EP1048069A1 - Method for connecting electronic components to a substrate, and a method for checking such a connection - Google Patents

Method for connecting electronic components to a substrate, and a method for checking such a connection

Info

Publication number
EP1048069A1
EP1048069A1 EP99953603A EP99953603A EP1048069A1 EP 1048069 A1 EP1048069 A1 EP 1048069A1 EP 99953603 A EP99953603 A EP 99953603A EP 99953603 A EP99953603 A EP 99953603A EP 1048069 A1 EP1048069 A1 EP 1048069A1
Authority
EP
European Patent Office
Prior art keywords
connection
solder
carrier substrate
contact
soldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP99953603A
Other languages
German (de)
French (fr)
Inventor
Jan Benzler
Albert-Andreas Hoebel
Gerhard Schmidt
Stefan Rupprecht
Thomas Ruzicka
Reiner Schuetz
Jiang Hongquan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1048069A1 publication Critical patent/EP1048069A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05555Shape in top view being circular or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0605Shape
    • H01L2224/06051Bonding areas having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10152Auxiliary members for bump connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/10175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09381Shape of non-curved single flat metallic pad, land or exposed part thereof; Shape of electrode of leadless component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09427Special relation between the location or dimension of a pad or land and the location or dimension of a terminal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0465Shape of solder, e.g. differing from spherical shape, different shapes due to different solder pads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49004Electrical device making including measuring or testing of device or component part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49144Assembling to base an electrical component, e.g., capacitor, etc. by metal fusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49147Assembling terminal to base
    • Y10T29/49149Assembling terminal to base by metal fusion bonding

Definitions

  • the invention relates to a method for connecting electronic components to a carrier substrate with the features mentioned in the preamble of claim 1, an arrangement for connecting electronic components to a carrier substrate with the features mentioned in the preamble of claim 10 and a method for checking a Connection between electronic components and a carrier substrate with the features mentioned in the preamble of claim 16.
  • soldering bumps with a diameter of approximately 75 to 80 ⁇ m are usually used, and in BGA processes, soldering bumps with a diameter of approximately 500 to 700 ⁇ m are used.
  • a ceramic substrate, a printed circuit board, a silicon substrate or the like is used as the carrier substrate, for example.
  • the soldering bumps are then soldered to the connection contacts of the carrier substrate in a reflow soldering process, the soldering bumps being melted in a reflow oven and wetting the contact surfaces of the carrier substrate.
  • connection contacts Such a method is known for example from WO 98/14995, US Pat. No. 5,284,796 or US Pat. No. 5,246,880.
  • a multiplicity of electrically conductive connections between connection contacts of the electronic component and the carrier substrate are produced simultaneously during the flip-chip process.
  • connection contacts Due to the arrangement of the connection contacts generated during the reflow soldering between the electronic component and the carrier substrate, a visual inspection is not possible. In order to be able to check the connection contacts, in particular to wet the melted solder bumps with the
  • connection contacts of the carrier substrate To be able to check the contact surfaces of the connection contacts of the carrier substrate is known from the exposing the electronic component and the carrier substrate to an existing composite arrangement of X-rays and evaluating a X-ray image. Depending on the material used for the solder bumps, a contrast display can be achieved on the X-ray image, which shows the solder bumps and the areas of the composite surrounding the solder bumps. Depending on the resolution of an X-ray device used, missing soldering points or bridging between adjacent soldering points can thereby be clearly recognized. However, wetting of the solder bumps with the contact surfaces of the connection contacts of the carrier substrate, which occurs only partially, is not possible, for example due to contamination of the connection contacts. These so-called "cold soldering points” impair or prevent the function of the electronic components, so that their detection is essential for a quality check.
  • the method according to the invention with the features mentioned in claim 1 offers the advantage that a non-destructive check of electrically conductive connections produced by means of a flip-chip technology or BGA technology is possible in a simple manner. Characterized in that during the soldering the at least one soldering pad is deformed in the contacting plane in such a way that a degree of deformation is achieved which allows an evaluation of the degree of deformation by means of an X-ray image of the connection point By means of an intensity profile of an X-ray radiation penetrating the composite arrangement or a two-dimensional or a three-dimensional X-ray image of the connection point, in addition to the presence of a solder joint, its proper wetting with the connection contact to be contacted is checked.
  • the solder bumps experience a mass distribution during the soldering, so that their thickness decreases continuously towards the edge, the mass distribution preferably being determined by a solder mask. that encompasses the connection contacts of the carrier substrate.
  • the solder bumps can experience a defined deformation in the contacting plane. According to the arrangement of the solder mask, this results in a mass distribution decreasing towards the edge of the solder bumps, so that a defined deformation of the solder bumps takes place.
  • the X-rays are absorbed differently by the material of the solder bump according to the given mass distribution of the solder bumps, so that there is an intensity curve with a continuous transition from a maximum to a minimum or vice versa of the X-rays penetrating the composite arrangement.
  • Transition between the minimum and the maximum allows the contact surface of the connection contact to be wetted. Recognize it in a simple way.
  • the diameters of masking openings of the solder mask to a diameter of the solder bumps are selected in defined areas, a defined mass distribution of the solder bump can be achieved during the reflow soldering of the components on the carrier substrate. This thus results in the steady course of the thickness of the solder bump seen in the contacting plane and thus the steady transition between a minimum and a maximum of the intensity of the X-rays passing through the composite arrangement.
  • the method according to the invention for checking a connection between electronic components and a carrier substrate it is advantageously possible to enable a high-precision quality evaluation of contact points obtained in a flip-chip method or in BGA technology in a simple manner.
  • the soldering bumps By evaluating an influence on an intensity profile of the X-rays penetrating the composite arrangement in a transition area from a soldered soldering bump to the area surrounding the soldering bumps, or a two-dimensional or three-dimensional X-ray image of the connection point, the soldering bumps being deformed during the soldering so that when proper wetting of the connection contacts, a constant transition of the intensity curve or a visible deformation of the solder bump in the X-ray image can be measured, the faultless or faulty contact points can be recognized on the basis of the X-ray images obtained.
  • solder bumps which are not or only insufficiently wetted are distinguished by a sudden transition in the intensity distribution, so that a "cold soldering point" can be concluded on the basis of this sudden intensity course.
  • a non-destructive and precise evaluation can take place.
  • the soldering mask surrounds the connection contact of the carrier substrate, the mask opening of which is larger than the connection contact. This advantageously makes it possible for the soldering bump to be deformed during the soldering of the composite arrangement in such a way that the end faces of the terminal contact running perpendicular to the contact plane of the composite arrangement can be wetted by the material of the solder bump. Because the soldering stop mask is arranged at a distance from the connection contact, this free space can be used to enable the material of the solder bump to be deformed in this free space, while at the same time the end edges of the connection contact are wetted with proper wetting.
  • the correct wetting of the front edge of the connection contact can be checked by a preferred method for checking the connection between the electronic component and the carrier substrate. Characterized in that a three-dimensional X-ray image of the composite arrangement in the area of a layer is attached and evaluated, which is in one plane with the at least one connection contact of the carrier substrate, the proper wetting of the front edges in the X-ray image of this layer can be verified in a simple manner. The fact that only the layer in which the connection contacts are arranged is picked out and represented from the entire composite arrangement means that the presence of material deformed during the soldering can be introduced into the plane of the connection contact so that it wets the front edges can prove by a ring-shaped representation on the X-ray.
  • a wetting of the front edges of the connection contact can be checked by means of a two-dimensional x-ray image of the composite arrangement.
  • wetting of the front edges can be detected very advantageously by establishing a characteristic curve in the manner of a saddle in an intensity profile of the x-rays penetrating the composite arrangement, which, in simple terms, indicates the proper use of the front sides.
  • the deformation of the - essentially round - soldering bump can be achieved by the shape of the connection contacts.
  • the soldering block wets the shaped connection contact and thereby assumes essentially its shape.
  • Preferred definite forms of the connection contact are preferably oval, triangular or polygonal shapes or the like.
  • the soldering pad corresponds to the previously known shape of the connection contact, it can be assumed that the connection contact is completely and thus properly wetted. If the shape of the solder bump on the x-ray corresponds, for example the original shape of the solder bump, in particular a round shape, the non-acceptance of the shape of the connection contact by the solder bump means that the connection contact is not properly wetted.
  • FIG. 1 shows a section of a cross section through a carrier substrate with a flip-chip component placed thereon in front of a reflow soldering
  • FIG. 2 shows the composite arrangement according to FIG. 1 after reflow soldering
  • FIG. 4 shows a bundle arrangement after reflow soldering in the prior art
  • FIG. 5 shows a schematic sectional view of the soldered composite arrangement according to a further exemplary embodiment
  • FIG. 6 shows a schematic view of a three-dimensional X-ray image of the arrangement according to FIG. 5;
  • FIG. 7 shows a schematic view of a two-dimensional X-ray image
  • Figure 8 is a plan view of a connection diagram of a
  • FIG. 9 various forms of connection contacts
  • Figure 10 is a schematic two-dimensional X-ray image of a composite arrangement. Description of the embodiments
  • FIG. 1 shows a section of a cross section through a carrier substrate 10, which can be a guide plate, a ceramic plate, a silicon substrate or the like.
  • a carrier substrate 10 which can be a guide plate, a ceramic plate, a silicon substrate or the like.
  • it is a printed circuit board, the upper side 12 of which is provided for equipping with electrical and / or electronic components 14.
  • Conductor tracks 16 are applied on the upper side 12, only one conductor track 16 is shown in FIG. 1 and in the subsequent figures, it being clear that the carrier substrate 10 can have a large number of conductor tracks 16.
  • the conductor track 16 ends in a connection contact 18, which forms a contact surface 20, which is used to establish an electrical connection to the components 14.
  • the carrier substrate 10 be equipped with flip-chip components and / or SMD components (surface mounted device), the component 14 being shown only in part.
  • a comparable connection technique is also the production of soldered connections of ball grid arrays, the term soldering pad being used synonymously below for bumps, balls or the like.
  • connection contact 18 corresponds to the pattern of connection contacts 22 of the component 14.
  • connection contact 22 to be contacted of the element 14 is thus assigned a connection contact 18 of the carrier substrate 10, that is to say that prior to connecting the component 14 with the carrier substrate 10 to the mutually facing sides of the component 14 and the carrier substrate 10, these are arranged opposite one another.
  • connection contacts 22 of the component 14 each have a solder bump 24 (bump, ball), which consist of an electrically conductive material or at least contain electrically conductive material.
  • the soldering bumps 24 are applied to the connection contacts 22 by means of known methods, so that no further details are to be given in the context of the present description.
  • the solder pads In flip-chip technology, the solder pads have a diameter d2 of approximately 75 to 80 ⁇ m, in BGA technology a diameter of approximately 500 to 700 ⁇ m.
  • connection contact 18 of the carrier substrate 10 is surrounded by a solder mask 26.
  • the solder mask 26 has corresponding masking openings 28 corresponding to the grid of the electrically conductive connections to be produced between the component 14 and the carrier substrate 10, that is, of side walls 30 of the
  • solder mask 26 is limited.
  • the solder mask 26 is formed, for example, by a solder resist applied by screen printing.
  • the openings 28 are preferably round and have a diameter d ⁇ _ which is selected to be larger than a diameter d2 which is essentially spherical. shaped solder bumps 24.
  • a ratio of diameter fürmesser 2 • ⁇ d ⁇ _ is, for example, greater than 1: 1.1, in particular 1: 1.3 to 1: 1.4.
  • FIGS. 1 to 4 Each below the schematic partial sectional views is shown in FIGS. 1 to 4 in a diagram in an intensity profile 32 of X-rays 34 penetrating the arrangement and their spatial distribution.
  • the intensity profile 32 is shown in the course of a contacting level of a composite arrangement 36 (FIG. 2), whereby the contacting level coincides with a plane parallel to the upper side 12 of the carrier substrate 10.
  • This intensity curve 32 is shown in FIG. 1 only for explanation, it becoming clear that when the composite arrangement 36 is acted upon by the X-rays 34, the X-rays 34 penetrate them with different intensities due to the given material composition of the individual regions of the composite arrangement 36.
  • the X-ray radiation 34 experiences a strong absorption, so that the characteristic curve 38, which reflects the intensity course 32, of the diameter & 2 of the solder bump 24 becomes clear by means of a sudden change in the intensity 32 on the basis of the characteristic curve 38.
  • the composite arrangement 36 is shown after reflow soldering has taken place.
  • the component 14 is placed on the carrier substrate 10, or the solder bumps 24 are placed on the contact surfaces 20.
  • all holes 24 of the component 10 have the same dimensioning, so that all solder bumps 24 are placed on the contact surfaces 20 assigned to them.
  • the composite arrangement 36 is then fed to a reflow soldering station.
  • the solder of the bumps 24 is heated and melts in the reflow soldering station. As a result, the material of the solder bumps 24 begins to flow and wets the contact surface 20.
  • connection contacts 18 consist of a readily wettable material, for example nickel, copper or gold. Due to the good wettability of the contact surfaces 20, the solder assumes the shape shown in FIG. 2. The surface tension force of the solder and the weight force of the component 14 cause the component 14 to be moved towards the top 12 of the carrier substrate 10 until, for example, the spacers not shown in the figures limit this movement of one another.
  • the mass of the solder bump 24 is redistributed over its thickness D. Due to the ratio of the diameter d2 to d__ (FIG. 1), the thickness D of the solder bump changes steadily 24 from its edge, which is determined by the side wall 30 of the masking openings 28, to its center in the region of the connecting contacts 22 of the component 14. Thus, the solder bumps 24 are deformed in the contact tion level, the degree of deformation and thus the mass distribution of the solder bump 24 over the contacting plane can be determined by the ratio of the diameter d2 to d ⁇ _.
  • the plan view shows a planar intensity distribution of the X-rays 34 for each of the solder bumps 24 for each of the solder bumps 24, as viewed from above as shown in FIG. 1 and FIG. 2 results. Since the solder bumps 24 are essentially spherical, there is a radial course of the intensity distribution per solder bump 24, the regions 44 then running between corresponding radii around a center of the solder bumps 24, which is characterized by the minimum 42 of the intensity 32 .
  • the composite arrangement 36 can be checked in such a way that an X-ray image of the not yet soldered composite according to FIG. 1 is compared with an X-ray image of the soldered composite according to FIG. 2, the difference between the jumps between minima and maxima of the intensity profile 32 and the then constant ones Transition areas 44 between the minimum 42 and the maximum 40 is used as an evaluation criterion.
  • the x-ray recordings can be evaluated either manually or in a suitable manner automatically by means of image processing.
  • FIG. 3 shows a further embodiment of an already soldered assembly 36.
  • the arrangement of a solder mask is dispensed with, so that the solder of the solder bumps 24 on the contact surface 20 and the surface of the contact surface 20 on a send conductor 18 can flow away. Due to the good wettability of the contact surface 20, the solder flows away only in the direction of the conductor track 18, so that the solder does not flow at the termination 46 of the conductor track 18 shown here on the left.
  • the contact point 18 can also be designed in such a way that the solder can flow smoothly in all directions of the contacting plane.
  • a composite arrangement 36 according to the prior art is shown in FIG.
  • the ratio between a diameter d ⁇ _ of the opening 28 of the solder mask 26 and the diameter d2 of the solder bumps 24 is almost the same, that is, the ratio of the diameter d__: d2 is 1: 1, so that the deformation of the solder bumps 24 in the direction of the Contact level essentially remains, so that a
  • the two-dimensional X-ray examination carried out here leads to the abrupt transition between the minimum 42 and the maximum 40 of the intensity profile 32 of the X-rays 34.
  • the presence of an electrically conductive connection via a solder bump 24 can be recognized, it is not clear whether sufficient wetting of the contact surface 20 actually took place.
  • FIG. 5 shows a further bundle arrangement 36 in another exemplary embodiment.
  • the same parts as in the previous figures are provided with the same reference numerals and are not explained again.
  • soldering bump shown on the left wets the connection contact properly after the component 14 has been soldered to the carrier substrate 10, while the soldering bump shown on the right does not properly wet the connection contact 18 for comparison.
  • the deformation of the soldering pad 24, which is carried out during the soldering in the sense of the invention, is achieved in such a way that a solder stop mask 26 extends at a distance from the connecting contact 18 in such a way that lateral end faces 50 of the connecting contact 18 from, that is to say essentially perpendicular to the plane of contact the solder bump 24 are wetted with.
  • connection contact 18 Since on the one hand the material of the soldering pad 24 is converted into a melt state during the soldering, so that due to The good usability of the material of the connection contact 18, for example made of gold, aluminum, platinum or the like, the end faces 50 are also used, by filling a remaining distance between the solder mask 26 and the connection contact 18 with the solder. This spacing of the solder stop mask 26 from the connection contact 18 results in a desired deformation of the solder bump 24 during the soldering, which, as will be explained below, can be evaluated by means of an X-ray method.
  • solder bump 24 shown on the right is not properly wetted with the connection contact 18.
  • the space between the solder mask 26 and the connection contact 18 is not filled with the material of the solder bump 24, so that the end faces 50 of the connection contact 18 are not wetted. This can take place, for example, as a result of contamination of the connection contact 18, which in itself impairs good wettability.
  • a layer of the composite arrangement 36 designated S in FIG. 5 is examined by means of three-dimensional X-ray technology and represented in an X-ray image schematically indicated in FIG.
  • layer resolutions of approximately 30 to 100 ⁇ m can be achieved.
  • the layer S can be taken out of the composite arrangement 36 in which the connection contact 18 lies. By making this layer S visible in the X-ray image, the image schematically indicated in FIG. 6 is obtained.
  • connection contact 18 In the case of a properly wetted connection contact 18, the material of the solder bump 24 located within layer S is visible as a ring 52 which surrounds the connection contact 18. In the case of the image schematically shown in FIG. 6, however, no material of the solder bump 24 is deformed due to the non-wetting of the end edges 50 of the connection contact 18 within the layer thickness S, so that this is also not visible in the X-ray image.
  • FIG. 7 illustrates a two-dimensional X-ray evaluation of the composite arrangement 36, the representation of the composite arrangement 36 in FIG. 7 corresponding to the composite arrangement 36 already shown in FIG.
  • a mass distribution of the solder bumps 24 results, which can be illustrated in a two-dimensional representation.
  • the front edges 50 are properly wetted, so that there is a mass distribution of the solder of the soldering bump 24, which corresponds to the illustrated intensity curve 32, a saddle-shaped curve 51 being obtained here. If proper wetting of the front edges 50 does not take place - as in the right illustration in FIG.
  • FIG. 8 shows the connection diagram of a printed circuit board with n x m connection contacts 18.
  • the values for n and m can be 15, for example.
  • the connection contacts 18 can have a defined shape as seen in plan view.
  • FIG. 9 shows a greatly enlarged illustration of each of a connection contact 18 in its top view, in order to suspect some of the possible defined shapes for the connection contacts 18 - without claiming to be complete.
  • the defined shape of the connection contacts can be carried out, for example, by forming a solder stop mask on a conductor track, a mask opening of the solder stop mask then showing the shape of the connection contact. clock 18 results.
  • Another possibility is to apply the connection contacts 18 to the substrate 10 with a corresponding shape. It is crucial that the geometry of the connection contacts 18 deviate from a circular shape, which essentially corresponds to the round shape of the solder bumps, so that when the connection contact 18 is used, the solder bump correspondingly flows and the shape of the connection contacts 18 takes on .
  • connection contact 18 according to FIGS. 9a and 9b can have, for example, bars projecting from a round shape, according to FIG. 9c triangular, according to FIG. 9d with one of A circular shape originating from the nose and, according to FIG. 9e, with noses arranged opposite to a circular shape, droplet-shaped according to FIG. 9f, oval according to FIG. 9g, square according to FIG. 9h and round with a web according to FIG. 9i.
  • all the connection contacts 18 to be contacted can have the same geometrical shape or also mixed forms, that is to say connection contacts 18 of a conductor plate have a different geometrical shape.
  • all the contact contacts of a printed circuit board to be contacted have the same geometric shape.
  • FIG. 10 shows a schematic section of a two-dimensional X-ray image, by means of which the correct wetting of connection contacts 18 by solder bumps 24 is checked.
  • solder bumps 24 can be seen (the image also shows, not to be treated here, conductor tracks and plated-through holes), of which the two solder bumps 24 shown above have an essentially circular shape, while the two solder bumps 24 shown below essentially have one have an oval shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Wire Bonding (AREA)

