den Löchern 27 in den Prallkühlungsblechen verteilt angeordnet sind. Besonders vorteilhaft ist die Kombination der Prallkühlung mit zwei Arten von kegelförmigen Pfosten 28 (Fig. 8-10): Eine Art von Pfosten (Fig. 8) ist als Abstandshalter 28a für die Prallkühlungsbleche 15, 16 ausgebildet. Die andere Art von Pfosten (Fig. 9) dient als Kühlpin 28b der Erhöhung der Turbulenz, des Wärmestroms und der Wärmeübergangsfläche. Beide Arten von Pfosten, die Abstandshalter 28a und die Kühlpins 28b, können zur Erhöhung des Wärmeübergangs gemäss Fig. 10 versetzt angeordnet sein.In the leading edge region LE and in the side region SW, the cooling bores 20, 20 'and 25, 26 are arranged offset back by corresponding recesses 22, 23 and 24 on the end faces, so that when touching the component with the adjacent component, the air can still escape unhindered , The cooling holes 19 ', 20' are spread in the region of the corners of the heat spreader segment 1 1 (flared cooling holes) in order to optimally cool the edge regions. The impingement cooling can be further improved if, according to FIG. 7, additional cone-shaped posts 28 are provided in the impingement cooling cavities 17, 18, which are arranged so as to be distributed with the holes 27 in the impingement cooling plates. Particularly advantageous is the combination of impingement cooling with two types of conical posts 28 (Figures 8-10): One type of post (Figure 8) is formed as a spacer 28a for the impingement cooling plates 15, 16. The other type of post (Figure 9) serves as a cooling pin 28b to increase turbulence, heat flow and heat transfer area. Both types of posts, the spacers 28a and the cooling pins 28b may be arranged offset to increase the heat transfer according to FIG.
Im Bereich hinter der vorgängigen Leitschaufel V1 , wo der Nachlauf in Form einer Nachlaufdruckwelle 31 über das Wärmestausegment 1 1 läuft, und zwar die Vorderkante LE und die Seitenkante SW (Fig. 1 1 ), werden die entsprechenden Kühlbohrungen 20" (gepunktet in Fig. 4, 1 1 ) mit Kühlmedium (Luft) höheren Druckes von oberhalb des Prallkühlungsbleches 16 gespeist, um die Druckmarge zu erhöhen. Da nicht die Druckmarge aller Kühlbohrungen erhöht werden muss, ergibt sich ein beträchtlicher Performancevorteil.In the region behind the preceding guide vane V1, where the wake in the form of a trailing pressure wave 31 passes over the heat recovery segment 1 1, namely the leading edge LE and the side edge SW (FIG. 11), the corresponding cooling bores 20 "(dotted in FIG. 4, 1 1) is fed with higher pressure cooling medium (air) from above the impingement cooling plate 16 to increase the pressure margin 16. Since there is no need to increase the pressure margin of all the cooling holes, there is a considerable performance advantage.
Insbesondere wird die Nachlaufdruckwelle 31 durch Hervorstehen bzw. Zurückstehen der Komponenten 1 1 , V1 in der Trennebene zueinander so auf dem Wärmestausegment 11 positioniert (Verschiebungspfeile in Fig. 1 1 ), dass die Druckmarge der Kühlbohrungen in den Vorderkanten und im Seitenbereich, und des Ringspaltes sowie der Kühlluftverbrauch insgesamt optimal eingestellt sind.In particular, the trailing pressure wave 31 is positioned by projecting or resting the components 1 1, V1 in the parting plane relative to each other on the heat spreader segment 11 (displacement arrows in FIG. 11), that the pressure margin of the cooling bores in the leading edges and in the side region, and the annular gap and the total cooling air consumption are optimally adjusted.
