EP1027054A1 - Apport local d'inhibiteurs de phosphodiesterases, dans le traitement du dysfonctionnement erectile - Google Patents

Apport local d'inhibiteurs de phosphodiesterases, dans le traitement du dysfonctionnement erectile

Info

Publication number
EP1027054A1
EP1027054A1 EP98954032A EP98954032A EP1027054A1 EP 1027054 A1 EP1027054 A1 EP 1027054A1 EP 98954032 A EP98954032 A EP 98954032A EP 98954032 A EP98954032 A EP 98954032A EP 1027054 A1 EP1027054 A1 EP 1027054A1
Authority
EP
European Patent Office
Prior art keywords
phosphodiesterase inhibitor
phosphodiesterase
type
formulation
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP98954032A
Other languages
German (de)
English (en)
Other versions
EP1027054A4 (fr
Inventor
Paul C. Doherty, Jr.
Virgil A. Place
William L. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vivus LLC
Original Assignee
Vivus LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/181,070 external-priority patent/US6037346A/en
Application filed by Vivus LLC filed Critical Vivus LLC
Publication of EP1027054A1 publication Critical patent/EP1027054A1/fr
Publication of EP1027054A4 publication Critical patent/EP1027054A4/fr
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/343Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4015Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having oxo groups directly attached to the heterocyclic ring, e.g. piracetam, ethosuximide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41661,3-Diazoles having oxo groups directly attached to the heterocyclic ring, e.g. phenytoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/4261,3-Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/47042-Quinolinones, e.g. carbostyril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/501Pyridazines; Hydrogenated pyridazines not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/502Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with carbocyclic ring systems, e.g. cinnoline, phthalazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/5025Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/5381,4-Oxazines, e.g. morpholine ortho- or peri-condensed with carbocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/549Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame having two or more nitrogen atoms in the same ring, e.g. hydrochlorothiazide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • A61K31/55131,4-Benzodiazepines, e.g. diazepam or clozapine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0034Urogenital system, e.g. vagina, uterus, cervix, penis, scrotum, urethra, bladder; Personal lubricants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence

