EP1021750A1 - Fotoresist-zusammensetzungen die polyzyklische polymere mit säurelabilen gruppen enthalten - Google Patents

Fotoresist-zusammensetzungen die polyzyklische polymere mit säurelabilen gruppen enthalten

Info

Publication number
EP1021750A1
EP1021750A1 EP98944729A EP98944729A EP1021750A1 EP 1021750 A1 EP1021750 A1 EP 1021750A1 EP 98944729 A EP98944729 A EP 98944729A EP 98944729 A EP98944729 A EP 98944729A EP 1021750 A1 EP1021750 A1 EP 1021750A1
Authority
EP
European Patent Office
Prior art keywords
polymer
group
branched
linear
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98944729A
Other languages
English (en)
French (fr)
Inventor
Brian L. Goodall
Saikumar Jayaraman
Robert A. Shick
Larry F. Rhodes
Robert David Allen
Richard Anthony Di Pietro
Thomas Wallow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
International Business Machines Corp
Original Assignee
BF Goodrich Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BF Goodrich Corp filed Critical BF Goodrich Corp
Publication of EP1021750A1 publication Critical patent/EP1021750A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors

Definitions

  • the present invention is related to polycyclic polymers and methods for their use as photoresists in the manufacture of integrated circuits. More specifically, the invention is directed to photoresist compositions comprising a polycyclic polymer and a cationic photoinitiator.
  • the polycyclic polymer contains recurring acid labile groups that are pendant from the polymer backbone. The acid labile groups can be selectively cleaved to form recurring polar groups along the backbone of the polymer.
  • the polymers are transparent to short wave lengths of imaging radiation and exhibit resistance to reactive ion etching.
  • Integrated circuits are paramount in the manufacture of an array of electronic devices. They are fabricated from the sequential formation of alternating and interconnecting bands of conductive, semiconductive and nonconductive layers on an appropriate substrate (e.g., silicon wafer) that are selectively patterned to form circuits and interconnections to produce specific electrical functions.
  • the patterning of IC's is carried out according to various lithography techniques known in the art. Photolithography employing ultraviolet (UV) light and increasingly deep UV light or other radiation is a fundamental and important technology utilized in the production of IC devices.
  • a photosensitive polymer film photoresist
  • a photomask containing the desired patterning information is then placed in close proximity to the photoresist film.
  • the photoresist is irradiated through the overlying photomask by one of several types of imaging radiation including UV light, e-beam electrons, x-rays, or ion beam. Upon exposure to radiation, the photoresist undergoes a chemical change with concomitant changes in solubility. After irradiation, the wafer is soaked in a solution that develops (i.e., selectively removes either the exposed or unexposed regions) the patterned images in the photosensitive polymer film.
  • either the exposed or nonexposed areas of film are removed in the developing process to expose the underlying substrate, after which the patterned exposed or unwanted substrate material is removed or changed by an etching process leaving the desired pattern in a functional layer of the wafer.
  • Etching is accomplished by plasma etching, sputter etching, and reactive ion etching (RIE).
  • RIE reactive ion etching
  • the remaining photoresist material functions as a protective barrier against the etching process. Removal of the remaining photoresist material gives the patterned circuit.
  • dry processes have been developed to overcome the drawbacks of the wet chemical process.
  • Such dry processes generally involve passing a gas through a chamber and ionizing the gas by applying a potential across two electrodes in the presence of the gas.
  • the plasma containing the ionic species generated by the potential is used to etch a substrate placed in the chamber.
  • the ionic species generated in the plasma are directed to the exposed substrate where they interact with the surface material forming volatile products that are removed from the surface.
  • Typical examples of dry etching are plasma etching, sputter etching and reactive ion etching.
  • Reactive ion etching provides well defined vertical sidewall profiles in the substrate as well as substrate to substrate etching uniformity. Because of these advantages, the reactive ion etching technique has become the standard in IC manufacture.
  • Negative resists upon exposure to imaging radiation, polymerize, crosslink, or change solubility characteristics such that the exposed regions are insoluble to the developer. Unexposed areas remain soluble and are washed away. Positive resists function in the opposite way, becoming soluble in the developer solution after exposure to imaging radiation.
  • One type of positive photoresist material is based upon phenol- formaldehyde novolac polymers.
  • a particular example is the commercially utilized Shipley AZ1350 material which comprises an m-cresol formaldehyde novolak polymer composition and a diazoketone (2-diazo-l-napthol-5 -suiphonic acid ester).
  • the diazoketone When exposed to imaging radiation, the diazoketone is converted to a carboxylic acid, which in turn converts the phenolic polymer to one that is readily soluble in weak aqueous base developing agent.
  • U.S. Patent No. 4,491,628 to Ito et al. discloses positive and negative photoresist compositions with acid generating photoinitiators and polymers with acid labile pendant groups.
  • the disclosed polymers include vinylic polymers such as polystyrenes, polyvinylbenzoates, and polyacrylates that are substituted with recurrent pendant groups that undergo acidolysis to produce products that differ in solubility than their precursors.
  • the preferred acid labile pendant groups include t-butyl esters of carboxylic acids and t-butyl carbonates of phenols.
  • the photoresist can be made positive or negative depending on the nature of the developing solution employed.
  • the prior art photoresists such as the phenol- formaldehyde novolac polymers and the substituted styrenic polymers contain aromatic groups that inherently become increasingly absorptive as the wave length of light falls below about 300 nm, (ACS Symposium Series 537, Polymers for Microelectronics, Resists and Dielectrics, 203rd National Meeting of the
  • Shorter wave length sources are typically less bright than traditional sources which necessitate a chemical amplification approach using photoacids.
  • the opacity of these aromatic polymers to short wave length light is a drawback in that the photoacids below the polymer surface are not uniformly exposed to the light source and, consequently, the polymer is not developable.
  • the aromatic content of photoresist polymers must be reduced. If deep UV transparency is desired (i.e., for 248 nm and particularly 193 nm wave length exposure), the polymer should contain a minimum of aromatic character.
  • U.S. No.5, 372,912 concerns a photoresist composition containing an acrylate based copolymer, a phenolic type binder, and a photosensitive acid generator.
  • the acrylate based copolymer is polymerized from acrylic acid, alkyl acrylate or methacrylate, and a monomer having an acid labile pendant group. While this composition is sufficiently transparent to UV radiation at a wave length of about 240 nm, the use of aromatic type binders limits the use of shorter wave length radiation sources. As is common in the polymer art, the enhancement of one property is usually accomplished at the expense of another.
  • the improvement in transparency to short wave length imaging radiation results in the erosion of the resist material during the subsequent dry etching process.
  • photoresist materials are generally organic in nature and substrates utilized in the manufacture of IC's are typically inorganic, the photoresist material has an inherently higher etch rate than the substrate material when employing the RIE technique. This necessitates the need for the photoresist material to be much thicker than the underlying substrate.
  • the photoresist material will erode away before the underlying substrate could be fully etched. It follows that lower etch rate resist materials can be employed in thinner layers over the substrate to be etched. Thinner layers of resist material allow for higher resolution which, ultimately, allows for narrower conductive lines and smaller transistors.
  • J.V. Crivello et al. (Chemically Amplified Electron-Beam Photoresists, Chem. Mater., 1996, 8, 376-381) describe a polymer blend comprising 20 weight % of a free radically polymerized homopolymer of a norbornene monomer bearing acid labile groups and 80 weight % of a homopolymer of 4-hydroxy- ⁇ - methylstyrene containing acid labile groups for use in electron-beam photoresists.
  • compositions are suitable only for electron-beam photoresists and can not be utilized for deep UV imaging (particularly not for 193 nm resists).
  • Crivello et al. investigated blend compositions because they observed the oxygen plasma etch rate to be unacceptably high for free radically polymerized homopolymers of norbornene monomers bearing acid labile groups.
  • It is a general object of the invention to provide a photoresist composition comprising a polycyclic polymer backbone having pendant acid labile groups and a photoinitiator.
  • These and other objects of the invention are accomplished by polymerizing a reaction mixture comprising an acid labile group functionalized polycycloolefinic monomer, a solvent, a single or multicomponent catalyst system each containing a Group VIII metal ion source.
  • the Group VIII ion source is utilized in combination with one or both of an organometal cocatalyst and a third component.
  • the single and multicomponent catalyst systems can be utilized with an optional chain transfer agent (CTA) selected from a compound having a terminal olefinic double bond between adjacent carbon atoms, wherein at least one of said adjacent carbon atoms has two hydrogen atoms attached thereto.
  • CTA chain transfer agent
  • CTA is selected from unsaturated compounds that are typically cationically non- polymerizable and, therefore, exclude styrenes, vinyl ethers, and conjugated dienes.
  • the polymers obtained are useful in photoresist compositions that include a radiation-sensitive acid generator.
  • the present invention relates to a radiation-sensitive resist composition
  • a radiation-sensitive resist composition comprising an acid-generating initiator and a polycyclic polymer containing recurring acid labile pendant groups along the polymer backbone.
  • the polymer containing the initiator is coated as a thin film on a substrate, baked under controlled conditions, exposed to radiation in a patterned configuration, and optionally post baked under controlled conditions to further promote the deprotection.
  • the recurrent acid labile pendant groups on the polymer backbone are cleaved to form polar recurring groups.
  • the exposed areas so treated are selectively removed with an alkaline developer.
  • the unexposed regions of the polymer remain nonpolar and can be selectively removed by treatment with a suitable nonpolar solvent for a negative tone development.
  • Image reversal can easily be achieved by proper choice of developer owing to the difference in the solubility characteristics of the exposed and unexposed portions of the polymer.
  • the polymers of the present invention comprise polycyclic repeating units, a portion of which are substituted with acid labile groups.
  • the instant polymers are prepared by polymerizing the polycyclic monomers of this invention.
  • polycyclic nonorbomene-type or norbomene-fi ⁇ nctional
  • the monomer contains at least one norbomene moiety as shown below:
  • the simplest polycyclic monomer of the invention is the bicyclic monomer, bicyclo[2.2.1]hept-2-ene, commonly referred to as norbomene.
  • the acid labile functionality is introduced into the polymer chain by polymerizing a reaction medium comprising one or more acid labile substituted polycyclic monomers set forth under Formula I below in optional combination with one or more polycyclic monomers set forth under Formulae II, III, IV, and V below in the presence of the Group VIII metal catalyst system.
  • one or more of the acid labile substituted polycyclic monomers of Formula I are copolymerized with one or more of the polycyclic monomers set forth under Formula II.
  • the acid labile polycyclic monomers useful in the practice of the present invention are selected from a monomer represented by the formula below:
  • R 1 to R 4 independently represent a substituent selected from the group -(A) n C(O)OR*, -(A) n -C(O)OR, -(A) n -OR, -(A) n -OC(O)R, -(A) n -C(O)R , -(A) n -OC(O)OR, -(A) n -OCH 2 C(O)OR*, -(A) n -C(O)O-A'-OCH 2 C(O)OR*,
  • R 1 to R 4 is selected from the acid labile group -(A) n C(O)OR*.
  • a and A' independently represent a divalent bridging or spacer radical selected from divalent hydrocarbon radicals, divalent cyclic hydrocarbon radicals, divalent oxygen containing radicals, and divalent cyclic ethers and cyclic diethers, and n is an integer of 0 or 1.
  • the divalent hydrocarbon radicals can be represented by the formula -(C d H 2d )- where d represents the number of carbon atoms in the alkylene chain and is an integer from 1 to 10.
  • the divalent hydrocarbon radicals are preferably selected from linear and branched (C, to C 10 ) alkylene such as methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, and decylene.
  • branched alkylene radicals are contemplated, it is to be understood that a hydrogen atom in the linear alkylene chain is replaced with a linear or branched (C, to C 5 ) alkyl group.
  • the divalent cyclic hydrocarbon radicals include substituted and unsubstituted (C 3 to C g ) cycloaliphatic moieties represented by the formula:
  • a is an integer from 2 to 7 and R q when present represents linear and branched (C, to C I0 ) alkyl groups.
  • Preferred divalent cycloalkylene radicals include cyclopentylene and cyclohexylene moieties represented by the following structures:
  • R q is defined above.
