WO2019106257A1 - Procede de traitement de fibres de carbure de silicium - Google Patents

Procede de traitement de fibres de carbure de silicium Download PDF

Info

Publication number
WO2019106257A1
WO2019106257A1 PCT/FR2018/052889 FR2018052889W WO2019106257A1 WO 2019106257 A1 WO2019106257 A1 WO 2019106257A1 FR 2018052889 W FR2018052889 W FR 2018052889W WO 2019106257 A1 WO2019106257 A1 WO 2019106257A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
silicon carbide
layer
mpa
equal
Prior art date
Application number
PCT/FR2018/052889
Other languages
English (en)
Inventor
Sylvie Loison
Lucile HENRY
Cyril Aymonier
Chrystel HUGUET
Original Assignee
Safran Ceramics
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Ceramics, Centre National De La Recherche Scientifique filed Critical Safran Ceramics
Priority to CN201880077096.8A priority Critical patent/CN111630022A/zh
Priority to US16/767,833 priority patent/US11498877B2/en
Priority to EP18819536.6A priority patent/EP3717440A1/fr
Publication of WO2019106257A1 publication Critical patent/WO2019106257A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • C04B35/62849Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained by impregnation of carbon products with a carbonisable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62871Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/455Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction
    • C04B41/4558Coating or impregnating involving the chemical conversion of an already applied layer, e.g. obtaining an oxide layer by oxidising an applied metal layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms

Definitions

  • the present invention relates to a method for treating at least one silicon carbide (SiC) fiber for improving the quality of the bonding of this fiber to a coating covering it.
  • SiC silicon carbide
  • the manufacture of composite material parts reinforced with silicon carbide fibers is well known. It comprises the production of a fibrous preform based on silicon carbide fibers whose shape is close to that of the part to be manufactured and the densification of the preform by a matrix.
  • the invention aims at a process for treating at least one silicon carbide fiber, the method comprising at least the following steps:
  • a) forming a silica layer on the surface of a silicon carbide fiber having an oxygen content of less than or equal to 1 atomic%, the silica layer being formed by contacting this fiber with a an oxidizing medium having a temperature greater than or equal to 50 ° C. and a pressure greater than or equal to 1 MPa ("megapascal", 1 MPa 10 6 Pa), the oxidizing medium being in particular under supercritical conditions, and
  • step b) removal of the silica layer formed, by hydrothermal treatment of the fiber obtained after implementation of step a) in which the fiber is treated with water at a pressure between the saturation vapor pressure and MPa and at a temperature of less than or equal to 400 ° C.
  • Silicon carbide fibers having an oxygen content of less than or equal to 1 atomic% have a surface layer which is responsible for reducing the quality of fiber adhesion to a coating formed on their surface. This reduction in the quality of adhesion results in a reduction of the mechanical properties of the composite material part formed from these fibers.
  • These fibers generally have a surface layer predominantly formed of carbon. Such a surface layer typically has a thickness of between 1 nm and 1 ⁇ m. Within a given set of fibers, however, some fibers may have a surface layer of different composition. In particular, it is possible to find differences in terms of composition of the surface layer within the same yarn formed by a plurality of fibers and / or between several yarns of the same batch.
  • the fibers may thus have a surface layer comprising a silicon oxycarbide (compound base of silicon, carbon and oxygen). In the latter case, the surface layer typically has a thickness of less than or equal to 100 nm.
  • the present invention provides a solution for removing this surface layer regardless of the composition thereof and, therefore, for improving the quality of the fiber / coating bond in order to improve the mechanical properties of the obtained composite material part.
  • step a) When a fiber having a surface layer predominantly formed of carbon is treated, there is during step a) elimination of the surface carbon by oxidation, and oxidation of the silicon carbide to form the silica layer.
  • step a) When a fiber having a surface layer comprising a silicon oxycarbide is treated, there is during step a) oxidation of the oxycarbide to form the silica layer. In both cases, the silica layer formed is then removed during step b). It is also possible to treat a set of fibers, a first portion of the fibers initially having a silica surface layer, and a second portion of the fibers initially having a surface layer of carbon and / or oxycarbide of silicon. In the latter case, there is no evolution of the surface layer during step a) for the first part of the fibers, and after step b) a homogeneous surface is obtained where the silica has removed for each of the first and second parts of the fibers.
  • a surface silica layer is, during step a), formed by voluntary oxidation and then a hydrothermal treatment is used to obtain a homogenous etched surface of silicon carbide.
  • the pressure and temperature conditions described above for the oxidizing medium during step a) make it possible to obtain a layer of surface silica that the fiber initially has a surface layer predominantly made of carbon, or a surface layer comprising a silicon oxycarbide.
  • This surface silica layer is then removed by the hydrothermal treatment of step b).
  • Step b) is a step of hydrothermal treatment of the fiber obtained after implementation of step a) so as to remove the silica layer formed in step a).
  • the treatment according to the invention makes it possible to obtain the same composition on the surface of the treated fiber, whatever the composition of its superficial layer before treatment.
  • the treatment according to the invention produces, after pickling, the same surface composition despite the existing diversity in terms of surface composition for the fibers before treatment. This improves the quality of the fiber / coating bond, and therefore the mechanical properties of the part.
  • step a) advantageously makes it possible to carry out steps a) and b) in the same enclosure, and therefore to remove manipulation steps of the treated fiber, thus simplifying the process and thus decreasing its duration.
  • this treatment makes it possible to dispense with the use of HF acid and to improve the environmental compatibility of the pickling process.
  • the fact of no longer using HF acid eliminates the need for rinsing and drying done after the acid treatment, thus further shortening the treatment time.
  • the thickness of the silica layer formed during step a) may be greater than or equal to 1 nm, for example at 5 nm, for example at 10 nm.
  • the thickness of the silica layer formed during step a) may be between 1 nm and 1 ⁇ m or between 1 nm and 100 nm.
  • the oxidizing medium has a dioxygen content by volume of between 5% and 100%, the temperature of the oxidizing medium being between 50 ° C and 700 ° C and the pressure of the oxidizing medium being between 1 MPa and 30 MPa.
  • step a) make it possible to efficiently form the silica layer while oxidizing the underlying SiC as little as possible, while implementing a relatively low temperature and working pressure. These conditions are compatible with industrialization of the process.
  • the oxidizing medium has a dioxygen content by volume of between 5% and 50%, the temperature of the oxidizing medium being between 200 ° C and 700 ° C and the pressure of the oxidizing medium being between 13 MPa and 25 MPa, for example between 15 MPa and 25 MPa.
  • the oxidizing medium is a mixture between an inert compound and dioxygen.
  • the fiber is treated with water at a temperature of between 100 ° C. and 370 ° C. and, for example, at a pressure of between 5 MPa and 30 MPa.
  • a step of desizing or disintegrating the fiber is carried out by carrying out a preliminary hydrothermal or solvothermal treatment.
  • step a) In cases where the conditions implemented during step a) do not make it possible to carry out the disintegration or desizing, such a preliminary treatment can be carried out.
  • this preliminary treatment When this preliminary treatment is performed, it can advantageously be implemented in the same chamber as steps a) and b), which limits the overall duration of treatment.
  • the method further comprises the following step:
  • step b) deposition of an interphase layer on the surface of the fiber obtained after implementation of step b), the interphase layer being for example boron nitride, optionally doped with silicon, silicon nitride or pyrolytic carbon.
  • the interphase layer is a boron nitride layer.
  • a plurality of silicon carbide fibers each having an oxygen content of less than or equal to 1% atomic percentage can be processed.
  • the present invention also relates to a process for manufacturing a fibrous preform comprising at least one step of treating a plurality of silicon carbide fibers by implementing a method as described above and a step of forming a fiber preform. a fiber preform by implementing one or more textile operations from said plurality of fibers thus treated.
  • the present invention also relates to a process for manufacturing a fibrous preform comprising at least one step of forming a fibrous preform by implementing one or more textile operations from a plurality of silicon carbide fibers exhibiting each an oxygen content less than or equal to 1% atomic percentage and a processing step of said plurality of fibers, once the preform formed, by carrying out a method as described above.
  • the present invention also relates to a method of manufacturing a composite material part comprising at least one step of manufacturing a fiber preform by implementing a method as described above followed by a forming step of at least one carbon matrix phase or a ceramic material densifying said fiber preform.
  • the composite material part may for example be a turbomachine part, for example a turbomachine blade.
  • FIGS. 1A-1C are sectional views showing, in a schematic and partial manner, the evolution of the structure of a silicon carbide fiber initially having a surface layer comprising a silicon oxycarbide during the implementation of FIGS. steps a) and b) according to the invention,
  • FIGS. 1D to 1F are sectional views showing, schematically and in part, the evolution of the structure of a silicon carbide fiber initially having a superficial layer formed mainly of carbon during the implementation of the steps a) and b) according to the invention,
  • FIG. 2 represents the evolution, as a function of depth, of the atomic percentages of the silicon elements (atomic percentage noted SIA), carbon (atomic percentage noted as CA) and oxygen (atomic percentage noted as OA) of a fiber before treatment according to the invention
  • FIG. 3 represents the evolution, as a function of depth, of the atomic percentages of the elements silicon (atomic percentage noted Si B ), carbon (atomic percentage noted C B ) and oxygen (atomic percentage noted 0 B ) of a fiber after completion of an example of step a).
  • the invention relates to the treatment of silicon carbide fibers having an oxygen content of less than or equal to 1% atomic percentage.
  • the invention therefore relates to the treatment of silicon carbide fibers relatively low in oxygen, these fibers being distinguished from Si-C-0 fibers which have an oxygen content outside the range mentioned above.
  • the fibers treated by the process according to the invention may, for example, have a C / Si atomic ratio of between 1 and 1.1, for example between 1 and 1.05.
  • So-called third generation silicon carbide fibers such as "Hi-Nicalon S” type fibers, have such an atomic ratio as well as an oxygen content of less than or equal to 1% atomic percentage.
  • Other types of silicon carbide fibers can be treated by the process according to the invention as "Hi-Nicalon" type fibers which have a C / Si atomic ratio outside the ranges mentioned above but which have a negative oxygen content less than or equal to 1% atomic percentage.
  • FIG. 1A very schematically illustrates the section of a silicon carbide fiber 10 having an oxygen content of less than or equal to 1% in atomic percentage before implementing the method according to the invention.
  • FIGS. 1A-1C illustrate the treatment of a fiber initially having a surface layer 11 comprising a silicon oxycarbide.
  • the silicon carbide fiber 10 consists of a silicon carbide core 12 and a surface layer 11 situated in the vicinity of the surface of the fiber 10.
  • the surface layer 11 has a heterogeneous surface state and here comprises less a silicon oxycarbide.
  • the surface layer 11 is responsible for a decrease in the quality of the adhesion of the fiber to a coating covering it.
  • the thickness e 1 of the surface layer 11 may typically be between 1 nm and 100 nm, for example between 5 nm and 100 nm, for example between 10 nm and 100 nm.
  • the surface layer 11 is intended to be eliminated by implementing the method according to the invention.
  • Silicon carbide fibers may be processed in any form, for example, yarns, tows, strands, cables, fabrics, felts, mats and even two- or three-dimensional preforms.
  • the silicon carbide fibers treated according to the process of the invention may advantageously be used for producing fiber preforms of composite material part.
  • a fibrous texture may first be obtained by carrying out one or more textile operations and then this fibrous texture may be shaped in order to obtain a fibrous preform having the desired shape.
  • the fibrous texture can be obtained by three-dimensional weaving, for example "interlock" weave, that is to say a weave weave in which each layer of weft son binds several layers of warp son with all the son of the same column of weft having the same movement in the plane of the armor.
  • Other types of three-dimensional weaving may of course be used to make the fibrous texture.