Definitions

  • This invention relates generally to methods and pharmaceutical compositions for treating erectile dysfunction; more particularly, the invention relates to local administration of phosphodiesterase inhibitors to treat erectile dysfunction.
  • Impotence is the consistent inability to achieve or sustain an erection of sufficient rigidity for sexual intercourse. It has recently been estimated that approximately 10 million American men are impotent (R. Shabsigh et al., "Evaluation of Erectile Impotence,” Urology 32:83-90 (1988); W.L. Furlow, “Prevalence of Impotence in the United States,” Med. Aspects Hum. Sex. 19:13-6 (1985)). Impotence is recognized to be an age-dependent disorder, with an incidence of 1.9 percent at 40 years of age and 25 percent at 65 years of age (A.C. Kinsey et al., "Age and Sexual Outlet," in Sexual Behavior in the Human Male; A.C.
  • treatments include psychosexual therapy, hormonal therapy, administration of vasodilators such as nitroglycerin and ⁇ -adrenergic blocking agents (" ⁇ -blockers”), oral administration of other pharmaceutical agents, vascular surgery, implanted penile prostheses, vacuum constriction devices and external aids such as penile splints to support the penis or penile constricting rings to alter the flow of blood through the penis.
  • vasodilators such as nitroglycerin and ⁇ -adrenergic blocking agents (“ ⁇ -blockers”)
  • ⁇ -blockers ⁇ -adrenergic blocking agents
  • vasculogenic impotence which is caused by alterations in the flow of blood to and from the penis, is thought to be the most frequent organic cause of impotence.
  • Common risk factors for vasculogenic impotence include hypertension, diabetes, cigarette smoking, pelvic trauma, and the like.
  • Neurogenic impotence is associated with spinal-cord injury, multiple sclerosis, peripheral neuropathy caused by diabetes or alcoholism and severance of the autonomic nerve supply to the penis consequent to prostate surgery. Erectile dysfunction is also associated with disturbances in endocrine function resulting in low circulating testosterone levels and elevated prolactin levels.
  • Impotence can also be a side effect of various classes of drugs, in particular, those that interfere with central neuroendocrine control or local neuro vascular control of penile smooth muscle.
  • Penile erection requires (1) dilation of the arteries that regulate blood flow to the lacunae of the corpora cavernosum, (2) relaxation of trabecular smooth muscle, which facilitates engorgement of the penis with blood, and (3) compression of the venules by the expanding trabecular walls to decrease venous outflow.
  • Trabecular smooth muscle tone is controlled locally by adrenergic (constrictor), cholinergic (dilator) and nonadrenergic, noncholinergic (dilator) innervation, and by endothelium-derived vasoactive substances such as vasoactive intestinal polypeptide (VIP), prostanoids, endothelin and nitric oxide.
  • VIP vasoactive intestinal polypeptide
  • prostanoids endothelin and nitric oxide.
  • High sympathetic tone noradrenergic
  • noradrenergic receptor antagonists See, e.g., Krane et al., supra.
  • L-DOPA a dopamine precursor
  • L-DOPA has been used in the treatment of Parkinsonism and is known to act as an aphrodisiac in some patients (Gessa & Tagliamonte, supra; Hyppa et al., Ada Neurologic Scand.
  • the invention described herein provides a means to avoid the above- mentioned problems encountered with the systemic administration of pharmacologically active agents to treat erectile dysfunction.
  • the invention relates to methods and formulations for effectively treating erectile dysfunction by locally administering a selected active agent, wherein the active agent is an inhibitor of a phosphodiesterase.
  • Phosphodiesterases are a class of intracellular enzymes involved in the metabolism of the second messenger nucleotides, cyclic adenosine monophosphate (cAMP), and cyclic guanosine monophosphate (cGMP) (see, e.g., Doherty, "Oral, Transdermal, and Transurethral Therapies for Erectile Dysfunction” in Male Infertility and Dysfunction. Hellstrom, ed., Chapter 34 (New York, New York: Springer- VerlagHellstrom, 1997)).
  • cAMP cyclic adenosine monophosphate
  • cGMP cyclic guanosine monophosphate
  • phosphodiesterase inhibitors Numerous phosphodiesterase inhibitors have previously been described in the literature for a variety of therapeutic uses, including treatment of obstructive lung disease, allergies, hypertension, angina, congestive heart failure and depression (see, e.g., Goodman and Gilman's The Pharmacological Basis of Therapeutic Ninth Edition, Chapter 34). Oral and parenteral administration of phosphodiesterase inhibitors, as alluded to above, have also been suggested for the treatment of erectile dysfunction (Doherty, supra; see also PCT Publication Nos. WO 96/16644, and WO 94/28902). The phosphodiesterases have been classified into seven major families, Types I- VII, based on amino acid or DNA sequences.
  • the members of the family vary in their tissue, cellular and subcellular distribution, as well as their links to cAMP and cGMP pathways.
  • the corpora cavernosa contains: type III phosphodiesterases, which are cAMP-specific cGMP inhibitable; type IV phosphodiesterases, the high affinity, high-specificity cAMP-specific form; and type V phosphodiesterases, one of the cGMP-specific forms.
  • Various compounds are known as inhibitors of phosphodiesterases are known, including vinpocetine, milrinone, amrinone, pimobendan, cilostamide, enoximone, peroximone, vesnarinone, rolipram, RO20-1724, zaprinast, dipyridamole, pentoxifylline, sildenafil citrate (Viagra ® ), doxazosin, papaverine, prazosin, terazosin, trimazosin, and hydralazine.
  • WO 94/28902 discloses a series of pyrazole [4,3- d]pyrimidin-7-ones cGMP phosphodiesterase inhibitors.
  • PCT Publication No. WO 96/16644 also discloses a variety of cGMP phosphodiesterase inhibitors, including griseolic acid derivatives, 2-phenylpurinone derivatives, phenylpyridone derivatives, fused and condensed pyrimidines, a pyrimdopyrimidine derivative, a purine compound, a quinazoline compound, a phenylpyrimidone derivative, an imidazoquinoxalinone derivative or aza analogues thereof, a phenylpyridone derivative, and others.
  • U.S. Patent No. 5,439,938 to Snyder et al. describes the administration of nitric oxide (NO) synthase inhibitors by direct injection of a drug into the corpora cavernosa, by topical drug administration or transurethral drug administration, for inhibiting penile erection due to priapism and for treating urinary incontinence;
  • NO nitric oxide
  • PCT Publication No. WO 91/16021, U.S. Patent No. 4,801,587 to Voss et al., and U.S. Patent Nos. 5,242,391, 5,474,535, 5,686,093 and 5,773,020 to Place et al. relate to the treatment of erectile dysfunction by delivery of a vasoactive agent into the male urethra.
  • the invention is directed to local administration of pharmacologically active agents to treat erectile dysfunction.
  • the agents are preferably, although not necessarily, Type V phosphodiesterase inhibitors.
  • local administration of these phosphodiesterase inhibitors as disclosed herein is highly effective in treating erectile dysfunction, particularly vasculogenic impotence.
  • Local administration of phosphodiesterase inhibitors, and transurethral drug administration in particular generally enables use of a lower drug dosage, avoids many of the side effects encountered with other modes of administration, and avoids interaction with other systemically administered medications an individual may be taking.
  • the local administration of phosphodiesterase inhibitors, particularly Type V phosphodiesterase inhibitors, to treat erectile dysfunction accordingly represents an important advance in the treatment of impotence and other erectile disorders.
  • a method for treating an individual prone to erectile dysfunction, particularly vasculogenic erectile dysfunction comprising locally administering to the individual a pharmaceutical formulation containing a phosphodiesterase inhibitor.
  • Administration of the pharmaceutical formulation is carried out within the context of a predetermined dosing regimen such that the agent is effective in the treatment of erectile dysfunction.
  • the method is especially useful in the treatment of vasculogenic impotence, although other types of erectile dysfunction may also be treated using the present formulations.
  • Drug delivery is preferably effected transurethrally, but the drug may also be administered via intracavernosal injection or using topical or transdermal administration.
  • a pharmaceutical formulation for carrying out the present method for treating erectile dysfunction.
  • the pharmaceutical formulation comprises an effective amount of a phosphodiesterase inhibitor, a carrier or vehicle preferably suitable for the selected mode of administration, and, optionally, a permeation enhancer.
  • the formulation may contain one or more additional active agents, e.g., dopaminergic drugs, smooth muscle relaxants, vasoactive drugs, and additives, e.g., excipients, surfactants, preservatives (e.g., antioxidants), stabilizers, chelating agents, enzyme inhibitors, antibacterial agents and the like, as will be appreciated by those skilled in the art of drug formulation preparation and delivery.
  • kits to assist an individual in drug administration to carry out the method of the invention.
  • the kit will include the following components: a pharmaceutical formulation comprising the phosphodiesterase inhibitor to be administered; a device for effecting delivery of the pharmaceutical formulation; a container housing the pharmaceutical formulation during storage and prior to use; and instructions for carrying out drug administration in a manner effective to treat erectile dysfunction.
  • Figure 1 is an exploded view of one embodiment of a transurethral therapeutic device which may be used in conjunction with the present method.
  • erectile dysfunction is intended to include any and all types of erectile dysfunction, including: vasculogenic, neurogenic, endocrinologic and psychogenic impotence ("impotence” is used here in its broadest sense to indicate an inability a periodic or consistent inability to achieve or sustain an erection of sufficient rigidity for sexual intercourse; see U.S. Patent No.
  • phosphodiesterase inhibitor as used herein is intended to mean an agent that is capable of inhibiting or selectively reducing the activity of any one or more phosphodiesterases.