  • the bond lines projecting from the cyclic structures and/or formulae represent the divalent nature of the moiety and indicate the points at which the carbocyclic atoms are bonded to the adjacent molecular moieties defined in the respective formulae.
  • the diagonal bond line projecting from the center of the cyclic stmcture indicates that the bond is optionally connected to any one of the carbocyclic atoms in the ring.
  • the carbocyclic atom to which the bond line is connected will accommodate one less hydrogen atom to satisfy the valence requirement of carbon.
  • Preferred divalent cyclic ethers and diethers are represented by the structures:
  • the divalent oxygen containing radicals include (C 2 to C l0 ) alkylene ethers and polyethers.
  • (C 2 to C 10 ) alkylene ether is meant that the total number of carbon atoms in the divalent ether moiety must at least be 2 and can not exceed 10.
  • the divalent alkylene ethers are represented by the formula -alkylene-O-alkylene- wherein each of the alkylene groups that are bonded to the oxygen atom can be the same or different and are selected from methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, and nonylene.
  • the simplest divalent alkylene ether of the series is the radical -CH 2 -O-CH 2 -.
  • Preferred polyether moieties include divalent radicals of the formula:
  • x is an integer from 0 to 5 and y is an integer from 2 to 50 with the proviso that the terminal oxygen atom on the polyether spacer moiety can not be directly linked to a terminal oxygen atom on an adjacent group to form a peroxide linkage.
  • peroxide linkages i.e., -O-O-
  • R represents hydrogen, linear and branched
  • R* represents moieties (i.e., blocking or protecting groups) that are cleavable by photoacid initiators selected from -C(CH 3 ) 3 , -Si(CH 3 ) 3 , -CH(R P )OCH 2 CH 3 , -CH(R P )OC(CH 3 ) 3 , or the following cyclic groups:
  • R p represents hydrogen or a linear or branched (C, to C 5 ) alkyl group.
  • the alkyl substituents include methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, t-pentyl and neopentyl.
  • the single bond line projecting from the cyclic groups indicates the carbon atom ring position where the protecting group is bonded to the respective substituent.
  • acid labile groups include 1 -methyl- 1 -cyclohexyl, isobornyl, 2-methyl-2- isobomyl, 2-methyl-2-adamantyl, tetrahydrofuranyl, tetrahydropyranoyl, 3-oxocyclohexanonyl, mevalonic lactonyl, 1 -ethoxy ethyl, 1-t-butoxy ethyl, dicyclopropylmethyl (Dcpm), and dimethylcyclopropylmethyl (Dmcp) groups.
  • the alkyl substituents on the protecting groups set forth above are selected from linear and branched (C, to C 5 ) alkyl groups.
  • R** independently represents R and R* as defined above.
  • the Dcpm and Dmcp groups are respectively represented by the following structures:
  • Polycyclic monomers of the above formula with a substituent selected from the group -(CH 2 ) n C(R) 2 CH(R)(C(O)OR**) or -(CH 2 ) n C(R) 2 CH(C(O)OR**) 2 can be represented as follows:
  • n is defined as above and n'is an integer from 0 to 10.
  • m is preferably 0 or 1 , more preferably m is 0.
  • m is 0 the preferred structures are represented below:
  • R 1 to R 4 are previously defined.
  • the preferred acid labile group is a protected organic ester group in which the protecting or blocking group undergoes a cleavage reaction in the presence of an acid.
  • Tertiary butyl esters of carboxylic acids are especially preferred.
  • the monomers described under Formula I when polymerized into the polymer backbone, provide recurring pendant acid sensitive groups that are subsequently cleaved to confer polarity or solubility to the polymer.
  • the optional second monomer is represented by the stmcture set forth under Formula II below:
  • R 5 to R 8 independently represent a neutral or polar substituent selected from the group: -(A) n -C(O)OR", -(A) n -OR", -(A) n -OC(O)R", -(A) n -OC(O)OR", -(A) n -C(O)R", -(A) n - OC(O)C(O)OR", -(A) n -O-A'-C(O)OR", -(A) n -OC(O)-A'-C(O)OR", -(A) n -C(O)O-A'-C(O)OR", -(A) n -C(O)O-A'-C(O)OR", -(A) n -C(O)O-A'-C(O)OR", -(A) n -C(O)O-A'-C(O)OR", -(A
  • moieties A and A' independently represent a divalent bridging or spacer radical selected from divalent hydrocarbon radicals, divalent cyclic hydrocarbon radicals, divalent oxygen containing radicals, and divalent cyclic ethers and cyclic diethers, and n is an integer 0 or 1. When n is 0 it should be apparent that A and A' represent a single covalent bond. By divalent is meant that a free valence at each terminal end of the radical are attached to two distinct groups.
  • the divalent hydrocarbon radicals can be represented by the formula -(C d H 2d )- where d represents the number of carbon atoms in the alkylene chain and is an integer from 1 to 10.
  • the divalent hydrocarbon radicals are preferably selected from linear and branched (C, to C 10 ) alkylene such as methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, and decylene.
  • branched alkylene radicals are contemplated, it is to be understood that a hydrogen atom in the linear alkylene chain is replaced with a linear or branched (C, to C 5 ) alkyl group.
  • the divalent cyclic hydrocarbon radicals include substituted and unsubstituted (C 3 to C 8 ) cycloaliphatic moieties represented by the formula:
  • a is an integer from 2 to 7 and R q when present represents linear and branched (C, to C 10 ) alkyl groups.
  • Preferred divalent cycloalkylene radicals include cyclopentylene and cyclohexylene moieties represented by the following stmctures:
  • R q is defined above.
  • the bond lines projecting from the cyclic stmctures and/or formulae represent the divalent nature of the moiety and indicate the points at which the carbocyclic atoms are bonded to the adjacent molecular moieties defined in the respective formulae.
  • the diagonal bond line projecting from the center of the cyclic stmcture indicates that the bond is optionally connected to any one of the carbocyclic atoms in the ring. It is also to be understood that the carbocyclic atom to which the bond line is connected will accommodate one less hydrogen atom to satisfy the valence requirement of carbon.
  • Preferred divalent cyclic ethers and diethers are represented by the stmctures:
  • the divalent oxygen containing radicals include (C 2 to C 10 ) alkylene ethers and polyethers.
  • (C 2 to C 10 ) alkylene ether is meant that the total number of carbon atoms in the divalent ether moiety must at least be 2 and can not exceed 10.
  • the divalent alkylene ethers are represented by the formula -alkylene-O-alkylene- wherein each of the alkylene groups that are bonded to the oxygen atom can be the same or different and are selected from methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, and nonylene.
  • the simplest divalent alkylene ether of the series is the radical -CH 2 -0-CH 2 -.
  • Preferred polyether moieties include divalent radicals of the formula:
  • x is an integer from 0 to 5 and y is an integer from 2 to 50 with the proviso that the terminal oxygen atom on the polyether spacer moiety can not be directly linked to a terminal oxygen atom on an adjacent group to form a peroxide linkage.
  • peroxide linkages i.e., -O-O-
  • polyether spacers are linked to any of the terminal oxygen containing substituent groups set forth under R 5 to R 8 above.
  • R 5 to R 8 can also independently represent hydrogen, linear and branched (C, to C 10 ) alkyl, so long as at least one of the remaining R 5 to R 8 substituents is selected from one of the neutral or polar groups represented above.
  • p is an integer from 0 to 5 (preferably 0 or 1, more preferably 0).
  • R" independently represents hydrogen, linear and branched (C, to C 10 ) alkyl, linear and branched (C, to C 10 ) alkoxyalkylene, polyethers, monocyclic and polycyclic (C 4 to C 20 ) cycloahphatic moieties, cyclic ethers, cyclic ketones, and cyclic esters (lactones).
  • (C, to C 10 ) alkoxyalkylene is meant that a terminal alkyl group is linked through an ether oxygen atom to an alkylene moiety.
  • the radical is a hydrocarbon based ether moiety that can be generically represented as -alkylene-O-alkyl wherein the alkylene and alkyl groups independently contain 1 to 10 carbon atoms each of which can be linear or branched.
  • the polyether radical can be represented by the formula:
  • x is an integer from 0 to 5
  • y is an integer from 2 to 50
  • R a represents hydrogen or linear and branched (C, to C 10 ) alkyl.
  • Preferred polyether radicals include poly(ethylene oxide) and poly(propylene oxide).
  • monocyclic cycloahphatic monocyclic moieties include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • cycloahphatic polycyclic moieties include, norbomyl, adamantyl, tetrahydrodicyclopentadienyl (tricyclo[5.2.1.0 2 - 6 ] decanyl), and the like.
  • cyclic ethers include tetrahydrofuranyl and tetrahydropyranyl moieties.
  • An example of a cyclic ketone is a 3-oxocyclohexanonyl moiety.
  • An example of a cyclic ester or lactone is a mevalonic lactonyl moiety.
  • R" in Formula II can not represent an ester moiety containing an acid labile group.
  • R is a norbomyl, adamantyl, tetrahydrodicyclopentadienyl (tricyclo[5.2.1.0 2 - 6 ] decanyl), tetrahydrofuranyl tetrahydropyranyl, 3-oxocyclohexanonyl or a mevalonic lactonyl moiety, it can not be directly attached to the oxygen atom in a ester moiety (-C(O)O).
  • Preferred neutral or polar substituents include the alkyl esters of carboxylic acids, the spaced oxalate containing moieties (e.g., -(A) n -OC(O)-A'-C(O)OR”), and the oxalate containing moieties (e.g., -(A) n - OC(O)C(O)OR”) wherin the formulae are as defined above.
  • the ester, spaced oxalate, and oxalate containing functionalities impart exceptional hydrophilicity, promote good wetting of the developer and improve film mechanical properties without the concomitant problems associated with excessive carboxylic acid functionalities.
  • the optional third monomer component is represented by the stmcture under Formula III below:
  • R 9 to R 12 independently represent a carboxylic or sulfonic acid substituent or salts thereof selected from the formulae -(CH 2 ) n C(O)OH, -(CH 2 ) n SO 3 H, -(CH 2 ) n C(O)O- X + , -(CH 2 ) n SO 3 " X + wherein X represents tetraalkylammonium cations and the alkyl substituents are bonded to the nitrogen atom independently selected from linear and branched (C, to C 10 ) alkyl, and q is an integer from 0 to 5 (preferably 0 or 1 , more preferably 0) and n is an integer from 0 to 10 (preferably 0).
  • R 9 to R 12 can independently represent hydrogen, linear and branched (C, to C 10 ) alkyl, so long as at least one of the remaining R 9 to R 12 substituents is selected from one of the acids or acid salts set forth above.
  • the monomers containing carboxylic acid functionality contribute to the hydrophilicity of the polymer consequently aiding in the developability of the polymer in aqueous base systems at high rates.
  • R 13 to R 16 independently represent linear or branched (C, to C 10 ) alkyl and r is an integer from 0 to 5 (preferably 0 or 1, more preferably 0) . Any of R 13 to R 16 can represent hydrogen so long as at least one of the remaining R 13 to R 16 substituents is selected from an alkyl group set defined above. Of the above alkyl substituents, decyl is especially preferred.
  • the polymerization of alkyl substituted monomers into the polymer backbone is a method to control the Tg of the polymer as disclosed in U.S. Patent No. 5,468,819 to Goodall et al.
  • polycyclic adducts can be prepared by the thermal pyrolysis of dicyclopentadiene (DCPD) in the presence of a suitable dienophile.
  • DCPD dicyclopentadiene
  • the reaction proceeds by the initial pyrolysis of DCPD to CPD followed by the Diels- Alder addition of CPD and the dienophile to give the adducts as shown below:
  • R' to R" independently represents the substituents defined under R 1 to R 16 in Formulae I, II, III, and IV above.
  • 2-norbomene-5-carboxylic acid bicyclo[2.2.1]hept-5- ene-2-carboxylylic acid
  • 2-norbomene-5-carboxylic acid can be prepared by the Diels- Alder reaction of cyclopentadiene with acrylic acid in accordance with the following reaction scheme:
  • the corresponding t-butyl ester of the carboxylic acid can be prepared by reacting the carboxylic acid functionality with isobutylene in the presence of triflic acid at reduced temperatures (i.e., -30 to -20°C) as shown in the reaction scheme below:
  • Another more preferred route to the t-butyl ester of the norbomene carboxylic acid involves the Diels- Alder reaction of cyclopentadiene with t-butyl acrylate.