  • weaving can be performed with warp yarns extending in the longitudinal direction of the texture, being noted that weaving with weft yarns in this direction is also possible.
  • Various modes of weaving that can be used to produce the fiber texture are described in particular in document WO 2006/136755.
  • the fibrous texture may be further formed by assembling at least two fibrous structures.
  • the fibrous structures can be bonded together, for example by sewing or needling.
  • the fibrous structures may in particular be each obtained from a layer or a stack of several layers of:
  • UD Unidirectional web
  • nD multidirectional webs
  • the silicon carbide fibers can be treated by the process according to the invention before or after the production of the preform.
  • a preliminary treatment aimed at eliminating the size or wrapping present on the fiber or fibers.
  • Such preliminary treatment is optional insofar as the conditions implemented during step a) may, in certain cases, make it possible to carry out desizing and / or disintegrating in addition to forming the silica layer.
  • These fibers can be initially sized or wrapped with polyvinyl alcohol (PVA), for example.
  • the preliminary treatment when carried out, it may consist of a hydrothermal or solvothermal treatment.
  • the solvothermal route may use one or more alcohols such as methanol or ethanol, or a mixture of water and alcohol.
  • the medium used to carry out this step may be in the liquid state. Alternatively, the medium is in supercritical conditions.
  • the pressure imposed during the preliminary treatment may be greater than 1 bar, or even greater than or equal to 1 MPa, or even greater than or equal to 5 MPa. This pressure can be between 5 MPa and 30 MPa.
  • the temperature imposed during the preliminary treatment may be greater than or equal to 100 ° C, or even be between 100 ° C and 370 ° C or be between 100 ° C and 250 ° C.
  • an alcohol When an alcohol is used to carry out the preliminary treatment, it is possible to impose a temperature of between 100 ° C. and 250 ° C. and a pressure of between 5 MPa and 30 MPa. It is also possible to use a mixture of water and alcohol to carry out the preliminary treatment and to impose a temperature of between 100 ° C. and 370 ° C. and a pressure of between 5 MPa and 30 MPa.
  • the volume percentage of water in such a mixture of water and alcohol may, for example, be between 25% and 75%.
  • the duration of the preliminary treatment of desizing or disintegrating may be greater than or equal to 5 minutes, or even be between 5 minutes and 30 minutes.
  • this preliminary treatment of desizing or disintegrating is optional insofar as the conditions employed during stage a) can, in certain cases, allow both the elimination of the size and the covering and the formation of the silica layer.
  • the fiber 10 is first brought into contact with an oxidizing medium under pressure and at a temperature, in particular under supercritical conditions, in order to form the surface silica layer. Details of the oxidizing medium used during step a) will be described below. Following this contacting, an oxidized surface fiber is obtained.
  • the surface layer 11 comprising the oxycarbide is oxidized and is chemically converted into a silica layer 22 having a thickness e 2 which, in the example illustrated, is substantially equal to thickness ei of the surface layer 11 (see FIG. 1B).
  • the thickness of the silica layer formed may, alternatively, be greater than the thickness of the surface layer 11.
  • the diameter of the fiber remains substantially constant after implementation of step a), in the case of FIGS. IA and IB.
  • the fiber 101 of FIG. 1D which has a surface layer 111 predominantly formed of carbon
  • the carbon may be the major element in atomic proportion in the surface layer 111.
  • the atomic carbon content in the surface layer 111 may be greater than 50%, for example 60%.
  • the surface layer 111 has a thickness of typically between 1 nm and 1 miti. Following step a), this surface layer 111 is eliminated and the SiC is oxidized, so as to form the silica layer 22.
  • the thickness e 2i of the silica layer 22 obtained can typically be a few nm. or tens of nm.
  • the fiber obtained after step a) is referenced 201. Following step a), there is here reduction of the diameter of the fiber, due to the elimination of the layer 111.
  • the pressure of the oxidizing medium during step a) may be greater than or equal to 1 MPa, or even greater than or equal to 5 MPa. This pressure can be between 5 MPa and 30 MPa.
  • the temperature of the oxidizing medium during step a) may be greater than or equal to 50 ° C., for example greater than or equal to 200 ° C., for example greater than or equal to 400 ° C.
  • This temperature can be between 50 ° C and 700 ° C, for example be between 200 ° C and 700 ° C, or between 400 ° C and 700 ° C.
  • the oxidizing medium may comprise at least one compound chosen from: oxygen, hydrogen peroxide, ozone, an alkali metal permanganate, or an alkali metal dichromate.
  • the oxidizing medium may be an aqueous solution comprising hydrogen peroxide at a rate of 3% to 90% by weight, or an aqueous solution of a permanganate or an alkali metal dichromate at a concentration less than the limit of solubility in water.
  • the oxidizing medium comprises at least oxygen.
  • the oxidizing medium may have a dioxygen content by volume of between 5% and 100%, the temperature of the oxidizing medium being between 50 ° C and 700 ° C and the pressure of the oxidizing medium being between 1 MPa and 30 MPa.
  • the oxidizing medium may be a mixture of an inert compound, such as nitrogen, argon or carbon dioxide, and dioxygen.
  • the oxidizing medium may, in particular, be air.
  • the silicon carbide fiber may be brought into contact with the oxidizing medium during step a) for a duration greater than or equal to 1 minute, for example greater than or equal to 5 minutes, for example greater than or equal to 10 minutes, for example greater than or equal to 15 minutes. This duration is for example between 15 minutes and 5 hours.
  • step b) Once the silica layer obtained, it is then removed in step b) by contacting with water under hydrothermal conditions. During this treatment, the silicon atoms contained in the silica layer are hydrolysed. After step b), a homogeneous fiber surface of SiC is obtained.
  • Operating conditions that can be used for the hydrothermal treatment of step b) have been described in application WO 2014/114874 for the formation of a microporous carbon layer on Nicalon® SiC fibers having an oxygen content greater than 1 % atomic percentage.
  • the water used in step b) is at a pressure between the saturation vapor pressure and 30 MPa and at a temperature of less than or equal to 400 ° C.
  • the pressure of the water used in step b) can be between 5 MPa and 30 MPa.
  • the temperature of the water used in step b) may be between 100 ° C. and 400 ° C., or even be between 100 ° C. and 370 ° C., or even between 200 ° C. and 370 ° C.
  • the water used in step b) may have a temperature below the critical temperature, which is 374 ° C, and a pressure between the saturated vapor pressure and 30 MPa. Such a case corresponds to water in subcritical condition.
  • the water used in step b) may have a temperature of between 350 ° C. and 400 ° C. and a pressure of between 15 MPa and 30 MPa. Such a case corresponds to water under conditions in the vicinity of the critical point.
  • the water used in step b) is at a temperature between 100 ° C and 370 ° C and for example at a pressure between 5 MPa and 30 MPa.
  • the duration of the hydrothermal treatment may be greater than or equal to 15 minutes, for example between 15 minutes and 5 hours.
  • step b) may or may not be supplemented with alcohol.
  • the use of alcohol in the water makes it possible to slow the kinetics of elimination of the silica, which can be advantageous if one seeks to control in a fine manner the kinetics of step b).
  • FIGS. 1C and 1F show the result obtained after implementing steps a) and b) for the two types of fibers. In both cases, it is obtained a silicon carbide fiber having a surface state and a homogeneous composition. In the illustrated examples, after step b), the entire surface layer 11 or 111 is removed, regardless of its chemical nature.
  • the treated fiber (s) and the treatment medium are kept in a closed chamber.
  • the system is maintained under the desired temperature and pressure conditions for the desired time in order to perform the treatment.
  • the medium is removed from the reactor and the fiber or fibers are recovered.
  • the fibers are held in an enclosure and are subjected to a continuous flow of the treatment medium.
  • the treatment medium circulates continuously through the enclosure and evacuates from it loaded with the material to be extracted.
  • Continuous mode is similar to semi-continuous mode with the difference that the fibers also circulate through the chamber during processing.
  • the fiber or fibers are unwound from a reel of untreated fibers, pass into the treatment zone and then are wound in coil form after treatment.
  • the flow rate of this treatment medium through the chamber may be between 1 mL / minute and 6 mL / minute.
  • An interphase layer may then be deposited in contact with the surface of the fiber obtained after implementing steps a) and b).
  • the deposition of the interphase layer directly on the surface of the etched fiber is carried out in a manner known per se by running in a reactor or in closed mode.
  • the fiber treated by the process according to the invention has an improved bond with the interphase layer.
  • the interphase layer may be a boron nitride (BN) layer or a pyrolytic carbon (PyC) layer.
  • the thickness of the interphase layer may for example be greater than or equal to 20 nm, for example be between 20 nm and 1500 nm.
  • One or more additional layers may be deposited on the interphase layer, for example made of ceramic material such as SiBC, BNSi or silicon carbide.
  • a piece of composite material with improved mechanical properties can then be formed by densifying, by at least one matrix phase, a fiber preform comprising the treated fibers coated with the interphase layer.
  • the fibrous preform forms the fibrous reinforcement of the composite material part and the matrix phase is formed in the porosity of the fibrous preform.
  • the matrix phase may for example be silicon carbide or carbon.
  • the densification of the fiber preform can thus be carried out by a liquid route (impregnation with a precursor resin of the matrix and transformation by crosslinking and pyrolysis, the process being repeatable) or by a gaseous route (chemical vapor infiltration of the matrix).
  • the invention is particularly applicable to the production of ceramic matrix composite material (CMC) parts formed by a fibrous reinforcement of silicon carbide fibers densified by a ceramic matrix, in particular carbide, nitride, refractory oxide, etc.
  • CMC ceramic matrix composite material
  • Typical examples of such CMC materials are SiC-SiC materials (reinforcement of silicon carbide fibers and silicon carbide matrix).
  • the matrix phase can also be carried out by infiltration of silicon in the molten state (“Melt-Infiltration" process).
  • the matrix could be formed directly in contact with the surface of the treated fibers (no interphase layer between the fibers and the matrix).
  • FIG. 2 is an AUGER analysis result showing the evolutions, as a function of the depth, of the proportions in silicon (Si A ), carbon (C A ) and oxygen (0 A ) within SiC fibers "Hi-Nicalon S" before implementation of a step a) according to the invention.
  • the fibers had at the surface before treatment a predominantly carbon layer having a thickness of about 200 nm.
  • a step a) of oxidation of the surface of the fibers thus obtained was then carried out in closed mode.
  • the oxidation of the surface of the SiC fibers was carried out using an oxidizing medium under pressure and at temperature.
  • the oxidizing medium used was a CO 2 / O 2 mixture comprising 20% by volume of oxygen.
  • the oxidizing medium used had a temperature of 600 ° C. and a pressure of between 13 MPa and 15 MPa.
  • the fibers were brought into contact with the oxidizing medium for two hours.
  • FIG. 3 is an AUGER analysis result relating to the fibers obtained after treatment with the oxidizing medium. The removal of the surface carbon and the formation of a silica layer having a thickness of about 100 nm are noted.
  • the silica layer obtained after the oxidation step was then removed by hydrothermal treatment at a temperature of 300 ° C and a pressure of 25 MPa. This hydrothermal treatment was carried out for 30 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