  • active agent drug
  • drug pharmaceutically active agent
  • pharmaceutically active agent refers to a chemical material or compound that induces a desired effect.
  • the terms refer to a phosphodiesterase inhibitor which is capable of being delivered locally, preferably transurethrally. Included are derivatives and analogs of those compounds or classes of compounds specifically mentioned which also induce the desired effect.
  • transurethral intraurethral
  • intraurethral to specify the preferred mode of administration herein are used interchangeably to refer to the delivery of the drug into the urethra such that drug contacts and passes through the wall of the urethra.
  • the present method preferably involves delivery of the drug at least about 3 cm and preferably at least about 7 cm into the urethra.
  • intracavernosal refers to an alternative mode of drug administration and involves injection into one or both corpora of the corpora cavernosal tissues of the penis.
  • transdermal delivery applicants intend to include both transdermal (or “percutaneous”) and transmucosal administration, i.e., delivery by passage of a drug through the skin or mucosal tissue and into the bloodstream.
  • body surface will sometimes be used herein to refer to either the skin or the mucosal tissue.
  • Transdermal delivery is also intended to encompass delivery of a drug by passage across scrotal tissue.
  • topical administration is used in its conventional sense to mean delivery of a topical drug or pharmacologically active agent to the skin or mucosa.
  • Poration enhancement or “permeation enhancement” as used herein relates to an increase in the permeability of the urethral wall to the selected pharmacologically active agent, i.e., so that the rate at which the drug permeates through the urethral wall is increased.
  • Carriers or “vehicles” as used herein refer to carrier materials suitable for local drug administration. Carriers and vehicles useful herein include any such materials known in the art which is nontoxic and does not interact with other components of the composition in a deleterious manner. By an "effective" amount of a drug or pharmacologically active agent is meant a nontoxic but sufficient amount of the drug or agent to provide the desired effect, i.e., treatment of erectile dysfunction.
  • a selected phosphodiesterase inhibitor is locally administered to an individual prone to erectile dysfunction.
  • the active agent herein may be any agent which is effective to inhibit the activity of a phosphodiesterase.
  • Suitable phosphodiesterase inhibitors include, but are not limited to, inhibitors of the type III phosphodiesterases (cAMP-specific-cGMP inhibitable form), the type IV phospodiesterase (high affinity-high specificity cAMP form) and the type V phosphodiesterases (the cGMP specific form). Additional inhibitors that may be used in conjunction with the present invention are cGMP-specific phosphodiesterase inhibitors other than Type V inhibitors.
  • type III phospodiesterase inhibitors that may be administered include, but are not limited to, bypyridines such as milrinone and amirinone, imidazolones such as piroximone and enoximone, dihydropyridazinones such as imazodan, 5-methyl- imazodan, indolidan and ICI118233, quinolinone compounds such as cilostamide, cilostazol and vesnarinone, and other molecules such as bemoradan, anergrelide, siguazodan, trequinsin, pimobendan, SKF-94120, SKF-95654, lixazinone and isomazole.
  • bypyridines such as milrinone and amirinone
  • imidazolones such as piroximone and enoximone
  • dihydropyridazinones such as imazodan, 5-methyl- imazodan, indolidan and ICI118233
  • type IV phosphodiesterase inhibitors suitable herein include, but are not limited to, rolipram and rolipram derivatives such as RO20-1724, nitraquazone and nitraquazone derivatives such as CP-77059 and RS-25344-00, xanthine derivatives such as denbufylline and ICI63197, and other compounds such as EMD54622, LAS-31025 and etazolate.
  • type V phosphodiesterase inhibitors include, but are not limited to, zaprinast, MY5445, dipyridamole, and sildenaf ⁇ l.
  • Other type V phosphodiesterase inhibitors are disclosed in PCT Publication Nos. WO 94/28902 and WO 96/16644.
  • the compounds described in PCT Publication No. WO 94/28902 are pyrazolopyrimidinones.
  • inhibitor compounds include 5-(2-ethoxy-5- morpholinoacetylphenyl)- 1 -methyl-3-w-propyl- 1 ,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7- one, 5-(5-morpholinoacetyl-2-n-propoxyphenyl)-l-methyl-3- «-propyl-l,6-dihydro-7H- pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-ethoxy-5-(4-methyl-l-piperazinylsulfonyl)-phenyl]-l- methyl-3-w-propyl-l,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-allyloxy-5-(4- methyl- 1 -piperazinylsulfonyl)-phenyl]- 1 -methyl-3-rc-propyl- 1 ,6
  • the phosphodiesterase inhibitors described in PCT Publication No. WO 96/16644 include griseolic acid derivatives, 2-phenylpurinone derivatives, phenylpyridone derivatives, fused and condensed pyrimidines, pyrimidopyrimidine derivatives, purine compounds, quinazoline compounds, phenylpyrimidinone derivative, imidazoquinoxalinone derivatives or aza analogues thereof, phenylpyridone derivatives, and others.
  • phosphodiesterase inhibitors disclosed in WO 96/16644 include 1,3- dimethyl-5-benzylpyrazolo[4,3-d]pyrimidine-7-one, 2-(2-propoxyphenyl)-6-purinone, 6-(2- propoxyphenyl)- 1 ,2-dihydro-2-oxypyridine-3-carboxamide, 2-(2-propoxyphenyl)- pyrido[2,3-d]pyrimid-4(3H)-one, 7-methylthio-4-oxo-2-(2-propoxyphenyl)-3,4-dihydro- pyrimido[4,5-d]pyrimidine, 6-hydroxy-2-(2-propoxyphenyl)pyrimidine-4-carboxamide, 1 - ethyl-3-methylimidazo[l ,5a]quinoxalin-4(5H)-one, 4-phenylmethylamino-6-chloro-2-(l - imidazoloyl)quinazoline, 5-e
  • Still other type V phosphodiesterase inhibitors useful in conjunction with the present invention include: IC-351 (ICOS); 4-bromo-5-(pyridylmethylamino)-6-[3-(4- chlorophenyl)propoxy]-3(2H)pyridazinone; 1 -[4-[(l ,3-benzodioxol-5-ylmethyl)amiono]-6- chloro-2-quinazolinyl]-4-piperidine-carboxylic acid, monosodium salt; (+)-cis- 5,6a,7,9,9,9a-hexahydro-2-[4-(trifluoromethyl)-phenylmethyl-5-methyl-cyclopent- 4,5]imidazo[2,l-b]purin-4(3H)one; furazlocillin; cis-2-hexyl-5-methyl-3,4,5,6a,7,8,9,9a- octahydrocyclopent[4,5]
  • phosphodiesterase inhibitors that may be used in the method of this invention include nonspecific phosphodiesterase inhibitors such as theophylline, IBMX, pentoxifylline and papaverine, and direct vasodilators such as hydralazine.
  • the active agents may be administered, if desired, in the form of salts, esters, amides, prodrugs, derivatives, and the like, provided the salt, ester, amide, prodrug or derivative is suitable pharmacologically, i.e., effective in the present method.
  • Salts, esters, amides, prodrugs and other derivatives of the active agents may be prepared using standard procedures known to those skilled in the art of synthetic organic chemistry and described, for example, by J. March, Advanced Organic Chemistry: Reactions. Mechanisms and Structure. 4th Ed. (New York: Wiley-Interscience, 1992).
  • acid addition salts are prepared from the free base using conventional methodology, and involves reaction with a suitable acid.
  • Suitable acids for preparing acid addition salts include both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • organic acids e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic
  • An acid addition salt may be reconverted to the free base by treatment with a suitable base.
  • Particularly preferred acid addition salts of the active agents herein are halide salts, such as may be prepared using hydrochloric or hydrobromic acids.
  • preparation of basic salts of acid moieties which may be present on a phosphodiesterase inhibitor molecule are prepared in a similar manner using a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine, or the like.
  • Particularly preferred basic salts herein are alkali metal salts, e.g., the sodium salt, and copper salts.
  • esters involves functionalization of hydroxyl and/or carboxyl groups which may be present within the molecular structure of the drug.
  • the esters are typically acyl- substituted derivatives of free alcohol groups, i.e., moieties which are derived from carboxylic acids of the formula RCOOH where R is alkyl, and preferably is lower alkyl.
  • Esters can be reconverted to the free acids, if desired, by using conventional hydrogenolysis or hydrolysis procedures.
  • Amides and prodrugs may also be prepared using techniques known to those skilled in the art or described in the pertinent literature.
  • amides may be prepared from esters, using suitable amine reactants, or they may be prepared from an anhydride or an acid chloride by reaction with ammonia or a lower alkyl amine.
  • Prodrugs are typically prepared by covalent attachment of a moiety which results in a compound that is therapeutically inactive until modified by an individual's metabolic system.
  • the active agent is administered locally to treat erectile dysfunction, and is accordingly administered in a pharmaceutical formulation suitable for local administration.
  • the pharmaceutical compositions may be in the form of solid, semi-solid or liquid dosage forms, such as, for example, suppositories, powders, liquids, suspensions, creams, ointments, lotions or the like, preferably in unit dosage form suitable for single administration of a precise dosage.
  • the compositions comprise an effective amount of the phosphodiesterase inhibitor in combination with a pharmaceutically acceptable carrier and, in addition, may include other pharmaceutical agents, adjuvants, diluents, buffers, etc.
  • conventional nontoxic solid carriers include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talc, cellulose, glucose, sucrose, magnesium carbonate, and the like.
  • Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, etc., an active compound as described herein and optional pharmaceutical adjuvants in an excipient, such as, for example, water, saline, aqueous dextrose, glycerol, ethanol, and the like, to thereby form a solution or suspension.
  • the pharmaceutical composition to be administered may also contain minor amounts of non- toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like, for example, sodium acetate, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, etc.
  • auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like, for example, sodium acetate, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, etc.