  • Another synthesis route to the acid and ester substituted monomers of the present invention is through an ortho ester substituted polycyclic monomer with subsequent hydrolysis to a carboxylic functionality or partial hydrolysis to an ester functionality.
  • the carboxylic functionality can be esterified to the desired ester.
  • the ortho ester substituted monomers of the invention are represented by Formula V below:
  • R 17 , R 18 , and R' 9 independently represent a linear or branched (C, to C 5 ) alkyl group or any R' 7 , R 18 , and R 19 can be taken together along with the oxygen atoms to which they are attached to form a substituted or unsubstituted 5 to 10 membered cyclic or bicyclic ring containing 3 to 8 carbon atoms (excluding substituent groups), s is an integer from 0 to 5 (preferably 0), and t is an integer from 1 to 5 (preferably 1).
  • Representative structures wherein s is 0, t is 1, and R 17 , R 18 , and R 19 are taken with the oxygen atoms to which they are attached to form a cyclic or bicyclic ring are set forth below:
  • R 17 ', R 18 , and R 19 independently represent hydrogen and linear and branched (C, to C 5 ) alkyl.
  • the ortho esters of the present invention can be synthesized in accordance with the so-called Pinner synthesis (A. Pinner, Chem. Ber., 16, 1643 (1883), and via the procedure set forth by S.M. McElvain and J.T. Venerable, J. Am. Chem. Soc, 72, 1661 (1950); SM. McElvain and CL. Aldridge, J. Am. Chem. Soc. ,75, 3987 (1953). A typical synthesis is set forth in the reaction scheme below:
  • the otho ester can undergo a hydrolysis reaction in the presence of dilute acid catalysts such as hydrobromic, hydroiodic, and acetic acid to yield the carboxylic acid.
  • the carboxylic acid can in turn be esterified in the presence of an aliphatic alcohol and an acid catalyst to yield the respective ester.
  • the ortho ester moieties can be partially hydrolyzed to yield the acid and a conventional ester on the same monomer as illustrated below:
  • nadic anhydride endo-5-norbornene-2,3-dicarboxylic anhydride
  • Nadic anhydride can be fully hydrolyzed to the dicarboxylic acid or partially hydrolyzed to the an acid and ester functionality or diester functionality as shown below:
  • R 17 independently represents linear and branched (C, to C 5 ) alkyl.
  • R 17 is methyl, ethyl, or t-butyl.
  • the nadic anhydride starting material is the exo-isomer.
  • the exo-isomer is easily prepared by heating the endo-isomer at 190° C followed by recrystallization from an appropriate solvent (toluene).
  • nadic anhydride is simply hydrolyzed in boiling water to obtain almost a quantitative yield of the diacid product.
  • the mixed carboxylic acid - alkyl ester functionality shown in scheme 3 is obtained by heating nadic anhydride under reflux for 3 to 4 hours in the presence of the appropriate aliphatic alcohol (R 17 OH).
  • the same product can be prepared by first reacting the nadic anhydride starting material with an aliphatic alcohol and trialkyl amine followed by treatment with dilute HC1.
  • the diester product substituted with identical alkyl (R 17 ) groups can be prepared from the diacid by reacting the diacid with a trialkyloxonium tetrafluoroborate, e.g., R 17 3 O[BF 4 ], in methylene chloride at ambient temperature, in the presence of diisopropylethylamine.
  • the mixed acid - ester product obtained in scheme 3 is employed as the starting material.
  • the acid group is esterified as set forth in reaction scheme 2.
  • a trialkyloxonium tetrafluoroborate having a differing alkyl group than the alkyl group already present in the ester functionality is employed.
  • the foregoing monomers containing the precursor functionalities can be converted to the desired functional groups before they are polymerized or the monomers can be first polymerized and then the respective polymers containing the precursor functional substituents can then be post reacted to give the desired functionality.
  • One or more of the acid labile substituted polycyclic monomers described under Formula I are copolymerized alone or in combination with one or more of the polycyclic monomers described under Formula II, in optional combination with one or more of the polycyclic monomers described under Formulae III, IV, and V. It is also contemplated that the polycyclic monomers of Formulae I to V can be copolymerized with carbon monoxide to afford alternating copolymers of the polycyclic and carbon monoxide. Copolymers of norbomene having pendant carboxylic acid groups and carbon monoxide have been described in U.S. Patent No. 4,960,857 the disclosure of which is hereby incorporated by reference.
  • the monomers of Formulae I to V and carbon monoxide can be copolymerized in the presence of a palladium containing catalyst system as described in Chem. Rev. 1996, 96, 663-681. It should be readily understood by those skilled in the art that the alternating copolymers of polycyclic/carbon monoxide can exist in either the keto or spiroketal isomeric form. Accordingly, the present invention contemplates copolymers containing random repeating units derived (polymerized) from a monomer or monomers represented by Formulae I and II in optional combination with any monomer(s) represented by Formulae II to V. In addition, the present invention contemplates alternating copolymers containing repeating units derived (polymerized) from carbon monoxide and a monomer(s) represented by Formulae I to V.
  • Pendant carboxylic acid functionality is important from the standpoint of imparting hydrophilic character, adhesion characteristics and clean dissolution (development) properties to the polymer backbone.
  • polymers bearing excessive carboxylic acid functionalities are undesirable.
  • Such polymers do not perform well in industry standard developers (.26N tetramethylammonium hydroxide, TMAH). Swelling of the polymer in unexposed regions, uncontrolled thinning during application, and swelling of the polymer during exposed dissolution are inherent disadvantages associated with these highly acidic polymers. Accordingly, in situations where excessive carboxylic acid functionality is undesirable but where hydrophilicity and good wetting characteristics are essential, copolymers polymerized from the monomers of Formula I in necessary combination with the monomers of Formula II are preferred.
  • the polymers of the present invention are the key ingredient of the composition.
  • the polymer will generally comprise about 5 to 100 mole % of the monomer (repeating unit) that contains the acid labile group component.
  • the polymer contains about 20 to 90 mole % of the monomer that contains the acid labile group. More preferably the polymer contains about 30 to 70 mole % of the monomeric unit that contains the acid labile functionality.
  • the remainder of polymer composition is made up of repeating units polymerized from the optional monomers set forth above under Formulae III to V.
  • the choice and the amount of specific monomers employed in the polymer can be varied according to the properties desired. For example, by varying the amount of carboxylic acid functionality in the polymer backbone, the solubility of the polymer to various developing solvents can be adjusted as desired. Monomers containing the ester functionality can be varied to enhance the mechanical properties of the polymer and radiation sensitivity of the system.
  • the glass transition temperature properties of the polymer can be adjusted by incorporating cyclic repeating units that contain long chain alkyl groups such as decyl.
  • a ROMP polymer has a different stmcture than that of an addition polymer.
  • a ROMP polymer contains a repeat unit with one less cyclic unit than did the starting monomer.
  • the repeat units are linked together in an unsaturated backbone as shown above. Because of this unsaturation the polymer preferably should subsequently be hydrogenated to confer oxidative stability to the backbone.
  • the monomers of this invention can be polymerized by addition polymerization and by ring-opening metathesis polymerization (ROMP) preferably with subsequent hydrogenation.
  • the cyclic polymers of the present invention are represented by the following stmctures:
  • R' to R"" independently represents R 1 to R 19 as defined in Formulae I to V above, m is an integer from 0 to 5 and a represents the number of repeating units in the polymer backbone.
  • the ROMP polymers of the present invention are polymerized in the presence of a metathesis ring-opening polymerization catalyst in an appropriate solvent. Methods of polymerizing via ROMP and the subsequent hydrogenation of the ring-opened polymers so obtained are disclosed in U.S. Patent Nos. 5,053,471 and 5,202,388 which are incorporated herein by reference.
  • the polycyclic monomers of the invention can be polymerized in the presence of a single component mthenium or osmium metal carbene complex catalyst such as those disclosed in WO 95-US9655.
  • the monomer to catalyst ratio employed should range from about 100:1 to about 2,000: 1 , with a preferred ratio of about 500: 1.
  • the reaction can be conducted in halohydrocarbon solvent such as dichloroethane, dichloromethane, chlorobenzene and the like or in a hydrocarbon solvent such as toluene.
  • the amount of solvent employed in the reaction medium should be sufficient to achieve a solids content of about 5 to about 40 weight percent, with 6 to 25 weight percent solids to solvent being preferred.
  • the reaction can be conducted at a temperature ranging from about 0°C to about 60°C, with about 20°C to 50°C being preferred.
  • a preferred metal carbene catalyst is bis(tricyclohexylphosphine)benzylidene ruthenium. Surprisingly and advantageously, it has been found that this catalyst can be utilized as the initial ROMP reaction catalyst and as an efficient hydrogenation catalyst to afford an essentially saturated ROMP polymer. No additional hydrogenation catalyst need be employed. Following the initial ROMP reaction, all that is needed to effect the hydrogenation of the polymer backbone is to maintain hydrogen pressure over the reaction medium at a temperature above about 100°C but lower than about 220 °C, preferably between about 150 to about 200 °C.
  • the addition polymers of the present invention can be prepared via standard free radical solution polymerization methods that are well-known by those skilled in the art.
  • the monomers of Formulae I to V can be homopolymerized or copolymerized in the presence of maleic anhydride. Free radical polymerization techniques are set forth in the Encyclopedia of Polymer
  • the monomers of this invention are polymerized in the presence of a single or multicomponent catalyst system comprising a Group VIII metal ion source (preferably palladium or nickel).
  • a Group VIII metal ion source preferably palladium or nickel.
  • the preferred polymers of this invention are polymerized from reaction mixtures comprising at least one polycyclic monomer selected from Formulae I and II, a solvent, a catalyst system containing a Group VIII metal ion source, and an optional chain transfer agent.
  • the catalyst system can be a preformed single component Group VIII metal based catalyst or a multicomponent Group VIII metal catalyst.
  • the single component catalyst system of this invention comprises a Group VIII metal cation complex and a weakly coordinating counteranion as represented by the following formula:
  • L represents a ligand containing 1 , 2, or 3 ⁇ -bonds
  • M represents a Group VIII transition metal
  • X represents a ligand containing 1 ⁇ -bond and between 0 to 3 ⁇ -bonds
  • y is 0, 1 , or 2 and z is 0 or 1 and wherein y and z cannot both be 0 at the same time, and when y is 0, a is 2 and when y is 1 , a is 1
  • CA is a weakly coordinating counteranion.
  • weakly coordinating counteranion refers to an anion which is only weakly coordinated to the cation, thereby remaining sufficiently labile to be displaced by a neutral Lewis base. More specifically the phrase refers to an anion which when functioning as a stabilizing anion in the catalyst system of this invention does not transfer an anionic substituent or fragment thereof to the cation, thereby forming a neutral product.
  • the counteranion is non-oxidative, non-reducing, non-nucleophilic, and relatively inert.
  • L is a neutral ligand that is weakly coordinated to the Group VIII metal cation complex. In other words, the ligand is relatively inert and is readily displaced from the metal cation complex by the inserting monomer in the growing polymer chain.
  • Suitable ⁇ -bond containing ligands include (C 2 to C I2 ) monoolefinic (e.g., 2,3-dimethyl-2-butene), dioolefinic (C 4 to C 12 ) (e.g., norbomadiene) and (C 6 to C 20 ) aromatic moieties.
  • ligand L is a chelating bidentate cyclo(C 6 to C 12 ) diolefin, for example cyclooctadiene (COD) or dibenzo COD, or an aromatic compound such as benzene, toluene, or mesitylene.
  • Group VIII metal M is selected from Group VIII metals of the Periodic
  • M is selected from the group consisting of nickel, palladium, cobalt, platinum, iron, and mthenium.
  • the most preferred metals are nickel and palladium.