Die Grosse der Prallkühlungskavitäten 17, 18 ist so gewählt, dass eine optimale Kühlung eintritt. Das Wärmestausegment 1 1 ist vorzugsweise mit einer Keramikschutzschicht (Thermal Barrier Coating TBC) versehen, wobei in den Bereichen stromauf des Vorbeidrehens der Laufschaufel B1 und am Ort, wo die Laufschaufel B1 vorbeiläuft, unterschiedliche Dicken und Toleranzen gewählt werden. Für den Bereich stromauf des Vorbeidrehens der Laufschaufel B1 werden grosse Dicken der Schutzschicht gewählt, um den Nachlaufeffekt zu reduzieren, für den Bereich am Ort, wo die Laufschaufel B1 vorbeiläuft, dagegen kleine Fertigungstoleranzen, um Performanceverluste zu minimieren.The size of the impingement cooling cavities 17, 18 is chosen so that optimum cooling occurs. The thermal damper segment 1 1 is preferably provided with a thermal barrier coating (TBC), wherein different thicknesses and tolerances are selected in the regions upstream of the forward rotation of the blade B1 and at the location where the blade B1 passes. For the region upstream of the forward rotation of the blade B1, large thicknesses of the protective layer are selected in order to reduce the tracking effect, on the other hand, for the area at the location where the blade B1 passes, there are small manufacturing tolerances to minimize performance losses.
Die Kühlbohrungen 19, 19', 20, 20', 25, 26 werden so nah wie möglich zum Heissgas im Heissgaskanal 29 positioniert. Fertigungstoleranzen, globale Wandstärken für das Reiben und Oxidation unterliegen minimalen Kriterien. Deshalb wird lokal, wo die Kühlbohrungen in die Prallkühlungskavitäten münden, die Wandstärke vorzugsweise mittels einer Nut 32 verringert (Fig. 12). The cooling bores 19, 19 ', 20, 20', 25, 26 are positioned as close as possible to the hot gas in the hot gas duct 29. Manufacturing tolerances, global wall thicknesses for rubbing and oxidation are subject to minimal criteria. Therefore, locally, where the cooling holes open into the impingement cooling cavities, the wall thickness is preferably reduced by means of a groove 32 (FIG. 12).
BezugszeichenlisteLIST OF REFERENCE NUMBERS
10 Gasturbine10 gas turbine
1 1 Wärmestausegment1 1 heat release segment
12, 13, 14 Befestigungselement12, 13, 14 fastener
15, 16 Prallkühlungsblech15, 16 baffle cooling plate
17, 18 Prallkühlungskavität17, 18 Impact cooling cavity
19, 19' Kühlbohrung19, 19 'cooling hole
20, 20', 20" Kühlbohrung20, 20 ', 20 "cooling hole
21 Abdeckplatte21 cover plate
22, 23, 24 Ausnehmung22, 23, 24 recess
25, 26 Kühlbohrung25, 26 Cooling hole
27 Loch27 holes
28 Pfosten28 posts
28a Abstandshalter28a spacers
28b Kühlpin28b cooling pin
29 Heissgaskanal29 hot gas channel
30 Ringkavität30 ring cavity
31 Nachlaufdruckwelle31 Caster pressure wave
32 Nut32 groove
B1 LaufschaufelB1 blade
LE VorderkanteLE front edge
TE HinterkanteTE trailing edge
SW Seitenbereich mc Massenstromdichte (Kühlluft)SW side area m c mass flow density (cooling air)
Massenstromdichte (Heissgas)Mass flow density (hot gas)
Pi,P2 Druck (Kühlluft)Pi, P 2 pressure (cooling air)
Ps1TE Druck (Hinterkante)Ps 1 TE pressure (trailing edge)
Ps1LE Druck (Vorderkante)Ps 1 LE pressure (leading edge)
V1 ,V2 Leitschaufel V1, V2 vane