  • the formulation may, for example, be administered transurethrally.
  • the formulation comprises a urethral dosage form containing the active agent and one or more selected carriers or excipients, such as water, silicone, waxes, petroleum jelly, polyethylene glycol (“PEG”), propylene glycol (“PG”), liposomes, sugars such as mannitol and lactose, and/or a variety of other materials, with polyethylene glycol and derivatives thereof particularly preferred.
  • carriers or excipients such as water, silicone, waxes, petroleum jelly, polyethylene glycol (“PEG”), propylene glycol (“PG”), liposomes, sugars such as mannitol and lactose, and/or a variety of other materials, with polyethylene glycol and derivatives thereof particularly preferred.
  • transurethral permeation enhancer in the urethral dosage form.
  • suitable transurethral permeation enhancers include dimethylsulfoxide (“DMSO”), dimethyl formamide (“DMF”), N,N-dimethylacetamide (“DMA”), decylmethylsulfoxide (“C 10 MSO”), polyethylene glycol monolaurate (“PEGML”), glycerol monolaurate, lecithin, the 1 -substituted azacycloheptan-2-ones, particularly ⁇ -n- dodecylcyclazacycloheptan-2-one (available under the trademark Azone® from Nelson Research & Development Co., Irvine, CA), SEP A® (available from Macrochem Co., Lexington, MA), alcohols (e.g., ethanol), surfactants as discussed above, including, for example, Tergitol®, Nonoxynol-9® and TWEEN-80
  • Transurethral formulations may additionally include one or more enzyme inhibitors effective to inhibit drug-degrading enzymes which may be present in the urethra.
  • enzyme inhibiting compounds may be determined by those skilled in the art by reference to the pertinent literature and/or using routine experimental methods.
  • Additional optional components include excipients, preservatives (e.g., antioxidants), chelating agents, solubilizing agents (e.g., surfactants), and the like, as will be appreciated by those skilled in the art of drug formulation preparation and delivery.
  • Transurethral drug administration can be carried out in a number of different ways using a variety of urethral dosage forms.
  • the drug can be introduced into the urethra from a flexible tube, squeeze bottle, pump or aerosol spray.
  • the drug may also be contained in coatings, pellets or suppositories which are absorbed, melted or bioeroded in the urethra.
  • the drug is included in a coating on the exterior surface of a penile insert.
  • a preferred drug delivery device for administering a drug transurethrally is shown in Figure 1.
  • the drug be delivered at least about 3 cm into the urethra, and preferably at least about 7 cm into the urethra. Generally, delivery at about 3 cm to about 8 cm into the urethra will provide effective results in conjunction with the present method.
  • Urethral suppository formulations containing PEG or a PEG derivative are particularly preferred urethral dosage forms herein, and may be conveniently formulated using conventional techniques, e.g., compression molding, heat molding or the like, as will be appreciated by those skilled in the art and as described in the pertinent literature and pharmaceutical texts. See, for example, Remington: The Science and Practice of Pharmacy. 19th Ed. (Easton, PA: Mack Publishing Co., 1995), which discloses typical methods of preparing pharmaceutical compositions in the form of urethral suppositories.
  • the PEG or PEG derivative preferably has a molecular weight M w in the range of about 200 to 2500, more preferably in the range of about 1000 to 2000.
  • Suitable polyethylene glycol derivatives include polyethylene glycol fatty acid esters, for example, polyethylene glycol monostearate, polyethylene glycol sorbitan esters, e.g., polysorbates, and the like. It is also preferred that urethral suppositories contain one or more solubilizing agents effective to increase the solubility of the active agent in the PEG or other transurethral vehicle.
  • the solubilizing agent may be a nonionic, anionic, cationic or amphoteric surfactant.
  • Nonionic surfactants include: long-chain fatty acids, i.e., acids having the structural formula CH 3 (CH 2 ) m COOH where m is an integer in the range of 8 to 16; fatty alcohols, that is, alcohols having the structural formula CH 3 (CH 2 ) m C(H)OH, such as lauryl, cetyl and stearyl alcohols; glyceryl esters such as the naturally occurring mono-, di- and triglycerides; and esters of fatty alcohols or other alcohols such as propylene glycol, polyethylene glycol, sorbitan, sucrose, and cholesterol.
  • water-soluble nonionic surfactant derivatives examples include sorbitan fatty acid esters (such as those sold under the tradename Span®), polyoxyethylene sorbitan fatty acid esters (such as those sold under the tradename TWEEN®), polyoxyethylene fatty acid esters (such as those sold under the tradename Myrj®), polyoxyethylene steroidal esters, polyoxypropylene sorbitan fatty acid esters, polyoxypropylene fatty acid esters, polyoxypropylene steroidal esters, polyoxyethylene ethers (such as those sold under the tradename Brij®), polyglycol ethers (such as those sold under the tradename Tergitol®), and the like.
  • sorbitan fatty acid esters such as those sold under the tradename Span®
  • polyoxyethylene sorbitan fatty acid esters such as those sold under the tradename TWEEN®
  • polyoxyethylene fatty acid esters such as those sold under the tradename Myrj®
  • polyoxyethylene steroidal esters
  • Preferred nonionic surfactants for use as the solubilizing agent herein are polyglycol ether, polyoxyethylene sorbitan trioleate, sorbitan monopalmitate, polysorbate 80, polyoxyethylene 4-lauryl ether, propylene glycol, and mixtures thereof.
  • Anionic surfactants which may be used as the solubilizing agent herein include long-chain alkyl sulfonates, carboxylates, and sulfates, as well as alkyl aryl sulfonates, and the like.
  • Preferred anionic surfactants are sodium dodecyl sulfate, dialkyl sodium sulfosuccinate (e.g., sodium bis-(2-ethylhexyl)-sulfosuccinate), sodium 7-ethyl-2-methyl-4-dodecyl sulfate and sodium dodecylbenzene sulfonate.
  • dialkyl sodium sulfosuccinate e.g., sodium bis-(2-ethylhexyl)-sulfosuccinate
  • sodium 7-ethyl-2-methyl-4-dodecyl sulfate sodium dodecylbenzene sulfonate.
  • Cationic surfactants which may be used to solubilize the active agent are generally long-chain amine salts or quaternary ammonium salts, e.g., decyltrimethyl-ammonium bromide, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, tetradecyltrimethylammonium chloride, and the like.
  • Amphoteric surfactants are generally, although not necessarily, compounds which include a carboxylate or phosphate group as the anion and an amino or quaternary ammonium moiety as the cation.
  • solubilizing agents e.g., glycerin
  • the solubilizing agent will be present in the range of approximately 0.01 wt.% to 40 wt.%, more preferably in the range of approximately 5.0 wt.% to 40 wt.%, and most preferably in the range of approximately 10.0 wt.% to 40 wt.%.
  • the dosage form typically comprises a biocompatible, biodegradable material, typically a biodegradable polymer.
  • a biodegradable polymer examples include polyester, polyalkylcyanoacrylate, polyorthoester, polyanhydride, albumin, gelatin and starch.
  • these and other polymers can be used to provide biodegradable microparticles which enable controlled and sustained drug release, in turn minimizing the required dosing frequency.
  • the urethral dosage form will preferably comprise a suppository that is on the order of 2 to 20 mm, preferably 5 to 10 mm, in length and less than about 5 mm, preferably less than about 2 mm in width.
  • the weight of the suppository will typically be in the range of approximately 1 mg to 100 mg, preferably in the range of approximately 1 mg to 50 mg.
  • the size of the suppository can and will vary, depending on the potency of the drug, the nature of the formulation, and other factors.
  • a suitable transurethral drug delivery device is shown generally at 10.
  • the device comprises a transurethral inserter 11 having an easily graspable segment 12 that has opposing symmetrically concave surfaces 13 and 14 adapted to be held by two fingers.
  • Drug is contained within a urethral suppository (not shown) within shaft 15, which is sized to fit within the urethra.
  • a longitudinal plunger, the tip of which is seen at 16, is slidably insertable into the longitudinal bore contained within shaft 15.
  • shaft 15 is inserted into the urethra, and plunger tip 16 is pushed into segment 12. The inserter 11 is then removed.
  • the device Prior to use, and during storage, the device is capped with elongate cap 17 which fits snugly over flange 18 at the proximal end of shaft 15.
  • the cap 17 is provided with a series of parallel ridges 19 to facilitate gripping of the cap and removal from inserter 11.
  • transurethral drug delivery device shown in Figure 1 represents a preferred device for use herein, again, it should be emphasized that a wide variety of device configurations and urethral dosage forms can be used. Examples of other devices suited to deliver a drug transurethrally are those described and illustrated in PCT Publication No. WO 91/16021 and in U.S. Patent Nos. 5,242,391, 5,474,535, 5,686,093 and 5,773,020 to Place et al.
  • the devices can either be manufactured under sterile conditions, thereby eliminating the need for post-manufacturing sterilization, or they can be manufactured under non-sterile conditions and then subsequently sterilized by any suitable technique, e.g., radiation sterilization.
  • Transurethral drug delivery may involve an "active" delivery mechanism such as iontophoresis, electroporation or phonophoresis.
  • Active delivery mechanism such as iontophoresis, electroporation or phonophoresis.
  • Devices and methods for delivering drugs in this way are well known in the art. Iontophoretically assisted drug delivery is, for example, described in PCT Publication No. WO96/40054, cited above. Briefly, the active agent is driven through the urethral wall by means of an electric current passed from an external electrode to a second electrode contained within or affixed to a urethral probe.
  • the selected active agent may be administered by way of intracavernosal injection, or it may be administered topically, in an ointment, gel or the like, or transdermally, including transscrotally, using a conventional transdermal drug delivery system.
  • Intracavernosal injection can be carried out by use of a syringe any other suitable device.