  • Ligand X is selected from (i) a moiety that provides a single metal- carbon ⁇ -bond (no ⁇ bonds) to the metal in the cation complex or (ii) a moiety that provides a single metal carbon ⁇ -bond and 1 to 3 ⁇ -bonds to the metal in the cation complex. Under embodiment (i) the moiety is bound to the Group VIII metal by a single metal-carbon ⁇ -bond and no ⁇ -bonds.
  • Representative ligands defined under this embodiment include (C, to C 10 ) alkyl moieties selected from methyl, ethyl, linear and branched moieties such as propyl, butyl, pentyl, neopentyl, hexyl, heptyl, octyl, nonyl and decyl and (C 7 to C !5 ) aralkyl such as benzyl.
  • the cation has a hydrocarbyl group directly bound to the metal by a single metal-carbon ⁇ -bond, and also by at least one, but no more than three ⁇ -bonds.
  • hydrocarbyl is meant a group that is capable of stabilizing the Group VIII metal cation complex by providing a carbon-metal ⁇ -bond and one to three olefinic ⁇ -bonds that may be conjugated or non-conjugated.
  • Representative hydrocarbyl groups are (C 3 to C 20 ) alkenyl which may be non-cyclic, monocyclic, or polycyclic and can be substituted with linear and branched (C, to C 20 ) alkoxy, (C 6 to C, 5 ) aryloxy or halo groups (e.g., Cl and F).
  • X is a single allyl ligand, or, a canonical form thereof, which provides a ⁇ -bond and a ⁇ -bond; or a compound providing at least one olefinic ⁇ -bond to the metal, and a ⁇ -bond to the metal from a distal carbon atom, spaced apart from either olefinic carbon atom by at least two carbon-carbon single bonds
  • the metal cation complex will be weakly ligated by the solvent in which the reaction was carried out.
  • Representative solvents include but are not limited to halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1 ,2-dichloroethane and aromatic solvents such as benzene, toluene, mesitylene, chlorobenzene, and nitrobenzene, and the like.
  • halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, 1 ,2-dichloroethane
  • aromatic solvents such as benzene, toluene, mesitylene, chlorobenzene, and nitrobenzene, and the like.
  • Structure VII illustrates embodiment (i) wherein ligand X is a methyl group that is bound to the metal via a single metal-carbon ⁇ -bond, and ligand L is
  • M preferably represents palladium or nickel.
  • Stmctures VIII, IX, and X illustrate various examples of embodiment (ii) wherein X is an allyl group that is bound to the metal (palladium is shown for illustrative purposes only) via a single metal-carbon ⁇ -bond and at least one but no more than three ⁇ -bonds.
  • L is not present but an aromatic group providing three ⁇ -bonds is weakly coordinated to the palladium metal
  • X is an allyl group providing a single metal-carbon ⁇ -bond and an olefinic ⁇ -bond to the palladium.
  • Stmcture IX L is COD and X is an allyl group providing a metal- carbon ⁇ -bond and an olefinic ⁇ -bond to the palladium.
  • Stmcture X illustrates an embodiment wherein ligand X is an unsaturated hydrocarbon group that provides a metal-carbon ⁇ -bond, a conjugated ⁇ -bond and two additional ⁇ -bonds to the palladium; L is absent.
  • Stmctures XI and XII illustrate examples of embodiment (iii) wherein L is COD and X is a ligand that provides at least one olefinic ⁇ -bond to the Group VIII metal and a ⁇ -bond to the metal from a distal carbon atom, spaced apart from either olefinic carbon atom by at least two carbon-carbon single bonds.
  • the above-described Group VIII cation complexes are associated with a weakly coordinating or non-coordinating counteranion, CA " , which is relatively inert, a poor nucleophile and provides the cation complex with essential solubility in the reaction solvent.
  • CA " weakly coordinating or non-coordinating counteranion
  • the key to proper anion design requires that it be labile, and stable and inert toward reactions with the cationic Group VIII metal complex in the final catalyst species and that it renders the single component catalyst soluble in the solvents of this invention.
  • the anions which are stable toward reactions with water or Br ⁇ nsted acids, and which do not have acidic protons located on the exterior of the anion possess the stability necessary to qualify as a stable anion for the catalyst system.
  • the properties of the anion which are important for maximum lability include overall size, and shape (i.e., large radius of curvature), and nucleophilicity.
  • a suitable anion may be any stable anion which allows the catalyst to be dissolved in a solvent of choice, and has the following attributes: (1) the anion should form stable salts with the aforementioned Lewis acid, Br ⁇ nsted acids, reducible Lewis Acids, protonated Lewis bases, thallium and silver cations; (2) the negative charge on the anion should be delocalized over the framework of the anion or be localized within the core of the anion; (3) the anion should be a relatively poor nucleophile; and (4) the anion should not be a powerful reducing or oxidizing agent.
  • Anions that meet the foregoing criteria can be selected from the group consisting of a tetrafluoride of Ga, Al, or B; a hexafluoride of P, Sb, or As; perfluoro-acetates, propionates and butyrates, hydrated perchlorate; toluene sulfonates, and trifluoromethyl sulfonate; and substituted tetraphenyl borate wherein the phenyl ring is substituted with fluorine or trifluoromethyl moieties.
  • counteranions include BF 4 ", PF 6 “ , AlF 3 O 3 SCF 3 “ , SbF 6 “ , SbF 5 SO 3 F ' , AsF 6 “ , trifluoroacetate (CF 3 CO 2 " ), pentafluoropropionate
  • R" independently represents hydrogen, fluorine and trifluoromethyl and n is 1 to 5.
  • the catalyst comprises a ⁇ -allyl Group VIII metal complex with a weakly coordinating counteranion.
  • the allyl group of the metal cation complex is provided by a compound containing allylic functionality which functionality is bound to the M by a single carbon-metal ⁇ -bond and an olefinic ⁇ -bond.
  • the Group VIII metal M is preferably selected from nickel and palladium with palladium being the most preferred metal.
  • the catalysts are solvated by the reaction diluent which diluent can be considered very weak ligands to the Group VIII metal in the cation complex.
  • Substituents R 20 , R 21 , and R 22 on the allyl group set forth above in Stmctures VIII, IX and XIII are each independently hydrogen, branched or unbranched (C, to C 5 ) alkyl such as methyl, ethyl, n-propyl, isopropyl, and t-butyl, (C 6 to C 14 ) aryl, such as phenyl and naphthyl, (C 7 to C 10 ) aralkyl such as benzyl, -COOR 16 , -(CH 2 ) n OR 16 , Cl and (C 5 to C 6 ) cycloahphatic, wherein R 16 is (C, to C 5 ) alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl and i-butyl, and n is 1 to 5.
  • any two of R 20 , R 21 , and R 22 may be linked together to form a cyclic- or multi-cyclic ring stmcture.
  • the cyclic ring stmcture can be carbocyclic or heterocyclic.
  • any two of R 20 , R 21 , and R 22 taken together with the carbon atoms to which they are attached form rings of 5 to 20 atoms.
  • Representative heteroatoms include nitrogen, sulfur and carbonyl.
  • Illustrative of the cyclic groups with allylic functionality are the following stmctures:
  • R 23 is hydrogen, linear or branched (Cj to C 5 ) alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, and pentyl
  • R 24 is methylcarbonyl
  • R 25 is linear or branched (C, to C 20 ) alkyl.
  • Counteranion CA " is defined as above.
  • the single component catalyst of the foregoing embodiment can be prepared by combining a ligated Group VIII metal halide component with a salt that provides the counteranion for the subsequently formed metal cation complex.
  • the ligated Group VIII metal halide component, counteranion providing salt, and optional ⁇ -bond containing component, e.g., COD, are combined in a solvent capable of solvating the formed single component catalyst.
  • the solvent utilized is preferably the same solvent chosen for the reaction medium.
  • the catalyst can be preformed in solvent or can be formed in situ in the reaction medium.
  • Suitable counteranion providing salts are any salts capable of providing the counteranions discussed above.
  • Illustrative counteranion providing salts include T1PF 6 , AgPF 6 , AgSbF 6 , LiBF 4 , NH 4 PF 6 , KAsF 6 , AgC 2 F 5 CO 2 , AgBF 4 AgCF 3 CO 2 , AgClO 4 -H 2 O, AgAsF 6 , AgCF 3 CF 2 CF 2 CO 2 , AgC 2 F 5 CO 2 , (C 4 H 9 ) 4 NB(C 6 F 5 ) 4 , and
  • allylpalladium chloride is combined with the desired counteranion providing salt, preferably silver salts of the counteranion, in an appropriate solvent.
  • the chloride ligand comes off the allyl palladium complex as a precipitate of silver chloride (AgCl) which can be filtered out of the solution.
  • the allylpalladium cation complex/counteranion single component catalyst remains in solution.
  • the palladium metal is devoid of any ligands apart from the allylic functionality.
  • Another single component catalyst system useful in making polymers utilized in this invention is represented by the formula:
  • n 1 or 2 and E represents a neutral 2 electron donor ligand.
  • E preferably is a ⁇ -arene ligand such as toluene, benzene, and mesitylene.
  • E is preferably selected from diethylether, tetrahrydrofuran (THF), and dioxane.
  • the ratio of monomer to catalyst in the reaction medium can range from about 2000: 1 to about 100: 1.
  • the reaction can be n in a hydrocarbon solvent such as cyclohexane, toluene, and the like at a temperature range from about 0°C to about 70°C, preferably 10°C to about 50°C, and more preferably from about 20 °C to about 40 °C
  • a hydrocarbon solvent such as cyclohexane, toluene, and the like
  • the multicomponent catalyst system embodiment of the present invention comprises a Group VIII metal ion source, in combination with one or both of an organometal cocatalyst and a third component.
  • the cocatalyst is selected from organoaluminum compounds, dialkylaluminum hydrides, dialkyl zinc compounds, dialkyl magnesium compounds, and alkyllithium compounds.
  • the Group VIII metal ion source is preferably selected from a compound containing nickel, palladium, cobalt, iron, and ruthenium with nickel and palladium being most preferred. There are no restrictions on the Group VIII metal compound so long as it provides a source of catalytically active Group VIII metal ions.
  • the Group VIII metal compound is soluble or can be made to be soluble in the reaction medium.
  • the Group VIII metal compound comprises ionic and/or neutral ligand(s) bound to the Group VIII metal.
  • the ionic and neutral ligands can be selected from a variety of monodentate, bidentate, or multidentate moieties and combinations thereof.
  • anionic ligands selected from the halides such as chloride, bromide, iodide or fluoride ions; pseudohalides such as cyanide, cyanate, thiocyanate, hydride; carbanions such as branched and unbranched (C, to C 40 ) alkylanions, phenyl anions; cyclopentadienylide anions; ⁇ -allyl groupings; enolates of ⁇ -dicarbonyl compounds such as acetylacetonate (4-pentanedionate), 2,2,6, 6-tetramethyl-3,5-heptanedionate, and halogenated acetylacetonoates such as 1,1,1 ,5 ,5 ,5-hexafluoro-2,4-pentanedionate, l,l,l-trifluoro-2,4,pentane
  • halides such as chloride, bromide, iodide or fluoride
  • R'" and X independently represent a halogen atom selected from Cl, F, I, and Br, or a substituted or unsubstituted hydrocarbyl group.
  • hydrocarbyl are (C, to C 25 ) alkyl such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonodecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, and isomeric forms thereof; (C 2 to C 25 ) alkenyl such as vinyl
  • aryl such as phenyl, tolyl, xylyl, naphthyl, and the like
  • C 7 to C 25 aralkyl such as benzyl, phenethyl, phenpropyl, phenbutyl, phenhexyl, napthoctyl, and the like
  • C 3 to C 8 cycloalkyi such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, 2-norbornyl, 2-norbornenyl, and the like.
  • X represents the radical:
  • substituted hydrocarbyl means the hydrocarbyl group as previously defined wherein one or more hydrogen atoms have been replaced with a halogen atom such as Cl, F, Br, and I (e.g., as in the perfluorophenyl radical); hydroxyl; amino; alkyl; nitro; mercapto, and the like.