Claims

Patentansprüche claims
1. Gasturbine (10), umfassend einen um eine Achse drehbaren, mit Laufschaufeln (B1 ) ausgestatteten Rotor, welcher unter Ausbildung eines ringförmigen Heissgaskanals (29) von einem mit Leitschaufeln (V1 , V2) ausgestatteten Gehäuse mit Abstand konzentrisch umgeben ist, wobei Ringe mit Leitschaufeln (V1 , V2) und Laufschaufeln (B1 ) in axialer Richtung abwechselnd angeordnet sind und zwischen benachbarten Leitschaufeln (V1 , V2) Wärmestausegmente (1 1 ) vorgesehen sind, welche denA gas turbine (10) comprising a rotatable about an axis, equipped with blades (B1) rotor, which is concentrically surrounded by forming a ring-shaped hot gas channel (29) by a vaned (V1, V2) housing, wherein rings with guide vanes (V1, V2) and blades (B1) are arranged alternately in the axial direction and between adjacent guide vanes (V1, V2) heat accumulation segments (1 1) are provided which the
Heissgaskanal (29) im Bereich der Laufschaufeln (B1 ) nach aussen begrenzen und durch eine Prallkühlung gekühlt werden, bei der aus einer äusseren Ringkavität (30) ein Kühlmedium, insbesondere Kühlluft, in das Wärmestausegment (1 1 ) einströmt, dadurch gekennzeichnet, dass die Anzahl der Wärmestausegmente (1 1 ) und benachbarten Leitschaufeln (V1 ,Hot gas channel (29) in the region of the blades (B1) limit to the outside and cooled by an impingement cooling, in which from an outer annular cavity (30) a cooling medium, in particular cooling air, flows into the heat recovery segment (1 1), characterized in that the Number of heat accumulation segments (1 1) and adjacent vanes (V1,
V2) in den Ringen gleich ist.V2) in the rings is the same.
2. Gasturbine nach Anspruch 1 , dadurch gekennzeichnet, dass im Wärmestausegment (1 1 ) jeweils in axialer Richtung hintereinander zwei Prallkühlungskavitäten (17, 18) angeordnet sind, in welche das Kühlmedium aus der Ringkavität (30) einströmt.2. Gas turbine according to claim 1, characterized in that in the heat accumulation segment (1 1) in each case in the axial direction behind two impact cooling cavities (17, 18) are arranged, in which the cooling medium from the annular cavity (30) flows.
3. Gasturbine nach Anspruch 2, dadurch gekennzeichnet, dass die stromabwärts liegende Prallkühlungskavität (17) von der Ringkavität (30) abgetrennt ist und beide Ringkavitäten (17, 18) mit dem Kühlmedium bei gleichem Druck beaufschlagbar sind.3. Gas turbine according to claim 2, characterized in that the downstream impact cooling cavity (17) from the annular cavity (30) is separated and both annular cavities (17, 18) are acted upon by the cooling medium at the same pressure.
4. Gasturbine nach Anspruch 3, dadurch gekennzeichnet, dass die Wärmestausegmente (1 1 ) jeweils ein mittleres, hakenförmiges Befestigungselement (13) aufweisen, dass die beiden4. Gas turbine according to claim 3, characterized in that the heat accumulation segments (1 1) each have a central, hook-shaped fastening element (13), that the two
Prallkühlungskavitäten (17, 18) durch das mittlere Befestigungselement (13) voneinander getrennt sind, und dass die stromabwärts liegende Prallkühlungskavität (17) von der Ringkavität (30) durch eine zwischen Prallkühlungskavität (17) und Ringkavität (30) angeordnete Abdeckplatte (21 ) abgetrennt ist.Impeller cooling cavities (17, 18) by the central fastening element (13) are separated from each other, and that the downstream impact cooling cavity (17) from the annular cavity (30) by an intermediate Impeller cooling cavity (17) and annular cavity (30) arranged cover plate (21) is separated.
5. Gasturbine nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass in den Prallkühlungskavitäten (17, 18) zur Erhöhung des5. Gas turbine according to one of claims 2 to 4, characterized in that in the impingement cooling cavities (17, 18) for increasing the
Wärmeübergangs eine Vielzahl von Pfosten (28; 28a,b) verteilt angeordnet ist.Heat transfer a plurality of posts (28, 28a, b) is arranged distributed.
6. Gasturbine nach Anspruch 5, dadurch gekennzeichnet, dass die Vielzahl der Pfosten (28) Abstandshalter (28a) für die Prallkühlungsbleche (15, 16) und Kühlpins (28b) zur Erhöhung des Wärmeübergangs zwischen Kühlmedium und Wärmestausegment (1 1 ) umfasst.6. Gas turbine according to claim 5, characterized in that the plurality of posts (28) spacers (28a) for the baffle cooling plates (15, 16) and cooling pins (28b) for increasing the heat transfer between the cooling medium and heat recovery segment (1 1).