  • a hypodermic syringe useful herein, that can be used for simultaneous injection into both corpora, is described in U.S. Patent No. 4,127,118 to Latorre. The injection is made on the dorsum of the penis by placement of the needle to the side of each dorsal vein and inserting it deep into the corpora.
  • the active agent to be administered is incorporated into a sterile liquid preparation, typically a solution or suspension in an aqueous or oleaginous medium.
  • a sterile liquid preparation typically a solution or suspension in an aqueous or oleaginous medium.
  • This solution or suspension may be formulated according to techniques known in the art using suitable carriers, dispersants, wetting agents, diluents, suspending agents or the like.
  • suitable carriers dispersants, wetting agents, diluents, suspending agents or the like.
  • suitable carriers dispersants, wetting agents, diluents, suspending agents or the like.
  • suitable carriers dispersants, wetting agents, diluents, suspending agents or the like.
  • the acceptable vehicles and solvents that may be employed are water, isotonic saline, vegetable oil, fatty esters and polyols.
  • the phosphodiesterase inhibitors useful herein may also be delivered through the skin using conventional transdermal drug delivery systems, i.e., transdermal "patches" wherein the agent is typically contained within a laminated structure that serves as a drug delivery device to be affixed to the skin.
  • the drug composition is typically contained in a layer, or "reservoir,” underlying an upper backing layer.
  • the laminated device may contain a single reservoir, or it may contain multiple reservoirs.
  • the reservoir comprises a polymeric matrix of a pharmaceutically acceptable contact adhesive material that serves to affix the system to the skin during drug delivery.
  • suitable skin contact adhesive materials include, but are not limited to, polyethylenes, polysiloxanes, polyisobutylenes, polyacrylates, polyurethanes, and the like.
  • the drug-containing reservoir and skin contact adhesive are present as separate and distinct layers, with the adhesive underlying the reservoir which, in this case, may be either a polymeric matrix as described above, or it may be a liquid or hydrogel reservoir, or may take some other form.
  • the backing layer in these laminates which serves as the upper surface of the device, functions as the primary structural element of the laminated structure and provides the device with much of its flexibility.
  • the material selected for the backing layer should be substantially impermeable to the active agent and any other materials that are present.
  • Ointments are semisolid preparations which are typically based on petrolatum or other petroleum derivatives.
  • Creams containing the selected active agent are, as known in the art, viscous liquid or semisolid emulsions, either oil-in-water or water-in-oil.
  • Cream bases are water- washable, and contain an oil phase, an emulsifier and an aqueous phase.
  • the oil phase also sometimes called the "internal" phase, is generally comprised of petrolatum and a fatty alcohol such as cetyl or stearyl alcohol; the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant.
  • the emulsifier in a cream formulation is generally a nonionic, anionic, cationic or amphoteric surfactant.
  • the specific ointment or cream base to be used is one that will provide for optimum drug delivery.
  • an ointment base should be inert, stable, nonirritating and nonsensitizing.
  • vasoactive agents particularly vasodilators, are preferred additional agents.
  • Suitable vasoactive agents include, but are not limited to: nitrates and like compounds such as nitroglycerin, isosorbide dinitrate, erythrityl tetranitrate, amyl nitrate, sodium nitroprusside, molsidomine, linsidomine chlorhydrate ("SIN-1"), S-nitroso-N-acetyl-d,l-penicillamine (“SNAP”), S-nitroso-N-cysteine, S-nitroso- N-glutathione (“SNO-GLU”) and diazenium diolates (“NONOates”); long and short acting ⁇ -blockers such as phenoxybenzamine, dibenamine, doxazosin, terazosin, phentolamine, tol
  • SIN-1 S-nitroso-N-acetyl-d,l-penicillamine
  • the amount of active agent administered, and the dosing regimen used will, of course, be dependent on the particular drug selected, the age and general condition of the subject being treated, the severity of the subject's condition, and the judgment of the prescribing physician.
  • the daily dosage when administered locally will be less than the dosage normally given in conjunction with systemic modes of administration, and typically, the drug will be administered one to four times daily or, with some active agents, just prior to intercourse.
  • a large initial loading dose can be used to achieve effective levels of the agent and can be followed by smaller doses to maintain those levels.
  • a typical daily dose of an active agent as administered locally is generally in the range of approximately 0.1 to 500 mg.
  • the dosing regimen can be modulated in order to achieve satisfactory control of the onset of ejaculation.
  • the side effects, drug interactions and disease considerations of systemic (e.g., oral) drug administration are avoided, as is the stigma associated with psychotherapeutic drug therapy.
  • the invention also encompasses a kit for patients to carry out the present method of treating premature ejaculation using local drug therapy.
  • the kit contains the pharmaceutical formulation to be administered, a device for administering the formulation (e.g., a transurethral drug delivery device such as shown in Figure 1), a container, preferably sealed, for housing the drug and device during storage and prior to use, and instructions for carrying out drug administration in an effective manner.
  • the formulation may consist of the drug in unit dosage form.
  • the kit may contain multiple formulations of different dosages of the same agent.
  • the kit may also contain multiple formulations of different active agents.
  • the instructions may be in written or pictograph form, or can be on recorded media including audio tape, video tape, or the like.
  • VFC Venous Flow Control
  • a pharmaceutical formulation containing the selected phosphodiesterase inhibitor is administered in combination with a venous flow control device such as that described in PCT Publication No. WO 97/47260, entitled “Venous Flow Control Element for Maintaining Penile Erection.”
  • Preferred devices are formed from a length of flexible tubing having an integral fastening means, so as to provide for readily adjustable venous flow control when applied to the penis. The device is applied to the base of the penis prior to and during sexual intercourse, such that it effectively enhances retention of blood within the penis without substantially obstructing arterial inflow or becoming too constrictive during the erectile process.
  • kits will include the venous flow control device in addition to the components noted above, along with instructions for using the device.
  • a transurethral pharmaceutical formulation containing zaprinast, a type V phosphodiesterase inhibitor is prepared by mixing 0.2 to 1.5 g of zaprinast with a suitable amount of polyethylene glycol, typically 1-5 g, molecular weight (M w ) approximately 2000, and heating the mixture to a temperature just high enough to produce a drug-polymer melt. The mixture can then be poured into a mold suitable to provide a suppository, and allowed to cool. The suppository so provided is a unit dosage form suitable for transurethral administration. This procedure can be used with various phosphodiesterase inhibitors, PEGs, and additional components, e.g., enhancers or the like.
  • the aforementioned method may also be used to prepare urethral suppositories containing other phosphodiesterase inhibitors as the active agent.
  • EXAMPLE 2 A penile insert coated with zaprinast is prepared as follows. An ethylene vinyl acetate rod is formed into an insert having a shaft approximately 10 cm long with a spherical, blunted tip. A dipping bath comprising a 50-50 weight blend of PEG 1450 and PEG 4000 and sufficient zaprinast to attain the desired concentration in the coating is prepared and heated to 70 °C. The insert is suspended by its head, dipped into the dipping bath and removed. A penile insert suitable for transurethral administration is thus provided. The aforementioned procedure may be used to prepare penile inserts coated with any number of other phosphodiesterase inhibitors as well. EXAMPLE 3
  • An effective phosphodiesterase-inhibiting dose may be determined using the following procedures.
  • Transurethral administration Patients with penile vascular insufficiency are given a single dose of 0.5 g of a phosphodiesterase inhibitor (e.g., zaprinast) transurethrally in a PEG-based urethral suppository. Prior to and approximately 3 hours after administering the inhibitor, blood samples are taken and assayed for plasma phosphodiesterase activity using, for example, high-performance liquid chromatography with fluorimetric detection as described by Lee et al, J Chromatography 421:237-244 (1987). This procedure is repeated at 24 hour intervals with dosage adjusted as necessary.
  • a phosphodiesterase inhibitor e.g., zaprinast
  • Examples 1 and 2 can be used to treat erectile dysfunction in individuals in which the dysfunction is associated, for example, vascular insufficiency. Dosage may be adjusted using the methodology of Example 3. In all instances the individuals are expected to respond positively, although variations in the intensity and duration of erection may be observed depending on dose, formulation and environment. Generally, between approximately 20 and 90 minutes following drug administration, it is expected that an erection may be achieved.
  • zaprinast a Type V phosphodiesterase inhibitor
  • adult male cats (3.5 to 5.0 kg) were initially sedated with ketamine and then anesthetized and maintained with supplemental doses of pentobarbital administered through a polyethylene catheter inserted into the left external jugular vein. After exposure of the pubic area, a 25 -gauge needle was placed into the left corpus cavernosum for measurement of intracavernous pressure. Vehicle and various doses of zaprinast (5, 10, 50, 100 and 200 ⁇ g) were administered by direct injection into the right corpus cavernosum using a 30-gauge needle.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Endocrinology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

