EP1025295A1 - Procede de fabrication de preformes en fibres de carbone - Google Patents

Procede de fabrication de preformes en fibres de carbone

Info

Publication number
EP1025295A1
EP1025295A1 EP98952798A EP98952798A EP1025295A1 EP 1025295 A1 EP1025295 A1 EP 1025295A1 EP 98952798 A EP98952798 A EP 98952798A EP 98952798 A EP98952798 A EP 98952798A EP 1025295 A1 EP1025295 A1 EP 1025295A1
Authority
EP
European Patent Office
Prior art keywords
wire
fibers
cable
carbon
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98952798A
Other languages
German (de)
English (en)
Inventor
Renaud Duval
Eric Lherm
Thierry Marjollet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Landing Systems SAS
Original Assignee
Messier Bugatti SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messier Bugatti SA filed Critical Messier Bugatti SA
Publication of EP1025295A1 publication Critical patent/EP1025295A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/14Chemical after-treatment of artificial filaments or the like during manufacture of carbon with organic compounds, e.g. macromolecular compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/222Stretching in a gaseous atmosphere or in a fluid bed
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • D02J13/001Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass in a tube or vessel
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/105Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by needling

Definitions

  • the present invention relates to the manufacture of carbon fiber preforms for the production of parts made of composite material comprising a fibrous preform densified by a matrix.
  • a particular field of application of the invention is the production of preforms for parts made of carbon / carbon composite material (C / C), that is to say having a preform or reinforcement of carbon fibers densified by a matrix carbon.
  • Parts made of C / C composite material are used in various fields, in particular that of friction, in the form of brake discs or clutches.
  • a technique commonly used to obtain a carbon fiber preform consists in preparing a fiber preform of carbon precursor, and then performing at least one carbonization step to transform the precursor into carbon.
  • Various precursors can be used, such as pitch-based, or phenolic, or cellulosic, or even pre-oxidized polyacrylonitrile (PAN) precursors.
  • a desired advantage of using precursor fibers is that it is possible to carry out textile operations, in particular needling, to develop preforms having the desired characteristics, while needling could have a destructive effect if it were made directly on commercially available carbon threads.
  • the object of the invention is to provide a process for producing carbon fiber preforms which makes it possible to combine the advantages of the prior techniques, while eliminating the main drawbacks. This object is achieved thanks to a process according to which:
  • At least one wire or cable formed from continuous fibers from carbon precursor fibers having undergone intermediate carbonization is used such that the fibers have a carbon content of between 70% and 90% and will have a tensile breaking strength at less equal to 3000 MPa after their carbonization has been completed without necessarily being tensioned, - the wire or cable is used to manufacture the preform, and
  • the preform is subjected to a heat treatment at least in order to complete the transformation of the staple fibers into carbon fibers.
  • a characteristic of the process resides in the use of wires or cables formed of continuous fibers resulting from a carbonization of a carbon precursor which is not complete but sufficient to ultimately give the fibers mechanical properties similar to those of carbon fibers obtained from same precursor but fully charred under tension.
  • the intermediate carbonization being carried out before preparation of the preform, it can advantageously be carried out under tension in order to obtain optimal mechanical properties in the end, carbonization then being completed statically, after preparation of the preform.
  • wires or cables at an intermediate stage of carbonization by using wires or cables at an intermediate stage of carbonization, certain disadvantages already mentioned linked to the use of carbon wires are avoided.
  • wires or cables of at least 50 K are used, that is to say formed from at least 50,000 filaments.
  • the heat treatment carried out on the preform may aim not only to complete the transformation of the precursor, by bringing the temperature to at least about 1200 ° C., but also to remove impurities, by prolonging it at a higher temperature at least equal to 1 600 ° C.
  • the method therefore does not introduce any additional step.
  • the method makes it possible not only to achieve a preform in which the fibers have far superior mechanical properties, but also to avoid taking into account a subsequent withdrawal of the preform. This can therefore be produced as close as possible to its final dimensions, therefore by optimizing the duration of the textile operations necessary for this purpose.
  • the wire or cable formed from continuous fibers is subjected to a drawing-cracking operation so as to obtain a wire or cable formed from staple fibers, and the wire is imparted or cable formed of staple fibers sufficient cohesion for use in manufacturing the preform.
  • Cohesion can be brought about by imposing on the wire or cable formed of staple fibers a slight twist.
  • twisting imposed on the thread or cable formed of staple fibers is meant here a sufficient twisting to give the thread or cable the necessary resistance to be able to undergo textile operations, in particular weaving, in particular weaving at high speed, while leaving the possibility of at least one subsequent needling during which staple fibers can be removed by needles without significantly damaging the wires or cables.
  • the twist may vary depending on the title of the wire or cable. Preferably, it is between 20 rpm and about 120 rpm.
  • the cohesion of the wire or cable formed of staple fibers can be provided by covering, for example by means of synthetic or natural filaments.
  • the wire or cable formed from continuous fibers is used directly as is to manufacture the preform.
  • the manufacture of the preform advantageously comprises at least one needling step.
  • FIG. 1 shows successive steps of an embodiment of a method according to the invention
  • a first step (10) of the method consists in providing wires or cables made of fibers originating from a carbon precursor having undergone intermediate carbonization.
  • intermediate carbonization is meant here an intermediate carbonization between the precursor state and the carbon state.
  • This intermediate carbonization is carried out under tension so as to obtain fibers having optimal mechanical characteristics.
  • the degree of carbonization is preferably chosen so as to reach a level of mechanical characteristics close to or substantially equal to that of the characteristics obtained after complete transformation of the precursor under tension. Such a level of carbonization is reached when the carbon content is between 70 and 90%, this can vary depending on the carbon precursor used.
  • Intermediate carbonization is obtained by heat treatment at a temperature and / or for a period lower than those necessary to achieve complete carbonization.
  • wires or cables of relatively high titer are used, preferably wires or cables of 50 K or more, that is to say formed of 50,000 filaments or more.
  • the wires or cables are commercially available at a cost related to the unit mass which decreases when the titer increases.
  • wires or cables offered under the name "Pyon" by the British company SGL Technics Ltd., cables from 320 K to 480 K being commercially available. These wires or cables are formed of continuous filaments originating from PAN precursor from the British company Courtaulds after intermediate carbonization carried out under tension until a carbon content of between 70 and 80% is obtained.
  • the wire or cable 11 is subjected to a stretching-cracking operation, in order to transform it into wire or cable 12 formed of discontinuous filaments substantially parallel to the longitudinal direction of the wire or cable.
  • the stretch-cracking operation is well known and is generally carried out by stretching the wire or cable 11 and causing it to break between two pairs of rollers 22, 23 of a stretch train 21 (FIG.
  • FIG. 3 shows a stretch-cracking installation in which several roller stretching trains 21a to 21JD are provided for drawing-cracking a corresponding number of wires or cables 11a to 11 ⁇ .
  • the wires or cables 12a to 12 ⁇ formed from staple fibers can then be mixed by passing through a drawing device with bars 25.
  • the latter comprising combs mounted on an endless chain, makes it possible to mix the staple fibers of the different wires or cables, while carrying out a drawing, so that the wire or cable obtained 13 has the same title as each of the wires or cables received by the device 25.