Abstract

The invention relates to a method for connecting electronic components to a substrate, whereby at least one terminal contact of the component is connected in an electrically conductive manner to at least one terminal contact on the upper side of the substrate by depositing a solder bump on at least one of the terminal contacts to be connected. The component is precisely connected to the substrate, and the at least one solder bump is soldered in order to moisten the contact surfaces. The invention provides that, during soldering, the at least one solder bump (24) is deformed in the plane of contact such that a degree of deformation is obtained which permits a two-dimensional evaluation of the degree of deformation by analyzing a radiograph of the connection point.

Description

Verfahren zur Verbindung von elektronischen Bauelementen mit einem TrägerSubstrat sowie Verfahren zur Überprüfung einer derartigen VerbindungMethod for connecting electronic components to a carrier substrate and method for checking such a connection
Die Erfindung betrifft ein Verfahren zur Verbindung von elektronischen Bauelementen mit einem Trägersubstrat mit den im Oberbegriff des Anspruchs 1 ge- nannten Merkmalen, eine Anordnung zur Verbindung von elektronischen Bauelementen mit einem Trägersubstrat mit den im Oberbegriff des Anspruchs 10 genannten Merkmalen sowie ein Verfahren zur Überprüfung einer Verbindung zwischen elektronischen Bauelementen und einem Trägersubstrat mit den im Oberbegriff des Anspruchs 16 genannten Merkmalen.The invention relates to a method for connecting electronic components to a carrier substrate with the features mentioned in the preamble of claim 1, an arrangement for connecting electronic components to a carrier substrate with the features mentioned in the preamble of claim 10 and a method for checking a Connection between electronic components and a carrier substrate with the features mentioned in the preamble of claim 16.
Stand der TechnikState of the art
Es ist bekannt, ein Trägersubstrat mit elektronischen Bauelementen in einem sogenannten Flip-Chip-Vεrfahren oder Ball-Grid-Array (BGA) -Verfahren zu bestücken. Hierbei werden die elektronischen Bauelemente auf der Anschlußseite mit einer Vielzahl von Löthδckern, so- genannten Bumps oder Balls, versehen und anschließend mit der Anschlußseite nach unten gewandt auf ein mit von Kontaktflächen gebildeten Anschlußkontakten ver- sehenes Trägersubstrat aufgesetzt, wobei ein Fügen derart erfolgt, daß die Löthδcker korrespondierenden Anschlußkontakten, sogenannten Pads, justiert zugeordnet sind. Bei Flip-Chip-Verfahren werden üblicher- weise Löthöcker mit einem Durchmesser von circa 75 bis 80 μm und bei BGA-Verfahren Löthöcker mit einem Durchmesser von circa 500 bis 700 μm verwendet. Als Trägersubstrat dient beispielsweise ein Keramiksubstrat, eine Leiterplatte, ein Siliziumsubstrat oder dergleichen. Anschließend werden die Löthöcker in einem Reflow-Lötverfahren mit den Anschlußkontakten des Trägersubstrates verlötet, wobei die Löthöcker in einem Reflow-Ofen aufgeschmolzen werden und die Kontaktflächen des Trägersubstrates benetzen.It is known to equip a carrier substrate with electronic components in a so-called flip-chip method or ball grid array (BGA) method. In this case, the electronic components on the connection side are provided with a large number of solder bumps or balls, and are then turned with the connection side downward onto a connection contact formed by contact surfaces. see carrier substrate placed, with a joining is carried out such that the soldering pins are assigned to corresponding connection contacts, so-called pads, adjusted. In flip-chip processes, soldering bumps with a diameter of approximately 75 to 80 μm are usually used, and in BGA processes, soldering bumps with a diameter of approximately 500 to 700 μm are used. A ceramic substrate, a printed circuit board, a silicon substrate or the like is used as the carrier substrate, for example. The soldering bumps are then soldered to the connection contacts of the carrier substrate in a reflow soldering process, the soldering bumps being melted in a reflow oven and wetting the contact surfaces of the carrier substrate.
Ein derartiges Verfahren ist beispielsweise aus der WO 98/14995, der US PS 5,284,796 oder der US PS 5,246,880 bekannt. Entsprechend der Anzahl zu kontaktierender Anschlußkontakte werden hierbei gleichzei- tig während des Flip-Chip-Verfahrens eine Vielzahl elektrisch leitender Verbindungen zwischen Anschlußkontakten des elektronischen Bauelementes und des Trägersubstrates hergestellt.Such a method is known for example from WO 98/14995, US Pat. No. 5,284,796 or US Pat. No. 5,246,880. In accordance with the number of connection contacts to be contacted, a multiplicity of electrically conductive connections between connection contacts of the electronic component and the carrier substrate are produced simultaneously during the flip-chip process.
Aufgrund der Anordnung der während des Reflow-Lötens erzeugten Verbindungskontakte zwischen dem elektronischen Bauelement und dem Trägersubstrat ist eine Sichtprüfung nicht möglich. Um eine Prüfung der Verbindungskontakte vornehmen zu können, insbesondere um eine Benetzung der aufgeschmolzenen Löthöcker mit denDue to the arrangement of the connection contacts generated during the reflow soldering between the electronic component and the carrier substrate, a visual inspection is not possible. In order to be able to check the connection contacts, in particular to wet the melted solder bumps with the
Kontaktflächen der Anschlußkontakte des Trägersubstrates prüfen zu können, ist bekannt, die aus dem elektronischen Bauelement und dem Trägersubstrat bestehende Verbundanordnung einer Röntgenstrahlung auszusetzen und eine angefertigte Röntgenaufnahme auszuwerten. Entsprechend des verwendeten Materials der Löthöcker kann hierbei eine Kontrastdarstellung auf der Röntgenaufnahme erzielt werden, die die Löthöcker und die die Löthöcker umgebenden Bereiche des Verbundes zeigen. Entsprechend der Auflösung eines verwendeten Röntgengerätes sind fehlende Lötstellen oder Brückenbildungen zwischen benachbarten Lötstellen hierdurch gut erkennbar. Jedoch ist eine nicht oder nur teilweise erfolgende Benetzung der Löthöcker mit den Kontaktflächen der Anschlußkontaktε des Trägersubstrates, beispielsweise aufgrund von Verschmutzun- gen der Anschlußkontakte, nicht möglich. Diese sogenannten "kalten Lötstellen" beeinträchtigen beziehungsweise verhindern die Funktion der elektronischen Bauelemente, so daß deren Erkennen für eine Qualitätsüberprüfung unabdingbar ist.To be able to check the contact surfaces of the connection contacts of the carrier substrate is known from the exposing the electronic component and the carrier substrate to an existing composite arrangement of X-rays and evaluating a X-ray image. Depending on the material used for the solder bumps, a contrast display can be achieved on the X-ray image, which shows the solder bumps and the areas of the composite surrounding the solder bumps. Depending on the resolution of an X-ray device used, missing soldering points or bridging between adjacent soldering points can thereby be clearly recognized. However, wetting of the solder bumps with the contact surfaces of the connection contacts of the carrier substrate, which occurs only partially, is not possible, for example due to contamination of the connection contacts. These so-called "cold soldering points" impair or prevent the function of the electronic components, so that their detection is essential for a quality check.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße Verfahren mit den im Anspruch 1 genannten Merkmalen bietet den Vorteil, daß in einfa- eher Weise eine zerstörungsfreie Überprüfung von mittels einer Flip-Chip-Technik oder BGA-Technik hergestellter elektrisch leitender Verbindungen möglich ist. Dadurch, daß während des Lötens der wenigstens eine Löthδcker in der Kontaktierungsebene derart ver- formt wird, daß ein Verformungsgrad erzielt wird, der eine Auswertung des Verformungsgrades mittels einer Röntgenaufnahme der Verbindungsstelle gestattet, kann über einen Intensitätsverlauf einer die Verbundanordnung durchdringenden Röntgenstrahlung oder einer zweidimensionalen oder einer dreidimensionalen Röntgenaufnahme der Verbindungsstelle neben dem Vorhan- densein einer Lötstelle deren ordnungsgemäße Benetzung mit dem zu kontaktierenden Anschlußkontakt überprüft werden.The method according to the invention with the features mentioned in claim 1 offers the advantage that a non-destructive check of electrically conductive connections produced by means of a flip-chip technology or BGA technology is possible in a simple manner. Characterized in that during the soldering the at least one soldering pad is deformed in the contacting plane in such a way that a degree of deformation is achieved which allows an evaluation of the degree of deformation by means of an X-ray image of the connection point By means of an intensity profile of an X-ray radiation penetrating the composite arrangement or a two-dimensional or a three-dimensional X-ray image of the connection point, in addition to the presence of a solder joint, its proper wetting with the connection contact to be contacted is checked.
In bevorzugter Ausgestaltung der Erfindung, insbeson- dere bei der Flip-Chip-Technik, ist vorgesehen, daß die Löthöcker während des Lötens eine Masseverteilung erfahren, so daß ihre Dicke zum Rand hin stetig abnimmt, wobei die Masseverteilung vorzugsweise durch eine Lötstopmaske bestimmt wird, die die Anschlußkon- takte des Trägersubstrates umgreift. Hierdurch wird vorteilhaft erreicht, daß bei bekannter Ausgangsgröße und somit bekannter Ausgangsmasse der Löthöcker diese eine definierte Verformung in der Kontaktierungsebene erfahren können. Entsprechend der Anordnung der Löt- stopmaske ergibt sich hierdurch eine zum Rand der Löthöcker hin abnehmende Masseverteilung, so daß eine definierte Verformung der Löthöcker erfolgt. Durch die nachfolgende Röntgenbestrahlung der Verbindungsstelle werden die Röntgenstrahlen entsprechend der gegebenen Masseverteilung der Löthöcker unterschiedlich von dem Material des Löthöckers absorbiert, so daß sich ein Intensitätsverlauf mit einem stetigen Übergang von einem Maximum zu einem Minimum beziehungsweise umgekehrt der die Verbundanordnung durch- dringenden Rδntgenstrahlen ergibt. Dieser stetigeIn a preferred embodiment of the invention, in particular in the flip-chip technology, it is provided that the solder bumps experience a mass distribution during the soldering, so that their thickness decreases continuously towards the edge, the mass distribution preferably being determined by a solder mask. that encompasses the connection contacts of the carrier substrate. In this way, it is advantageously achieved that, with a known starting size and thus known starting mass, the solder bumps can experience a defined deformation in the contacting plane. According to the arrangement of the solder mask, this results in a mass distribution decreasing towards the edge of the solder bumps, so that a defined deformation of the solder bumps takes place. As a result of the subsequent X-ray irradiation of the connection point, the X-rays are absorbed differently by the material of the solder bump according to the given mass distribution of the solder bumps, so that there is an intensity curve with a continuous transition from a maximum to a minimum or vice versa of the X-rays penetrating the composite arrangement. This steady
Übergang zwischen dem Minimum und dem Maximum läßt eine Benetzung der Kontaktfläche des Anschlußkontak- tes in einfacher Weise erkennen. Insbesondere, wenn die Durchmesser von Maskierungsöffnungen der Lötstopmaske zu einem Durchmesser der Löthöcker in definierten Bereichen gewählt werden, läßt sich während des Reflow-Lötens der Bauelemente auf dem Trägersubstrat eine definierte Masseverteilung des Löthöckers erreichen. Diese ergibt somit den stetigen Verlauf der Dicke des Löthöckers in der Kontaktierungsebene gesehen und somit den stetigen Übergang zwischen einem Minimum und einem Maximum der Intensität der die Verbundanordnung passierenden Röntgenstrahlen.Transition between the minimum and the maximum allows the contact surface of the connection contact to be wetted. Recognize it in a simple way. In particular, if the diameters of masking openings of the solder mask to a diameter of the solder bumps are selected in defined areas, a defined mass distribution of the solder bump can be achieved during the reflow soldering of the components on the carrier substrate. This thus results in the steady course of the thickness of the solder bump seen in the contacting plane and thus the steady transition between a minimum and a maximum of the intensity of the X-rays passing through the composite arrangement.