7. Gasturbine nach Anspruch 6, dadurch gekennzeichnet, dass die Pfosten (28; 28a,b) in den Prallkühlungskavitäten (17, 18) in zumindest bereichsweise regelmässigen Anordnungen untergebracht sind, und dass die Abstandshalter (28a) und Kühlpins (28b) zueinander versetzt angeordnet sind.7. Gas turbine according to claim 6, characterized in that the posts (28, 28a, b) are accommodated in the impingement cooling cavities (17, 18) in at least partially regular arrangements, and that the spacers (28a) and cooling pins (28b) offset from each other are arranged.
8. Gasturbine nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass die Wärmestausegmente (1 1 ) im Bezug auf die Strömung des Heissgases jeweils eine Vorderkante (LE), eine Hinterkante (TE) und zwei Seitenbereiche (SW) aufweisen, und dass zur Filmkühlung der Kanten (LE, TE) und Seitenbereiche (SW) des Wärmestausegments (1 1 ) Kühlbohrungen (19, 19'; 20, 20'; 25, 26) vorgesehen sind, welche von den8. Gas turbine according to one of claims 2 to 7, characterized in that the heat accumulation segments (1 1) with respect to the flow of the hot gas each have a leading edge (LE), a trailing edge (TE) and two side regions (SW), and that for film cooling of the edges (LE, TE) and side regions (SW) of the heat exchanger segment (1), cooling bores (19, 19 ', 20, 20', 25, 26) are provided, which of the
Prallkühlungskavitäten (17, 18) ausgehend das Wärmestausegment (1 1 ) zu allen Seiten (LE, TE, SW) hin durchsetzen und im Aussenraum enden.Impingement cooling cavities (17, 18) starting from the heat shield segment (1 1) on all sides (LE, TE, SW) out and end in the outer space.
9. Gasturbine nach Anspruch 8, dadurch gekennzeichnet, dass die an den gegenüberliegenden Seitenbereichen (SW) des Wärmestausegments (1 1 ) endenden Kühlbohrungen (25, 26) so zueinander versetzt angeordnet sind, dass das austretende Kühlmedium in aneinander grenzenden Wärmestausegmenten (1 1 ) sich nicht gegenseitig am Austritt hindert. 9. Gas turbine according to claim 8, characterized in that on the opposite side regions (SW) of the heat dissipation segment (1 1) ending cooling bores (25, 26) are arranged offset from one another such that the exiting cooling medium in adjoining heat accumulation segments (1 1) does not prevent each other from leaving.
10. Gasturbine nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass zum ungehinderten Austreten des Kühlmediums die Kühlbohrungen (20, 20'; 25, 26) an der Vorderkante (LE) und in den Seitenbereichen (SW) zurückversetzt in einer Ausnehmung (22, 23, 24) enden.10. Gas turbine according to claim 8 or 9, characterized in that for unimpeded leakage of the cooling medium, the cooling holes (20, 20 ', 25, 26) on the front edge (LE) and in the side regions (SW) set back in a recess (22, 23, 24).
1 1. Gasturbine nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Kühlbohrungen (19', 20', 20") im Bereich der Ecken des Wärmestausegments (1 1 ) zur verbesserten Kühlung der Kantenbereiche gespreizt ausgebildet sind.1 1. Gas turbine according to one of claims 8 to 10, characterized in that the cooling holes (19 ', 20', 20 ") in the region of the corners of the heat dissipation segment (1 1) are spread apart for improved cooling of the edge regions.
12. Gasturbine nach einem der Ansprüche 8 bis 1 1 , dadurch gekennzeichnet, dass jedes Wärmestausegment (1 1 ) und die zugehörige stromaufwärts angeordnete Leitschaufel (V1 ) im Umfangsrichtung relativ zueinander so positioniert sind, dass die von der Leitschaufel (V1 ) erzeugte Nachlaufdruckwelle (31 ) durch eine entsprechende Anordnung und12. Gas turbine according to one of claims 8 to 1 1, characterized in that each heat shield segment (1 1) and the associated upstream vane (V1) are positioned in the circumferential direction relative to each other so that the by the vane (V1) generated Nachlaufdruckwelle (V1) 31) by a corresponding arrangement and
Versorgung der betroffenen Kühlbohrungen (20") kompensiert werden kann.Supply of affected cooling holes (20 ") can be compensated.
13. Gasturbine nach Anspruch 12, dadurch gekennzeichnet, dass die im Bereich der Nachlaufdruckwelle (31 ) liegenden Kühlbohrungen (20") oberhalb der Prallkühlungsbleche (5, 16) in die Prallkühlungskavitäten (17, 18) münden. 13. Gas turbine according to claim 12, characterized in that lying in the region of the trailing pressure wave (31) cooling holes (20 ") above the impingement cooling plates (5, 16) in the impingement cooling cavities (17, 18) open.
EP09800032.6A 2008-07-22 2009-07-13 Shroud seal segments arrangement in a gas turbine Active EP2310635B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01146/08A CH699232A1 (en) 2008-07-22 2008-07-22 Gas turbine.
PCT/EP2009/058895 WO2010009997A1 (en) 2008-07-22 2009-07-13 Shroud seal segments arrangement in a gas turbine