Procédé de traitement d'au moins une fibre (10) de carbure de silicium, le procédé comprenant au moins les étapes suivantes : a) formation d'une couche (22) de silice à la surface d'une fibre de carbure de silicium présentant une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique, la couche de silice étant formée par mise en contact de cette fibre avec un milieu oxydant ayant une température supérieure ou égale à 50°C et une pression supérieure ou égale à 1 MPa, et l'étape a) étant telle que : - la fibre traitée a une couche superficielle majoritairement formée de carbone et il y a durant l'étape a) élimination du carbone de surface par oxydation et oxydation du carbure de silicium afin de former la couche de silice, ou - la fibre traitée a une couche superficielle comprenant un oxycarbure de silicium et il y a durant l'étape a) oxydation de l'oxycarbure afin de former la couche de silice, et b) élimination de la couche de silice formée, par traitement hydrothermal de la fibre obtenue après mise en oeuvre de l'étape a) dans lequel la fibre est traitée avec de l'eau à une pression comprise entre la pression de vapeur saturante et 30 MPa et à une température inférieure ou égale à 400°C.

Description

Procédé de traitement de fibres de carbure de silicium
La présente invention concerne un procédé de traitement d'au moins une fibre de carbure de silicium (SiC) permettant d'améliorer la qualité de la liaison de cette fibre à un revêtement la recouvrant.
Arrière-plan de l'invention
La fabrication de pièces en matériau composite renforcées par des fibres de carbure de silicium est bien connue. Elle comprend la réalisation d'une préforme fibreuse à base de fibres de carbure de silicium dont la forme est voisine de celle de la pièce à fabriquer et la densification de la préforme par une matrice.
Il est bien connu que, dans les matériaux composites à renfort fibreux, les caractéristiques de l'interface fibres-matrice ont une grande influence sur les propriétés mécaniques du matériau. Il a été montré qu'un comportement satisfaisant peut être obtenu, en particulier vis-à-vis des chocs et de la propagation des fissures, en formant sur les fibres, avant formation de la matrice, une couche d'interphase de faible épaisseur par exemple en carbone pyrolytique déposé en phase vapeur ou en nitrure de bore. Toutefois, il reste intéressant d'améliorer encore les propriétés mécaniques des pièces en matériau composite.
Une solution a précédemment été proposée à ce problème dans le document WO 2016/207534. Ce document divulgue une méthode de décapage de la surface de fibres SiC de type « Hi-Nicalon S » préalable à la formation d'une interphase. Dans cette méthode, il y a tout d'abord oxydation de la surface des fibres afin de former une couche de silice de surface, puis traitement par un milieu liquide acide comprenant au moins de l'acide fluorhydrique (HF) afin d'éliminer la couche de silice formée. On obtient, après ce traitement, des fibres décapées ayant une surface homogène de carbure de silicium conférant une liaison améliorée de la fibre traitée à l'interphase déposée.
Cette solution fournit des résultats satisfaisants. Toutefois, la compatibilité environnementale de cette méthode, mettant en oeuvre de l'acide HF, pourrait être améliorée. En outre, cette méthode nécessitant la réalisation de différentes étapes de manipulation des fibres : rinçages et séchages des fibres traitées ou déplacements des fibres d'une enceinte à une autre, il serait souhaitable de disposer d'un traitement plus simple et rapide à réaliser.
Objet et résumé de l'invention
L'invention vise, selon un premier aspect, un procédé de traitement d'au moins une fibre de carbure de silicium, le procédé comprenant au moins les étapes suivantes :
a) formation d'une couche de silice à la surface d'une fibre de carbure de silicium présentant une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique, la couche de silice étant formée par mise en contact de cette fibre avec un milieu oxydant ayant une température supérieure ou égale à 50°C et une pression supérieure ou égale à 1 MPa (« mégapascal » ; 1 MPa = 106 Pa), le milieu oxydant étant notamment en conditions supercritiques, et
b) élimination de la couche de silice formée, par traitement hydrothermal de la fibre obtenue après mise en œuvre de l'étape a) dans lequel la fibre est traitée avec de l'eau à une pression comprise entre la pression de vapeur saturante et 30 MPa et à une température inférieure ou égale à 400°C.
Les fibres de carbure de silicium ayant une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique présentent une couche superficielle qui est responsable de la diminution de la qualité de l'adhésion des fibres à un revêtement formé à leur surface. Cette diminution de la qualité de l'adhésion se traduit par une diminution des propriétés mécaniques de la pièce en matériau composite formée à partir de ces fibres.
Ces fibres possèdent généralement une couche superficielle majoritairement formée de carbone. Une telle couche superficielle a typiquement une épaisseur comprise entre 1 nm et 1 pm. Au sein d'un ensemble de fibres donné, certaines fibres peuvent toutefois avoir une couche superficielle de composition différente. On peut, en particulier, retrouver des différences en termes de composition de la couche superficielle au sein d'un même fil formé par une pluralité de fibres et/ou entre plusieurs fils d'un même lot. Les fibres peuvent ainsi présenter une couche superficielle comprenant un oxycarbure de silicium (composé à base de silicium, de carbone et d'oxygène). Dans ce dernier cas, la couche superficielle a typiquement une épaisseur inférieure ou égale à 100 nm.
La présente invention propose une solution pour éliminer cette couche superficielle quelle que soit ia composition de celle-ci et, par conséquent, pour améliorer la qualité de la liaison fibre/revêtement afin d'améliorer les propriétés mécaniques de la pièce en matériau composite obtenue.
Lorsqu'une fibre ayant une couche superficielle majoritairement formée de carbone est traitée, il y a durant l'étape a) élimination du carbone de surface par oxydation, et oxydation du carbure de silicium afin de former la couche de silice. Lorsqu'une fibre ayant une couche superficielle comprenant un oxycarbure de silicium est traitée, il y a durant l'étape a) oxydation de l'oxycarbure afin de former la couche de silice. Dans ces deux cas, la couche de silice formée est ensuite éliminée durant l'étape b). On peut encore traiter un ensemble de fibres dont une première partie des fibres a initialement une couche superficielle en silice, et une deuxième partie des fibres a initialement une couche superficielle en carbone et/ou oxycarbure de silicium. Dans ce dernier cas, il n'y a pas d'évolution de la couche superficielle lors de l'étape a) pour la première partie des fibres, et l'on obtient après l'étape b) une surface homogène où la silice a été éliminée, pour chacune des première et deuxième parties des fibres.
Dans l'invention, une couche de silice de surface est, durant l'étape a), formée par oxydation volontaire puis un traitement hydrothermal est employé afin d'obtenir une surface décapée homogène de carbure de silicium. En outre, les conditions de pression et de température décrites plus haut pour le milieu oxydant durant l'étape a) permettent d'obtenir une couche de silice de surface que la fibre présente initialement une couche superficielle majoritairement formée de carbone, ou une couche superficielle comprenant un oxycarbure de silicium. Cette couche de silice de surface est ensuite éliminée par le traitement hydrothermal de l'étape b). L'étape b) est une étape de traitement hydrothermal de la fibre obtenue après mise en œuvre de l'étape a) de manière à éliminer la couche de silice formée lors de l'étape a).
Ainsi, le traitement selon l'invention permet d'obtenir la même composition à la surface de la fibre traitée, quelle que soit la composition de sa couche superficielle avant traitement. En d'autres termes, le traitement selon l'invention produit, après décapage, la même composition de surface malgré la diversité existante en termes de composition superficielle pour les fibres avant traitement. Cela permet d'améliorer la qualité de la liaison fibre/revêtement, et donc les propriétés mécaniques de la pièce.