L'invention concerne un procédé de traitement du dysfonctionnement érectile chez un individu mâle mammifère. Ce procédé consiste à apporter localement un inhibiteur des phosphodiestérases, ou un sel, ester, amide ou dérivé de celui-ci, acceptable sur le plan pharmacologique, dans le cadre d'un schéma posologique efficace. Un mode préféré d'administration est un mode transurétral. L'invention concerne également des formulations et des coffrets pharmaceutiques.
EP19980954032 1997-10-28 1998-10-28 Apport local d'inhibiteurs de phosphodiesterases, dans le traitement du dysfonctionnement erectile Ceased EP1027054A4 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US958816 1992-10-09
US95881697A 1997-10-28 1997-10-28
US181070 1998-10-27
US09/181,070 US6037346A (en) 1997-10-28 1998-10-27 Local administration of phosphodiesterase inhibitors for the treatment of erectile dysfunction
PCT/US1998/022928 WO1999021558A2 (fr) 1997-10-28 1998-10-28 Apport local d'inhibiteurs de phosphodiesterases, dans le traitement du dysfonctionnement erectile

Publications (2)

Publication Number Publication Date
EP1027054A1 true EP1027054A1 (fr) 2000-08-16
EP1027054A4 EP1027054A4 (fr) 2002-11-04

Family

ID=25501340

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19980954032 Ceased EP1027054A4 (fr) 1997-10-28 1998-10-28 Apport local d'inhibiteurs de phosphodiesterases, dans le traitement du dysfonctionnement erectile

Country Status (5)