  • the device 25 is adjusted to carry out a stretching with multiplication by 16 of the length.
  • the wires 11a to 11JD may include: - one or more wires or cables formed from continuous fibers originating from carbon precursor fibers having undergone intermediate carbonization such that the fibers have a rate of carbon between
  • one or more wires or cables formed from continuous fibers originating from carbon precursor giving fibers having a lower breaking strength for example continuous fibers originating from phenolic, cellulosic or isotropic precursor, - one or more wires or cables formed continuous fibers from ceramic precursor, for example from silicon carbide, alumina, silica precursor, etc., and
  • wires or cables formed of continuous carbon or almost carbon fibers such as wires or cables of continuous fibers originating from anisotropic pitch intrinsically having a high resistance to breakage.
  • the strip drawing device 25 allows intimate mixing of the staple fibers coming from the different yarns after drawing-cracking.
  • the wires or cables obtained after stretching-cracking undergo a slight twisting (step 30) in order to give them sufficient strength or cohesion allowing them to undergo subsequent textile operations.
  • the production of fibrous preforms from son or cables can involve different operations such as weaving, unidirectional tablecloths, winding, needling. Some operations, in particular weaving, require minimum cohesion of the son or cables formed of discontinuous filaments, in particular when they are produced at high speed, that is to say, for weaving, a speed which can reach 400 strokes / min or more .
  • the twisting in order to be able to be carried out without appreciable damage to the wires or cables, requires that discontinuous filaments can be easily removed.
  • the twisting must be sufficient to give minimum cohesion to the wires or cables, but limited to allow subsequent needling.
  • the degree of twist is preferably between 20 rpm and 120 rpm. It can be chosen at a higher value for a relatively weak title thread (expressed in tex) than for a relatively strong title thread.
  • the coefficient ⁇ giving the ratio between the twist in rpm and the square root of the title in metric number (Nm) is preferably between 30 and 60.
  • the twisting can be carried out, in a well known manner, by means for example a bench with spindles, or a continuous spinning machine, or else a sleeve wiper, the latter carrying out rather a "scrambling" of the fibers than a real twist.
  • the slightly twisted wires or cables can then be used for the production of the desired preforms (step 40). To this end, operations such as weaving, tableclothing, winding and needling can be carried out, as indicated above.
  • a preform can be produced by stacking two-dimensional, flat or draped layers on a shape, and bonding the layers together by needling.
  • the two-dimensional layers can be layers of fabric or unidirectional layers formed of wires or cables parallel to one another and superimposed in different directions.
  • very fine needles are preferably used, due to the slight twisting of the wires or cables.
  • very fine needles is meant here, for example, needles whose active part has, in section, a triangle shape whose height is relatively small, that is to say less than 0.5 mm.
  • step 50 After preparation of the preform, it is subjected to a heat treatment (step 50) in order to complete the transformation of the fiber precursor.
  • This treatment is carried out at a temperature preferably at least equal to 1200 ° C., for example around 1400 ° C. After a plateau at this temperature, the heat treatment can be continued by raising the temperature to a plateau, for example at least about 1600 ° C., in order to remove undesirable impurities present in the carbon fibers, for example sodium.
  • the preform is finally obtained in the desired carbon fibers, with fibers having high mechanical properties, and without significant shrinkage during the heat treatment.
  • FIG. 4 shows another embodiment of a method according to the invention, which differs from that of FIG.
  • the covering can be carried out using natural or synthetic filaments.
  • the filaments can be made of a removable material, for example by dissolution before the complete transformation of the staple fibers into carbon fibers, or by heat treatment or before or during this transformation. It is also possible to choose filaments made of a material leaving a carbon residue after complete transformation of the staple fibers into carbon fibers. Examples of materials which can be used for covering filaments are cotton, viscose, polyethylene, polyester, polyvinyl alcohol.
  • the wrapped wires or cables are used for the preparation of the preform (step 40), before heat treatment (step 50).
  • the preparation of the preform includes a needling phase, the possible elimination of the covering filaments can be carried out before or after the needling.
  • FIG. 5 shows yet another embodiment of a method according to the invention, which differs from that of FIG. 1 in that the steps 40, 50 of preparation of the preform and of heat treatment are carried out directly on the son or cables of precursor fibers supplied after intermediate carbonization (step 10), the steps of stretch-cracking and of cohesion by slight twisting being omitted.
  • Example 1 An exemplary embodiment of preforms of discs and brake pads in composite C / C according to a method of the type of that of FIG. 1, and tests carried out with discs and brake pads incorporating such preforms will now be described.
  • Cables of linear mass of 30 g / m that is to say a title of 30 ktex sold by the British company SGL Technics Ltd under the name "Pyon 15" are used. These are fiber cables from pre-oxidized PAN having undergone intermediate carbonization under tension such that the fibers have a carbon content of 76%, the rest being essentially constituted by nitrogen.
  • the thread obtained is used to make a fabric (twill weaving of 2) having a surface mass of 840 g / m 2 and a thickness under load (50 g / m 2 ) of 1.8 mm.
  • Layers of fabric are stacked and needled layer by layer, as described in document FR-A-2 726 013, to bring the volume content of fibers to a value of approximately 20%.
  • a heat treatment is carried out first at around 1400 ° C. to complete the carbonization of the precursor, then the temperature is raised to
  • Annular preforms of brake discs are cut, as well as preforms of brake pads, then are densified by a pyrolytic carbon matrix by chemical vapor infiltration, in a manner well known per se, in order to obtain discs and pads C / C composite brake shoe.
  • reference brake discs and pads in C / C composite are produced in a similar manner, but starting from cables made of preoxidized PAN fibers, which have not undergone intermediate carbonization, the carbonization being carried out after needling , therefore not energized.
  • the reference brake discs and pads and according to the invention are subjected to the same high energy braking tests and the resulting wear is evaluated by measuring the loss of thickness expressed in mm. The results are given in the table below.
  • the reduction in wear, with the C / C material according to the invention, is 38% for the discs and 27% for the pads.
  • cables marketed by the British company SGL Technics Ltd. under the name "Pyon 18" are cables formed from 320,000 filaments (320 K) made of fibers from pre-oxidized PAN having undergone intermediate carbonization under tension such that the fibers have a carbon content of 73%.
  • the title of the starting cables is 34 g / m, or 34 ktex.
  • the cable is subjected to a stretch-cracking operation in order to obtain an 833 tex thread, the cohesion of which is ensured by covering with a cotton filament of 14.7 tex title.
  • the wrapped yarn is used to make a fabric (satin weaving of 8) with a surface mass equal to 780 g / m 2 and a thickness under load equal to 1.7 mm.
  • the fabric is steamed at 250 ° C in air so as to thermally degrade the cotton covering thread.
  • Example 1 Several layers of fabric are superimposed and needled without difficulty and the preform obtained is subjected to a heat treatment as in Example 1.
  • Example 2 The procedure is as in Example 2, but without degrading the cotton covering before needling. This is done successfully on the wrapped threads. The cotton covering is degraded during the rise in temperature for the final heat treatment of transformation of the precursor.
  • the threads are woven directly, without any special technical preparation.
  • the fabric obtained has a surface mass of 1.2 kg / m 2 .
  • Several strata of fabric obtained are superimposed and needled without difficulty, despite the fact that these are yarns formed from continuous filaments.
  • the preform obtained is then subjected to a heat treatment for transformation of the precursor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)