Ferner ist mit dem erfindungsgemäßen Verfahren zur Überprüfung einer Verbindung zwischen elektronischen Bauelementen und einem Trägersubstrat vorteilhaft möglich, in einfacher Weise eine Qualitätsbewertung von in einem Flip-Chip-Verfahren oder in BGA-Technik erhaltener Kσntaktierungsstellen mit hoher Präzision zu ermöglichen. Dadurch, daß eine Beeinflussung eines Intensitätsverlaufes von die Verbundanordnung durchdringenden Röntgenstrahlen in einem Übergangsbereich von einem verlöteten Löthöcker zu dem die Löthöcker umgebenden Bereich oder eine zweidimensionale oder dreidimensionale Röntgenaufnahme der Verbindungs- stelle ausgewertet wird, wobei beim Verlöten der Löthöcker diese so verformt werden, daß bei ordnungsgemäßer Benetzung der Anschlußkontakte ein stetiger Übergang des Intensitätsverlaufes oder eine sichtbare Verformung des Löthöckers in der Röntgenaufnahme meß- bar ist, läßt sich anhand der erzielten Röntgenaufnahmen die fehlerfreien oder fehlerhaften Kontaktstellen erkennen. Durch die Verformung während des Verlötens der Löt- höcker erfahren diese eine Masseverteilung, mit zu ihren Rändern hin abnehmender Masse (Dicke) , die einen stetigen Übergang der Intensität der gemessenen Röntgenstrahlen bewirken, da in der Kontaktierungsebene auf den erhaltenen Verbundanordnungen gleichmäßig aufgebrachte Röntgenstrahlung entsprechend der Masseverteilung der Löthöcker unterschiedlich stark absorbiert beziehungsweise durchgelassen werden. Hieraus ergibt sich der Intensitätsverlauf in der Röntgenaufnahme. Bei einer nicht ordnungsgemäßen Benetzung der Löthöcker mit den Anschlußkontakten unterbleibt die gewollte Masseverteilung der Löthδcker, so daß ein entsprechender stetiger Übergang der In- tensitätsverteilung der Röntgenstrahlen nicht meßbar ist. Derartige nicht oder nur unzureichend benetzte Löthöcker zeichnen sich durch einen sprunghaften Übergang der Intensitätsverteilung aus, so daß aufgrund dieses sprunghaften Intensitätsverlaufes auf eine "kalte Lötstelle" geschlossen werden kann. Insbesondere bei relativ kleinen Löthöckern bei der Flip-Chip-Technik kann so eine zerstörungsfreie in präzise Auswertung erfolgen.Furthermore, with the method according to the invention for checking a connection between electronic components and a carrier substrate, it is advantageously possible to enable a high-precision quality evaluation of contact points obtained in a flip-chip method or in BGA technology in a simple manner. By evaluating an influence on an intensity profile of the X-rays penetrating the composite arrangement in a transition area from a soldered soldering bump to the area surrounding the soldering bumps, or a two-dimensional or three-dimensional X-ray image of the connection point, the soldering bumps being deformed during the soldering so that when proper wetting of the connection contacts, a constant transition of the intensity curve or a visible deformation of the solder bump in the X-ray image can be measured, the faultless or faulty contact points can be recognized on the basis of the X-ray images obtained. Due to the deformation during the soldering of the solder bumps, they experience a mass distribution, with the mass (thickness) decreasing towards their edges, which causes a constant transition of the intensity of the measured X-rays, since in the contacting plane on the composite arrangements obtained, uniformly applied X-radiation corresponds to the Mass distribution of the bumps are absorbed or let through to different extents. This results in the intensity curve in the X-ray image. In the event of improper wetting of the solder bumps with the connection contacts, the desired mass distribution of the solder bumps is omitted, so that a corresponding, constant transition of the intensity distribution of the X-rays cannot be measured. Such solder bumps which are not or only insufficiently wetted are distinguished by a sudden transition in the intensity distribution, so that a "cold soldering point" can be concluded on the basis of this sudden intensity course. Particularly in the case of relatively small solder bumps in flip-chip technology, a non-destructive and precise evaluation can take place.
Bei einer eindeutigen Verformung, die insbesondere bei den relativ großen Löthöckern bei BGA-Techniken erreichbar ist, läßt sich diese Verformung in einer zweidimensionalen oder dreidimensionalen Röntgenaufnahme sichtbar und damit auswertbar machen. Aufgrund der relativ großen Masse der Löthöcker kann hier ein stetiger Übergang eines Intensitätsverlaufes nicht erkannt werden. Hier läßt sich die Verformung - mit an sich sprunghaftem Übergang der Intensität zwischen den Löthöckern und dem die Löthöcker umgebenden Be- rεich - die die einwandfreie Benetzung des Anschlußkontaktes hervorruft - auf der Röntgenaufnahmε ein- deutig erkennen.If there is a clear deformation, which can be achieved in particular with the relatively large soldering bumps in BGA techniques, this deformation can be made visible and thus evaluated in a two-dimensional or three-dimensional X-ray image. Due to the relatively large mass of the solder bumps, a steady transition of an intensity curve cannot be recognized here. Here the deformation can be - with on the X-ray recording clearly recognize the sudden jump in intensity between the solder bumps and the area surrounding the solder bumps - which causes the contact contact to be properly wetted.
In weitεrεr bεvorzugter Ausgestaltung der Erfindung ist vorgesehεn, daß dεr Anschlußkontakt dεs Träger- substrates von einer Lδtstopmaske umgriffen wird, de- ren Maskenöffnung größer ist als der Anschlußkontakt. Hierdurch wird vorteilhaft möglich, daß während des Lötens der Verbundanordnung eine Verformung des Löt- höckers derart erfolgen kann, daß im wesentlichεn senkrecht zu Kontaktierungsebene der Verbundanordnung vεrlaufendε Stirnflächεn des Anschlußkontaktes durch das Material des Löthöckers mitbenetzt werdεn können. Dadurch, daß die Lötstopmaske beabstandet zu dem Anschlußkontakt angeordnet ist, kann diesεr Freiraum genutzt werden, um einε Verformung des Materials des Löthöckers in diesem Frεiraum zu εrmöglichεn, wobei gleichzeitig die Benetzung der Stirnkanten des Anschlußkontaktes bei ordnungsgεmäßεr Bεnetzung erfolgt.In a further preferred embodiment of the invention it is provided that the soldering mask surrounds the connection contact of the carrier substrate, the mask opening of which is larger than the connection contact. This advantageously makes it possible for the soldering bump to be deformed during the soldering of the composite arrangement in such a way that the end faces of the terminal contact running perpendicular to the contact plane of the composite arrangement can be wetted by the material of the solder bump. Because the soldering stop mask is arranged at a distance from the connection contact, this free space can be used to enable the material of the solder bump to be deformed in this free space, while at the same time the end edges of the connection contact are wetted with proper wetting.
Die ordnungsgemäße Benetzung dεr Stirnkantεn des Anschlußkontaktes läßt sich durch ein bevorzugtes Verfahren zur Überprüfung der Verbindung zwischεn dem elektronischen Bauelemεnt und dem Trägersubstrat überprüfen. Dadurch, daß eine dreidimensionale Rönt- genaufnähme der Verbundanordnung im Bereich einεr Schicht angεfεrtigt und ausgewertεt wird, die in einer Ebene mit dem wenigstens 'einem Anschlußkontakt des Trägersubstrats liegt, läßt sich die ordnungsgemäße Benetzung der Stirnkanten in der Röntgεnaufnahmε dieser Schicht in einfacher Weise nachweisen. Dadurch, daß lediglich die Schicht, in der die An- schlußkontakte angeordnet sind, aus der gesamten Verbundanordnung herausgegriffen und dargestellt wird, läßt sich das Vorhandensein von während des Lötens vεrformten Materials in die Ebene des Anschlußkontak- tes hinein, so daß dieser die Stirnkanten benetzen kann, durch eine ringförmige Darstellung auf der Röntgenaufnahme nachweisen.The correct wetting of the front edge of the connection contact can be checked by a preferred method for checking the connection between the electronic component and the carrier substrate. Characterized in that a three-dimensional X-ray image of the composite arrangement in the area of a layer is attached and evaluated, which is in one plane with the at least one connection contact of the carrier substrate, the proper wetting of the front edges in the X-ray image of this layer can be verified in a simple manner. The fact that only the layer in which the connection contacts are arranged is picked out and represented from the entire composite arrangement means that the presence of material deformed during the soldering can be introduced into the plane of the connection contact so that it wets the front edges can prove by a ring-shaped representation on the X-ray.
Ferner kann in bevorzugtεr Ausgεstaltung dεr Erfindung eine Benetzung der Stirnkanten des Anschlußkon- taktes durch eine zweidimεnsionalε Röntgenaufnahme der Verbundanordnung übεrprüft werden. Bei einer zwεidimensionalen Röntgenaufnähme kann sehr vorteilhaft eine Benetzung der Stirnkanten erkannt werden, indem sich in einem Intensitätsverlauf der die Ver- bundanordnung durchdringenden Röntgenstrahlen ein Kennliniεnverlauf nach Art eines Sattels einstellt, der in εinfachεr Wεisε ein Anzeichen für eine ord- nungsgεmäßε Bεnεtzung der Stirnseiten gibt.Furthermore, in a preferred embodiment of the invention, a wetting of the front edges of the connection contact can be checked by means of a two-dimensional x-ray image of the composite arrangement. In the case of a two-dimensional x-ray image, wetting of the front edges can be detected very advantageously by establishing a characteristic curve in the manner of a saddle in an intensity profile of the x-rays penetrating the composite arrangement, which, in simple terms, indicates the proper use of the front sides.
Ferner läßt sich in bevorzugtεr Ausgestaltung der Erfindung durch εinε definiertε Formgebung der Anschlußkontakte diε Verformung des - im wesentlichen runden - Löthöckers εrrεichen. Während des Lötεns benetzt dεr Lδthöckεr dεn geformten Anschlußkontakt und nimmt dadurch im wesentlichen dεssεn Form an. Bevorzugte definiεrtε Formen des Anschlußkont ktes sind vorzugswεise ovale, dreieckige oder polygonale Formen oder dergleichen.Furthermore, in a preferred embodiment of the invention, the deformation of the - essentially round - soldering bump can be achieved by the shape of the connection contacts. During the soldering process, the soldering block wets the shaped connection contact and thereby assumes essentially its shape. Preferred definite forms of the connection contact are preferably oval, triangular or polygonal shapes or the like.
Durch die der Formgebung des Anschlußkontaktes fol- gende Benetzung läßt sich eine gezieltε Verformung des Löthöckers erreichen, die in einer zweidimεnsio- nalen Röntgenaufnahme nachweisbar ist . Entspricht die Form des Löthδckers der zuvor bekannten Form des Anschlußkontaktes, kann von einer vollständigen und da- mit ordnungsgemäßen Benetzung des Anschlußkontaktes ausgegangen werden. Entspricht die Form des Löt- höckεrs auf der Röntgenaufnahme, beispiεlsweise dεr ursprünglichεn Form des Löthöckers, insbesondere einer runden Form, kann durch die Nichtannähme der Form des Anschlußkontaktes durch den Löthöckεr auf eine nicht ordnungsgemäße Benetzung des Anschlußkontaktes geschlossen werdεn.Due to the wetting following the shape of the contact, a targeted deformation of the solder bump can be achieved, which can be demonstrated in a two-dimensional X-ray image. If the shape of the soldering pad corresponds to the previously known shape of the connection contact, it can be assumed that the connection contact is completely and thus properly wetted. If the shape of the solder bump on the x-ray corresponds, for example the original shape of the solder bump, in particular a round shape, the non-acceptance of the shape of the connection contact by the solder bump means that the connection contact is not properly wetted.
Wεitεre bevorzugte Ausgestaltungen der Erfindung er- geben sich aus den übrigεn, in den Unteransprüchεn genannten Merkmalen.Further preferred refinements of the invention result from the other features mentioned in the subclaims.
ZeichnungεnDrawings
Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehδrigεn Zεichnungεn näher εrläu- tεr . Es zeigen:The invention is explained in more detail below in exemplary embodiments on the basis of the associated drawings. Show it:
Figur 1 einen Ausschnitt eines Querschnittes durch ein Trägersubstrat mit einεm darauf aufge- sεtztεn Flip-Chip-Bauelement vor einεm Re- flow-Lötεn; Figur 2 die Verbundanordnung gemäß Figur 1 nach dem Rεflow-Löten;FIG. 1 shows a section of a cross section through a carrier substrate with a flip-chip component placed thereon in front of a reflow soldering; FIG. 2 shows the composite arrangement according to FIG. 1 after reflow soldering;