Country Link
EP (1) EP1027054A4 (fr)
JP (1) JP2003525845A (fr)
AU (1) AU734734B2 (fr)
CA (1) CA2305394C (fr)
WO (1) WO1999021558A2 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331543B1 (en) 1996-11-01 2001-12-18 Nitromed, Inc. Nitrosated and nitrosylated phosphodiesterase inhibitors, compositions and methods of use
CA2295595A1 (fr) 1997-07-09 1999-01-21 Androsolutions, Inc. Compositions et procedes perfectionnes de traitement des troubles de l'erection chez l'homme
US6103765A (en) 1997-07-09 2000-08-15 Androsolutions, Inc. Methods for treating male erectile dysfunction
US6403597B1 (en) 1997-10-28 2002-06-11 Vivus, Inc. Administration of phosphodiesterase inhibitors for the treatment of premature ejaculation
US6548490B1 (en) 1997-10-28 2003-04-15 Vivus, Inc. Transmucosal administration of phosphodiesterase inhibitors for the treatment of erectile dysfunction
US6472425B1 (en) 1997-10-31 2002-10-29 Nitromed, Inc. Methods for treating female sexual dysfunctions
US6541487B1 (en) * 1998-05-01 2003-04-01 R.T. Alamo Ventures I, Llc PDE III inhibitors for treating sexual dysfunction
DE19834506A1 (de) * 1998-07-31 2000-02-03 Hexal Ag Transmucosales therapeutisches System zur Anwendung von Sildenafil
CZ20012020A3 (cs) * 1998-12-07 2001-10-17 Nissan Chemical Industries, Ltd. Činidlo pro léčbu erektilní dysfunkce
IT1312310B1 (it) * 1999-05-07 2002-04-15 Recordati Ind Chimica E Farma Uso di antagonisti selettivi del recettore adrenergico a 1b per ilmiglioramento della disfunzione sessuale
IL130968A (en) 1999-07-15 2002-12-01 Shmuel Simon Pharmaceutical composition comprising sildenafil or its analogs, useful for the treatment of tinnitus and hearing loss
US6323241B1 (en) * 2000-01-10 2001-11-27 Nexmed (Holdings) Inc. Prostaglandin compositions and methods of treatment for male erectile dysfunction
CA2417552C (fr) 2000-06-27 2014-05-13 Qualilife Pharmaceuticals Inc. Compositions et procedes pour le traitement de l'excitation sexuelle chez la femme
US6503894B1 (en) 2000-08-30 2003-01-07 Unimed Pharmaceuticals, Inc. Pharmaceutical composition and method for treating hypogonadism
US6821978B2 (en) 2000-09-19 2004-11-23 Schering Corporation Xanthine phosphodiesterase V inhibitors
FI20002755A0 (fi) 2000-12-15 2000-12-15 Orion Yhtymae Oyj Menetelmä erektiilin dysfunktion hoitamiseen
HUP0401368A2 (hu) * 2000-12-19 2004-10-28 Merck Patent Gmbh Tienopirimidineket és trombózisellenes szereket, kalcium antagonistákat, prosztaglandinokat vagy prosztaglandin származékokat tartalmazó gyógyszerkészítmények
KR20030059349A (ko) * 2000-12-19 2003-07-07 메르크 파텐트 게엠베하 피라졸로[4,3-d]피리미딘 및 항혈전제, 칼슘 길항제,프로스타글란딘 또는 프로스타글란딘 유도체를 포함하여이루어지는 약제학적 조성물
KR20030059351A (ko) * 2000-12-19 2003-07-07 메르크 파텐트 게엠베하 티에노피리미딘 및 항혈전제, 칼슘 길항제,프로스타글란딘 또는 프로스타글란딘 유도체를 포함하여이루어지는 약제학적 조성물
EP1224933A1 (fr) * 2001-01-19 2002-07-24 Sanofi-Synthelabo Nouvelle combinaison d'actifs avec alfuzosine et apomorphine
WO2003042216A1 (fr) 2001-11-09 2003-05-22 Schering Corporation Inhibiteurs de la phosphodiesterase v de derives polycycliques de guanine
ATE477020T1 (de) 2002-06-07 2010-08-15 Dyax Corp Prevention und verringerung von ischemia
WO2004071533A1 (fr) * 2003-02-14 2004-08-26 Takeda Pharmaceutical Company Limited Preparation pour administration topique
CA2536873C (fr) * 2003-08-29 2019-09-10 Dyax Corp. Inhibiteurs de protease poly-pegylee
US7235530B2 (en) 2004-09-27 2007-06-26 Dyax Corporation Kallikrein inhibitors and anti-thrombolytic agents and uses thereof
EP1802277B1 (fr) * 2004-10-18 2010-01-13 Polymun Scientific Immunbiologische Forschung GmbH COMPOSITION LIPOSOMALE CONTENANT UN PRINCIPE ACTIF DESTINE A RELAXER LA MUSCuLATURE LISSE ET L'EMPLOI THÉRAPEUTIQUE DE CETTE COMPOSITION
KR20140054312A (ko) * 2007-02-12 2014-05-08 디엠아이 바이오사이언시스 인코포레이티드 조루 및 발기부전을 동시에 치료하는 방법
CA2690294A1 (fr) * 2007-06-26 2008-12-31 Solvay Pharmaceuticals B.V. N-oxyde de sildenafil comme promedicament
US10428158B2 (en) 2014-03-27 2019-10-01 Dyax Corp. Compositions and methods for treatment of diabetic macular edema
CN114174298B (zh) * 2019-08-14 2023-08-01 正大天晴药业集团南京顺欣制药有限公司 哒嗪酮并嘧啶类衍生物及其医药用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028902A1 (fr) * 1993-06-09 1994-12-22 Pfizer Limited Pyrazolopyrimidinones utilisees pour traiter l'impuissance
WO1996016644A1 (fr) * 1994-11-26 1996-06-06 Pfizer Limited INHIBITEURS DE cGMP-PDE DESTINES AU TRAITEMENT DU DYSFONCTIONNEMENT ERECTILE
WO1998019672A1 (fr) * 1996-11-01 1998-05-14 Nitromed Inc. Composes nitroses et nitrosyles inhibiteurs de la phosphodiesterase, compositions comprenant ces composes et utilisations correspondantes
WO1998022453A1 (fr) * 1996-11-20 1998-05-28 Byk Gulden Lomberg Chemische Fabrik Gmbh Dihydrobenzofuranes substitues utilises en tant qu'inhibiteurs de la phosphodiesterase (pde)
WO1999021562A1 (fr) * 1997-10-28 1999-05-06 Asivi, Llc Traitement du dysfonctionnement sexuel chez la femme

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801587A (en) * 1987-03-02 1989-01-31 Gene Voss Impotence ointment
FR2649613B1 (fr) * 1989-07-11 1991-09-27 Virag Ronald Medicament vaso-actif
US5242391A (en) * 1990-04-25 1993-09-07 Alza Corporation Urethral insert for treatment of erectile dysfunction
US5250534A (en) * 1990-06-20 1993-10-05 Pfizer Inc. Pyrazolopyrimidinone antianginal agents
GB9114760D0 (en) * 1991-07-09 1991-08-28 Pfizer Ltd Therapeutic agents