Abstract

Pour fabriquer une préforme en fibres de carbone, on utilise au moins un fil ou câble formé de fibres continues issues de fibres de précurseur de carbone ayant subi une carbonisation intermédiaire telle que les fibres ont un taux de carbone compris entre 70 % et 90 % et présenteront une résistance à une rupture en traction au moins égale à 3 000 MPa après que leur carbonisation ait été complétée sans nécessairement être mises en tension, et on utilise le fil ou câble légèrement retordu pour fabriquer la préforme, avant de soumettre celle-ci à un traitement thermique afin de compléter la transformation des fibres discontinues en fibres de carbone. Le fil ou câble de départ peut être soumis à une opération d'étirage-craquage de manière à obtenir un fil ou câble formé de fibres discontinues dont la cohésion nécessaire est assurée par une légère retorsion, ou par guipage.

Description

Titre de l'Invention
Procédé de fabrication de préformes en fibres de carbone
Domaine de l'invention La présente invention concerne la fabrication de préformes en fibres de carbone pour la réalisation de pièces en matériau composite comprenant une préforme fibreuse densifiée par une matrice.
Un domaine particulier d'application de l'invention est la réalisation de préformes pour des pièces en matériau composite carbone/carbone (C/C), c'est-à-dire ayant une préforme ou renfort en fibres de carbone densifié par une matrice en carbone. Des pièces en matériau composite C/C sont utilisées dans différents domaines, notamment celui de la friction, sous forme de disques de freins ou d'embrayages.
Arrière-plan de l'invention
Une technique couramment employée pour obtenir une préforme en fibres de carbone consiste à élaborer une préforme en fibres de précurseur de carbone, et à réaliser ensuite au moins une étape de carbonisation pour transformer le précurseur en carbone. Divers précurseurs peuvent être utilisés, tels des précurseurs à base brai, ou phénolique, ou cellulosique, ou encore polyacrylonitrile (PAN) préoxydé.
Un avantage recherché d'utiliser des fibres en précurseur est qu'il est possible de réaliser des opérations textiles, en particulier un aiguilletage, pour élaborer des préformes ayant les caractéristiques voulues, alors que l'aiguilletage pourrait avoir un effet destructeur s'il était réalisé directement sur des fils de carbone disponibles dans le commerce.
Toutefois, cette technique présente plusieurs inconvénients.
Lorsque la carbonisation des fibres est réalisée après l'élaboration de la préforme, donc sans être mises en tension, c'est-à-dire à l'état statique, les caractéristiques mécaniques de fibres carbone sont bien inférieures et peuvent présenter une dispersion plus étendue en comparaison avec des fibres carbone issues de mêmes précurseurs, mais carbonisées sous tension. A titre indicatif, des fibres de carbone issues de PAN préoxydé ont une résistance à la rupture en traction comprise entre 1 600 et 2 400 MPa environ, lorsque la carbonisation est effectuée à l'état statique, tandis que la résistance a la rupture en traction est comprise entre 3 000 et 4 000 MPa environ lorsque la carbonisation est effectuée sous tension. Quant au module, il passe d'une valeur comprise entre 200 et 210 GPa environ a une valeur comprise entre 220 et 240 GPa environ. Un autre inconvénient tient à ce que la carbonisation entraîne un retrait. Il est donc nécessaire d'en tenir compte pour le dimensionnement de la préforme réalisée avec les fibres en précurseur.
Il a alors été cherché à réaliser des préformes à partir de fibres de carbone, tout en offrant la possibilité d'effectuer des opérations textiles, notamment l'aiguilletage. Une solution proposée dans le document US-A- 5 228 175 consiste, a partir de fils formes de filaments continus de carbone, a soumettre les fils a une opération d'étirage-craquage pour les transformer en fils de fibres de carbone discontinues disposées sensiblement parallèlement les unes aux autres et à donner une cohésion au moins temporaire aux fils sans retorsion, de sorte que les fils peuvent être manipulés et subir des opérations textiles telles que le tissage, tandis que l'aiguilletage est possible sans détérioration dommageable des fils par prélèvement de fibres discontinues de carbone non retordues. La cohésion des fils peut être apportée par guipage au moyen d'un fil en matière fugitive, par exemple un fil soluble qui peut être éliminé après élaboration de la préforme
Cette solution donne satisfaction, mais reste d'un coût relativement élevé en raison, non seulement du traitement particulier du fil de carbone, mais aussi et surtout du coût et des faibles titres des fils de carbone disponibles dans le commerce. En outre, il reste néanmoins nécessaire, au moins pour certaines applications, de procéder à un traitement thermique à une température supérieure a celle à laquelle le fil de carbone a été porté lors de sa fabrication. Il en est ainsi par exemple dans le cas où le fil de carbone contient des impuretés résiduelles indési- râbles éliminables par la chaleur. Un exemple d'impureté est le sodium, qui peut être présent dans des fils de carbone issus de précurseur PAN, qui a un effet de catalyseur d'oxydation du carbone et qui amoindrit par conséquent la tenue à l'oxydation du matériau composite finalement fabriqué. Il peut aussi être noté que la manipulation de fils de carbone entraîne une pollution par les fibres qui peut être nuisible tant pour les hommes que pour les machines.
Résumé de l'invention L'invention a pour but de fournir un procédé de réalisation de préformes en fibres de carbone qui permette de combiner les avantages des techniques antérieures, tout en éliminant les principaux inconvénients. Ce but est atteint grâce à un procédé selon lequel :
- on utilise au moins un fil ou câble formé de fibres continues issues de fibres de précurseur de carbone ayant subi une carbonisation intermédiaire telle que les fibres ont un taux de carbone compris entre 70 % et 90 % et présenteront une résistance à rupture en traction au moins égale à 3 000 MPa après que leur carbonisation ait été complétée sans nécessairement être mises en tension, - on utilise le fil ou câble pour fabriquer la préforme, et
- on soumet la préforme à un traitement thermique au moins afin de compléter la transformation des fibres discontinues en fibres de carbone.