En outre, le fait de combiner l'emploi d'un milieu oxydant sous pression et en température durant l'étape a) et l'emploi d'un traitement hydrothermal durant l'étape b) permet avantageusement de réaliser les étapes a) et b) dans la même enceinte, et par conséquent de supprimer des étapes de manipulation de la fibre traitée, simplifiant ainsi le procédé et diminuant ainsi sa durée.
En outre, ce traitement permet de s'affranchir de l'utilisation d'acide HF et d'améliorer la compatibilité environnementale du procédé de décapage. Le fait de ne plus utiliser d'acide HF permet d'éliminer la nécessité de réaliser des rinçages et séchages effectués après le traitement acide, raccourcissant ainsi davantage encore la durée de traitement.
L'épaisseur de la couche de silice formée lors de l'étape a) peut être supérieure ou égale à 1 nm, par exemple à 5 nm, par exemple à 10 nm. L'épaisseur de la couche de silice formée lors de l'étape a) peut être comprise entre 1 nm et 1 pm ou entre 1 nm et 100 nm.
Dans un exemple de réalisation, le milieu oxydant présente une teneur volumique en dioxygène comprise entre 5% et 100%, la température du milieu oxydant étant comprise entre 50°C et 700°C et la pression du milieu oxydant étant comprise entre 1 MPa et 30 MPa.
Ces conditions de l'étape a) permettent de former efficacement la couche de silice tout en oxydant le moins possible le SiC sous-jacent, et ce tout en mettant en œuvre une température et une pression de travail relativement basses. Ces conditions sont compatibles d'une industrialisation du procédé.
Dans un exemple de réalisation, le milieu oxydant présente une teneur volumique en dioxygène comprise entre 5% et 50%, la température du milieu oxydant étant comprise entre 200°C et 700°C et la pression du milieu oxydant étant comprise entre 13 MPa et 25 MPa, par exemple entre 15 MPa et 25 MPa. Ces conditions de l'étape a) permettent d'optimiser davantage encore le contrôle de la formation de la couche de silice.
Dans un exemple de réalisation, le milieu oxydant est un mélange entre un composé inerte et du dioxygène.
Dans un exemple de réalisation, on traite, durant le traitement hydrothermal, la fibre avec de l'eau à une température comprise entre 100°C et 370°C et par exemple à une pression comprise entre 5 MPa et 30 MPa.
Ces conditions permettent une élimination efficace de la couche de silice et sont compatibles d'une industrialisation du procédé.
Dans un exemple de réalisation, on réalise, avant l'étape a), une étape de désensimage ou de déguipage de la fibre par mise en œuvre d'un traitement préliminaire hydrothermal ou solvothermal.
Dans les cas où les conditions mises en œuvre durant l'étape a) ne permettent pas de réaliser le déguipage ou le désensimage, on peut réaliser un tel traitement préliminaire. Lorsque ce traitement préliminaire est réalisé, il peut avantageusement être mis en œuvre dans la même enceinte que les étapes a) et b), ce qui permet de limiter la durée globale du traitement.
Dans un exemple de réalisation, le procédé comprend en outre l'étape suivante :
c) dépôt d'une couche d'interphase sur la surface de la fibre obtenue après mise en œuvre de l'étape b), la couche d'interphase étant par exemple en nitrure de bore, éventuellement dopé au silicium, en nitrure de silicium ou en carbone pyrolytique.
De préférence, la couche d'interphase est une couche de nitrure de bore.
Dans un exemple de réalisation, on peut traiter une pluralité de fibres de carbure de silicium présentant chacune une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique.
La présente invention vise également un procédé de fabrication d'une préforme fibreuse comprenant au moins une étape de traitement d'une pluralité de fibres de carbure de silicium par mise en œuvre d'un procédé tel que décrit plus haut et une étape de formation d'une préforme fibreuse par mise en œuvre d'une ou plusieurs opérations textiles à partir de ladite pluralité de fibres ainsi traitées. La présente invention vise également un procédé de fabrication d'une préforme fibreuse comprenant au moins une étape de formation d'une préforme fibreuse par mise en œuvre d'une ou plusieurs opérations textiles à partir d'une pluralité de fibres de carbure de silicium présentant chacune une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique et une étape de traitement de ladite pluralité de fibres, une fois la préforme formée, par mise en œuvre d'un procédé tel que décrit plus haut.
La présente invention vise également un procédé de fabrication d'une pièce en matériau composite comprenant au moins une étape de fabrication d'une préforme fibreuse par mise en œuvre d'un procédé tel que décrit plus haut suivie d'une étape de formation d'au moins une phase de matrice en carbone ou en un matériau céramique densifiant ladite préforme fibreuse.
La pièce en matériau composite peut par exemple être une pièce de turbomachine, par exemple une aube de turbomachine.
Brève description des dessins
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante, donnée à titre non limitatif, en référence aux dessins annexés, sur lesquels :
- les figures IA à IC sont des vues en coupe représentant, de manière schématique et partielle, l'évolution de la structure d'une fibre de carbure de silicium ayant initialement une couche superficielle comprenant un oxycarbure de silicium lors de la mise en œuvre des étapes a) et b) selon l'invention,
- les figures 1D à 1F sont des vues en coupe représentant, de manière schématique et partielle, l'évolution de la structure d'une fibre de carbure de silicium ayant initialement une couche superficielle formée majoritairement de carbone lors de la mise en œuvre des étapes a) et b) selon l'invention,
- la figure 2 représente l'évolution, en fonction de la profondeur, des pourcentages atomiques des éléments silicium (pourcentage atomique noté SÎA), carbone (pourcentage atomique noté CA) et oxygène (pourcentage atomique noté OA) d'une fibre avant traitement selon l'invention, et - la figure 3 représente l'évolution, en fonction de la profondeur, des pourcentages atomiques des éléments silicium (pourcentage atomique noté SiB), carbone (pourcentage atomique noté CB) et oxygène (pourcentage atomique noté 0B) d'une fibre après réalisation d'un exemple d'étape a).
Description détaillée de modes de réalisation
L'invention porte sur le traitement de fibres de carbure de silicium présentant une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique. L'invention porte, par conséquent, sur le traitement de fibres de carbure de silicium relativement pauvres en oxygène, ces fibres se distinguant ainsi des fibres Si-C-0 qui présentent une teneur en oxygène en dehors de la plage mentionnée ci-dessus.
Les fibres traitées par le procédé selon l'invention peuvent, par exemple, présenter un ratio atomique C/Si compris entre 1 et 1,1, par exemple compris entre 1 et 1,05. Les fibres de carbure de silicium dites de troisième génération, comme les fibres de type « Hi-Nicalon S » présentent un tel ratio atomique ainsi qu'une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique. D'autres types de fibres de carbure de silicium peuvent être traitées par le procédé selon l'invention comme des fibres de type « Hi-Nicalon » qui présentent un ratio atomique C/Si en dehors des plages mentionnées ci-dessus mais qui présentent une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique.
La figure IA illustre très schématiquement la section d'une fibre 10 de carbure de silicium présentant une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique avant mise en œuvre du procédé selon l'invention. Les figures 1A-1C illustrent le traitement d'une fibre 10 ayant initialement une couche superficielle 11 comprenant un oxycarbure de silicium.
La fibre de carbure de silicium 10 est constituée d'un cœur 12 en carbure de silicium et d'une couche superficielle 11 située au voisinage de la surface de la fibre 10. La couche superficielle 11 présente un état de surface hétérogène et comprend ici au moins un oxycarbure de silicium. La couche superficielle 11 est responsable d'une diminution de la qualité de l'adhésion de la fibre à un revêtement la recouvrant. L'épaisseur ei de la couche superficielle 11 peut typiquement être comprise entre 1 nm et 100 nm, par exemple entre 5 nm et 100 nm, par exemple entre 10 nm et 100 nm. La couche superficielle 11 est destinée à être éliminée par mise en œuvre du procédé selon l'invention.