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028902A1 (fr) * 1993-06-09 1994-12-22 Pfizer Limited Pyrazolopyrimidinones utilisees pour traiter l'impuissance
WO1996016644A1 (fr) * 1994-11-26 1996-06-06 Pfizer Limited INHIBITEURS DE cGMP-PDE DESTINES AU TRAITEMENT DU DYSFONCTIONNEMENT ERECTILE
WO1998019672A1 (fr) * 1996-11-01 1998-05-14 Nitromed Inc. Composes nitroses et nitrosyles inhibiteurs de la phosphodiesterase, compositions comprenant ces composes et utilisations correspondantes
WO1998022453A1 (fr) * 1996-11-20 1998-05-28 Byk Gulden Lomberg Chemische Fabrik Gmbh Dihydrobenzofuranes substitues utilises en tant qu'inhibiteurs de la phosphodiesterase (pde)
WO1999021562A1 (fr) * 1997-10-28 1999-05-06 Asivi, Llc Traitement du dysfonctionnement sexuel chez la femme

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BOOLELL, M., ET AL.: "Sildenafil, a novel effective oral therapy for male erectile dysfunction" BRITISH JOURNAL OF UROLOGY, vol. 78, no. 2, 1996, pages 257-261, XP000853934 *
DERRY F ET AL: "SILDENAFIL (VIAGRA TM): A DOUBLE-BLIND, PLACEBO-CONTROLLED, SINGLE-DOSE, TWO-WAY CROSSOVER STUDY IN MEN WITH ERECTILE DYSFUNCTION CAUSED BY TRAUMATIC SPINAL CORD INJURY" JOURNAL OF UROLOGY, BALTIMORE, MD, US, vol. 157, no. SUPPL 4, 1997, page 181 XP000921337 ISSN: 0022-5347 *
JEREMY J Y ET AL: "Effects of sildenafil, a type-5 cGMP phosphodiesterase inhibitor, and papaverine on cyclic GMP and cyclic AMP levels in the rabbit corpus cavernosum in vitro" BJU. BRITISH JOURNAL OF UROLOGY, J & C EDICIONES MEDICAS, ESPLUGUES DE LLOBREGAT, ES, vol. 79, 1997, pages 958-963, XP002090615 ISSN: 1139-4757 *
See also references of WO9921558A2 *
SPARWASSER C ET AL: "Smooth muscle tone regulation in rabbit cavernosal and spongiosal tissue by cyclic AMP- and cyclic GMP-dependent mechanisms." JOURNAL OF UROLOGY, vol. 152, no. 6 PART 1, 1994, pages 2159-2163, XP000604575 ISSN: 0022-5347 *
STIEF C G (REPRINT) ET AL: "Selective pharmacological manipulation of the smooth muscle tissues of th genitourinary tract: Experimental and clinical studies" AKTUELLE UROLOGIE, ( MAR 1997 ) VOL. 28, NO. 2, PP. 76-87. PUBLISHER: GEORG THIEME VERLAG, P O BOX 30 11 20, D-70451 STUTTGART, GERMANY. ISSN: 0001-7868., XP008004658 HANNOVER MED SCH, UROL KLIN, D-30623 HANNOVER, GERMANY (Reprint) *
STIEF C G (REPRINT) ET AL: "PHOSPHODIESTERASE ISOENZYMES OF THE HUMAN CAVERNOUS TISSUE AND ITS FUNCTIONAL-SIGNIFICANCE" AKTUELLE UROLOGIE, ( SEP 1995 ) VOL. 26, SP. ISS. 1, PP. 22-24. ISSN: 0001-7868., XP008004657 HANNOVER MED SCH, UROL KLIN, D-30623 HANNOVER, GERMANY (Reprint) *
TAHER A ET AL: "Cyclic nucleotide phosphodiesterase in human cavernous smooth muscle." WORLD JOURNAL OF UROLOGY, vol. 15, no. 1, 1997, pages 32-35, XP001021795 ISSN: 0724-4983 *
TRUSS MICHAEL C ET AL: "Phosphodiesterase inhibitors in the treatment of erectile dysfunction." DRUGS OF TODAY, vol. 34, no. 9, 1998, pages 805-812, XP000885894 ISSN: 0025-7656 *

Also Published As

Publication number Publication date
CA2305394C (fr) 2006-12-12
AU1125499A (en) 1999-05-17
JP2003525845A (ja) 2003-09-02
WO1999021558A3 (fr) 2000-10-26
AU734734B2 (en) 2001-06-21
EP1027054A4 (fr) 2002-11-04
WO1999021558A2 (fr) 1999-05-06
CA2305394A1 (fr) 1999-05-06

Similar Documents

Publication Publication Date Title
US6037346A (en) Local administration of phosphodiesterase inhibitors for the treatment of erectile dysfunction
US6156753A (en) Local administration of type III phosphodiesterase inhibitors for the treatment of erectile dysfunction
AU734734B2 (en) Local administration of phosphodiesterase inhibitors for the treatment of erectile dysfunction
US6127363A (en) Local administration of Type IV phosphodiesterase inhibitors for the treatment of erectile dysfunction
US6548490B1 (en) Transmucosal administration of phosphodiesterase inhibitors for the treatment of erectile dysfunction
AU740758B2 (en) Treatment of female sexual dysfunction
US6476037B1 (en) L-arginine and phosphodiesterase (PDE) inhibitor synergism
KR20080016552A (ko) 여성의 테스토스테론 및 관련된 스테로이드의 농도를증가시키는 방법
JP2007332156A (ja) 性的不能の治療に有効な組合せ
EP1418896A2 (fr) Administration d'inhibiteurs de phosphodiesterase destinee au traitement de l'ejaculation precoce
WO1999066933A1 (fr) Traitement de la dyserection par administration de sildenafil par voie nasale
US5925629A (en) Transurethral administration of androgenic agents for the treatment of erectile dysfunction
WO2014205081A1 (fr) Préparations pharmaceutiques de xanthine ou de dérivés de xanthine, et leur utilisation
US6037360A (en) Administration of 5-HT3 receptor antagonists to treat premature ejaculation
WO2000032195A1 (fr) Preparations destinees a etre administrees par voie uretrale
AU2005248938A1 (en) Transmucosal composition containing a phosphodiesterase inhibitor for the treatment of erectile dysfunction
Mulcahy et al. Topical and Intra-Urethral Therapy
AU2002248712A1 (en) Administration of phosphodiesterase inhibitors for the treatment of premature ejaculation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SMITH, WILLIAM, L.

Inventor name: PLACE, VIRGIL, A.

Inventor name: DOHERTY, PAUL, C., JR.

D17D Deferred search report published (deleted)

Inventor name: SMITH, WILLIAM, L.

Inventor name: PLACE, VIRGIL, A.

RIC1 Information provided on ipc code assigned before grant

Free format text: 7A 61K 31/485 A, 7A 61K 31/47 B, 7A 61K 31/50 B, 7A 61K 31/505 B, 7A 61K 31/40 B

A4 Supplementary search report drawn up and despatched
AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VIVUS, INC.

A4 Supplementary search report drawn up and despatched

Effective date: 20021104

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SMITH, WILLIAM, L.

Inventor name: PLACE, VIRGIL, A.

Inventor name: DOHERTY, PAUL, C., JR.

17Q First examination report despatched

Effective date: 20030502

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20070114