Figur 3 εinε Vεrbundanordnung nach dεm Reflow-Löten nach einem weiteren Ausführungsbeispiel;Figure 3 εinε Vεrbundanordnung after reflow soldering according to another embodiment;
Figur 4 einε Vεrbundanordnung nach dεm Reflow-Löten im Stand der Technik;FIG. 4 shows a bundle arrangement after reflow soldering in the prior art;
Figur 5 einε schεmatischε Schnittansicht εinεr verlöteten Verbundanordnung nach einem weiteren Ausführungsbeispiel;FIG. 5 shows a schematic sectional view of the soldered composite arrangement according to a further exemplary embodiment;
Figur 6 eine schematische Ansicht einer dreidimen- sionalεn Röntgenaufnähme der Anordnung gemäß Figur 5 ;FIG. 6 shows a schematic view of a three-dimensional X-ray image of the arrangement according to FIG. 5;
Figur 7 eine schematischε Ansicht einer zweidimen- sionalεn Röntgenaufnähme;FIG. 7 shows a schematic view of a two-dimensional X-ray image;
Figur 8 eine Draufsicht auf ein Anschlußbild einerFigure 8 is a plan view of a connection diagram of a
Leiterplatte;Circuit board;
Figur 9 verschiεdεnε Formen von Anschlußkontakten undFIG. 9 various forms of connection contacts and
Figur 10 eine schematische zweidimensionalε Röntgenaufnahme einer Verbundanordnung. Beschreibung der AusführungsbeispieleFigure 10 is a schematic two-dimensional X-ray image of a composite arrangement. Description of the embodiments
Figur 1 zeigt einen Ausschnitt eines Querschnitts durch ein Trägersubstrat 10, das eine Leitεrplatte, einε Keramikplatte, ein Siliziumsubstrat oder dergleichen sein kann. In dεm hier gezeigten Beispiel handelt es sich um eine Leiterplatte, dεrεn Obεrseite 12 zur Bestückung mit elektrischen und/oder elektronischen Bauelementen 14 vorgesehen ist. Auf der Ober- seite 12 sind Leiterbahnen 16 aufgebracht, in der Figur 1 und in den nachfolgenden Figuren ist jeweils nur eine Leitεrbahn 16 gezeigt, wobei klar ist, daß das Trägersubstrat 10 eine Viεlzahl von Lεiterbahnen 16 aufwεisεn kann. Die Leitεrbahn 16 εndet in einem Anschlußkontakt 18, der eine Kontaktfläche 20 ausbildet, die zur Herstellung einer elektrischen Verbindung zu den Bauelementen 14 dient.FIG. 1 shows a section of a cross section through a carrier substrate 10, which can be a guide plate, a ceramic plate, a silicon substrate or the like. In the example shown here, it is a printed circuit board, the upper side 12 of which is provided for equipping with electrical and / or electronic components 14. Conductor tracks 16 are applied on the upper side 12, only one conductor track 16 is shown in FIG. 1 and in the subsequent figures, it being clear that the carrier substrate 10 can have a large number of conductor tracks 16. The conductor track 16 ends in a connection contact 18, which forms a contact surface 20, which is used to establish an electrical connection to the components 14.
Es ist vorgesehen, daß Trägersubstrat 10 mit Flip- Chip-Bauεlementen und/oder SMD-Bauelementεn (surface mounted dεvice) zu bestücken, wobei das Bauelement 14 nur ausschnittsweisε dargestellt ist. Eine verglεich- barε Verbindungstechnik ist auch die Herstεllung von Lötverbindungen von Ball Grid Arrays, wobei nachfol- gend die Bezeichnung Löthδcker gleichbedeutend für Bumps, Balls oder dergleichεn vεrwεndet wird.It is provided that the carrier substrate 10 be equipped with flip-chip components and / or SMD components (surface mounted device), the component 14 being shown only in part. A comparable connection technique is also the production of soldered connections of ball grid arrays, the term soldering pad being used synonymously below for bumps, balls or the like.
Am Bestückungsort des Bauelementes 14 ist die Oberseite 12 des Trägersubstrates mit einεm Muster von Anschlußkontakten 18 versεhεn, die εinεm Muster von Anschlußkontakten 22 des Bauelementes 14 entsprechen. Jedem zu kontaktierenden Anschlußkontakt 22 des Bau- elementes 14 ist somit ein Anschlußkontakt 18 des Trägersubstrates 10 zugeordnet, das heißt, vor dem Verbinden dεs Bauεlementεs 14 mit dεm Trägersubstrat 10 an den einanderzugεwandtεn Sεitεn dεs Bauelementes 14 und des Trägersubstrates 10 sind diese gegenüber- liegend angeordnet.At the assembly site of the component 14, the upper side 12 of the carrier substrate is provided with a pattern of connection contacts 18 which correspond to the pattern of connection contacts 22 of the component 14. Each connection contact 22 to be contacted of the element 14 is thus assigned a connection contact 18 of the carrier substrate 10, that is to say that prior to connecting the component 14 with the carrier substrate 10 to the mutually facing sides of the component 14 and the carrier substrate 10, these are arranged opposite one another.
Die Anschlußkontakte 22 des Bauelementes 14 besitzen jewεils einen Löthöcker 24 (Bump, Ball) , die aus ei- nem εlektrisch leitfähigεn Material bestehen oder zu- mindestens elektrisch leitfähiges Material enthalten. Die Löthöcker 24 werden mittels bekannter Verfahren auf die Anschlußkontakte 22 aufgebracht, so daß im Rahmen der vorliegenden Beschrεibung hiεrauf nicht nähεr εingegangen werden soll. Bei Flip-Chip-Technik besitzen die Löthöckεr einen Durchmessεr d2 von circa 75 bis 80 μm, bei BGA-Technik einen Durchmessεr von circa 500 bis 700 μm.The connection contacts 22 of the component 14 each have a solder bump 24 (bump, ball), which consist of an electrically conductive material or at least contain electrically conductive material. The soldering bumps 24 are applied to the connection contacts 22 by means of known methods, so that no further details are to be given in the context of the present description. In flip-chip technology, the solder pads have a diameter d2 of approximately 75 to 80 μm, in BGA technology a diameter of approximately 500 to 700 μm.
Diε Anschlußkontaktε 18 dεs Trägεrsubstrates 10 sind von einer Lötstopmaske 26 umgeben. Die Lötstopmaske 26 besitzt entsprechend des Rasters der herzustellenden elektrisch leitεnden Verbindungen zwischen dem Bauelement 14 und dem Trägersubstrat 10 entsprεchεnde Maskiεrungsöffnungεn 28, diε von Sεitenwänden 30 derThe connection contact 18 of the carrier substrate 10 is surrounded by a solder mask 26. The solder mask 26 has corresponding masking openings 28 corresponding to the grid of the electrically conductive connections to be produced between the component 14 and the carrier substrate 10, that is, of side walls 30 of the
Lötstopmaske 26 begrεnzt wεrdεn. Die Lötstopmaske 26 ist beispielsweise von einem im Siebdruck aufgebrachten Lötstoplack gebildet.Solder mask 26 is limited. The solder mask 26 is formed, for example, by a solder resist applied by screen printing.
Die Öffnungen 28 sind vorzugsweise rund ausgebildet und besitzen einen Durchmesser dη_ , der größer gewählt ist als ein Durchmesser d2 der im wesentlichen kugel- förmigen Löthöcker 24. Ein Verhältnis dεr Durchmesser ä.2 •■ dη_ beträgt beispiεlswεisε größεr 1 : 1,1, insbε- sondere 1 : 1,3 bis 1 : 1,4.The openings 28 are preferably round and have a diameter dη_ which is selected to be larger than a diameter d2 which is essentially spherical. shaped solder bumps 24. A ratio of diameter Durchmesser 2 • ■ dη_ is, for example, greater than 1: 1.1, in particular 1: 1.3 to 1: 1.4.
Jeweils unterhalb der schematischen Teilschnittansichten ist in den Figuren 1 bis 4 in einεm Diagramm εin Int nsitätsvεrlauf 32 von diε Anordnung durchdringenden Röntgenstrahlen 34 über deren räumliche Verteilung dargestellt. Hierbei ist der Intensitäts- verlauf 32 im Verlauf einer Kontaktierungsebene einer Verbundanordnung 36 (Figur 2) gezeigt, wobεi diε Kon- taktiεrungsebenε mit einer parallelen Ebene zur Oberseite 12 des Trägersubstrates 10 zusammenfällt. In Figur 1 ist dieser Intensitätsvεrlauf 32 lεdiglich zur Erläutεrung dargestellt, wobei klar wird, daß bei Beaufschlagen der Verbundanordnung 36 mit der Röntgenstrahlung 34 diese aufgrund der gegebenen Materialzusammensetzung der einzelnen Bereichε der Verbundanordnung 36 mit unterschiedlicher Intensität durchdringen. Insbesonderε im Bereich der Löthδcker 24 erfährt die Röntgenstrahlung 34 eine starke Absorption, so daß in der den Intensitätsvεrlauf 32 wiεdεrgεbεnden Kennliniε 38 dεr Durchmessεr &2 dεs Löthöckers 24 durch eine sprunghaftε Änderung der Intensität 32 anhand der Kennlinie 38 deutlich wird.Each below the schematic partial sectional views is shown in FIGS. 1 to 4 in a diagram in an intensity profile 32 of X-rays 34 penetrating the arrangement and their spatial distribution. Here, the intensity profile 32 is shown in the course of a contacting level of a composite arrangement 36 (FIG. 2), whereby the contacting level coincides with a plane parallel to the upper side 12 of the carrier substrate 10. This intensity curve 32 is shown in FIG. 1 only for explanation, it becoming clear that when the composite arrangement 36 is acted upon by the X-rays 34, the X-rays 34 penetrate them with different intensities due to the given material composition of the individual regions of the composite arrangement 36. In particular in the area of the solder bumps 24, the X-ray radiation 34 experiences a strong absorption, so that the characteristic curve 38, which reflects the intensity course 32, of the diameter & 2 of the solder bump 24 becomes clear by means of a sudden change in the intensity 32 on the basis of the characteristic curve 38.
Anhand von Figur 2 wird die Verbundanordnung 36 nach erfolgtem Reflow-Löten gezeigt. Hierzu wird das Bauelement 14 auf das Trägersubstrat 10 aufgesetzt, o- bei die Löthöcker 24 auf die Kontaktflächen 20 aufsetzen. Es versteht sich, daß alle Lδthöckεr 24 dεs Bauelementes 10 diε glεiche Dimensionierung bεsitzen, so daß εin glεichmäßigεs Aufsetzen aller Löthöcker 24 auf den jeweils ihnen zugeordnetεn Kontaktflächen 20 εrfolgt . Anschliεßεnd wird die Verbundanordnung 36 einer Reflow-Lötstation zugeführt. In der Reflow-Löt- Station wird das Lot der Löthöcker 24 erhitzt und schmilzt. Hierdurch beginnt das Material der Löthöcker 24 zu fließen und benetzt die Kontaktfläche 20. Entsprechend der Größe der Öffnungen 28 der Lötstopmaske 26 fließt das Material der Löthöcker 24 bis zu den Seitenwänden 30, so daß die Kontaktfläche 20 vollkommen benetzt ist. Die Anschlußkontakte 18 bestehen hierbei aus einem gut benetzbaren Material, beispiεlswεisε Nickεl, Kupfεr oder Gold. Durch die gute Benetzbarkeit der Kontaktflächen 20 nimmt das Lot die in Figur 2 dargestellte Form an. Die Oberflächenspannkraft dεs Lotes und diε Gewichtskraft des Bauelementes 14 bewirken dabei, daß das Bauelement 14 zur Oberseite 12 des Trägersubstratεs 10 hin bewegt wird, bis beispielsweise in den Figuren nicht darge- stellte Abstandshalter dieses Aufeinanderzubewegεn bεgrεnzεn.2, the composite arrangement 36 is shown after reflow soldering has taken place. For this purpose, the component 14 is placed on the carrier substrate 10, or the solder bumps 24 are placed on the contact surfaces 20. It goes without saying that all holes 24 of the component 10 have the same dimensioning, so that all solder bumps 24 are placed on the contact surfaces 20 assigned to them. The composite arrangement 36 is then fed to a reflow soldering station. The solder of the bumps 24 is heated and melts in the reflow soldering station. As a result, the material of the solder bumps 24 begins to flow and wets the contact surface 20. According to the size of the openings 28 in the solder mask 26, the material of the solder bumps 24 flows up to the side walls 30, so that the contact surface 20 is completely wetted. The connection contacts 18 consist of a readily wettable material, for example nickel, copper or gold. Due to the good wettability of the contact surfaces 20, the solder assumes the shape shown in FIG. 2. The surface tension force of the solder and the weight force of the component 14 cause the component 14 to be moved towards the top 12 of the carrier substrate 10 until, for example, the spacers not shown in the figures limit this movement of one another.
Entsprechend der Vεrringerung des Abstandes zwischen dem Bauelε εnt 14 und dεm Trägεrsubstrat 10 erfolgt εinε Umverteilung der Masse des Löthöckers 24 über dessen Dicke D. Aufgrund dεs Vεrhältnissεs dεr Durch- messer d2 zu d__ (Figur 1) erfolgt ein stetiger Übergang der Dicke D des Löthöckers 24 von dessen Rand, der durch diε Sεitεnwand 30 dεr Maskierungsδffnungen 28 bεstimmt wird, zu dessen Zentrum im Bereich der Anschlußkontakte 22 des Bauelεmεntes 14. Somit findet εine Verformung der Löthöcker 24 in der Kontaktie- rungsebene statt, wobei der Verformungsgrad und damit die Masseverteilung des Löthöckers 24 über der Kontaktierungsebene durch das Verhältnis der Durchmesser d2 zu dη_ bestimmbar ist.Corresponding to the reduction in the distance between the component 14 and the carrier substrate 10, the mass of the solder bump 24 is redistributed over its thickness D. Due to the ratio of the diameter d2 to d__ (FIG. 1), the thickness D of the solder bump changes steadily 24 from its edge, which is determined by the side wall 30 of the masking openings 28, to its center in the region of the connecting contacts 22 of the component 14. Thus, the solder bumps 24 are deformed in the contact tion level, the degree of deformation and thus the mass distribution of the solder bump 24 over the contacting plane can be determined by the ratio of the diameter d2 to dη_.