Les fibres de carbure de silicium peuvent être traitées sous quelque forme que ce soit, par exemple fils, mèches, torons, câbles, tissus, feutres, mats et même préformes bi- ou tridimensionnelles. Les fibres de carbure de silicium traitées selon le procédé de l’invention peuvent avantageusement être utilisées pour la réalisation de préformes fibreuses de pièce en matériau composite.
Afin de former la préforme fibreuse, une texture fibreuse peut tout d'abord être obtenue par mise en œuvre d'une ou plusieurs opérations textiles puis cette texture fibreuse peut être mise en forme afin d'obtenir une préforme fibreuse ayant la forme souhaitée. La texture fibreuse peut être obtenue par tissage tridimensionnel, par exemple à armure "interlock", c'est-à-dire une armure de tissage dans laquelle chaque couche de fils de trame lie plusieurs couches de fils de chaîne avec tous les fils d’une même colonne de trame ayant le même mouvement dans le plan de l’armure. D’autres types de tissage tridimensionnel pourront bien entendu être utilisés pour fabriquer la texture fibreuse. Lorsque la texture fibreuse est réalisée par tissage, le tissage peut être réalisé avec des fils de chaîne s'étendant dans la direction longitudinale de la texture, étant noté qu'un tissage avec des fils de trame dans cette direction est également possible. Différents modes de tissage utilisables pour réaliser la texture fibreuse sont notamment décrits dans le document WO 2006/136755.
La texture fibreuse peut encore être formée par assemblage d'au moins deux structures fibreuses. Dans ce cas, les structures fibreuses peuvent être liées entre elles, par exemple par couture ou aiguilletage. Les structures fibreuses peuvent notamment être chacune obtenue à partir d'une couche ou d'un empilement de plusieurs couches de :
- tissu unidimensionnel (UD),
- tissu bidimensionnel (2D),
- tresse,
- tricot,
- feutre, - nappe unidirectionnelle (UD) de fils ou câbles ou nappes multidirectionnelle (nD) obtenue par superposition de plusieurs nappes UD dans des directions différentes et liaison des nappes UD entre elles par exemple par couture, par agent de liaison chimique ou par aiguilletage.
Dans le cas d'un empilement de plusieurs couches, celles-ci sont liées entre elles par exemple par couture, par implantation de fils ou d'éléments rigides ou par aiguilletage.
Les fibres en carbure de silicium peuvent être traitées par le procédé selon l'invention avant ou après la réalisation de la préforme.
De manière préliminaire, il est possible de réaliser, avant mise en œuvre de l'étape a), un traitement préliminaire visant à éliminer l'ensimage ou le guipage présent sur la ou les fibres. Un tel traitement préliminaire est optionnel dans la mesure où les conditions mises en œuvre durant l'étape a) peuvent, dans certains cas, permettre de réaliser le désensimage et/ou le déguipage en plus de former la couche de silice. Ces fibres peuvent être initialement ensimées ou guipées par de l'alcool polyvinylique (PVA), par exemple.
Lorsque le traitement préliminaire est réalisé, il peut consister en un traitement par voie hydrothermale ou solvothermale. La voie solvothermale peut mettre en œuvre un ou plusieurs alcools comme du méthanol ou de l'éthanol, ou un mélange d'eau et d'alcool. Le milieu utilisé pour réaliser cette étape peut être à l'état liquide. En variante, le milieu est en conditions supercritiques.
La pression imposée durant le traitement préliminaire peut être supérieure à 1 bar, voire supérieure ou égale à 1 MPa, voire supérieure ou égale à 5 MPa. Cette pression peut être comprise entre 5 MPa et 30 MPa.
La température imposée durant le traitement préliminaire peut être supérieure ou égale à 100°C, voire être comprise entre 100°C et 370°C ou être comprise entre 100°C et 250°C.
Lorsque de l'eau est utilisée pour réaliser le traitement préliminaire, on peut imposer une température comprise entre 100°C et 370 °C et une pression comprise entre 5 MPa et 30 MPa.
Lorsqu'un alcool est utilisé pour réaliser le traitement préliminaire, on peut imposer une température comprise entre 100°C et 250 °C et une pression comprise entre 5 MPa et 30 MPa. On peut encore utiliser un mélange d'eau et d'alcool pour réaliser le traitement préliminaire et imposer une température comprise entre 100°C et 370 °C et une pression comprise entre 5 MPa et 30 MPa. Le pourcentage volumique en eau dans un tel mélange d'eau et d'alcool peut, par exemple, être compris entre 25% et 75%.
La durée du traitement préliminaire de désensimage ou déguipage peut être supérieure ou égale à 5 minutes, voire être comprise entre 5 minutes et 30 minutes.
Comme indiqué plus haut, ce traitement préliminaire de désensimage ou de déguipage est optionnel dans la mesure où les conditions employées durant l'étape a) peuvent, dans certains cas, permettre à la fois l'élimination de l'ensimage et du guipage et la formation de la couche de silice.
On va maintenant décrire plus en détails les étapes a) et b) de formation de la couche de silice et d'élimination de celle-ci.
La fibre 10 est tout d'abord mise en contact avec un milieu oxydant sous pression et en température, notamment en conditions supercritiques, afin de former la couche de silice de surface. Des détails sur le milieu oxydant mis en oeuvre durant l'étape a) seront décrits dans la suite. Suite à cette mise en contact, on obtient une fibre 20 oxydée en surface. Dans le cas de la fibre de la figure IA, la couche superficielle 11 comprenant l'oxycarbure est oxydée et est transformée chimiquement en une couche de silice 22 présentant une épaisseur e2 qui, dans l'exemple illustré, est sensiblement égale à l'épaisseur ei de la couche superficielle 11 (voir figure IB). L'épaisseur de la couche de silice formée peut, en variante, être supérieure à l'épaisseur de la couche superficielle 11. Le diamètre de la fibre reste sensiblement constant après mise en oeuvre de l'étape a), dans le cas des figures IA et IB.
Dans le cas de la fibre 101 de la figure 1D laquelle présente une couche superficielle 111 majoritairement formée de carbone, il y a diminution du diamètre de la fibre suite à l'étape a). Le carbone peut être l'élément majoritaire en proportion atomique dans la couche superficielle 111. La teneur atomique en carbone dans la couche superficielle 111 peut être supérieure à 50%, par exemple à 60%. Initialement, la couche superficielle 111 a une épaisseur en, typiquement comprise entre 1 nm et 1 miti. Suite à l'étape a), il y a élimination de cette couche superficielle 111 et oxydation du SiC, de sorte à former la couche de silice 22. L'épaisseur e2i de la couche de silice 22 obtenue peut typiquement être de quelques nm ou dizaines de nm. La fibre obtenue après l'étape a) est référencée 201. Suite à l'étape a), il y a ici réduction du diamètre de la fibre, du fait de l'élimination de la couche 111.
La pression du milieu oxydant durant l'étape a) peut être supérieure ou égale à 1 MPa, voire supérieure ou égale à 5 MPa. Cette pression peut être comprise entre 5 MPa et 30 MPa.
La température du milieu oxydant durant l'étape a) peut être supérieure ou égale à 50°C, par exemple être supérieure ou égale à 200°C, par exemple être supérieure ou égale à 400°C. Cette température peut être comprise entre 50°C et 700°C, par exemple être comprise entre 200°C et 700°C, voire entre 400°C et 700°C.
Le milieu oxydant peut comporter au moins un composé choisi parmi : le dioxygène, l'eau oxygénée, l'ozone, un permanganate de métal alcalin, ou un dichromate de métal alcalin. Lorsque le milieu oxydant est différent du dioxygène, les valeurs décrites plus haut pour la température et la pression de ce milieu oxydant durant l'étape a) restent valables. A titre d'exemple, le milieu oxydant peut être une solution aqueuse comprenant de l'eau oxygénée à raison de 3% à 90% en masse, ou une solution aqueuse d'un permanganate ou d'un dichromate de métal alcalin à une concentration inférieure à la limite de solubilité dans l'eau.
Avantageusement, le milieu oxydant comporte au moins du dioxygène.
Avantageusement, le milieu oxydant peut présenter une teneur volumique en dioxygène comprise entre 5% et 100%, la température du milieu oxydant étant comprise entre 50°C et 700°C et la pression du milieu oxydant étant comprise entre 1 MPa et 30 MPa.
Le milieu oxydant peut être un mélange entre un composé inerte, comme de l'azote, de l'argon ou du dioxyde de carbone, et du dioxygène. Le milieu oxydant peut, en particulier, être de l'air.