  • a halogen atom such as Cl, F, Br, and I
  • the Group VIII metal compounds can also contain cations such as, for example, organoammonium, organoarsonium, organophosphonium, and pyridinium compounds represented by the formulae:
  • A represents nitrogen, arsenic, and phosphorous and the R 28 radical can be independently selected from hydrogen, branched or unbranched (C ] to C 20 ) alkyl, branched or unbranched (C 2 to C 20 ) alkenyl, and (C 5 to C 16 ) cycloalkyi, e.g., cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like.
  • R 29 and R 30 are independently selected from hydrogen, branched and unbranched (Cj to C 50 ) alkyl, linear and branched (C 2 to C 50 ) alkenyl and (C 5 to C 16 ) cycloalkyi groups as defined above; and n is 1 to 5, preferably n is 1, 2, or 3, most preferably n is 1.
  • the R 30 radicals preferably are attached to positions 3, 4, and 5 on the pyridine ring.
  • the R 28 radicals are selected from (C, to C, 8 ) alkyl groups wherein the sum of carbon atoms for all R 28 radicals is 15 to 72, preferably 25 to 48, more preferably 21 to 42.
  • the R 21 radical is preferably selected from linear and branched (C, to C 50 ) alkyl, more preferably (C 10 to C 0 ) alkyl.
  • R 30 is preferably selected from linear and branched (C, to C 40 ) alkyl, more preferably (C 2 to C 30 ) alkyl.
  • organoammonium cations include tridodecylammonium, methyltricaprylammonium, tris(tridecyl)ammonium and trioctylammonium.
  • organoarsonium and organophosphonium cations include tridodecylarsonium and phosphonium, methyltricaprylarsonium and phosphonium, tris(tridecyl)arsonium and phosphonium, and trioctylarsonium and phosphonium.
  • Specific pyridinium cations include eicosyl-4-(l-butylpentyl)pyridinium, docosyl-4-(13- pentacosyl)pyridinium, and eicosyl-4-(l-butylpentyl)pyridinium.
  • Suitable neutral ligands which can be bonded to the palladium transition metal are the olefins; the acetylenes; carbon monoxide; nitric oxide, nitrogen compounds such as ammonia, alkylisocyanide, alkylisocyanate, alkyhsothiocyanate; pyridines and pyridine derivatives (e.g., 1 , 10-phenanthroline, 2,2'-dipyridyl), 1 ,4-dialkyl- 1 ,3-diazabutadienes, 1 ,4-diaryl- 1 ,3-diazabutadienes and amines such as represented by the formulae:
  • R 31 is independently hydrocarbyl or substituted hydrocarbyl as previously defined and n is 2 to 10.
  • Ureas such as acetonitrile, benzonitrile and halogenated derivatives thereof; organic ethers such as dimethyl ether of diethylene glycol.
  • R 31 independently represents a hydrocarbyl or substituted hydrocarbyl as previously defined; phosphoms oxyhalides; phosphonates; phosphonites, phosphinites, ketones; sulfoxides such as (C, to C 20 ) alkylsulfoxides; (C 6 to C 20 ) arylsulfoxides, (C 7 to C 40 ) alkarylsulfoxides, and the like. It should be recognized that the foregoing neutral ligands can be utilized as optional third components as will be described hereinbelow.
  • Group VIII transition metal compounds suitable as the Group VIII metal ion source include: palladium ethylhexanoate, trans-Pd
  • the organoaluminum component of the multicomponent catalyst system of the present invention is represented by the formula:
  • R 32 independently represents linear and branched (C, to C 20 ) alkyl, (C 6 to C 24 ) aryl, (C 7 to C 20 ) aralkyl, (C 3 to C 10 ) cycloalkyi;
  • Q is a halide or pseudohalide selected from chlorine, fluorine, bromine, iodine, linear and branched (C, to C 20 ) alkoxy, (C 6 to C 24 ) aryloxy; and
  • x is 0 to 2.5, preferably
  • organoaluminum compounds include trialkylaluminums such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisopropylaluminum, triisobutylaluminum, tri-2-methylbutylaluminum, tri-3-methylbutylaluminum, tri-2-methylpentylaluminum, tri-3-methylpentylaluminum, tri-4-methylpentylaluminum, tri-2-methylhexylaluminum, tri-3-methylhexylaluminum, trioctylaluminum, tris-2-norbornylaluminum, and the like; dialkylaluminum halides such as dimethylaluminum chloride, diethylaluminum chloride, diisopropylaluminum chloride, diisobutylaluminum chloride, and the like; monoalkylaluminum dihalides such as methylaluminum dichloride, ethyla
  • the dialkylaluminum hydride is selected from linear and branched (C, to C,o) dialkylaluminum hydride, with diisobutylaluminum hydride being a preferred dialkylaluminum hydride compound.
  • the dialkyl zinc compounds are selected from linear and branched (C, to C,o) dialkyl zinc compounds with diethyl zinc being preferred.
  • the dialkyl magnesium compounds are selected from linear and branched (C, to C 10 ) dialkyl magnesium with dibutyl magnesium being the most preferred.
  • the alkyl lithiums are selected from linear and branched (C, to C 10 ) alkyl lithium compounds. Butyllithium is the preferred alkyl lithium.
  • the catalytic system obtained from the Group VIII metal ion source is utilized with one or both of a component selected from the group of cocatalyst compounds, and third component compounds.
  • third components are Lewis acids such as the BF 3 -etherate, TiCl 4 , SbF 5 , tris(perfluorophenyl)boron, BC1 3 , B(OCH 2 CH 3 ) 3 ; strong Br ⁇ nsted acids such as hexafluoroantimonic acid (HSbF 6 ), HPF 6 hydrate, trifluoroacetic acid (CF 3 CO 2 H), and FSO 3 H-SbF 5 , H 2 C(SO 2 CF 3 ) 2 CF 3 SO 3 H, and paratoluenesulfonic acid; halogenated compounds such as hexachloroacetone, hexafluoroacetone, 3-butenoic acid-2,2,3,4,4-pentachlorobutylester, hexafluoroglutaric acid, hexafluoroisopropanol, and chloranil, i.e.,
  • electron donors such as phosphines and phosphites and olefinic electron donors selected from (C 4 to C 12 ) aliphatic and (C 6 to C 12 ) cycloahphatic diolefms, such as butadiene, cyclooctadiene, and norbornadiene.
  • Acidity of strong Br ⁇ nsted acids can be gauged by determining their Hammett acidity function H 0 .
  • a definition of the ⁇ ammett acidity function is found in Advanced Inorganic Chemistry by F. A. Cotton and G. Wilkinson, Wiley-Interscience, 1988, p. 107.
  • the neutral ligands can be employed as optional third components with electron donating properties.
  • the multicomponent catalyst system can be prepared by a process which comprises mixing the catalyst components, i.e., the Group VIII metal compound, the cocatalyst compound, and third component (if employed), together in a hydrocarbon or halohydrocarbon solvent and then mixing the premixed catalyst system in the reaction medium comprising at least one silyl functional polycyclic monomer.
  • any two of the catalyst system components can be premixed in a hydrocarbon or halohydrocarbon solvent and then introduced into the reaction medium. The remaining catalyst component can be added to the reaction medium before or after the addition of the premixed components.
  • the multicomponent catalyst system can be prepared in situ by mixing together all of the catalyst components in the reaction medium. The order of addition is not important.
  • a typical catalyst system comprises a Group VIII transition metal salt, e.g., nickel ethylhexanoate, an organoaluminum compound, e.g., triethylaluminum, and a mixture of third components, e.g., BF 3 -etherate and hexafiuoroantimonic acid (HSbF 6 ), in a preferred molar ratio of Al BF 3 -etherate/Ni/acid of 10/9/1/0.5-2.
  • the reaction scheme is written as follows:
  • the catalyst system comprises a nickel salt, e.g., nickel ethylhexanoate, an organoaluminum compound, e.g., triethylaluminum, and a third component Lewis acid, e.g., tris(perfluorophenyl)boron as shown in the following scheme:
  • the third component is a halogenated compound selected from various halogenated activators.
  • a typical catalyst system comprises a Group VIII transition metal salt, an organoaluminum, and a third component halogenated compound as shown below: 3. nickel ethylhexanoate + triethylaluminum + chloranil -
  • the catalyst system comprises a Group VIII metal salt (e.g. 3-allylnickelbromide dimer and a Lewis acid (e.g. tris(perfluorophenyl)boron as shown below:
  • a Group VIII metal salt e.g. 3-allylnickelbromide dimer
  • a Lewis acid e.g. tris(perfluorophenyl)boron as shown below:
  • the polymers catalyzed by the type 2 catalyst systems and the single component catalyst systems of the formula E n Ni(C 6 F 5 ) 2 described above contain a perfluorophenyl group at at least one of the two terminal ends of the polymer chain. In other words, a perfluorophenyl moiety can be located at one or both terminal ends of the polymer. In either case the perfluorophenyl group is covalently bonded to and pendant from a terminal polycyclic repeating unit of the polymer backbone.
  • Reactions utilizing the single and multicomponent catalysts of the present invention are carried out in an organic solvent which does not adversely interfere with the catalyst system and is a solvent for the monomer.
  • organic solvents are aliphatic (non-polar) hydrocarbons such as pentane, hexane, heptane, octane and decane; alicyclic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as benzene, chlorobenzene, o-dichlorobenzene, toluene, and xylenes; halogenated (polar) hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, ethyl chloride, 1,1 -dichloroethane, 1,2-dichloroethane, 1,2-dichloroethylene, 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlor
  • reaction solvent is made on the basis of a number of factors including the choice of catalyst and whether it is desired to run the polymerization as a slurry or solution process.
  • the preferred solvents are chlorinated hydrocarbons such as methylene chloride and 1.2-dichloroethane and aromatic hydrocarbons such as chlorobenzene and nitrobenzene, with simple hydrocarbons being less preferred due to the resulting lower conversion of the functional NB-type monomer(s).
  • the molar ratio of total monomer to Group VIII metal for the single and multicomponent catalysts can n from 20:1 to 100,000:1, preferably 50:1 to 20,000:1, and most preferably 100:1 to 10,000:1.
  • the cocatalyst metal (e.g., aluminum, zinc, magnesium, and lithium) to Group VIII metal molar ratio ranges from less than or equal to 100: 1, preferably less than or equal to 30:1, and most preferably less than or equal to 20: 1.
  • the third component is employed in a molar ratio to Group VIII metal ranging from 0.25: 1 to 20: 1.
  • the acid to Group VIII metal range is less than or equal to 4:1, preferably less than or equal to 2:1.
  • the temperature at which the polymerization reactions of the present invention are carried out typically ranges from -100°C to 120°C, preferably -60°C to 90°C, and most preferably -10°C to 80°C.
  • the optimum temperature for the present invention is dependent on a number of variables, primarily the choice of catalyst and the choice of reaction diluent. Thus, for any given polymerization the optimum temperature will be experimentally determined taking these variables into account.
  • the polymers obtained by the process of the present invention are produced in a molecular weight (M n ) range from about 1,000 to about 1,000,000, preferably from about 2,000 to about 700,000, and more preferably from about 5,000 to about 500,000 and most preferably from about 10,000 to about 50,000.
  • M n molecular weight
  • Molecular weight can be controlled by changing the catalyst to monomer ratio, i.e., by changing the initiator to monomer ratio.
  • Lower molecular weight polymers and oligomers may also be formed in the range from about 500 to about 500,000 by carrying out the polymerization in the presence of a chain transfer agent.
  • Macromonomers or oligomers comprising from 4 to 50 repeating units can be prepared in the presence of a CTA (Chain Transfer Agent) selected from a compound having a terminal olefinic double bond between adjacent carbon atoms, wherein at least one of the adjacent carbon atoms has two hydrogen atoms attached thereto.
  • the CTA is exclusive of styrenes (non-styrenes), vinyl ethers (non-vinyl ether) and conjugated dienes.
  • non-styrenic, non-vinyl ether is meant that compounds having the following stmctures are excluded from the chain transfer agents of this invention:
  • A is an aromatic substituent and R is hydrocarbyl.
  • the preferred CTA compounds of this invention are represented by the following formula:
  • R. and R independently represent hydrogen, branched or unbranched (C, to C 40 ) alkyl, branched or unbranched (C 2 to C 40 ) alkenyl, and halogen.