Une caractéristique du procédé réside dans l'utilisation de fils ou câbles formés de fibres continues issues d'une carbonisation d'un précurseur de carbone non complète mais suffisante pour conférer en final aux fibres des propriétés mécaniques similaires à celles de fibres de carbone issues du même précurseur mais entièrement carbonisées sous tension. En effet, la carbonisation intermédiaire étant effectuée avant élaboration de la préforme, elle peut être avantageusement réalisée sous tension afin d'obtenir en final des propriétés mécaniques optimales, la carbonisation étant alors complétée en statique, après élaboration de la préforme.
En outre, en utilisant des fils ou câbles à un stade intermédiaire de carbonisation, on évite certains inconvénients déjà mentionnés liés à l'utilisation de fils de carbone. En particulier, il est possible d'utiliser des fils ou câbles du commerce ayant un titre plus élevé que les fils de carbone et d'une utilisation plus économique. De préférence, on utilise des fils ou câbles d'au moins 50 K, c'est-à-dire formés d'au moins 50 000 filaments. Le traitement thermique réalisé sur la préforme peut viser non seulement à compléter la transformation du précurseur, en portant la température à au moins 1200°C environ, mais aussi à éliminer des impuretés, en le prolongeant à une plus haute température au moins égale à 1 600°C. Par rapport à la technique antérieure utilisant des fils en fibres de carbone, et dans laquelle un traitement thermique à haute température devait être réalisé pour éliminer des impuretés, le procédé n'introduit donc pas d'étape supplémentaire. Par rapport à la technique antérieure utilisant des fils ou câbles en fibres de précurseur de carbone, le procédé permet non seulement d'aboutir à une préforme dans laquelle les fibres ont des propriétés mécaniques bien supérieures, mais aussi d'éviter de prendre en compte un retrait ultérieur de la préforme. Celle-ci peut donc être élaborée au plus près de ses dimensions définitives, donc en optimisant la durée des opérations textiles nécessaires à cet effet. Selon un premier mode de réalisation du procédé conforme à l'invention, on soumet le fil ou câble formé de fibres continues à une opération d'étirage-craquage de manière à obtenir un fil ou câble formé de fibres discontinues, et on confère au fil ou câble formé de fibres discontinues une cohésion suffisante en vue de son utilisation pour fabriquer la préforme.
La cohésion peut être apportée en imposant au fil ou câble formé de fibres discontinues une légère retorsion.
Par légère retorsion imposée au fil ou câble formé de fibres discontinues, on entend ici une retorsion suffisante pour conférer au fil ou câble la tenue nécessaire pour pouvoir subir des opérations textiles, en particulier le tissage, notamment le tissage à grande vitesse, tout en laissant la possibilité d'au moins un aiguilletage ultérieur au cours duquel des fibres discontinues peuvent être prélevées par des aiguilles sans endommager les fils ou câbles de façon significative. La retorsion pourra varier en fonction du titre du fil ou câble. De préférence, elle est comprise entre 20 tr/m et 120 tr/m environ.
En variante, la cohésion du fil ou câble formé de fibres discontinues peut être apportée par guipage, par exemple au moyen de filaments synthétiques ou naturels. Selon un autre mode de réalisation du procédé conforme à l'invention, le fil ou câble formé de fibres continues est utilisé directement en l'état pour fabriquer la préforme.
Dans tous les cas, la fabrication de la préforme comprend avantageusement au moins une étape d'aiguilletage.
Brève description des dessins
Dans les dessins annexés,
- la figure 1 montre des étapes successives d'un mode de mise en oeuvre d'un procédé selon l'invention ;
- les figures 2 et 3 montrent très schématiquement des installations d'étirage-craquage ; et
- les figures 4 et 5 montrent des étapes successives d'autres modes de mise en oeuvre d'un procédé seion l'invention.
Description détaillée de modes de réalisation de l'invention
Selon le mode de réalisation de la figure 1 , une première étape (10) du procédé consiste à fournir des fils ou câbles en fibres issues d'un précurseur de carbone ayant subi une carbonisation intermédiaire. Par carbonisation intermédiaire, on entend ici une carbonisation intermédiaire entre l'état précurseur et l'état carbone. Cette carbonisation intermédiaire est réalisée sous tension de manière à obtenir des fibres ayant des caractéristiques mécaniques optimales. Le degré de carbonisation est choisi de préférence de manière à atteindre un niveau de caractéristiques mécaniques proche ou sensiblement égal à celui des caractéristiques obtenues après transformation complète du précurseur sous tension. Un tel niveau de carbonisation est atteint lorsque le taux de carbone est compris entre 70 et 90 %, cela pouvant varier selon le précurseur de carbone utilisé. Une carbonisation intermédiaire est obtenue par traitement thermique à une température et/ou pendant une durée inférieures à celles nécessaires pour aboutir à une carbonisation complète.
Par exemple, dans le cas d'un précurseur PAN préoxydé qui, lors de son élaboration, a été porté à une température maximale d'environ 250°C, une carbonisation intermédiaire satisfaisante est réalisée par traitement thermique sous tension à 900°C environ, alors que la transformation du PAN préoxydé en carbone est réalisée habituellement à environ 1 400°C.
De préférence, on utilise des fils ou câbles d'un titre relativement élevé, de préférence des fils ou câbles de 50 K ou plus, c'est- à-dire formés de 50 000 filaments ou plus. En effet, d'une façon générale, les fils ou câbles sont disponibles dans le commerce à un coût rapporté à la masse unitaire qui diminue lorsque le titre augmente.