Hierdurch wird es möglich, die Verbindung zwischen dem Bauelεmεnt 14 und dem Trägersubstrat 10 mittels einer Röntgenbestrahlung im Hinblick auf eine ordnungsgemäße Benetzung des Löthöckers 24 auf der Kon- taktfläche 20 zu überprüfen. Entsprechend des wiεder- um dargεstellten Intensitätsvεrlaufes 32 über der Kontaktierungsebεnε läßt sich anhand der Kennlinie 38 ein stetiger Übergang zwischen einεm Maximum 40 und εinem Minimum 42 der Intensität 32 der Röntgenstrah- len 34 feststellen. Dieser kontinuierliche Übergang - in Figur 2 mit 44 bezeichnet - entspricht hierbei der Abnahme der Dicke D des Löthöckers 24 in dessen flächenhafter Ausdεhnung in dεr Kontaktiεrungsebene . Somit läßt sich bei einer zerstörungsfreien Überprü- fung der fertig hergestelltεn Vεrbundanordnung 36 mittels der Röntgenstrahlen 34 in einfacher Weise feststellen, ob sämtliche Löthöcker 24 die Kontaktfläche 20 benεtzen. Für den Fall einer Nichtbenεtzung würdεn sich die, in Figur 1 dargestelltεn, sprunghaf- ten Übergänge im Intensitätsvεrlauf 32 der Röntgenstrahlen 34 ergeben. Ist keiner diesεr sprunghaftεn Übergänge vorhanden, das heißt, die Kennliniε 38 bε- sitzt für jεden Löthöcker 24 die stetigen Übergangs- bereiche 44, kann auf eine einwandfrεiε elektrische Kontaktierung dεs Bauεlεmεntes 14 mit dem Trägersubstrat 10 geschlossen werden. Es ist sεlbstverständlich, daß entsprechend der Anzahl der zu überprüfεndεn Bauelemente 24 sich in der Draufsicht gεsεhen - also gemäß der Darstellung in Figur 1 und Figur 2 von oben betrachtet - auf der ge- fertigten Röntgenaufnahme für jeden der Löthöcker 24 eine flächenhafte Intensitätsverteilung der Röntgenstrahlen 34 ergibt. Da die Löthöcker 24 im wesentlichen kugelförmig ausgebildet sind, ergibt sich ein radialer Verlauf der Intensitätsverteilung je Löt- hδcker 24, wobei die Bereiche 44 dann zwischen entsprechenden Radien um einen Mittelpunkt der Löthöcker 24 verlauf n, dεr durch das Minimum 42 dεr Intεnsität 32 gekennzeichnεt ist.This makes it possible to check the connection between the component 14 and the carrier substrate 10 by means of X-ray radiation with a view to proper wetting of the solder bump 24 on the contact surface 20. Corresponding to the intensity curve 32 above the contact level, a constant transition between a maximum 40 and a minimum 42 of the intensity 32 of the X-rays 34 can be determined on the basis of the characteristic curve 38. This continuous transition - denoted by 44 in FIG. 2 - corresponds here to the decrease in the thickness D of the solder bump 24 in its areal expansion in the contacting plane. Thus, in the case of a non-destructive inspection of the finished composite assembly 36 by means of the X-rays 34, it can be ascertained in a simple manner whether all the solder bumps 24 use the contact surface 20. In the event of non-use, the abrupt transitions in the intensity profile 32 of the X-rays 34, as shown in FIG. 1, would result. If none of these abrupt transitions are present, that is, the characteristic 38 bε- the steady transition areas 44 for each soldering bump 24, it can be concluded that the electrical contact 14 with the carrier substrate 10 is in perfect electrical contact. It is self-evident that, depending on the number of components 24 to be checked, the plan view shows a planar intensity distribution of the X-rays 34 for each of the solder bumps 24 for each of the solder bumps 24, as viewed from above as shown in FIG. 1 and FIG. 2 results. Since the solder bumps 24 are essentially spherical, there is a radial course of the intensity distribution per solder bump 24, the regions 44 then running between corresponding radii around a center of the solder bumps 24, which is characterized by the minimum 42 of the intensity 32 .
Gegebenenfalls kann eine Prüfung der Verbundanordnung 36 derart erfolgen, daß eine Röntgenaufnahme des noch nicht gelöteten Verbundes gemäß Figur 1 mit einer Röntgenaufnahme des gelötεtεn Vεrbundεs gεmäß Figur 2 verglichen wird, wobei der Unterschied zwischen den Sprüngen zwischen Minima und Maxima des Intensitätsverlaufes 32 und den dann stetigεn Übεrgangsbereichen 44 zwischen dem Minima 42 und dem Maxima 40 als Beurteilungskriterium herangezogen wird. Die Auswertung der Röntgenaufnahmen kann entweder manuell oder auf geεignete Weisε automatisch mittεls Bildvεrarbεitung erfolgen.If necessary, the composite arrangement 36 can be checked in such a way that an X-ray image of the not yet soldered composite according to FIG. 1 is compared with an X-ray image of the soldered composite according to FIG. 2, the difference between the jumps between minima and maxima of the intensity profile 32 and the then constant ones Transition areas 44 between the minimum 42 and the maximum 40 is used as an evaluation criterion. The x-ray recordings can be evaluated either manually or in a suitable manner automatically by means of image processing.
Figur 3 zeigt eine wεitere Ausführungsvariantε einer bereits verlötetεn Vεrbundanordnung 36. Hierbεi wird auf die Anordnung einer Lötstopmaske verzichtet, so daß das Lot der Löthöcker 24 auf der Kontaktfläche 20 sowie der Obεrflächε dεr die Kontaktflächε 20 auf ei- senden Leiterbahn 18 zerfließen kann. Aufgrund einer guten Benetzbarkeit der Kontaktfläche 20 erfolgt ein Zerfließen des Lotes nur in Richtung der Leiterbahn 18, so daß am hier links dargestelltεn Abschluß 46 der Leiterbahn 18 ein Fließen des Lotes unterbleibt. Nach weiteren Ausführungsbeispielen kann die Kontaktstelle 18 auch so ausgebildεt sein, daß ein glεich- mäßiges Fließen des Lotes in allen Richtungen der Kontaktierungsεbεne erfolgen kann.FIG. 3 shows a further embodiment of an already soldered assembly 36. In this case, the arrangement of a solder mask is dispensed with, so that the solder of the solder bumps 24 on the contact surface 20 and the surface of the contact surface 20 on a send conductor 18 can flow away. Due to the good wettability of the contact surface 20, the solder flows away only in the direction of the conductor track 18, so that the solder does not flow at the termination 46 of the conductor track 18 shown here on the left. According to further exemplary embodiments, the contact point 18 can also be designed in such a way that the solder can flow smoothly in all directions of the contacting plane.
Entsprechend der wiederum dargestellten Überprüfung der erziεltεn Vεrbindung anhand des Intensitätεver- laufes 32 der Röntgenstrahlεn 34 wird deutlich, daß im Bereich des Fließεns des Lotes ein stetiger Über- gang zwischen dem Minimum 42 und dem Maximum 40 der Intensität 32 der Röntgεnstrahlεn 34 gegebεn ist. Wird bεi dεr Auswεrtung dieser stetige Übergangsbe- rεich 44 nicht festgestellt, sondern ist hier ein sprunghafter Übergang zwischen dem Minimum 42 und dem Maximum 40 gegeben, kann geschlußfolgert werden, daß das Lot die Kontakt läche 20 nicht in gewünschtem Maße bεnetzt hat .According to the check of the connection, which is again shown, on the basis of the intensity profile 32 of the X-ray beams 34, it becomes clear that in the area of the flow of the solder there is a constant transition between the minimum 42 and the maximum 40 of the intensity 32 of the X-ray beams 34. If this steady transition area 44 is not determined during the evaluation, but instead there is a sudden transition between the minimum 42 and the maximum 40, it can be concluded that the solder has not wetted the contact surface 20 to the desired extent.
Um den Gegenstand der Erfindung nochmals zu verdeut- liehen, ist in Figur 4 eine Verbundanordnung 36 nach dem Stand der Technik gezεigt. Dort ist das Verhältnis zwischen einem Durchmessεr dη_ der Öffnung 28 der Lötstopmaske 26 und dem Durchmesser d2 der Löthöcker 24 nahezu gleich groß, das heißt, das Verhältnis der Durchmesser d__ : d2 bεträgt 1 : 1, so daß εine Verformung der Löthöcker 24 in Richtung der Kontaktie- rungsebene im wesentlichen unterbleibt, so daß eine hier durchgeführte zweidimensionalε Röntgenuntεrsu- chung zu dεm sprunghaftεn Übεrgang zwischεn dεm Minimum 42 und dεm Maximum 40 des Intensitätsverlaufes 32 der Röntgenstrahlen 34 führt. Somit kann zwar auf das Vorhandensein einer elektrisch leitenden Verbindung über ein Löthöcker 24 erkannt werden, jedoch ist nicht deutlich, ob tatsächlich einε ausreichende Benetzung der Kontaktfläche 20 erfolgte.In order to clarify the subject matter of the invention again, a composite arrangement 36 according to the prior art is shown in FIG. There, the ratio between a diameter dη_ of the opening 28 of the solder mask 26 and the diameter d2 of the solder bumps 24 is almost the same, that is, the ratio of the diameter d__: d2 is 1: 1, so that the deformation of the solder bumps 24 in the direction of the Contact level essentially remains, so that a The two-dimensional X-ray examination carried out here leads to the abrupt transition between the minimum 42 and the maximum 40 of the intensity profile 32 of the X-rays 34. Thus, although the presence of an electrically conductive connection via a solder bump 24 can be recognized, it is not clear whether sufficient wetting of the contact surface 20 actually took place.
In Figur 5 ist einε weiterε Vεrbundanordnung 36 in einem anderen Ausführungsbeispiel gezeigt. Gleiche Teile wie in den vorhergehenden Figuren sind mit gleichen Bezugszeichen versεhen und nicht nochmals erläutert .FIG. 5 shows a further bundle arrangement 36 in another exemplary embodiment. The same parts as in the previous figures are provided with the same reference numerals and are not explained again.
In der Figur 5 sind zwei Löthöckεr 24 gezeigt, von denen der links dargestellte Löthöcker nach dem Verlöten des Bauelementεs 14 mit dem Trägεrsubstrat 10 den Anschlußkontakt ordnungsgemäß bεnetzt, während dεr rechts dargestellte Löthδcker zum Vergleich den Anschlußkontakt 18 nicht ordnungsgemäß benetzt. Die im Sinne der Erfindung während des Lötens vorgεno - menε Verformung des Löthδckεrs 24 wird derart erreicht, daß eine Lötstopmaske 26 derart beabstandεt zu dem Anschlußkontakt 18 verläuft, daß seitliche, das heißt im wesentlichen senkrecht zur Kontaktiε- rungsebene verlaufende Stirnflächen 50 des Anschlußkontaktes 18 von dem Löthöcker 24 mit benetzt werden. Eine Benεtzung dεr Stirnflächen 50 dεs Anschlußkon- taktes 18 ist ohne weiteres möglich, da einerseits das Material des Löthδckers 24 während des Lötens in einen Schmelzzustand überführt wird, so daß aufgrund der guten Benεtzbarkεit des Materials des Anschlußkontaktes 18, der beispiεlswεise aus Gold, Aluminium, Platin oder dergleichen besteht die Stirnflächen 50 mitbenεtzt wεrden, indem ein verblεibεndεr Abstand zwischen der Lötstopmaske 26 und dem Anschlußkontakt 18 mit dem Lot ausgefüllt wird. Durch diese Beabstan- dung der Lötstopmaske 26 zum Anschlußkontakt 18 wird eine gewollte Verformung des Löthöckers 24 während des Lötens erreicht, die, wie nachfolgend noch erläu- tert wird, mittels eines Röntgenverfahrens auswertbar ist .5 shows two solder bumps 24, of which the soldering bump shown on the left wets the connection contact properly after the component 14 has been soldered to the carrier substrate 10, while the soldering bump shown on the right does not properly wet the connection contact 18 for comparison. The deformation of the soldering pad 24, which is carried out during the soldering in the sense of the invention, is achieved in such a way that a solder stop mask 26 extends at a distance from the connecting contact 18 in such a way that lateral end faces 50 of the connecting contact 18 from, that is to say essentially perpendicular to the plane of contact the solder bump 24 are wetted with. It is readily possible to use the end faces 50 of the connection contact 18, since on the one hand the material of the soldering pad 24 is converted into a melt state during the soldering, so that due to The good usability of the material of the connection contact 18, for example made of gold, aluminum, platinum or the like, the end faces 50 are also used, by filling a remaining distance between the solder mask 26 and the connection contact 18 with the solder. This spacing of the solder stop mask 26 from the connection contact 18 results in a desired deformation of the solder bump 24 during the soldering, which, as will be explained below, can be evaluated by means of an X-ray method.