La fibre de carbure de silicium peut être mise en contact avec le milieu oxydant lors de l'étape a) pendant une durée supérieure ou égale à 1 minute, par exemple supérieure ou égale à 5 minutes, par exemple supérieure ou égale à 10 minutes, par exemple supérieure ou égale à 15 minutes. Cette durée est par exemple comprise entre 15 minutes et 5 heures.
Une fois la couche de silice obtenue, celle-ci est ensuite éliminée, lors de l'étape b), par mise en contact avec de i'eau en conditions hydrothermales. Durant ce traitement, les atomes de silicium contenus dans la couche de silice sont hydrolysés. On obtient, après l'étape b), une surface de fibre homogène de SiC. Des conditions opératoires utilisables dans le cadre du traitement hydrothermal de l'étape b) ont été décrites dans la demande WO 2014/114874 pour la formation d'une couche de carbone microporeux sur des fibres SiC Nicalon® ayant une teneur en oxygène supérieure à 1% en pourcentage atomique.
L'eau utilisée lors de l'étape b) est à une pression comprise entre la pression de vapeur saturante et 30 MPa et à une température inférieure ou égale à 400°C. La pression de l'eau utilisée lors de l'étape b) peut être comprise entre 5 MPa et 30 MPa. La température de l'eau utilisée lors de l'étape b) peut être comprise entre 100°C et 400°C, voire être comprise entre 100°C et 370°C, voire entre 200°C et 370°C.
L'eau utilisée lors de l'étape b) peut avoir une température inférieure à la température critique, laquelle est égale à 374°C, et une pression comprise entre la pression de vapeur saturante et 30 MPa. Un tel cas correspond à de l'eau en condition souscritique.
L'eau utilisée lors de l'étape b) peut avoir une température comprise entre 350°C et 400°C et une pression comprise entre 15 MPa et 30MPa. Un tel cas correspond à de l'eau dans des conditions au voisinage du point critique.
Avantageusement, l'eau utilisée lors de l'étape b) est à une température comprise entre 100°C et 370°C et par exemple à une pression comprise entre 5 MPa et 30 MPa.
La durée du traitement hydrothermal peut être supérieure ou égale à 15 minutes, et par exemple être comprise entre 15 minutes et 5 heures.
L'eau utilisée lors de l'étape b) peut ou non être additionnée d'alcool. L'emploi d'alcool dans l'eau permet de ralentir la cinétique d'élimination de la silice, ce qui peut être avantageux si l'on cherche à contrôler de manière fine la cinétique de l'étape b). On a représenté aux figures IC et 1F le résultat obtenu après mise en oeuvre des étapes a) et b) pour les deux types de fibres. Il est, dans les deux cas, obtenu une fibre de carbure de silicium présentant un état de surface ainsi qu'une composition homogène. Dans les exemples illustrés, on obtient après l'étape b) l'élimination de l'intégralité de la couche superficielle 11 ou 111, quelle que soit sa nature chimique.
Les étapes qui viennent d'être décrites peuvent être réalisées en mode fermé, semi-continu ou continu.
En mode fermé, la ou les fibres traitées ainsi que le milieu de traitement sont maintenus dans une enceinte fermée. Le système est maintenu dans les conditions de température et de pression souhaitées pendant le temps voulu afin de réaliser le traitement. Ensuite, le milieu est retiré du réacteur puis la ou les fibres sont récupérées.
En mode semi-continu, les fibres sont maintenues dans une enceinte et sont soumises à un flux continu du milieu de traitement. Le milieu de traitement circule en continu au travers de l'enceinte et s'évacue de celle-ci chargé de la matière à extraire.
Le mode continu est similaire au mode semi-continu à la différence que les fibres circulent elles aussi au travers de l'enceinte durant le traitement. La ou les fibres sont déroulées depuis une bobine de fibres non traitées, passent dans la zone de traitement puis sont enroulées sous forme de bobine après traitement.
Par exemple, lorsque le milieu de traitement circule au travers de l'enceinte durant les traitements précités, le débit de ce milieu de traitement au travers de l'enceinte peut être compris entre 1 mL/minute et 6 mL/minute.
Une couche d'interphase peut ensuite être déposée au contact de la surface de la fibre obtenue après mise en œuvre des étapes a) et b).
Le dépôt de la couche d'interphase directement sur la surface de la fibre décapée est réalisé de manière connue en soi par défilement dans un réacteur ou en mode fermé.
La fibre traitée par le procédé selon l'invention présente une liaison améliorée avec la couche d'interphase. La couche d'interphase peut être une couche de nitrure de bore (BN) ou une couche de carbone pyrolytique (PyC). L'épaisseur de la couche d'interphase peut par exemple être supérieure ou égale à 20 nm, par exemple être comprise entre 20 nm et 1500 nm. On peut déposer sur la couche d'interphase une ou plusieurs couches additionnelles, par exemple en matériau céramique comme le SiBC, BNSi ou le carbure de silicium.
Une fois la couche d'interphase déposée, on peut ensuite former une pièce en matériau composite à propriétés mécaniques améliorées en densifiant par au moins une phase de matrice une préforme fibreuse comprenant les fibres traitées revêtues de la couche d'interphase. La préforme fibreuse forme le renfort fibreux de la pièce en matériau composite et la phase de matrice est formée dans la porosité de la préforme fibreuse. La phase de matrice peut par exemple être en carbure de silicium ou en carbone.
Cette densification est réalisée de manière connue en soi. La densification de la préforme fibreuse peut ainsi être réalisée par voie liquide (imprégnation par une résine précurseur de la matrice et transformation par réticulation et pyrolyse, le processus pouvant être répété) ou par voie gazeuse (infiltration chimique en phase vapeur de la matrice). L’invention s'applique notamment à la réalisation de pièces en matériau composite à matrice céramique (CMC) formées par un renfort fibreux en fibres de carbure de silicium densifié par une matrice céramique, notamment carbure, nitrure, oxyde réfractaire, etc. Des exemples typiques de tels matériaux CMC sont les matériaux SiC-SiC (renfort en fibres de carbure de silicium et matrice en carbure de silicium). On peut encore réaliser la phase de matrice par infiltration de silicium à l'état fondu (procédé de « Melt-Infiltration).
On pourrait en variante former la matrice directement en contact avec la surface des fibres traitées (pas de couche d'interphase entre les fibres et la matrice).
Exemple
Un tissu de fibres de type « Hi-Nicalon S » ensimées et guipées par du PVA a tout d'abord subi un traitement hydrothermal préliminaire sous un flux continu d'eau à 300°C sous 25 MPa pendant environ 20 minutes. Ce traitement a permis de réaliser le désensimage et le déguipage de ces fibres. La figure 2 est un résultat d'analyse AUGER montrant les évolutions, en fonction de la profondeur, des proportions en silicium (SiA), carbone (CA) et oxygène (0A) au sein des fibres SiC « Hi- Nicalon S » avant mise en œuvre d'une étape a) selon l'invention. Les fibres présentaient en surface avant traitement une couche majoritairement formée de carbone ayant une épaisseur de 200 nm environ.
Une étape a) d'oxydation de la surface des fibres ainsi obtenues a ensuite été réalisée en mode fermé.
L'oxydation de la surface des fibres SiC a été réalisée en utilisant un milieu oxydant sous pression et en température. Le milieu oxydant utilisé était un mélange CO2/O2 comprenant 20% en volume en dioxygène. Le milieu oxydant utilisé avait une température de 600°C et une pression comprise entre 13 MPa et 15 MPa. La mise en contact des fibres avec le milieu oxydant a été effectuée pendant deux heures.
La figure 3 est un résultat d'analyse AUGER relatif aux fibres obtenues après traitement par le milieu oxydant. On constate l'élimination du carbone de surface et la formation d'une couche de silice ayant une épaisseur de 100 nm environ.
La couche de silice obtenue après l'étape d'oxydation a ensuite été éliminée par un traitement hydrothermal à une température de 300°C et à une pression de 25 MPa. Ce traitement hydrothermal a été effectué pendant 30 minutes.
Ce procédé a été conduit dans une seule et même enceinte permettant l'utilisation de fluides sous pression et en température. Le fait de pouvoir mettre en œuvre ce procédé dans une même enceinte a permis de simplifier le procédé et de réduire significativement sa durée. Toutes les fibres du tissu base fibres SiC obtenues après le traitement présentaient une surface homogène en SiC.
L'expression « compris(e) entre ... et ... » doit se comprendre comme incluant les bornes.