Avantageusement, on utilise des fils ou câbles proposés sous la dénomination "Pyon" par la société britannique SGL Technics Ltd., des câbles de 320 K à 480 K étant disponibles commercialement. Ces fils ou câbles sont formés de filaments continus issus de précurseur PAN de la société britannique Courtaulds après carbonisation intermédiaire réalisée sous tension jusqu'à obtenir un taux de carbone compris entre 70 et 80 %. Dans une deuxième étape (20), le fil ou câble 11 est soumis à une opération d'étirage-craquage, afin de le transformer en fil ou câble 12 formé de filaments discontinus sensiblement parallèles à la direction longitudinale du fil ou câble. L'opération d'étirage-craquage est bien connue et est généralement réalisée en étirant le fil ou câble 11 et en provoquant sa rupture entre deux paires de rouleaux 22, 23 d'un train d'étirage 21 (figure 2). Les documents FR-A-2 608 641 et US-A-4 759 985 décrivent l'étirage-craquage de fils de carbone. On notera toutefois que, dans le procédé selon l'invention, l'étirage-craquage est réalisé sans enduction particulière du fil ou câble. En outre, l'étirage-craquage est réalisé de manière à obtenir un fil ou câble 12 formé de fibres discontinues longues. Par fibres longues, on entend ici des fibres de longueur moyenne au moins égale à 60 mm.
La figure 3 montre une installation d'étirage-craquage dans laquelle plusieurs trains d'étirage à rouleaux 21 a à 21JD sont prévus pour réaliser l'étirage-craquage d'un nombre correspondant de fils ou câbles 11a à 11β.
Les fils ou câbles 12a à 12β formés de fibres discontinues peuvent ensuite être mélangés par passage à travers un dispositif d'étirage à barrettes 25. Ce dernier, comprenant des peignes montés sur une chaîne sans fin, permet de mélanger les fibres discontinues des différents fils ou câbles, tout en réalisant un étirage, de sorte que le fil ou câble obtenu 13 présente le même titre que chacun des fils ou câbles reçus par le dispositif 25. Ainsi, par exemple, lorsque le nombre de fils ou câbles 12a à 12p. est égal à 16 (les fils ayant même titre), le dispositif 25 est réglé pour réaliser un étirage avec multiplication par 16 de la longueur.
Une installation du type de celle de la figure 3 convient notamment pour la réalisation de fils composites, c'est-à-dire de fils formés de fibres discontinues de natures différentes. En effet, dans le cadre de l'invention, les fils 11a à 11JD pourront comporter : - un ou plusieurs fils ou câbles formés de fibres continues issues de fibres de précurseur de carbone ayant subi une carbonisation intermédiaire telle que les fibres ont un taux de carbone compris entre
70 % et 90 % et présenteront une résistance à rupture en traction au moins égale à 3 000 MPa après que leur carbonisation ait été complétée sans nécessairement être mises en tension,
- un ou plusieurs fils ou câbles formés de fibres continues issues de précurseur de carbone donnant des fibres ayant une résistance à rupture moins élevée, par exemple des fibres continues issues de précurseur phénolique, cellulosique ou brai isotrope, - un ou plusieurs fils ou câbles formés de fibres continues issues de précurseur de céramique, par exemple de précurseur de carbure de silicium, d'alumine, de silice,..., et
- un ou plusieurs fils ou câbles formés de fibres continues en carbone ou quasiment en carbone, tels que des fils ou câbles en fibres continues issues de brai anisotrope présentant intrinsèquement une résistance élevée à la rupture.
Le dispositif 25 d'étirage à barrettes permet un mélange intime des fibres discontinues provenant des différents fils après étirage- craquage. Les fils ou câbles obtenus après étirage-craquage subissent une légère retorsion (étape 30) afin de leur donner une tenue ou cohésion suffisante leur permettant de subir des opérations textiles ultérieures. La réalisation de préformes fibreuses à partir de fils ou câbles peut impliquer différentes opérations telles que le tissage, la mise en nappes unidirectionnelles, le bobinage, l'aiguilletage. Certaines opérations, notamment le tissage, demandent une cohésion minimale des fils ou câbles formés de filaments discontinus, en particulier lorsqu'elles sont réalisées à grande vitesse, c'est-à-dire, pour le tissage, une vitesse pouvant atteindre 400 coups/min ou plus. Par contre, l'aiguilletage, pour pouvoir être réalisé sans endommagement notable des fils ou câbles, requiert que des filaments discontinus puissent être facilement prélevés. Aussi, la retorsion doit être suffisante pour donner une cohésion minimale aux fils ou câbles, mais limitée pour permettre l'aiguilletage ultérieur. C'est pourquoi le degré de retorsion est de préférence compris entre 20 tr/m et 120 tr/m. Il pourra être choisi à une valeur plus élevée pour un fil de titre (exprimé en tex) relativement faible que pour un fil de titre relativement fort. Ainsi, le coefficient α donnant le rapport entre la torsion en tr/m et la racine carrée du titre en numéro métrique (Nm), est de préférence compris entre 30 et 60. La retorsion pourra être réalisée, de façon bien connue, au moyen par exemple d'un banc à broches, ou d'un continu à filer, ou encore d'un frotteur à manchon, ce dernier réalisant plutôt un "brouillage" des fibres qu'une réelle retorsion.
Les fils ou câbles légèrement retordus peuvent alors être utilisés pour l'élaboration des préformes souhaitées (étape 40). A cet effet, des opérations telles que tissage, mise en nappes, bobinage et aiguilletage peuvent être effectuées, comme indiqué ci-avant.
A titre d'exemple, une préforme peut être réalisée par empilement de couches bidimensionnelles, planes ou drapées sur une forme, et liaison des couches entre elles par aiguilletage. Les couches bidimensionnelles peuvent être des couches de tissu ou des nappes unidirectionnelles formées de fils ou câbles parallèles entre eux et superposées dans des directions différentes.
Lorsqu'un aiguilletage est effectué, on utilise de préférence des aiguilles très fines, du fait de la légère retorsion des fils ou câbles. Par aiguilles très fines, on entend ici par exemple, des aiguilles dont la partie active présente, en section, une forme de triangle dont la hauteur est relativement faible, c'est-à-dire moins de 0,5 mm.