  • the ⁇ -olefins having 2 to 10 carbon atoms are preferred, e.g., ethylene, propylene, 4-methyl-l-pentene, 1-hexene, 1 -decene, 1 ,7-octadiene, and 1 ,6-octadiene, or isobutylene.
  • ⁇ -olefins e.g., ethylene, propylene, 1-hexene, 1 -decene, 4-methyl-l-pentene
  • 1,1-disubstituted olefins e.g., isobutylene
  • the concentration of isobutylene required to achieve a given molecular weight will be much higher than if ethylene were chosen.
  • Styrenic olefins, conjugated dienes, and vinyl ethers are not effective as chain transfer agents due to their propensity to polymerize with the catalysts described herein.
  • the CTA can be employed in an amount ranging from about 0.10 mole % to over 50 mole % relative to the moles of total NB-type monomer.
  • the CTA is employed in the range of 0.10 to 10 mole %, and more preferably from 0.1 to 5.0 mole %.
  • the concentration of CTA can be in excess of 50 mole % (based on total NB-functional monomer present), e.g., 60 to 80 mole %. Higher concentrations of CTA (e.g., greater than 100 mole %) may be necessary to achieve the low molecular weight embodiments of this invention such as in oligomer and macromonomer applications.
  • the photoresist compositions of the present invention comprise the disclosed polycyclic compositions, a solvent, and an photosensitive acid generator (photo initiator).
  • a dissolution inhibitor can be added in an amount of up to about 20 weight % of the composition.
  • a suitable dissolution inhibitor is t-butyl cholate (J.V. Crivello et al., Chemically Amplified Electron- Beam Photoresists, Chem. Mater., 1996, 8, 376-381).
  • the radiation sensitive acid generator Upon exposure to radiation, the radiation sensitive acid generator generates a strong acid.
  • Suitable photoinitiators include triflates (e.g., triphenylsulfonium triflate), pyrogallol (e.g., trimesylate of pyrogallol); onium salts such as triarylsulfonium and diaryliodium hexafluoroantimonates, hexafluoroarsenates, trifluoromethanesulfonates; esters of hydroxyimides, ⁇ , ⁇ '-bis-sulfonyl- diazomethanes, sulfonate esters of nitro-substituted benzyl alcohols and napthoquinone-4-diazides.
  • triflates e.g., triphenylsulfonium triflate
  • pyrogallol e.g., trimesylate of pyrogallol
  • onium salts such as triarylsulfonium and diaryliodium hexa
  • photoacid initiators are disclosed in Reichmanis et al., Chem. Mater. 3, 395, (1991). Compositions containing triarylsulfonium or diaryliodonium salts are preferred because of their sensitivity to deep UV light (193 to 300 nm) and give very high resolution images. Most preferred are the unsubstituted and symmetrically or unsymmetrically substituted diaryliodium or triarylsulfonium salts.
  • the photoacid initiator component comprises about 1 to 100 w/w % to polymer. The preferred concentration range is 5 to 50 w/w %.
  • the photoresist compositions of the present invention optionally contain a sensitizer capable of sensitizing the photoacid initiator to longer wave lengths ranging from mid UV to visible light.
  • a sensitizer capable of sensitizing the photoacid initiator to longer wave lengths ranging from mid UV to visible light.
  • such sensitizers include polycyclic aromatics such as pyrene and perlene.
  • the sensitization of photoacid initiators is well-known and is described in U.S. Patent Nos. 4,250,053; 4,371,605; and 4,491,628 which are all incorporated herein by reference.
  • the invention is not limited to a specific class of sensitizer or photoacid initiator.
  • the present invention also relates to a process for generating a positive tone resist image on a substrate comprising the steps of: (a) coating a substrate with a film comprising the positive tone resist composition of the present invention; (b) imagewise exposing the film to radiation; and (c) developing the image.
  • the first step involves coating the substrate with a film comprising the positive tone resist composition dissolved in a suitable solvent.
  • Suitable substrates are comprised of silicon, ceramics, polymer or the like.
  • Suitable solvents include propylene glycol methyl ether acetate (PGMEA) cyclohexanone, butyrolactate, ethyl Iactate, and the like.
  • PMEA propylene glycol methyl ether acetate
  • the film can be coated on the substrate using art known techniques such as spin or spray coating, or doctor blading.
  • the film is heated to an elevated temperature of about 90 °C to 150°C for a short period of time of about 1 min.
  • the film is imagewise exposed to radiation suitably electron beam or electromagnetic preferably electromagnetic radiation such as ultraviolet or x-ray, preferably ultraviolet radiation suitably at a wave length of about 193 to 514 nm preferably about 193 nm to 248 nm.
  • radiation sources include mercury, mercury/xenon, and xenon lamps, x-ray or e-beam.
  • the radiation is absorbed by the radiation-sensitive acid generator to produce free acid in the exposed area.
  • the free acid catalyzes the cleavage of the acid labile pendant group of the copolymer which converts the copolymer from dissolution inhibitor to dissolution enhancer thereby increasing the solubility of the exposed resist composition in an aqueous base.
  • the exposed resist composition is readily soluble in aqueous base.
  • This solubility is surprising and unexpected in light of the complex nature of the cycloahphatic backbone and the high molecular weight of the norbomene monomer units bearing the carboxylic acid functionality.
  • the film is again heated to an elevated temperature of about 90 °C to 150°C for a short period of time of about 1 minute.
  • the third step involves development of the positive tone image with a suitable solvent.
  • suitable solvents include aqueous base preferably an aqueous base without metal ions such as tetramethyl ammonium hydroxide or choline.
  • the composition of the present invention provides positive images with high contrast and straight walls. Uniquely, the dissolution property of the composition of the present invention can be varied by simply varying the composition of the copolymer.
  • the present invention also relates to an integrated circuit assembly such as an integrated circuit chip, multichip module, or circuit board made by the process of the present invention.
  • the integrated circuit assembly comprises a circuit formed on a substrate by the steps of: (a) coating a substrate with a film comprising the positive tone resist composition of the present invention; (b) imagewise exposing the film to radiation; (c) developing the image to expose the substrate; and (d) forming the circuit in the developed film on the substrate by art known techniques.
  • circuit patterns can be formed in the exposed areas by coating the substrate with a conductive material such as conductive metals by art known techniques such as evaporation, sputtering, plating, chemical vapor deposition, or laser induced deposition.
  • a conductive material such as conductive metals
  • art known techniques such as evaporation, sputtering, plating, chemical vapor deposition, or laser induced deposition.
  • the surface of the film can be milled to remove any excess conductive material.
  • Dielectric materials may also be deposited by similar means during the process of making circuits.
  • Inorganic ions such as boron, phosphorous, or arsenic can be implanted in the substrate in the process for making p or n doped circuit transistors. Other means for forming circuits are well known to those skilled in the art.
  • photoresists are used to create and replicate a pattern from a photomask to a substrate.
  • the efficacy of this transfer is determined by the wave length of the imaging radiation, the sensitivity of the photoresist and the ability of the photoresist to withstand the etch conditions which pattern the substrate in the exposed regions.
  • Photoresists are most often used in a consumable fashion, where the photoresist is etched in the non-exposed regions (for a positive tone photoresist) and the substrate is etched in the exposed regions.
  • the photoresist is organic and the substrate is typically inorganic, the photoresist has an inherently higher etch rate in the reactive ion etch (RIE) process, which necessitates that the photoresist needs to be thicker than the substrate material.
  • RIE reactive ion etch
  • the etch rate is primarily determined by the polymer backbone, as shown below for the chlorine plasma etch process which is a RIE technique typically employed in semiconductor processing.
  • Polymers 1 and 2 are primarily aromatic, whereas polymer 3 was copolymerized with a small amount of acrylate which increased its etch rate.
  • Polymer 4 is completely based on acrylates to allow transparency at 193 nm (aromatic rings render the material opaque in this region, hence there are no viable resist candidates at 193 nm based on the traditional novolacs or p-hydroxystyrene).
  • the etch rate almost doubled for this polymer.
  • Polymer 5 had an etch rate even lower than the standard photoresist materials (1 & 2) in addition to providing transparency at 193 nm. Therefore, the backbone of polymer 5 (an addition cyclic olefin) prepared by a nickel multicomponent catalyst of this invention is an improvement over all previous attempts in the literature to provide a resist which functions at 193 nm with RIE characteristics comparable to commercial materials exposed at longer wave lengths.
  • the addition cyclic olefin polymer may offer advantages in terms of etch resistance at longer wave lengths as well. It is in the literature (H. Gokan, S. Esho, and Y. Ohnishi, J Electrochem. Soc. 130(1), 143 (1983)) that higher C/H ratios decreases the etch rate of polymeric materials. Based on this assumption, the etch rate of polymer 5 should be between the aromatic based systems and the acrylate systems. It is surprising that the addition cyclic olefin exhibits etch resistance superior to even the aromatic systems.
  • the reaction was allowed to mn for 36 hours at which time the mixture had gelled to form a clear yellow gel. Upon adding the gel to excess methanol the polymer precipitated as a white powder. The polymer was washed with excess methanol and dried. The yield of polymer was 1.5 g (75%).
  • Thermogravimetric analysis (TGA) under nitrogen (heating rate 10°C per minute) showed the polymer to be thermally stable to about 210°C and then to exhibit approximately 28% weight loss by 260 °C (indicating clean loss of the t-butyl groups as isobutene to afford the homopolymer of 5-norbornene-carboxylic acid) and then degradation of the polymer (90% total weight loss) at around 400 °C.
  • Example 2 To a 50 ml glass vial equipped with a Teflon ® coated stir bar was added norbomene (0.8 g, 8.6 mmol), 1 ,2-dichloroethane (8 ml) and the t-butylester of 5-norbornene-carboxylic acid (carbo-t-butoxynorbornene) (0.2 g, 1 mmol, exo,endo 44/56). To this stirred solution at ambient temperature was added nickel ethylhexanoate (3 ⁇ mol), trisperfluorophenylboron (23 ⁇ mol) and triethylaluminum (27 ⁇ mol). There ensued an immediate reaction with white polymer precipitating from solution within less than 10 seconds.
  • norbomene 0.8 g, 8.6 mmol
  • 1 ,2-dichloroethane 8 ml
  • the t-butylester of 5-norbornene-carboxylic acid 0.2 g,
  • the reaction was allowed to run for 60 minutes before the reactor contents were dissolved in cyclohexane and poured into an excess of methanol.
  • the polymer was washed with excess methanol and dried ovemight in a vacuum oven at 80 °C.
  • the yield of copolymer was 0.9 g (90%).
  • the molecular weight of the copolymer was determined using GPC methods and found to be 535,000 (Mw) with a polydispersity of 4.7.
  • Example 3 To a 50 ml glass vial equipped with a Teflon ® coated stir bar was added the t-butylester of 5-norbornene-carboxylic acid (carbo-t-butoxynorbornene) (2.2 g, 11.3 mmol, exo,endo 44/56). To this stirred monomer at ambient temperature was added a catalyst solution prepared by adding ⁇ 3 -allylpalladium chloride dimer (29 mg, 74 ⁇ mol) in dichloroethane (6 ml) to silver tetrafluoroborate (61 mg, 311 ⁇ mol) in dichloroethane (6 ml) for 30 minutes and then filtering through a micropore filter (to remove the precipitated silver chloride).
  • a catalyst solution prepared by adding ⁇ 3 -allylpalladium chloride dimer (29 mg, 74 ⁇ mol) in dichloroethane (6 ml) to silver tetrafluoroborate (61 mg, 311
  • the polymer was found to have a molecular weight (Mw) of 54,100.
  • Thermogravimetric analysis (TGA) under nitrogen (heating rate 10°C per minute) showed the polymer to be thermally stable to about 210°C and then to exhibit approximately 29% weight loss by 250 °C (indicating clean loss of the t-butyl groups as isobutene to afford the homopolymer of 5-norbornene- carboxylic acid) and then degradation of the polymer (80% total weight loss) at around 400 °C.