Publications (2)

Publication Number Publication Date
EP2310635A1 true EP2310635A1 (en) 2011-04-20
EP2310635B1 EP2310635B1 (en) 2018-01-24

Family

ID=39876635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09800032.6A Active EP2310635B1 (en) 2008-07-22 2009-07-13 Shroud seal segments arrangement in a gas turbine

Country Status (6)

Country Link
US (1) US8353663B2 (en)
EP (1) EP2310635B1 (en)
KR (1) KR101584974B1 (en)
CH (1) CH699232A1 (en)
MX (1) MX2011000711A (en)
WO (1) WO2010009997A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0910177D0 (en) * 2009-06-15 2009-07-29 Rolls Royce Plc A cooled component for a gas turbine engine
US8684662B2 (en) * 2010-09-03 2014-04-01 Siemens Energy, Inc. Ring segment with impingement and convective cooling
US9151179B2 (en) * 2011-04-13 2015-10-06 General Electric Company Turbine shroud segment cooling system and method
US9719362B2 (en) 2013-04-24 2017-08-01 Honeywell International Inc. Turbine nozzles and methods of manufacturing the same
GB201308602D0 (en) 2013-05-14 2013-06-19 Rolls Royce Plc A Shroud Arrangement for a Gas Turbine Engine
US8814507B1 (en) 2013-05-28 2014-08-26 Siemens Energy, Inc. Cooling system for three hook ring segment
WO2014204574A2 (en) * 2013-06-21 2014-12-24 United Technologies Corporation Seals for gas turbine engine
EP2860358A1 (en) 2013-10-10 2015-04-15 Alstom Technology Ltd Arrangement for cooling a component in the hot gas path of a gas turbine
US10690055B2 (en) * 2014-05-29 2020-06-23 General Electric Company Engine components with impingement cooling features
EP3026219B1 (en) * 2014-11-27 2017-07-26 Ansaldo Energia Switzerland AG Support segment for a transition piece between combustor and turbine
US20180023404A1 (en) * 2015-02-16 2018-01-25 Siemens Aktiengesellschaft Ring segment system for gas turbine engines
US10837300B2 (en) 2016-11-01 2020-11-17 General Electric Company Seal pressurization in box shroud
US10641174B2 (en) 2017-01-18 2020-05-05 General Electric Company Rotor shaft cooling
US10677084B2 (en) 2017-06-16 2020-06-09 Honeywell International Inc. Turbine tip shroud assembly with plural shroud segments having inter-segment seal arrangement
US10900378B2 (en) 2017-06-16 2021-01-26 Honeywell International Inc. Turbine tip shroud assembly with plural shroud segments having internal cooling passages
CN108443236A (en) * 2018-03-05 2018-08-24 清华大学 A kind of compressor stator corner separation control device and its control method
US10989068B2 (en) 2018-07-19 2021-04-27 General Electric Company Turbine shroud including plurality of cooling passages
US10982559B2 (en) 2018-08-24 2021-04-20 General Electric Company Spline seal with cooling features for turbine engines
US10822986B2 (en) * 2019-01-31 2020-11-03 General Electric Company Unitary body turbine shrouds including internal cooling passages
US10830050B2 (en) 2019-01-31 2020-11-10 General Electric Company Unitary body turbine shrouds including structural breakdown and collapsible features
US10927693B2 (en) 2019-01-31 2021-02-23 General Electric Company Unitary body turbine shroud for turbine systems
US11035251B2 (en) * 2019-09-26 2021-06-15 General Electric Company Stator temperature control system for a gas turbine engine
US11098612B2 (en) * 2019-11-18 2021-08-24 Raytheon Technologies Corporation Blade outer air seal including cooling trench
EP4001593B1 (en) * 2020-11-13 2023-12-20 Doosan Enerbility Co., Ltd. A gas turbine vane comprising an impingement cooled inner shroud
CN114320488A (en) * 2021-10-20 2022-04-12 中国航发四川燃气涡轮研究院 Sealing structure of aeroengine turbine guider blade flange plate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4573865A (en) * 1981-08-31 1986-03-04 General Electric Company Multiple-impingement cooled structure
US5538393A (en) * 1995-01-31 1996-07-23 United Technologies Corporation Turbine shroud segment with serpentine cooling channels having a bend passage
DE19619438B4 (en) 1996-05-14 2005-04-21 Alstom Heat release segment for a turbomachine
US6146091A (en) * 1998-03-03 2000-11-14 Mitsubishi Heavy Industries, Ltd. Gas turbine cooling structure
EP1124039A1 (en) * 2000-02-09 2001-08-16 General Electric Company Impingement cooling apparatus for a gas turbine shroud system
US6354795B1 (en) * 2000-07-27 2002-03-12 General Electric Company Shroud cooling segment and assembly
US6779597B2 (en) * 2002-01-16 2004-08-24 General Electric Company Multiple impingement cooled structure
US6702550B2 (en) * 2002-01-16 2004-03-09 General Electric Company Turbine shroud segment and shroud assembly
FR2852053B1 (en) * 2003-03-06 2007-12-28 Snecma Moteurs HIGH PRESSURE TURBINE FOR TURBOMACHINE
US7306424B2 (en) * 2004-12-29 2007-12-11 United Technologies Corporation Blade outer seal with micro axial flow cooling system
CA2644099C (en) * 2006-03-02 2013-12-31 Ihi Corporation Impingement cooled structure
US9133715B2 (en) * 2006-09-20 2015-09-15 United Technologies Corporation Structural members in a pedestal array
US7740444B2 (en) * 2006-11-30 2010-06-22 General Electric Company Methods and system for cooling integral turbine shround assemblies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010009997A1 *