Après élaboration de la préforme, celle-ci est soumise à un traitement thermique (étape 50) afin de compléter la transformation du précurseur des fibres. Ce traitement est effectué à une température de préférence au moins égale à 1200°C, par exemple d'environ 1400°C. Après un palier à cette température, le traitement thermique peut être poursuivi en élevant la température jusqu'à un palier, par exemple au moins d'environ 1600°C, afin d'éliminer des impuretés indésirables présentes dans les fibres carbone, par exemple du sodium. On obtient finalement la préforme en fibres de carbone désirées, avec des fibres ayant des propriétés mécaniques élevées, et sans retrait notable lors du traitement thermique. La figure 4 montre un autre mode de mise en oeuvre d'un procédé selon l'invention, qui se distingue de celui de la figure 1 en ce que la cohésion suffisante des fils ou câbles obtenus après étirage-craquage (étape 20) est apportée non pas par une légère retorsion, mais par guipage (étape 30'). Le guipage peut être réalisé au moyen de filaments naturels ou synthétiques. Les filaments peuvent être en un matériau éliminable, par exemple par dissolution avant la transformation complète des fibres discontinues en fibres de carbone, ou par traitement thermique ou avant ou lors de cette transformation. On pourra choisir aussi des filaments en un matériau laissant un résidu carboné après transformation complète des fibres discontinues en fibres de carbone. Des exemples de matériaux utilisables pour les filaments de guipage sont le coton, ia viscose, le polyéthyiène, le polyester, l'alcool poiyvinylique.
Les fils ou câbles guipés sont utilisés pour l'élaboration de la préforme (étape 40), avant traitement thermique (étape 50). Lorsque l'élaboration de la préforme comprend une phase d'aiguilletage, l'élimination éventuelle des filaments de guipage peut être réalisée avant ou après l'aiguilletage.
La figure 5 montre encore un autre mode de mise en oeuvre d'un procédé selon l'invention, qui se distingue de celui de la figure 1 en ce que les étapes 40, 50 d'élaboration de préforme et de traitement thermique sont réalisées directement sur les fils ou câbles en fibres de précurseurs fournis après carbonisation intermédiaire (étape 10), les étapes d'étirage-craquage et de cohésion par légère retorsion étant omises. Exemple 1 Un exemple de réalisation de préformes de disques et plaquettes de frein en composite C/C selon un procédé du type de celui de la figure 1 , et des essais effectués avec des disques et plaquettes de frein incorporant de telles préformes seront maintenant décrits.
On utilise des câbles de masse linéique de 30 g/m, soit un titre de 30 ktex commercialisés par la société britannique SGL Technics Ltd sous la dénomination "Pyon 15". Il s'agit de câbles en fibres issues de PAN préoxydé ayant subi une carbonisation intermédiaire sous tension telle que les fibres ont un taux de carbone de 76 %, le reste étant essentiellement constitué par de l'azote.
Les câbles sont soumis à une opération d'étirage-craquage pour obtenir un fil formé de fibres discontinues de titre 1 ktex qui est rendu cohérent par une légère retorsion de 35 tr/m (α = 35).
Le fil obtenu est utilisé pour réaliser un tissu (tissage sergé de 2) ayant une masse surfacique de 840 g/m2 et une épaisseur sous charge (50 g/m2) de 1 ,8 mm.
Des couches de tissu sont empilées et aiguilletées couche à couche, comme décrit dans le document FR-A-2 726 013, pour amener le taux volumique de fibres à une valeur d'environ 20 %. Un traitement thermique est effectué d'abord à environ 1 400°C pour compléter la carbonisation du précurseur, puis ia température est élevée jusqu'à
1 600°C afin d'éliminer des impuretés résiduelles, notamment le sodium présent dans les fibres. La perte de masse observée est d'environ 30 %.
Des préformes annulaires de disques de frein sont découpées, ainsi que des préformes de plaquettes de frein, puis sont densifiées par une matrice de carbone pyrolytique par infiltration chimique en phase vapeur, de façon bien connue en soi, afin d'obtenir des disques et plaquettes de frein en composite C/C.
A titre de comparaison, des disques et plaquettes de frein de référence en composite C/C sont réalisés de façon similaire, mais en partant de câbles en fibres de PAN préoxydé, n'ayant pas subi de carbonisation intermédiaire, la carbonisation étant réalisée après aiguilletage, donc non sous tension. Les disques et plaquettes de frein de référence et selon l'invention sont soumis à des mêmes essais de freinage haute énergie et les usures résultantes sont évaluées par mesure de perte d'épaisseur exprimée en mm. Les résultats sont donnés dans le tableau ci-après.
La diminution d'usure, avec le matériau C/C conforme à l'invention, est de 38 % pour les disques et 27 % pour les plaquettes.
Exemple 2
On procède conformément au mode de réalisation de la figure 4 en partant de câbles commercialisés par la société britannique SGL Technics Ltd. sous ia dénomination "Pyon 18". Il s'agit de câbles formés de 320 000 filaments (320 K) en fibres issues de PAN préoxydé ayant subi une carbonisation intermédiaire sous tension telle que les fibres ont un taux de carbone de 73 %. Le titre des câbles de départ est de 34 g/m, soit 34 ktex.
Le câble est soumis à une opération d'étirage-craquage pour obtenir un fil de 833 tex dont la cohésion est assurée par guipage au moyen d'un filament de coton de titre 14,7 tex.
Le fil guipé est utilisé pour réaliser un tissu (tissage satin de 8) de masse surfacique égale à 780 g/m2 et d'épaisseur sous charge égale à 1 ,7 mm.
Le tissu est étuvé à 250°C sous air de façon à dégrader thermiquement le fil de guipage en coton.
Plusieurs strates de tissu sont superposées et aiguilletées sans difficultés et la préforme obtenue est soumise à un traitement thermique comme dans l'exemple 1.
Exemple 3
On procède comme dans l'exemple 2, mais sans procéder à la dégradation du guipage en coton avant l'aiguilletage. Celui-ci est réalisé avec succès sur les fils guipés. Le guipage en coton est dégradé lors de la montée en température pour le traitement thermique final de transformation du précurseur.
Exemple 4 On procède conformément au mode de réalisation de la figure
5, en partant de fils de 50 K filaments fabriqués par la Société britannique SGL Technics Ltd. sous la dénomination "Pyon". Il s'agit de fils formés de fibres continues issues de PAN préoxydé ayant subi une carbonisation intermédiaire sous tension telle que les fibres ont un taux de carbone de 76 %. Le titre des fils est égal à 4,4 ktex.
Les fils sont directement tissés, sans préparation technique particulière. Le tissu obtenu a une masse surfacique de 1 ,2 kg/m2. Plusieurs strates de tissu obtenu sont superposées et aiguilletées sans difficultés en dépit du fait qu'il s'agit de fils formés de filaments continus. La préforme obtenue est ensuite soumise à un traitement thermique de transformation du précurseur.