  • Example 4 To a 100 ml glass vial equipped with a Teflon ® coated stir bar was added norbomene (1.16 g, 12.3 mmol), 1 ,2-dichloroethane (50 ml) and the t-butylester of 5-norbomene-carboxylic acid (carbo-t-butoxynorbornene) (0.6 g, 3.1 mmol, exo,endo 44/56). To this stirred solution at ambient temperature was added palladium bis(2,2,6,6-tetramethyl-3,5-pentanedionate (31 ⁇ mol) and trisperfluorophenylboron (279 ⁇ mol). The reaction was allowed to n for
  • reaction mixture was then warmed in an oil bath to 75 °C After 90 minutes it was observed that the mixture had solidified to a grey polymeric mass.
  • the mass was dissolved in acetone to afford a dark colored solution.
  • Gaseous carbon monoxide was bubbled through the solution for 30 minutes resulting in copious amounts of a finely divided black precipitate (metallic palladium and possibly other catalyst residues).
  • the precipitate was removed via centrifugation, and this process was repeated two more times.
  • the resulting colorless solution was filtered through a 45 micron microdisc and the polymer was precipitated by adding the acetone solution to an excess of hexane.
  • the white polymer was separated using a centrifuge and then dried ovemight to afford the copolymer as a white powder (2.21 g, 50%).
  • Thermogravimetric analysis (TGA) under nitrogen (heating rate 10°C per minute) showed the polymer to be thermally stable to about 210°C and then to exhibit approximately 28% weight loss by 260 °C (indicating clean loss of the t-butyl groups as isobutene to afford the homopolymer of 5-norbomene-carboxylic acid) and then degradation of the polymer (90% total weight loss) at around 400 °C
  • the reaction was allowed to run for 15 hours at which time the mixture was added to excess methanol causing the polymer to precipitate as a white powder.
  • the polymer was washed with excess methanol and dried.
  • the yield of polymer was 0.5 g (85%).
  • the polymer was found to have a molecular weight (Mw) of 46,900, and a polydispersity of 2.4.
  • the reaction was allowed to run for 72 hours before the reactor contents were poured into an excess of methanol.
  • the polymer was washed with excess methanol and dried, redissolved in chlorobenzene and reprecipitated with an excess of methanol, filtered, and washed with methanol before finally drying in a vacuum oven ovemight at 80°C.
  • the yield of copolymer was 1.66 g.
  • the molecular weight of the copolymer was determined using GPC methods and found to be 194,000 (Mw) with a polydispersity of 2.3.
  • a catalyst solution prepared by reacting ⁇ 3 -allylpalladium chloride dimer (47.2 mg, 128 ⁇ mol) with silver tetrafluoroborate (138 mg, 700 ⁇ mol) in 1 ,2-dichloroethane (10 ml) for 30 minutes and then filtering through a micropore filter. The reaction was allowed to run for 48 hours before the reactor contents were poured into an excess of methanol. The polymer was washed with excess methanol and dried. The yield of terpolymer was 5.3 g. The molecular weight of the copolymer was determined using GPC methods and found to be 39,900 (Mw) with a polydispersity of 3.2.
  • Example 11 To a 50 ml glass vial equipped with a Teflon ® coated stir bar was added 7.25 g (37.5 mmole) of the t-butylester of norbomene, 1.9 g (12.5 mmole) of methylester of norbomene, 50 ml of freshly distilled dichloroethane and the solution was degassed under argon atmosphere. A 10 ml glass vial equipped with a Teflon ® coated stir bar was charged with 0.0365 g (0.1 mmol) of ⁇ 3 -allylpalladium chloride dimer (to ultimately give a monomer to catalyst ratio of 500/1) and 2 ml of dichloroethane.
  • Example 12 To a 50 ml glass vial equipped with a Teflon ® coated stir bar was added 2.42 g (12.5 mmole) of t-butylester of norbomene, 5.7 g (37.5 mmole) of methylester of norbomene, 50 ml of freshly distilled dichloroethane, and the solution was degassed under argon atmosphere. A 10 ml glass vial equipped with a Teflon ® coated stir bar was charged with 0.0365 g (0.1 mmol) of allylpalladium chloride dimer in a monomer to catalyst ratio of 500/1 and 2 ml of dichloroethane.
  • Example 13 To a 25 ml glass vial equipped with a Teflon ® coated stir bar was added 2 g (7.94 mmole) of pure of bicyclo[2.2.1]hept-5-ene-exo,-2-t-butyl, exo-3-methyl ester of dicarboxylic acid followed by 15 ml of freshly distilled methylene chloride and 10 ml of methanol, and the solution was degassed under argon atmosphere.
  • a 10 ml glass vial equipped with a Teflon ® coated stir bar was charged with 0.00588 g (0.0158 mmol) of ⁇ 3 -allylpalladium chloride dimer in a monomer to catalyst ratio of 500/1 and 2 ml of methylene chloride.
  • Into another 10 ml glass vial was charged with 0.0108 g (0.0312 mmol) of silver hexafluoroantimonate and 2 ml of methylene chloride.
  • the catalyst solution was prepared by mixing the ⁇ 3 -allylpalladium chloride dimer solution with silver hexafluoroantimonate solution inside the dry box.
  • a 10 ml glass vial equipped with a Teflon ® coated stir bar was charged with 0.0188 g (0.052 mmol) of allylpalladium chloride dimer (to give a monomer to catalyst ratio of 500/1) and 2 ml of methylene chloride.
  • Into another 10 ml glass vial was charged with 0.0357 g (0.104 mmol) of silver hexafluoroantimonate and 2 ml of methylene chloride.
  • the catalyst solution was prepared by mixing the allylpalladium chloride dimer solution with silver hexafluoroantimonate solution inside the dry box. Immediate precipitation of the silver chloride salt was observed, which was filtered, to obtain a clear yellow solution.
  • the exo, exo diethyl ester of norbomene was synthesized from ej o-5-norbornene-2,3-dicarboxylic acid.
  • the exo isomer was prepared by thermal conversion of the endo-5-norbornene-2,3-dicarboxylic anhydride at 190°C followed by recrystallization from toluene several times as in reference 1 to obtain pure exo-5-norbornene-2,3-dicarboxylic anhydride.
  • Part of the exo- anhydride was hydrolyzed in boiling water and the solution was cooled to obtain pure diacid in almost quantitative yield.
  • the diacid was converted to the diethyl ester using triethyloxonium salts as shown below:
  • a 250 ml, three necked, round bottomed flask with a magnetic stirring bar was charged with 16.0 g (0.0824 mole) of pure exo norbomene dicarboxylic acid and 35 g (0.1846 mole) of triethyloxonium tetrafluoroborate.
  • the flask was stoppered, and to this 300 ml of dichloromethane was added via a cannula under argon atmosphere.
  • the mbber stopper was replaced with a condenser under argon atmosphere and the other neck was fitted with an additional funnel.
  • To the additional funnel was added 35 ml of ethyldiisopropyl amine and it was allowed to drip into the reaction vessel slowly.
  • Example 19 The Pinner synthesis of ortho esters is a two-step synthesis: Step 1. Synthesis of imidic ester hydrochloride.
  • the reaction was carried out in a 1 L two-neck round-bottom flask equipped with a stirrer, an oil bubbler, and a tube with anhydrous calcium chloride.
  • the following reagents were placed in the flask: 100 g (0.84 mol) norbomene carbonitrile (NB-CN), 37 ml (0.91 mol) anhydrous methanol, and 200 mL anhydrous diethyl ether.
  • the flask was placed into the ice-water bath and 61 g (1.67 mol) dry hydrogen chloride was bubbled through the mixture with stirring during 1.5 hours.
  • the flask was placed ovemight in a refrigerator at 0°C
  • Example 20 To a solution of 2.16 g (10.9 mmol) C 7 H 9 C(OCH 3 ) 3 (norbomene trimethylorthoester) in 16 ml 1 ,2-dichloroethane, was added a solution of the reaction product of mixing 1 mole of allylpalladium chloride dimer with 2 moles of silver hexafluoroantimonate in dichloroethane and filtering off the resulting silver chloride precipitate. The amount of catalyst added corresponded to 0.08 mmol of palladium dissolved in 2 ml dichloroethane. The stirred reaction mixture was placed in an oil-bath at 70 °C and allowed to react for 20 hours.
  • Example 23 To a 50 ml glass vial equipped with a Teflon ® coated stir bar was added bicyclo[2.2.1]hept-5-ene-2-methyl butylcarbonate (17.15 g, 0.0764 mol) and t-butylester of norbomene (14.85 g, 0.0764 mol) and 72 ml of toluene.
  • Example 25 To a 50 ml glass vial equipped with a Teflon ® coated stir bar was added bicyclo[2.2.1]hept-5-ene-2-methyl acetate (13.3 g, 0.0799 mol), t-butyl ester of norbomene (15.70 g, 0.0808 mol), followed by dried maleic anhydride (15.85 g, 0.162 mol) and 90 ml of chlorobenzene. This mixture was degassed three times to remove any trace oxygen.
  • reaction mixture was then heated to 80 °C A degassed benzoyl peroxide solution consisting of 1.0438 g (0.041 mol) benzoyl peroxide free radical initiator in 10 ml of chlorobenzene was added to the reaction mixture with a dry syringe. The reaction was left to stir for 19 hours. After the reaction, the polymer solution was poured directly into hexane to precipitate the polymer. A white precipitate was obtained. The precipitated polymer was then stripped out of any unreacted maleic anhydride that may have been present. The polymer was then dried ovemight in a vacuum oven at room temperature. The weight of dry polymer obtained was 21.89 g, giving a 48.7% yield.
  • the NMR analysis of the copolymer indicated presence of the acetate and t-butyl groups.
  • IR analysis of the copolymer indicated presence of acetate, t-butyl and maleic anhydride groups.
  • Example 27 50:50 Copolymer of t-BuNBEster/NB-MeNBEster
  • the copolymer was redissolved in toluene and passed through a column of silica gel with a resulting noticeable color (Ru) removal.
  • the polymer was again precipitated in excess MeOH rendering a pure white copolymer.
  • the orange-amber solution was passed through silica gel column to obtain a clear colorless solution.
  • the solution was precipitated by addition of excess MeOH, collected by filtration and dried under vacuum. 6.54 g (77% yield) of copolymer was recovered (Mw 244,000, Mn 182,000).
  • the glass transition temperature was measured using DSC methods and determined to be 220°C.
  • Example 30 50:50 Copolymer of t-BuNBEster/EtTDEster
  • Example 31 50:50 Copolymer of t-BuNBEster/EtTDEster
  • Example 32 50:50 Copolymer of t-BuNBEster/EtTDEster
  • Example 33 50:50 Copolymer of t-BuNBEster/EtTDEster
  • the orange-amber polymer solution was passed through silica gel column which removed the dark color (Ru).
  • the solution was precipitated by addition to excess MeOH, collected by filtration and dried ovemight at 80°C under vacuum.
  • Example 37 65:35 Copolymer of t-BuNBEster/EtTDEster
  • the polymer solution was treated with carbon monoxide (4 psi pressure) for 48 hours to precipitate the palladium residues, filtered through a 0.45 ⁇ filter, reduced in volume and precipitated with excess methanol to afford 7.9 g of the copolymer (39% conversion), Mw 11,600, Mn 7,000.
  • the copolymer was fully characterized using IR, NMR and TGA methods.
  • Optical density is a critical characteristic of an effective photoresist because it determines the uniformity of the energy throughout the film thickness.
  • a typical, lithographically useful, polymer backbone has an optical density of less than 0.2 absorbance units/micron prior to the addition of photoacid generators.
  • DUV photoresists has an optical density of 2.8 absorbance units/micron at 193 nm and hence is unusable as a resist backbone at this wave length.
  • UV spectra of the films were obtained using a Perkin-Elmer Lambda 9 UV/VIS/IR spectrophotometer, at a scan speed of 120 nm minute.
  • the spectmm range was set at 300 nm to 180 nm.
  • the optical density of the films at 193 nm were measured. The results are set forth in the table below:
  • the polymers obtained in the above examples were dissolved in propylene glycol monomethyl ether acetate (PGMEA) at 15 w/v % of solids, to which was added the onium salt set forth in the examples at 5 or 10 w/w % to the polymer.
  • PGMEA propylene glycol monomethyl ether acetate
  • the exposed films were heated to 125°C to 150°C for 1 minute.
  • the exposed and heated films were then developed in aqueous base to provide high resolution positive tone images without loss of film thickness in the unexposed regions.