Also Published As

Publication number Publication date
US20110171013A1 (en) 2011-07-14
KR20110042172A (en) 2011-04-25
EP2310635B1 (en) 2018-01-24
MX2011000711A (en) 2011-03-21
CH699232A1 (en) 2010-01-29
WO2010009997A1 (en) 2010-01-28
KR101584974B1 (en) 2016-01-13
US8353663B2 (en) 2013-01-15

Similar Documents

Publication Publication Date Title
EP2310635B1 (en) Shroud seal segments arrangement in a gas turbine
DE69205889T2 (en) Cooling for a gas turbine stator ring.
DE69517306T2 (en) TURBINE BLADE WITH SEALING ELEMENT AND AN INTEGRAL HEAT SHIELD
EP1048822B1 (en) Heat shield for a gas turbine
DE60128865T2 (en) Cooling for a turbine shroud ring
DE69409332T2 (en) Seal in a gas turbine
EP1789654B1 (en) Turbine engine vane with fluid cooled shroud
DE2837123C2 (en) Turbomachinery blade
CH708795A2 (en) Segment for an annular rotary machine Leitradbauteil.
EP2300686B1 (en) Gas turbine comprising a guide vane
DE102008002890A1 (en) Alternately cooled turbine stator
EP1276972B1 (en) Turbine
EP1834066A1 (en) Turbine blade for a gas turbine, use of a turbine blade and method for cooling a turbine blade
DE4102033A1 (en) NOZZLE COOLING
EP3093447B1 (en) Rotor of a turbine of a gas turbine with improved cooling air conduction
DE102008037501A1 (en) Gas turbines with flexible tendon joint seals
CH701041A2 (en) A turbine with sidewall cooling plenum.
EP2881541A1 (en) Tip cooling of a turbine rotor blade of a gas turbine
EP2084368B1 (en) Turbine blade
DE102014100087A1 (en) Interior structure of a turbine blade
EP3336313A1 (en) Turbine rotor blade arrangement for a gas turbine and method for the provision of sealing air in a turbine rotor blade arrangement
EP1409926A1 (en) Baffle cooling device
DE1601563B2 (en) Air-cooled blade
EP2428647B1 (en) Transitional Region for a Combustion Chamber of a Gas Turbine
EP2092164A1 (en) Turbomachine, particularly a gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHNIEDER, MARTIN

Inventor name: ARZEL, TANGUY

Inventor name: HEINZ-SCHWARZMAIER, THOMAS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130311

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANSALDO ENERGIA IP UK LIMITED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170814

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 965912

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014709

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180124

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180424

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014709

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180713

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180713

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 965912

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 15

Ref country code: DE

Payment date: 20231214

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240430