Claims

REVENDICATIONS
1. Procédé de fabrication de préformes en fibres de carbone, caractérisé en ce que : - on utilise au moins un fil ou câble formé de fibres continues issues de fibres de précurseur de carbone ayant subi une carbonisation intermédiaire telle que les fibres ont un taux de carbone compris entre 70 % et 90 % et présenteront une résistance à rupture en traction au moins égale à 3 000 MPa après que leur carbonisation ait été complétée sans nécessairement être mises en tension,
- on utilise le fil ou câble pour fabriquer la préforme, et
- on soumet la préforme à un traitement thermique au moins afin de compléter la transformation des fibres discontinues en fibres de carbone.
2. Procédé selon la revendication 1 , caractérisé en ce qu'on utilise au moins un fil ou câble formé de fibres continues issues d'un précurseur ayant subi une carbonisation intermédiaire sous tension.
3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce qu'on utilise au moins un fil ou câble formé de fibres continues issues de polyacrylonitrile préoxydé ayant subi une carbonisation telle que le taux de carbone est compris entre 70 % et 80 %.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'on soumet le fil ou câble formé de fibres continues à une opération d'étirage-craquage de manière à obtenir un fil ou câble formé de fibres discontinues et on confère au fil ou câble formé de fibres discontinues une cohésion suffisante en vue de son utilisation pour fabriquer la préforme.
5. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'on utilise plusieurs fils ou câbles différents choisis parmi des fils ou câbles formés de fibres continues issues de précurseur de carbone et des fils ou câbles formés de fibres continues issues de précurseur de céramique.
6. Procédé selon la revendication 5, caractérisé en ce qu'on soumet le ou chaque fil ou câble à une opération d'étirage-craquage, on mélange les fils ou câbles formés de fibres discontinues obtenus, et on confère au fil ou câble composite résultant une cohésion suffisante en vue de son utilisation pour fabriquer la préforme.
7. Procédé selon l'une quelconque des revendications 4 et 6, caractérisé en ce qu'on impose une légère retorsion au ou à chaque fil ou câble formé de fibres discontinues.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'on impose au fil ou câble formé de fibres discontinues une retorsion comprise entre 20 et 120 tr/m.
9. Procédé selon l'une quelconque des revendications 4 et 6, caractérisé en ce qu'on confère une cohésion par guipage au, ou à chaque, fil ou câble forme de fibres discontinues.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'on utilise au moins un fil ou câble formé de fibres continues issues de précurseur de carbone choisi parmi les précurseurs à base brai, à base phénolique, à base cellulosique et à base polyacrylonitrile preoxydé.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'on utilise au moins un fil ou câble d'au moins 50 K.
12. Procédé selon l'une quelconque des revendications 1 à 11 , caractérisé en ce que la fabrication de la préforme comporte au moins une étape d'aiguilletage.
13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que la fabrication de la préforme comporte au moins une étape de tissage à grande vitesse au moins égale à 400 coups/min.
14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que le traitement thermique est réalisé à une température d'au moins 1 200°C pour compléter la transformation du précurseur.
15. Procédé selon la revendication 14, caractérisé en ce que le traitement thermique est poursuivi à une température supérieure, au moins égale à 1 600°C.
EP98952798A 1997-10-27 1998-10-27 Procede de fabrication de preformes en fibres de carbone Withdrawn EP1025295A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9713424A FR2770233B1 (fr) 1997-10-27 1997-10-27 Procede de fabrication de preformes en fibres de carbone
FR9713424 1997-10-27
PCT/FR1998/002298 WO1999022052A1 (fr) 1997-10-27 1998-10-27 Procede de fabrication de preformes en fibres de carbone

Publications (1)

Publication Number Publication Date
EP1025295A1 true EP1025295A1 (fr) 2000-08-09

Family

ID=9512669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98952798A Withdrawn EP1025295A1 (fr) 1997-10-27 1998-10-27 Procede de fabrication de preformes en fibres de carbone

Country Status (6)