Im Vergleich hierzu ist der rechts dargestellte Löthöcker 24 nicht ordnungsgemäß mit dem Anschlußkontakt 18 benetzt. Der Zwischenraum zwischen der Lötstopmaske 26 und dem Anschlußkontakt 18 ist nicht mit dem Material des Löthöckers 24 ausgefüllt, so daß die Stirnflächen 50 des Anschlußkontaktes 18 nicht benetzt sind. Dies kann beispielswεisε infolgε einer Verschmutzung des Anschlußkontaktes 18, diε dεssεn an sich gute Bεnetzbarkeit beeinträchtigt, erfolgen.In comparison to this, the solder bump 24 shown on the right is not properly wetted with the connection contact 18. The space between the solder mask 26 and the connection contact 18 is not filled with the material of the solder bump 24, so that the end faces 50 of the connection contact 18 are not wetted. This can take place, for example, as a result of contamination of the connection contact 18, which in itself impairs good wettability.
Um die ordnungsgemäßε Benetzung der Anschlußkontakte 18 mit den Löthöckern 24 prüfen zu können, wird mit- tels εinεr dreidimensionalen Röntgentechnik diε in Figur 5 mit S bεzεichnete Schicht der Verbundanordnung 36 untersucht und in einer in Figur 6 schematisch angedeuteten Röntgenaufnahme dargestellt. Mittels der verfügbaren 3D-Röntgentechnik sind Schicht- auflδsungen von zirka 30 bis 100 μm realisierbar. Die Anschlußkontakte 18, die beispiεlsweisε in Siεbdruck odεr anderen geeignetεn Verfahren auf das Träger- substrat 18 aufgebracht sind, besitzen üblicherweise einε Schichtdickε von zirka 50 μm. Somit kann mittels der 3D-Röntgentechnik die Schicht S aus dεr Verbundanordnung 36 heraus aufgenommen werden, in dεr diε Anschlußkontaktε 18 liegen. Durch Sichtbarmachung dieser Schicht S in der Röntgenauf ahme, ergibt sich die in Figur 6 schematisch angedeutete Aufnahme. Hierbei wir bei einem ordnungsgemäß benetzten Anschlußkontakt 18 das sich innerhalb dεr Schicht S be- findende Material des Löthöckers 24 als Ring 52 sichtbar, der den Anschlußkontakt 18 umgreift. Bei der in Figur 6 schematisch angεdεutεten Aufnahme hingegen wird infolge der Nichtbenetzung der Stirnkantεn 50 dεs Anschlußkontaktεs 18 innerhalb der Schicht- dicke S kein Material des Löthöckers 24 verformt, so daß bei der Röntgenaufnahme dieses auch nicht sichtbar ist . Durch Auswertung der Röntgenaufnahmεn kann nunmehr bei Vorhandensein des Ringes 52 um dεn An- schlußkontakt 18 auf εinε ordnungsgemäße Benetzung der Anschlußkontakte 18 geschlossεn werdεn.In order to be able to check the proper wetting of the connection contacts 18 with the solder bumps 24, a layer of the composite arrangement 36 designated S in FIG. 5 is examined by means of three-dimensional X-ray technology and represented in an X-ray image schematically indicated in FIG. Using the available 3D X-ray technology, layer resolutions of approximately 30 to 100 μm can be achieved. The connection contacts 18, which are printed on the carrier, for example in printed form or other suitable methods. substrate 18 are applied, usually have a layer thickness of approximately 50 μm. Thus, by means of the 3D X-ray technology, the layer S can be taken out of the composite arrangement 36 in which the connection contact 18 lies. By making this layer S visible in the X-ray image, the image schematically indicated in FIG. 6 is obtained. In the case of a properly wetted connection contact 18, the material of the solder bump 24 located within layer S is visible as a ring 52 which surrounds the connection contact 18. In the case of the image schematically shown in FIG. 6, however, no material of the solder bump 24 is deformed due to the non-wetting of the end edges 50 of the connection contact 18 within the layer thickness S, so that this is also not visible in the X-ray image. By evaluating the X-ray recordings, it can now be concluded, in the presence of the ring 52 around the connection contact 18, that the connection contacts 18 are properly wetted.
Figur 7 verdeutlicht eine zweidimεnsionale Röntgen- auswertung der Verbundanordnung 36, wobei die Darstellung der Verbundanordnung 36 in Figur 7 dεr bε- reits in Figur 5 gezeigten Verbundanordnung 36 entspricht. Entsprechend der Benεtzung dεr Stirnkanten 50 dεr Anschlußkontakte 18 ergibt sich einε Masseverteilung der Löthöcker 24, die sich in εinεr zwei- dimεnsionalεn Darstellung verdeutlichen läßt. In dεr in Figur 7 linkεn Darstεllung εrfolgt εine ordnungs- gεmäßε Benetzung der Stirnkanten 50, so daß sich eine Masseverteilung dεs Lotes dεr Löthöckεr 24 εrgibt, der dem dargestεllten Intensitätsverlauf 32 entspricht, wobei sich hier ein sattelförmiger Verlauf 51 ergibt. Erfolgt die ordnungsgemäße Benetzung der Stirnkanten 50 - wie in der rechtεn Darstellung in Figur 7 - nicht, kommt εs zu εinεr Massεverteilung des Löthöckers 24, die in dessen Randberεichen 53 deutlich wenigεr Lot aufweist als im Zentrum 55. Hierdurch ergibt sich der unten gezeigte Intensitätsverlauf 32 der Röntgenstrahlung, wobei es eben gerade nicht zur Ausbildung des sattelförmigen Verlaufεs 51 kommt. Ein festgεstεllter sattelförmigεr Vεrlauf 51 des Intensitätsvεrlaufεs 32 ist somit ein Kriterium für eine ordnungsgemäßε Bεnetzung des Anschlußkontaktes 18.FIG. 7 illustrates a two-dimensional X-ray evaluation of the composite arrangement 36, the representation of the composite arrangement 36 in FIG. 7 corresponding to the composite arrangement 36 already shown in FIG. According to the use of the front edges 50 of the connecting contacts 18, a mass distribution of the solder bumps 24 results, which can be illustrated in a two-dimensional representation. In the illustration on the left in FIG. 7, the front edges 50 are properly wetted, so that there is a mass distribution of the solder of the soldering bump 24, which corresponds to the illustrated intensity curve 32, a saddle-shaped curve 51 being obtained here. If proper wetting of the front edges 50 does not take place - as in the right illustration in FIG. 7 - the mass of the solder bump 24, which has significantly less solder in its edge regions 53 than in the center 55, is obtained. This results in the intensity curve 32 shown below the X-ray radiation, the saddle-shaped course 51 not being formed. A fixed saddle-shaped run 51 of the intensity run 32 is thus a criterion for a proper wetting of the connection contact 18.
In Figur 8 ist das Anschlußbild einer Leiterplatte mit n x m Anschlußkontakten 18 gεzεig . Diε Wεrtε für n und m könnεn beispielsweise 15 betragεn. Um eine gezielte Verformung der Löthöcker während des Lötens, durch Benetzen der Anschlußkontakte 18 zu errεichen, können die Anschlußkontakte 18 - in Draufsicht gesehen - eine definiertε Formgεbung bεsitzεn.FIG. 8 shows the connection diagram of a printed circuit board with n x m connection contacts 18. The values for n and m can be 15, for example. In order to achieve a targeted deformation of the solder bumps during soldering by wetting the connection contacts 18, the connection contacts 18 can have a defined shape as seen in plan view.
In Figur 9 sind in stark vεrgrößertεr Darstellung je- wεils εin Anschlußkontakt 18 in seiner Draufsicht gezeigt, um einige der möglichen definierten Formgebungen für die Anschlußkontakte 18 - ohne Anspruch auf Vollständigkeit zu erheben - zu verdεutlichεn. Diε definierte Formgebung der Anschlußkontakte kann bei- spiεlsweise durch die Ausbildung einer Lötstopmaske auf einer Leitεrbahn erfolgen, wobei einε Maskεnöff- nung dεr Lδtstopmaskε dann diε Form dεs Anschlußkon- taktes 18 εrgibt . Eine weitεre Möglichkeit besteht darin, die Anschlußkontakte 18 sεlbεr mit εiner entsprechenden Formgebung auf das Substrat 10 aufzubringen. Entscheidend ist, daß die Geometrie der An- Schlußkontakte 18 von einεr krεisrundεn Form, die im wesentlichen der runden Form der Löthöcker entspricht, abweicht, so daß bei Benεtzung dεr Anschlußkontaktε 18 diε Löthöckεr entsprechεnd dεr Gεomεtrie der Anschlußkontakte 18 zerfließen und deren Form an- nehmen. Hierdurch kommt es zu einer gezieltεn Verformung der Löthöcker 24. Gemäß der auszugsweise gezεig- ten Möglichkeiten kann der Anschlußkontakt 18 gemäß den Figuren 9a und 9b beispielsweise von einer runden Form abkragende Stεgε aufweisen, gemäß Figur 9c drei- eckförmig, gemäß Figur 9d mit einer von εiner Kreisform entspringendεn Nasε und gemäß Figur 9e mit von einεr Kreisform εntspringendεn gεgεnüberliegend angeordneten Nasen, gemäß Figur 9f tropfεnförmig, gemäß Figur 9g oval, gemäß Figur 9h quadratisch und gemäß Figur 9i rund mit einem Steg ausgebildet sein. Hierbei können alle zu kontaktierεnden Anschlußkontaktε 18 diε gleichε gεometrische Form oder auch Mischformen aufweisen, das heißt, Anschlußkontakte 18 einεr Lεitεrplattε bεsitzεn eine unterschiedlichε gεomεtri- sehe Form. Zweckmäßigεrwεisε bεsitzεn jedoch alle zu kontaktierenden Anschlußkontakte einer Leiterplattε die glεiche geometrische Form.FIG. 9 shows a greatly enlarged illustration of each of a connection contact 18 in its top view, in order to suspect some of the possible defined shapes for the connection contacts 18 - without claiming to be complete. The defined shape of the connection contacts can be carried out, for example, by forming a solder stop mask on a conductor track, a mask opening of the solder stop mask then showing the shape of the connection contact. clock 18 results. Another possibility is to apply the connection contacts 18 to the substrate 10 with a corresponding shape. It is crucial that the geometry of the connection contacts 18 deviate from a circular shape, which essentially corresponds to the round shape of the solder bumps, so that when the connection contact 18 is used, the solder bump correspondingly flows and the shape of the connection contacts 18 takes on . This leads to a targeted deformation of the solder bumps 24. According to the options shown in extracts, the connection contact 18 according to FIGS. 9a and 9b can have, for example, bars projecting from a round shape, according to FIG. 9c triangular, according to FIG. 9d with one of A circular shape originating from the nose and, according to FIG. 9e, with noses arranged opposite to a circular shape, droplet-shaped according to FIG. 9f, oval according to FIG. 9g, square according to FIG. 9h and round with a web according to FIG. 9i. In this case, all the connection contacts 18 to be contacted can have the same geometrical shape or also mixed forms, that is to say connection contacts 18 of a conductor plate have a different geometrical shape. Appropriately, however, all the contact contacts of a printed circuit board to be contacted have the same geometric shape.
In Figur 10 ist ein schεmatischεr Ausschnitt εinεr zweidimεnsionalεn Rδntgεnaufnah ε gezεigt, mittels der die ordnungsgemäße Benetzung von Anschlußkontakten 18 durch Löthöcker 24 überprüft wird. Hier sind beispielsweise vier Löthöcker 24 erkennbar, (Die Aufnahme gibt ferner, hier nicht zu behandelndε, Lεitεr- bahnen und Durchkontaktierungen wieder.) von denen die beiden oben dargestelltεn Lδthδckεr 24 eine im wesentlichen kreisrunde Form aufweisen, während die beiden unten dargestellten Löthöcker 24 einε im wesentlichen ovale Form aufweisen. Anhand dieser Aufnahme wird deutlich, daß aufgrund der ovalen Form der Löthöcker 24 diese, die zuvor eben gerade diese ovale Form aufweisεnden Anschlußkontakte 18 ordnungsgemäß benetzt hat. Die in Figur 10 oben dargestellten Löthöcker 24 besitzen ihre Ursprungsform dεr im wesentlichen runden unverlötεtεn Löthöckεr 24 und haben die dort ebenfalls ovalen Anschlußkontakte 18 nicht ord- nungsgemäß benetzt, so daß auf eine fehlerhafte, kalte Lötstelle geschlossen werden kann. Mittels dieser im Verhältnis relativ einfach anfertigbaren z ei- dimensionalen Röntgenaufnahmen können so bei vorhergehender Präparation der Anschlußkontakte 18 durch dεren entsprechεndε Formgebung (Beispielε gemäß der Figuren 9a bis 9i) eine zerstörungsfreie, eindeutige und sichere Überprüfung einer ordnungsgemäßen Kontak- tiεrung errεicht wεrdεn. FIG. 10 shows a schematic section of a two-dimensional X-ray image, by means of which the correct wetting of connection contacts 18 by solder bumps 24 is checked. Here are For example, four solder bumps 24 can be seen (the image also shows, not to be treated here, conductor tracks and plated-through holes), of which the two solder bumps 24 shown above have an essentially circular shape, while the two solder bumps 24 shown below essentially have one have an oval shape. On the basis of this recording, it is clear that, due to the oval shape of the solder bumps 24, they have properly wetted the connection contacts 18, which previously had just this oval shape. The soldering bumps 24 shown in FIG. 10 have their original shape of essentially round unsoldered soldering bumps 24 and have not properly wetted the oval contacts 18 there, so that a faulty, cold soldering point can be concluded. By means of these two-dimensional x-ray recordings, which are relatively easy to produce, a non-destructive, unambiguous and reliable check of a correct contact can be achieved with previous preparation of the connection contacts 18 by their corresponding shaping (example according to FIGS. 9a to 9i).