Claims

REVENDICATIONS
1. Procédé de traitement d'au moins une fibre (10) de carbure de silicium, le procédé comprenant au moins les étapes suivantes :
a) formation d'une couche (22) de silice à la surface d'une fibre de carbure de silicium présentant une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique, la couche de silice étant formée par mise en contact de cette fibre avec un milieu oxydant ayant une température supérieure ou égale à 50°C et une pression supérieure ou égale à 1 MPa, et l'étape a) étant telle que :
- la fibre traitée a une couche superficielle majoritairement formée de carbone et il y a durant l'étape a) élimination du carbone de surface par oxydation et oxydation du carbure de silicium afin de former la couche de silice, ou
- la fibre traitée a une couche superficielle comprenant un oxycarbure de silicium et il y a durant l'étape a) oxydation de l'oxycarbure afin de former la couche de silice, et
b) élimination de la couche de silice formée, par traitement hydrothermal de la fibre obtenue après mise en œuvre de l'étape a) dans lequel la fibre est traitée avec de l'eau à une pression comprise entre la pression de vapeur saturante et 30 MPa et à une température inférieure ou égale à 400°C.
2. Procédé selon la revendication 1, dans lequel le milieu oxydant présente une teneur volumique en dioxygène comprise entre 5% et
100%, la température du milieu oxydant étant comprise entre 50°C et 700°C et la pression du milieu oxydant étant comprise entre 1 MPa et 30 MPa.
3. Procédé selon la revendication 2, dans lequel le milieu oxydant présente une teneur volumique en dioxygène comprise entre 5% et 50%, la température du milieu oxydant étant comprise entre 200°C et 700°C et la pression du milieu oxydant étant comprise entre 13 MPa et 25 MPa.
4. Procédé selon la revendication 1 à 3, dans lequel le milieu oxydant est un mélange entre un composé inerte et du dioxygène.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel on traite, durant le traitement hydrothermal, la fibre avec de l'eau à une température comprise entre 100°C et 370°C.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel on réalise, avant l'étape a), une étape de désensimage ou de déguipage de la fibre par mise en oeuvre d'un traitement préliminaire hydrothermal ou solvothermal.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel le procédé comprend en outre l'étape suivante :
c) dépôt d'une couche d'interphase sur la surface de la fibre obtenue après mise en œuvre de l'étape b), la couche d'interphase étant par exemple en nitrure de bore, éventuellement dopé au silicium, en nitrure de silicium ou en carbone pyrolytique.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel on traite une pluralité de fibres de carbure de silicium présentant chacune une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique.
9. Procédé de fabrication d'une préforme fibreuse comprenant au moins une étape de traitement d'une pluralité de fibres de carbure de silicium par mise en œuvre d'un procédé selon la revendication 8 et une étape de formation d'une préforme fibreuse par mise en œuvre d'une ou plusieurs opérations textiles à partir de ladite pluralité de fibres ainsi traitées.
10. Procédé de fabrication d'une préforme fibreuse comprenant au moins une étape de formation d'une préforme fibreuse par mise en œuvre d'une ou plusieurs opérations textiles à partir d'une pluralité de fibres de carbure de silicium présentant chacune une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique et une étape de traitement de ladite pluralité de fibres, une fois la préforme formée, par mise en œuvre d'un procédé selon la revendication 8.
11. Procédé de fabrication d'une pièce en matériau composite comprenant au moins une étape de fabrication d'une préforme fibreuse par mise en œuvre d'un procédé selon la revendication 9 ou 10 suivie d'une étape de formation d'au moins une phase de matrice en carbone ou en un matériau céramique densifiant ladite préforme fibreuse.
PCT/FR2018/052889 2017-11-29 2018-11-16 Procede de traitement de fibres de carbure de silicium WO2019106257A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880077096.8A CN111630022A (zh) 2017-11-29 2018-11-16 处理碳化硅纤维的方法
US16/767,833 US11498877B2 (en) 2017-11-29 2018-11-16 Method for treating silicon carbide fibres
EP18819536.6A EP3717440A1 (fr) 2017-11-29 2018-11-16 Procede de traitement de fibres de carbure de silicium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761352A FR3074169B1 (fr) 2017-11-29 2017-11-29 Procede de traitement de fibres de carbure de silicium
FR1761352 2017-11-29

Publications (1)

Publication Number Publication Date
WO2019106257A1 true WO2019106257A1 (fr) 2019-06-06

Family

ID=62167396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/052889 WO2019106257A1 (fr) 2017-11-29 2018-11-16 Procede de traitement de fibres de carbure de silicium

Country Status (5)

Country Link
US (1) US11498877B2 (fr)
EP (1) EP3717440A1 (fr)
CN (1) CN111630022A (fr)
FR (1) FR3074169B1 (fr)
WO (1) WO2019106257A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483070B (zh) * 2019-09-16 2021-11-09 哈尔滨工业大学 一种短切SiC纤维的复合涂层、SiBCN陶瓷复合材料及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640258A1 (fr) * 1988-05-10 1990-06-15 Europ Propulsion Procede de fabrication de materiaux composites a renfort en fibres de carbure de silicium et a matrice ceramique
WO2006136755A2 (fr) 2005-06-24 2006-12-28 Snecma Structure fibreuse de renfort pour piece en materiau composite et piece la comportant
WO2014114874A1 (fr) 2013-01-22 2014-07-31 Herakles Procede de creation d'interface carbone sur des fibres de carbure de silicium en conditions hydrothermales
WO2016207534A1 (fr) 2015-06-24 2016-12-29 Herakles Procédé de traitement de fibres de carbure de silicium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756277B1 (fr) * 1996-11-28 1999-04-02 Europ Propulsion Materiau composite a matrice ceramique et renfort en fibres sic et procede pour sa fabrication
CN102220621B (zh) * 2011-06-08 2013-04-17 太原西科纳米技术有限公司 一种连续在碳纤维表面进行碳化硅涂层的方法
FR2989371B1 (fr) * 2012-04-13 2015-01-02 Snecma Propulsion Solide Procede de traitement de fibres de carbure de silicium
CN105175013A (zh) * 2015-09-05 2015-12-23 苏州宏久航空防热材料科技有限公司 一种以碳化硅纤维为基体的氧化铝涂层的制备方法
CN107849428B (zh) * 2015-11-20 2021-09-28 积水化学工业株式会社 粒子、连接材料及连接结构体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640258A1 (fr) * 1988-05-10 1990-06-15 Europ Propulsion Procede de fabrication de materiaux composites a renfort en fibres de carbure de silicium et a matrice ceramique
WO2006136755A2 (fr) 2005-06-24 2006-12-28 Snecma Structure fibreuse de renfort pour piece en materiau composite et piece la comportant
WO2014114874A1 (fr) 2013-01-22 2014-07-31 Herakles Procede de creation d'interface carbone sur des fibres de carbure de silicium en conditions hydrothermales
WO2016207534A1 (fr) 2015-06-24 2016-12-29 Herakles Procédé de traitement de fibres de carbure de silicium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOMI C ET AL: "Strength Degradation and SiC Fiber by Hydro-Thermal Treatment and Its Application to the Surface Modification of SiC Fiber", 24 October 2000 (2000-10-24), pages 1 - 8, XP002712908, ISBN: 978-0-08-043701-9, Retrieved from the Internet <URL:http://www.gruppofrattura.it/ocs/index.php/esis/ECF13/paper/viewFile/8608/5043> [retrieved on 20130913] *

Also Published As

Publication number Publication date
US11498877B2 (en) 2022-11-15
US20200377416A1 (en) 2020-12-03
CN111630022A (zh) 2020-09-04
FR3074169B1 (fr) 2021-02-26
EP3717440A1 (fr) 2020-10-07
FR3074169A1 (fr) 2019-05-31

Similar Documents

Publication Publication Date Title
EP3313651B1 (fr) Procédé de traitement de fibres de carbure de silicium
EP2373596B1 (fr) Procede de traitement de fibres ceramiques
EP2900623B1 (fr) Procede de fabrication d&#39;une piece en cmc
FR2933973A1 (fr) Procede de fabrication d&#39;une piece de friction en materiau composite carbone/carbone
FR2640258A1 (fr) Procede de fabrication de materiaux composites a renfort en fibres de carbure de silicium et a matrice ceramique
FR2852004A1 (fr) Realisation d&#39;une preforme par renforcement d&#39;une structure fibreuse et/ou par liaison entre elles de structures fibreuses et application a la realisation de pieces en materiau composite
EP2791080B1 (fr) Pièce en matériau cmc
EP0489637B1 (fr) Procédé de fabrication d&#39;une préforme fibreuse formée de fibres réfractaires pour la réalisation d&#39;une pièce en matériau composite
EP2836473B1 (fr) Procede de traitement de fibres de carbure de silicium.
EP3717440A1 (fr) Procede de traitement de fibres de carbure de silicium
EP2794515B1 (fr) PROCEDE POUR AMELIORER LA RESISTANCE MECANIQUE D&#39;UN MATERIAU COMPOSITE A MATRICE CERAMIQUE SiC/SiC
EP0373007A1 (fr) Textures multidirectionnelles en fibres céramiques à base de composé du silicium, leur fabrication, et matériaux composites ainsi renforcés
EP2794514B1 (fr) Procédé pour réduire la rugosité de surface de fibres en carbure de silicium destinées a être utilisées pour la réalisation d&#39;un composite a matrice céramique
FR2686907A1 (fr) Procede d&#39;elaboration de preformes fibreuses pour la fabrication de pieces en materiaux composites et produits obtenus par le procede.
WO2014114874A1 (fr) Procede de creation d&#39;interface carbone sur des fibres de carbure de silicium en conditions hydrothermales
EP2791081B1 (fr) Procede de traitement de fibres ceramiques par phosphatation
WO2022269178A1 (fr) Procede de traitement d&#39;une fibre de carbure de silicium
FR2989390A1 (fr) Procede de fabrication d&#39;une piece en materiau composite avec amelioration de la densification intra-fils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018819536

Country of ref document: EP

Effective date: 20200629