Country Link
EP (1) EP1025295A1 (fr)
JP (1) JP2001521073A (fr)
CN (1) CN1092723C (fr)
CA (1) CA2307137A1 (fr)
FR (1) FR2770233B1 (fr)
WO (1) WO1999022052A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103274714A (zh) * 2013-06-05 2013-09-04 东南大学 一种改进的二维陶瓷基复合材料Z-pin方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2842192B1 (fr) * 2002-07-12 2004-10-01 Snecma Propulsion Solide Procede et installation pour l'obtention de produits en carbone a partir de produits en precurseur de carbone
US6783851B2 (en) * 2002-08-07 2004-08-31 Albany International Techniweave, Inc. Pitch based graphite fabrics and needled punched felts for fuel cell gas diffusion layer substrates and high thermal conductivity reinforced composites
CA2687830C (fr) * 2007-06-12 2015-11-24 Hexcel Reinforcements Procede de fabrication de pieces composites presentant au moins une courbe
CN101245503B (zh) * 2008-03-01 2011-07-27 威海拓展纤维有限公司 碳纤维的生产方法
FR2953826B1 (fr) * 2009-12-16 2019-10-11 Safran Landing Systems Procede de fabrication d'une piece de friction a base de materiau composite c/c
CN102041597B (zh) * 2010-11-16 2012-08-08 江苏澳盛复合材料科技有限公司 一种碳纤维布及其在汽车耐摩擦部件上的应用
FR3025810B1 (fr) * 2014-09-12 2016-12-09 Herakles Procede de fabrication d'une structure fibreuse
JP6607026B2 (ja) * 2015-12-22 2019-11-20 株式会社豊田自動織機 繊維強化複合材
WO2017207068A1 (fr) * 2016-06-03 2017-12-07 Schunk Kohlenstofftechnik Gmbh Procédé de production d'une plaque de support et plaque de support
CN110616493B (zh) * 2019-09-23 2021-09-10 潘魏豪 一种柔性导电碳布的制造方法
CN111455522A (zh) * 2020-04-02 2020-07-28 广州蓝墨科技有限公司 一种抗静电面料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728395A (en) * 1984-10-12 1988-03-01 Stackpole Fibers Company, Inc. Controlled resistivity carbon fiber paper and fabric sheet products and method of manufacture
CA1327258C (fr) * 1988-02-16 1994-03-01 James Toner Paul Jr. Procede pour l'obtention de fibres de carbone pre-etirees
CN2057177U (zh) * 1989-05-04 1990-05-16 中国科学院山西煤炭化学研究所 预氧化纤维生产装置
FR2669940B1 (fr) * 1990-12-03 1994-10-21 Europ Propulsion Fil forme a partir de fibres refractaires ou de leurs precurseurs et son application a la fabrication de pieces en materiau composite.
GB9122997D0 (en) * 1991-10-30 1991-12-18 Curran Dennis J G Ceramic fibres

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9922052A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103274714A (zh) * 2013-06-05 2013-09-04 东南大学 一种改进的二维陶瓷基复合材料Z-pin方法

Also Published As

Publication number Publication date
JP2001521073A (ja) 2001-11-06
CN1092723C (zh) 2002-10-16
CA2307137A1 (fr) 1999-05-06
WO1999022052A1 (fr) 1999-05-06
FR2770233A1 (fr) 1999-04-30
CN1277642A (zh) 2000-12-20
FR2770233B1 (fr) 2000-01-14

Similar Documents

Publication Publication Date Title
EP0828874B1 (fr) Fil hybride pour la fabrication de preformes fibreuses de pieces en materiau composite et procede pour sa preparation
EP1025295A1 (fr) Procede de fabrication de preformes en fibres de carbone
FR2640258A1 (fr) Procede de fabrication de materiaux composites a renfort en fibres de carbure de silicium et a matrice ceramique
FR2880016A1 (fr) Procede de realisation de preforme fibreuse pour la fabrication de pieces en materiau composite de type carbone/carbone incorporant des particules en ceramique, et produit ainsi obtenus
EP0274970B1 (fr) Filé de fibres de carbone
EP0489637B1 (fr) Procédé de fabrication d'une préforme fibreuse formée de fibres réfractaires pour la réalisation d'une pièce en matériau composite
EP0373007B1 (fr) Textures multidirectionnelles en fibres céramiques à base de composé du silicium, leur fabrication, et matériaux composites ainsi renforcés
FR2677442A1 (fr) Chemise de tube de canon en materiau composite, son procede de fabrication, et tube de canon muni d'une telle chemise.
EP1054091A1 (fr) Nappe unidirectionnelle de fibres de carbone
EP0555134B1 (fr) Procédé d'élaboration de préformes fibreuses pour la fabrication de pièces en matériau composite et produits obtenus par le procédé
FR2624503A1 (fr) Procede de fabrication d'un article en materiau composite a matrice en verre renforcee par des fibres et article obtenu par ce procede
CA1224329A (fr) Produit textile type file et son procede de fabrication
FR2668176A1 (fr) Structure filiforme guipee comprenant des fibres metalliques.
FR2836490A1 (fr) Mat de fibres naturelles et de verre
WO2019106257A1 (fr) Procede de traitement de fibres de carbure de silicium
MXPA00004041A (en) Method for making carbon fibre preforms
WO1994026965A1 (fr) Non-tisse a base de fibres de lin et procede de fabrication
FR2548692A1 (fr) Produit textile type file de fibres, procede et dispositif pour sa fabrication
EP2233624B1 (fr) Renfort textile pour materiau composite et procede de fabrication d'un tel renfort
Corbin et al. Amélioration de la Tissabilité des Renforts en Fibres Naturelles pour la Réalisation de Matériaux Composites.
EP0230161B1 (fr) Procédé de fabrication par retrait thermique de pièces tubulaires tissées, Formées au moins en partie de fibres de carbone
FR2670510A1 (fr) Procede de realisation d'un materiau a base d'elastomere renforce, ainsi qu'un materiau elastomere renforce en particulier obtenu par ce procede.
JPS6081320A (ja) 炭素繊維の製造方法
JPH01282321A (ja) ピッチ系炭素繊維の不融化方法
BE429420A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 20020219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031209