Claims

Patentansprüche claims
1. Verfahrεn zur Vεrbindung von εlektronischen Bau- εlεmεntεn mit einem Trägersubstrat, wobei wenigstens ein Anschlußkontakt des Bauelementes mit wenigstens einem Anschlußkontakt auf dεr Oberseite des Träger- substrates elektrisch leitεnd vεrbunden wird, indem ein Lδthöcker (Bump) an wenigstens einem der zu verbindenden Anschlußkontakte aufgebracht wird, das Bauelement mit dem Trägersubstrat justiεrt gεfügt wird, und der wenigstens eine Löthöcker zur Benetzung der1. A method for connecting electronic components to a carrier substrate, at least one connection contact of the component being connected in an electrically conductive manner to at least one connection contact on the top side of the carrier substrate by applying a solder bump to at least one of the connection contacts to be connected is, the component is justified with the carrier substrate, and the at least one solder bump for wetting the
Kontaktflächen verlötet wird, dadurch gekennzeichnet, daß während des Lötens der wenigstens einε LöthöckerContact surfaces is soldered, characterized in that during soldering, the at least one soldering bump
(24) in dεr Kontaktierungsebene derart vεrformt wird, daß εin Vεrformungsgrad erziεlt wird, dεr εinε Aus- wertung dεs Verformungsgradεs mittεls εinεr Röntgen- aufnahmε dεr Vεrbindungsstellε gεstattet.(24) is deformed in the contacting level in such a way that a degree of deformation is achieved, which evaluates the degree of deformation by means of an X-ray image of the connecting point.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der wenigstεns εine Lδthδcker (24) während des Lötens einε Masseverteilung erfährt, so daß dεssen Dicke (D) zum Rand hin stetig abnimmt.2. The method according to claim 1, characterized in that the least εine Lδthδcker (24) experiences a mass distribution during soldering, so that its thickness (D) decreases steadily towards the edge.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß diε Verformung dεr Löt- höckεr (24) durch εine Lötstopmaske (26) bestimmt wird, die die Anschlußkontakte (18) des Träger- substratεs (10) umgreift, und in die die Löthöckεr (24) gefügt werden.3. The method according to any one of the preceding claims, characterized in that the deformation of the soldering hump (24) is determined by a soldering stop mask (26) which connects the connecting contacts (18) of the carrier encompasses substrates (10) and into which the solder pads (24) are inserted.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Verformungsgrad der Löthöcker (24) durch εin Größenverhältnis eines Durchmessers (d_) von Maskierungsδffnungen (28) der Lötstopmaske (26) zu einem Durchmesser (d2) der Löthöcker (24) bestimmt wird.4. The method according to any one of the preceding claims, characterized in that the degree of deformation of the solder bumps (24) by εin size ratio of a diameter (d_) of masking openings (28) of the solder mask (26) to a diameter (d 2 ) of the solder bumps (24) is determined.
5. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Verformung der Löt- höckεr (24) durch eine gewollte bεrεichswεise Benetzung von die Anschlußkontakte (18) aufweisendε Lei- tεrbahnen (16) εrfolgt.5. The method according to any one of claims 1 and 2, characterized in that the deformation of the Löt- Höckεr (24) by a deliberate bεrεichswεise wetting of the connection contacts (18) aufweisendε Leitεrbahnen (16) follows.
6. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß diε Verformung der Löt- höcker (24) durch εine gewollte Benetzung von Stirn- flächen (50) der Anschlußkontakte (18) erfolgt.6. The method according to any one of claims 1 and 2, characterized in that diε deformation of the solder bumps (24) by εine deliberate wetting of end faces (50) of the connection contacts (18).
7. Verfahren nach einem der Ansprüche 1 oder 3, dadurch gekennzeichnet, daß die Verformung der Löt- höcker (24) durch eine geziεlte Benεtzung von, einε von εinεr Krεisform abweichεnde Gεomεtriε aufweisenden Anschlußkontakte (18) erfolgt.7. The method according to any one of claims 1 or 3, characterized in that the deformation of the solder bumps (24) by a counted use of, one of εinεr Krεisform differing Gεomεtriε having connection contacts (18).
8. Verfahren nach einem der vorhergεhεnden Ansprüche, dadurch gekennzeichnet, daß die Vεrbindung zwischεn dεm Bauelement und dem Trägersubstrat in εiner Flip- Chip-Technik erfolgt. 8. The method according to any one of the preceding claims, characterized in that the connection between the component and the carrier substrate takes place in εiner flip-chip technology.
9. Vεrfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Verbindung zwischen dem Bauelement und dem Trägεrsubstrat in εiner Ball-Grid- Array-Tεchnik εrfolgt .9. A method according to one of claims 1 to 7, characterized in that the connection between the component and the carrier substrate is carried out in a ball grid array technique.
10. Anordnung zur Vεrbindung von elektronischεn Bauelementen mit einem Trägersubstrat, wobei wenigstens ein Anschlußkontakt des Bauelementes wenigstεns εinem Anschlußkontakt auf der Obεrseitε dεs Trägεrsubstra- tes zugewandt ist, und einε εlektrisch leitεnde Verbindung zwischen den Anschlußkontakten durch einen Löthöcker erfolgt, dadurch gekennzeichnet, daß der wenigstens eine Anschlußkontakt (18) des Trägersubstrates (10) von einer Lötstopmaske (26) umgriff n wird, dεssen Maskenöffnung (28) größer ist als der Anschlußkontakt (18) und/oder größer ist als ein Durchmesser (d2) der Löthöckεr (24) .10. Arrangement for connecting electronic components to a carrier substrate, at least one connection contact of the component facing at least one connection contact on the upper side of the carrier substrate, and an electrically conductive connection between the connection contacts being made by a solder bump, characterized in that the at least one a connection contact (18) of the carrier substrate (10) is encompassed by a solder mask (26), the mask opening (28) is larger than the connection contact (18) and / or larger than a diameter (d2) of the solder bump (24).
11. Anordnung nach Anspruch 10, dadurch gekennzeich- net, daß das Verhältnis der Durchmesser (d2) der Löthöcker (24) zu einεm Durchmεssεr der Maskenöf nung11. The arrangement as claimed in claim 10, characterized in that the ratio of the diameter (d2) of the solder bumps (24) to one diameter of the mask opening
(28) (d^ größer 1 : 1,1 beträgt.(28) (d ^ is greater than 1: 1.1.
12. Anordnung nach Anspruch 11, dadurch gekennzeich- net, daß das Verhältnis der Durchmessεr (d2) zu (d]_)12. Arrangement according to claim 11, characterized in that the ratio of the diameter (d2) to (d ] _)
1 : 1,3 bis 1 : 1,4 beträgt.1: 1.3 to 1: 1.4.
13. Anordnung nach Anspruch 10, dadurch gekennzeichnet, daß ein Durchmesser {d__ ) der Maskenöffnung (28) größεr ist als ein Durchmessεr dεs Anschlußkontaktεs (18) jedoch kleiner ist als ein Durchmesser (d2) des Lδthöckers (24) . 13. The arrangement according to claim 10, characterized in that a diameter {d__) of the mask opening (28) is larger than a diameter of the connecting contact (18) but smaller than a diameter (d2) of the solder bump (24).
14. Anordnung zur Verbindung von elektronischen Bau- elεmenten mit einem Trägersubstrat, wobei wenigstens ein Anschlußkontakt des Bauelemεntes wenigstens einem Anschlußkontakt auf der Obersεitε des Trägersubstra- tεs zugewandt ist, und εine elεktrisch leitende Verbindung zwischen den Anschlußkontakten durch einεn Löthöcker erfolgt, dadurch gekennzeichnet, daß der Anschlußkontakt (18) eine definiεrtε Kontaktflächε (20) aufwεist, dεrεn Gεomεtrie von einer Geometrie des Löthöckers (24) abweicht.14. Arrangement for connecting electronic components to a carrier substrate, at least one connection contact of the component facing at least one connection contact on the top of the carrier substrate, and an electrically conductive connection between the connection contacts being made by a solder bump, characterized in that the connection contact (18) has a defined contact surface (20), the geometry of which deviates from a geometry of the solder bump (24).
15. Anordnung nach Anspruch 14, dadurch gekennzeichnet, daß der Anschlußkontakt (18) eine ovale, eckige, polygonale oder anderε von einer Kreisform abweichen- den Kontaktflächε (20) aufweist.15. The arrangement according to claim 14, characterized in that the connection contact (18) has an oval, angular, polygonal or other of a circular shape deviating contact surface (20).
16. Verfahren zur Überprüfung einεr Vεrbindung zwischεn εlεktronischen Bauεlεmenten und einem Trägersubstrat, wobei Anschlußkontakte des Bauelεmεntεs mit zugεordnεten Anschlußkontakten des Trägεrsubstratεs übεr wεnigstεns εinεn Löthöckεr (Bump, Ball) verbunden werdεn, nach Vεrbindung des Bauelεmεntεs mit dεr Trägεrplattε diε Verbundanordnung mit senkrecht zur Kontaktierungsεbene einstrahlenden Röntgenstrahlen beaufschlagt wird, und an εinεr der Röntgεnquεlle abgewandten Seite dεr Vεrbundanordnung eine Rδntgenauf- nahmε gefertigt wird, dadurch gekennzeichnet, daß ein Intensitätsverlauf (32) dεr Rδntgεnstrahlεn (34) in εinεm Übεrgangsbεrεich (44) von einem Löthöcker (24) zu dem dεn Lδthöcker (24) umgebenden Bereich ausgewertet wird, wobei bei Verlöten der Löthöcker (24) diεse so verformt werdεn, daß bεi ordnungsgεmäßεr Bε- netzung dεr Anschlußkontakte (18) εntwεder εin stetiger Übergang (44) des Intensitätsvεrlaufεs (32) von einem Minimum (42) zu einem Maximum (40) oder eine gezielte Verformung des Löthöckers (24) meßbar ist.16. A method for checking a connection between electronic components and a carrier substrate, whereby connecting contacts of the component with associated connecting contacts of the carrier substrate are connected at least perpendicularly to the arrangement (bump, ball) for the connection (bump, ball) is acted upon, and on the side of the bundle arrangement facing away from the X-ray source, an X-ray image is produced, characterized in that an intensity profile (32) of the X-ray beam (34) is in a transition area (44) from a solder bump (24) to a bump (24) 24) surrounding area is evaluated, the soldering bumps (24) being deformed in such a way that, when properly soldered, Networking of the connection contacts (18) or the continuous transition (44) of the intensity curve (32) from a minimum (42) to a maximum (40) or a specific deformation of the solder bump (24) can be measured.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß eine zweidimensionale Röntgenaufnahme der Verbundanordnung (36) angefertigt und ausgewεrtεt wird.17. The method according to claim 16, characterized in that a two-dimensional X-ray image of the composite arrangement (36) is made and selected.
18. Vεrfahren nach Anspruch 16, dadurch gekennzeichnet, daß εinε drεidimensionale Röntgenaufnahme der Verbundanordnung (36) im Berεich einer Schicht (S) , die in einer Ebene mit dem wεnigstens einem Anschluß- kontakt (18) des Trägersubstrates (10) liegt, angefertigt und ausgewertet wird. 18. A method according to claim 16, characterized in that εinε three-dimensional x-ray image of the composite arrangement (36) is made in the area of a layer (S) which lies in one plane with the at least one connection contact (18) of the carrier substrate (10) and is evaluated.
EP99953603A 1998-09-01 1999-08-27 Method for connecting electronic components to a substrate, and a method for checking such a connection Ceased EP1048069A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19839760A DE19839760A1 (en) 1998-09-01 1998-09-01 Method for connecting electronic components to a carrier substrate and method for checking such a connection
DE19839760 1998-09-01
PCT/DE1999/002670 WO2000013228A1 (en) 1998-09-01 1999-08-27 Method for connecting electronic components to a substrate, and a method for checking such a connection

Publications (1)

Publication Number Publication Date
EP1048069A1 true EP1048069A1 (en) 2000-11-02

Family

ID=7879409

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99953603A Ceased EP1048069A1 (en) 1998-09-01 1999-08-27 Method for connecting electronic components to a substrate, and a method for checking such a connection

Country Status (6)

Country Link
US (1) US6678948B1 (en)
EP (1) EP1048069A1 (en)
JP (1) JP2002524854A (en)
DE (1) DE19839760A1 (en)
HU (1) HUP0100338A3 (en)
WO (1) WO2000013228A1 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2344550A (en) * 1998-12-09 2000-06-14 Ibm Pad design for electronic package
JP3517388B2 (en) 2000-06-14 2004-04-12 新光電気工業株式会社 Bump inspection method and bump inspection device
US20060108678A1 (en) * 2002-05-07 2006-05-25 Microfabrica Inc. Probe arrays and method for making
US7253510B2 (en) * 2003-01-16 2007-08-07 International Business Machines Corporation Ball grid array package construction with raised solder ball pads
US10416192B2 (en) 2003-02-04 2019-09-17 Microfabrica Inc. Cantilever microprobes for contacting electronic components
DE10332573B4 (en) * 2003-07-14 2007-08-16 Siemens Ag Method for producing solder contacts on components
US7901983B2 (en) * 2004-11-10 2011-03-08 Stats Chippac, Ltd. Bump-on-lead flip chip interconnection
USRE47600E1 (en) 2003-11-10 2019-09-10 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming electrical interconnect with stress relief void
US8674500B2 (en) 2003-12-31 2014-03-18 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US8350384B2 (en) * 2009-11-24 2013-01-08 Stats Chippac, Ltd. Semiconductor device and method of forming electrical interconnect with stress relief void
USRE44500E1 (en) 2003-11-10 2013-09-17 Stats Chippac, Ltd. Semiconductor device and method of forming composite bump-on-lead interconnection
US9029196B2 (en) 2003-11-10 2015-05-12 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US20070105277A1 (en) 2004-11-10 2007-05-10 Stats Chippac Ltd. Solder joint flip chip interconnection
US7659633B2 (en) 2004-11-10 2010-02-09 Stats Chippac, Ltd. Solder joint flip chip interconnection having relief structure
US8129841B2 (en) 2006-12-14 2012-03-06 Stats Chippac, Ltd. Solder joint flip chip interconnection
US8076232B2 (en) * 2008-04-03 2011-12-13 Stats Chippac, Ltd. Semiconductor device and method of forming composite bump-on-lead interconnection
US8574959B2 (en) * 2003-11-10 2013-11-05 Stats Chippac, Ltd. Semiconductor device and method of forming bump-on-lead interconnection
US20060216860A1 (en) 2005-03-25 2006-09-28 Stats Chippac, Ltd. Flip chip interconnection having narrow interconnection sites on the substrate
US8216930B2 (en) * 2006-12-14 2012-07-10 Stats Chippac, Ltd. Solder joint flip chip interconnection having relief structure
US8026128B2 (en) * 2004-11-10 2011-09-27 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
KR101249555B1 (en) * 2003-11-10 2013-04-01 스태츠 칩팩, 엘티디. Bump-on-lead flip chip interconnection
TWI230994B (en) * 2004-02-25 2005-04-11 Via Tech Inc Circuit carrier
US20060049238A1 (en) * 2004-09-03 2006-03-09 Lim Seong C Solderable structures and methods for soldering
US8841779B2 (en) * 2005-03-25 2014-09-23 Stats Chippac, Ltd. Semiconductor device and method of forming high routing density BOL BONL and BONP interconnect sites on substrate
JP2007059638A (en) * 2005-08-25 2007-03-08 Nec Corp Semiconductor device and its manufacturing method
JP2007324528A (en) * 2006-06-05 2007-12-13 Alps Electric Co Ltd Inspection method for solder connection structure, and solder connection structure
US7772104B2 (en) * 2007-02-02 2010-08-10 Freescale Semiconductor, Inc. Dynamic pad size to reduce solder fatigue
JP5207659B2 (en) * 2007-05-22 2013-06-12 キヤノン株式会社 Semiconductor device
DE102008059793A1 (en) * 2008-12-01 2010-06-10 Grenzebach Maschinenbau Gmbh Method and device for the fully automatic selection and packaging of photovoltaic modules
US8659172B2 (en) 2008-12-31 2014-02-25 Stats Chippac, Ltd. Semiconductor device and method of confining conductive bump material with solder mask patch
US8198186B2 (en) * 2008-12-31 2012-06-12 Stats Chippac, Ltd. Semiconductor device and method of confining conductive bump material during reflow with solder mask patch
TWI498982B (en) * 2009-12-08 2015-09-01 史達晶片有限公司 Semiconductor device and method of confining conductive bump material during reflow with solder mask patch
US9685402B2 (en) * 2011-12-13 2017-06-20 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming recesses in conductive layer to detect continuity for interconnect between semiconductor die and substrate
US8810020B2 (en) * 2012-06-22 2014-08-19 Freescale Semiconductor, Inc. Semiconductor device with redistributed contacts
CN103797901B (en) * 2012-08-10 2017-04-12 松下知识产权经营株式会社 Method and system for manufacturing substrate having component mounted thereon
KR20160132499A (en) * 2012-09-04 2016-11-18 미쓰비시덴키 가부시키가이샤 Semiconductor device and semiconductor device manufacturing method
DE102017208759A1 (en) 2017-05-23 2018-11-29 Robert Bosch Gmbh Arrangement comprising a carrier substrate and an associated electronic component and method for its production
US11262383B1 (en) 2018-09-26 2022-03-01 Microfabrica Inc. Probes having improved mechanical and/or electrical properties for making contact between electronic circuit elements and methods for making
WO2023136078A1 (en) * 2022-01-14 2023-07-20 ローム株式会社 Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184768A (en) * 1990-11-29 1993-02-09 Motorola, Inc. Solder interconnection verification
US5246880A (en) * 1992-04-27 1993-09-21 Eastman Kodak Company Method for creating substrate electrodes for flip chip and other applications
JPH0982760A (en) * 1995-07-07 1997-03-28 Toshiba Corp Semiconductor device, semiconductor element and solder connecting part inspecting method therefor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029963A (en) * 1976-07-30 1977-06-14 The Board Of Trustees Of Leland Stanford Junior University X-ray spectral decomposition imaging system
JPS6038839A (en) * 1983-08-12 1985-02-28 Hitachi Ltd Flip-chip type semiconductor device
GB8806232D0 (en) * 1988-03-16 1988-04-13 Plessey Co Plc Vernier structure for flip chip bonded devices
US4852131A (en) * 1988-05-13 1989-07-25 Advanced Research & Applications Corporation Computed tomography inspection of electronic devices
US4940633A (en) * 1989-05-26 1990-07-10 Hermansen Ralph D Method of bonding metals with a radio-opaque adhesive/sealant for void detection and product made
JP2555811B2 (en) 1991-09-10 1996-11-20 富士通株式会社 Flip chip bonding method for semiconductor chips
US5489750A (en) * 1993-03-11 1996-02-06 Matsushita Electric Industrial Co., Ltd. Method of mounting an electronic part with bumps on a circuit board
US5371328A (en) * 1993-08-20 1994-12-06 International Business Machines Corporation Component rework
US5539153A (en) * 1994-08-08 1996-07-23 Hewlett-Packard Company Method of bumping substrates by contained paste deposition
AU3415095A (en) * 1994-09-06 1996-03-27 Sheldahl, Inc. Printed circuit substrate having unpackaged integrated circuit chips directly mounted thereto and method of manufacture
KR0157284B1 (en) * 1995-05-31 1999-02-18 김광호 Printed circuit board of solder ball take-on groove furnished and this use of package ball grid array
DE19640192A1 (en) 1996-09-30 1998-04-02 Bosch Gmbh Robert Process for flip chip assembly
US5938452A (en) * 1996-12-23 1999-08-17 General Electric Company Flexible interface structures for electronic devices
DE1025587T1 (en) * 1997-07-21 2001-02-08 Aguila Technologies Inc SEMICONDUCTOR FLIPCHIP PACK AND PRODUCTION METHOD THEREFOR
US6009145A (en) * 1998-02-11 1999-12-28 Glenbrook Technologies Inc. Ball grid array re-work assembly with X-ray inspection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184768A (en) * 1990-11-29 1993-02-09 Motorola, Inc. Solder interconnection verification
US5246880A (en) * 1992-04-27 1993-09-21 Eastman Kodak Company Method for creating substrate electrodes for flip chip and other applications
JPH0982760A (en) * 1995-07-07 1997-03-28 Toshiba Corp Semiconductor device, semiconductor element and solder connecting part inspecting method therefor
US5914536A (en) * 1995-07-07 1999-06-22 Kabushiki Kaisha Toshiba Semiconductor device and soldering portion inspecting method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0013228A1 *

Also Published As

Publication number Publication date
US6678948B1 (en) 2004-01-20
JP2002524854A (en) 2002-08-06
HUP0100338A2 (en) 2001-06-28
WO2000013228A1 (en) 2000-03-09
DE19839760A1 (en) 2000-03-02
HUP0100338A3 (en) 2004-11-29

Similar Documents

Publication Publication Date Title
WO2000013228A1 (en) Method for connecting electronic components to a substrate, and a method for checking such a connection
DE3818894C2 (en)
EP2210115B1 (en) Full grid cartridge for a parallel tester for testing an unpopulated printed circuit board, spring contact pin for such a full grid cartridge and adapter for testing an unpopulated printed circuit board
EP1747706A2 (en) Support with solder globule elements and a method for assembly of substrates with globule contacts
EP0867932B1 (en) Method for making wire connections
DE19924239A1 (en) Method to produce contact point on conductor, for electrical contacting to electric part
DE10150507A1 (en) Connection method and connection structure of pad electrodes and test methods for the connection state thereof
WO2005078460A1 (en) Device and method for testing a semi-conductor component having contact surfaces on both sides
DE2812976C2 (en) Method for determining the offset between conductor tracks and contact holes in a circuit board and a circuit board for use in this method
EP0995235B1 (en) Contact for very small liaison contacts and method for producing a contact
WO2004086831A2 (en) Method and device for electrically and mechanically connecting two printed boards
DE10212742A1 (en) Wiring board contact pins soldering method for electronic device, involves irradiating laser light on solder balls on electrode pads to form fillets between pads and pedestals for soldering contact pins
DE102017125754A1 (en) Method of determining the shape and volume of a plumbing point
DE19807279C2 (en) Method for manufacturing an electronic component
DE4324479B4 (en) Process for producing solderable structures for contacting electrical modules
DE102019129971A1 (en) Method for soldering a component onto a printed circuit board, electronic unit and field device in automation technology
WO2018215277A1 (en) Assembly comprising a carrier substrate and an electronic component connected thereto, and method for the production thereof
DE69008944T2 (en) Printed circuit board.
DE102021129364A1 (en) Method and test system for measuring at least one electrical signal on a BGA component when soldered to a printed circuit board, as well as associated printed circuit board and measuring probe
EP1002452B1 (en) Contact arrangement linking two substrates and method for the production of said contact arrangement
DE10136514C1 (en) Method for producing an electrically conductive bond connection, and bond connection
WO2012089555A1 (en) Printed circuit board, method for producing a printed circuit board and testing device for testing a printed circuit board
DE102019205439A1 (en) Solder layer, component, circuit board, and method of making a solder layer
DE102012112100A1 (en) Method for manufacturing printed circuit board, involves fitting first side of circuit board with surface mounted device component, and soldering through fetch technique components and device component in reflow soldering process
DE19944518A1 (en) Soldering integrated circuit or integrated circuit housing onto circuit board having conducting pathway uses lacquer or film mask with non-circular openings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 20000911

17Q First examination report despatched

Effective date: 20041006

17Q First examination report despatched

Effective date: 20041006

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20091202