  • the systems can be easily made negative working by development in a nonpolar solvent. These materials can be sensitized to the longer wave lengths
  • the copolymer of bicyclo[2.2.1]hept-5-ene-2-methyl acetate/t-butylester of norbomene (the polymer of Example 21) number average molecular weight 21,000) was dissolved in propylene glycol monomethyl ether acetate (PGMEA) at 10 w/v % of solids. Triphenylsulfonium hexafluoroarsenate was added at a loading of 10 w/w % to the polymer. The resist film was filtered through a 0.2 ⁇
  • Teflon ® filter and the filtered solution was spin coated from the solution onto a hexamethyldisilazane primed silicon wafer at 500 rpm for 30 seconds followed by 2000 rpm for 25 seconds. This resulted in a 0.7 ⁇ thick layer.
  • the film was baked at 95 °C for 1 min over a hot plate and then exposed through a quartz mask to UV radiation (240 nm) at a dose of 50 mJ/cm 2 . After post-baking at 125 °C for 1 minute, high resolution positive images were obtained by development in aqueous base for 60 seconds.
  • copolymer of bicyclo[2.2.1]hept-5-ene-2-methyl acetate/t-butylester of norbomene (the polymer of Example 21 ) (number average molecular weight
  • the film was baked at 95 °C for 1 min over a hot plate and then exposed through a quartz mask to UV radiation (240 nm) at a dose of 50 mJ/cm 2 . After post-baking at 125 °C for 1 minute, high resolution positive images were obtained by development in aqueous base for 60 seconds.
  • Copolymer of bicyclo[2.2.1]hept-5-ene-2-methyl acetate/t-butylester of norbomene (the polymer of Example 21) (number average molecular weight 21 ,000) was dissolved in propylene glycol monomethyl ether acetate (PGMEA) at 10 w/v % of solids. Triphenylsulfonium hexafluoroarsenate was added at a loading of 10 w/w % to the polymer. The resist film was filtered through a 0.2 ⁇
  • Teflon ® filter and the filtered solution was spin coated from the solution onto a hexamethyldisilazane primed silicon wafer at 500 rpm for 30 seconds followed by 2000 rpm for 25 seconds. This resulted in a 0.7 ⁇ thick layer.
  • the film was baked at 95 °C for 1 minute over a hot plate and then exposed through a quartz mask to UV radiation (240 nm) at a dose of 10 mJ/cm 2 . After post-baking at 125 °C for 1 minute, high resolution positive images were obtained by development in aqueous base for 60 seconds.
  • Copolymer of bicyclo[2.2.1]hept-5-ene-2-methyl acetate/t-butylester of norbomene (the polymer of Example 21) (number average molecular weight 21,000) was dissolved in propylene glycol monomethyl ether acetate (PGMEA) at 10 w/v % of solids. Triphenylsulfonium hexafluoroarsenate was added at a loading of 10 w/w % to the polymer. The resist film was filtered through a 0.2 ⁇
  • Teflon ® filter and the filtered solution was spin coated from the solution onto a hexamethyldisilazane primed silicon wafer at 500 rpm for 30 seconds followed by 2000 m for 25 seconds. This resulted in a 0.7 ⁇ thick layer.
  • the film was baked at 95 °C for 1 minute over a hot plate and then exposed through a quartz mask to UV radiation (240 nm) at a dose of 30 mJ/cm 2 . After post-baking at
  • a solution of the nickel catalyst [toluene comples of bisperfluorophenyl nickel, (Tol)Ni(C 6 F 5 ) 2 ] was prepared in the dry box by dissolving 0.0112 g (0.023 mmol of (Tol)Ni(C 6 F 5 ) 2 ] in 0.65 ml of ethyl acetate.
  • Example 60 The copolymer of maleicanhydride/t-butylester of norbomene obtained via free radical polymerization (the polymer of Example 24) (number average molecular weight 4,000) was dissolved in propylene glycol monomethyl ether acetate (PGMEA) at 15 w/v % of solids. Triarylsulfonium hexafluoroantimonate (Sartomer CD 1010, 50% solution in propylene carbonate) was added at a loading of 5 w/w % to the polymer.
  • PGMEA propylene glycol monomethyl ether acetate
  • the resist film was filtered through a 0.2 ⁇ Teflon ® filter and the filtered solution was spin coated from the solution onto a hexamethyldisilazane primed silicon wafer at 500 m for 30 seconds followed by 2000 ⁇ m for 25 seconds. This resulted in a 0.6 ⁇ thick layer.
  • the film was baked at 95 °C for 1 minute over a hot plate and then exposed through a quartz mask to UV radiation (240 nm) at a dose of 30 mJ/cm 2 . After post-baking at 125 °C for 1 minute, high resolution positive images were obtained by development in aqueous base for 60 seconds.
  • the copolymer of maleic anhydride/t-butylester of norbomene obtained via free radical polymerization (the polymer of Example 24) (number average molecular weight 4,000) was dissolved in propylene glycol monomethyl ether acetate (PGMEA) at 15 w/v % of solids.
  • PMEA propylene glycol monomethyl ether acetate
  • Triarylsulfonium hexafluoroantimonate (Sartomer CD 1010, 50% solution in propylene carbonate) was added at a loading of 5 w/w % to the polymer.
  • the resist film was filtered through a 0.2 ⁇ Teflon ® filter and the filtered solution was spin coated from the solution onto a hexamethyldisilazane primed silicon wafer at 500 ⁇ m for 30 seconds followed by 2000 ⁇ m for 25 seconds. This resulted in a 0.6 ⁇ thick layer.
  • the film was baked at 95 °C for 1 minute over a hot plate and then exposed through a quartz mask to UV radiation (240 nm) at a dose of 30 mJ/cm 2 . After post-baking at 95 °C for 1 minute, high resolution positive images were obtained by development in aqueous base for 60 seconds.
  • bicyclo[2.2.1]hept-5-ene-2-methyl ethyl oxalate (1.5484 g, 6.904 mmol) trimethyl silyl ester of norbomene (1.4523 g, 6.905 mol) and 6.75 ml of cyclohexane.
  • a solution of the nickel catalyst [toluene comples of bisperfluorophenyl nickel, (Tol)Ni(C 6 F 5 ) 2 ] was prepared in the dry box by dissolving 0.0335 g (0.0691 mmol of (Tol)Ni(C 6 F 5 ) 2 ] in 1.95 ml of ethyl acetate.
  • the active catalyst solution was added to the monomer solution via a syringe at ambient temperature. The reaction was allowed to stir for 5 hours at room temperature. The polymer was precipitated in excess methanol. The precipitated polymer was filtered, washed with acetone, and dried ovemight under vacuum. The isolated yield of polymer was 0.2675 g (9%). It indicated the presence of acid functionality, arising from the deprotection of the trimethyl silyl groups.
  • the resist film was filtered through a 0.2 ⁇ Teflon ® filter and the filtered solution was spin coated from the solution onto a hexamethyldisilazane primed silicon wafer at 500 ⁇ m for 30 seconds followed by 2000 ⁇ m for 25 seconds. This resulted in a 0.5 ⁇ thick layer.
  • the film was baked at 95 °C for 1 minute over a hot plate and then exposed through a quartz mask to UV radiation (240 nm) at a dose of 50 mJ/cm 2 . After post-baking at 125 °C for 1 minute, high resolution positive images were obtained by development in aqueous base for 60 seconds.
  • the copolymer of bicyclo[2.2.1]hept-5-ene-2-methyl ethylcarbonate/t- butylester of norbomene (the polymer of Example 22) (number average molecular weight 22,000) was dissolved in propylene glycol monomethyl ether acetate (PGMEA) at 15 w/v % of solids.
  • PMEA propylene glycol monomethyl ether acetate
  • Triarylsulfonium hexafluoroantimonate (Sartomer CD 1010, 50% solution in propylene carbonate) was added at a loading of 5 w/w % to the polymer.
  • the resist film was filtered through a 0.2 ⁇ Teflon ® filter and the filtered solution was spin coated from the solution onto a hexamethyldisilazane primed silicon wafer at 500 ⁇ m for 30 seconds followed by 2000 ⁇ m for 25 seconds. This resulted in a 1.1 ⁇ thick layer.
  • the film was baked at 95 °C for 1 minute over a hot plate and then exposed through a quartz mask to UV radiation (240 nm) at a dose of 30 mJ/cm 2 . After post-baking at 95 °C for 1 minute, high resolution positive images were obtained by development in aqueous base for 60 seconds.
  • the catalyst solution is prepared by mixing the allylpalladium chloride dimer solution with silver hexafluoro antimunate solution inside the dry box. Immediate precipitation of the silver chloride salt is observed, which is filtered, to obtain active catalyst solution.
  • the active catalyst solution is then added to the monomer solution via a syringe and the reaction mixture allowed to stir for 20 hours at 60 °C The polymer solution is cooled, concentrated in a rotovap, and ppt., into methanol.
  • the copolymer of bicyclo [2.2.1 ]hept-5-ene-2-methyl ethylcarbonate/t- butylester of norbomene (the polymer of Example 22) (number average molecular weight 22,000) was dissolved in propylene glycol monomethyl ether acetate (PGMEA) at 15 w/v % of solids.
  • PMEA propylene glycol monomethyl ether acetate
  • Triphenylsulfonium hexafluoroantimonate (Sartomer CD 1010, 50% solution in propylene carbonate) was added at a loading of 5 w/w % to the polymer.
  • the resist film was filtered through a 0.2 ⁇ Teflon ® filter and the filtered solution was spin coated from the solution onto a hexamethyldisilazane primed silicon wafer at 500 ⁇ m for 30 seconds followed by 2000 ⁇ m for 25 seconds. This resulted in a 1.1 ⁇ thick layer.
  • the film was baked at 95 °C for 1 minute over a hot plate and then exposed through a quartz mask to UV radiation (240 nm) at a dose of 15 mJ/cm 2 . After post-baking at 95 °C for 1 minute, high resolution positive images were obtained by development in aqueous base for 60 seconds.
  • Example 67 The copolymer of bicyclo[2.2.1]hept-5-ene-2 -methyl butylcarbonate/t- butylester of norbomene (the polymer of Example 23) (number average molecular weight 22,000) was dissolved in propylene glycol monomethyl ether acetate (PGMEA) at 15 w/v % of solids.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 68 The copolymer of bicyclo[2.2.1]hept-5-ene-2-methyl butylcarbonate/t- butylester of norbomene (the polymer of Example 23) (number average molecular weight 22,000) was dissolved in propylene glycol monomethyl ether acetate (PGMEA) at 15 w/v % of solids.
  • PGMEA propylene glycol monomethyl ether acetate
  • a 35/65 mole % hydrogenated copolymer of ethylester of tetracyclodecene/t-butylester of norbomene (the polymer of Example 37) (number average molecular weight 23,000) obtained via ring opening metathesis polymerization was dissolved in propylene glycol monomethyl ether acetate (PGMEA) at 15 w/v % of solids.
  • PMEA propylene glycol monomethyl ether acetate
  • Triarylsulfonium hexafluoroantimonate (Sartomer CD 1010, 50% solution in propylene carbonate) was added at a loading of 5 w/w % to the polymer.
  • the resist film was filtered through a 0.2 ⁇ Teflon ® filter and the filtered solution was spin coated from the solution onto a hexamethyldisilazane primed silicon wafer at 500 ⁇ m for 30 seconds followed by 2000 ⁇ m for 25 seconds. This resulted in a 1.1 ⁇ thick layer.
  • the film was baked at 95 °C for 1 minute over a hot plate and then exposed through a quartz mask to UV radiation (240 nm) at a dose of 30 mJ/cm 2 . After post-baking at 125 °C for 1.0 minute, high resolution positive images were obtained by development in aqueous base for 30 seconds.
  • the film was baked at 95 °C for 1 minute over a hot plate and then exposed through a quartz mask to UV radiation (240 nm) at a dose of 50 mJ/cm 2 . After post-baking at 150°C for 30 seconds, high resolution positive images were obtained by development in aqueous base for 60 seconds.
  • the active catalyst solution was added to the monomer solution via a syringe at ambient temperature. The reaction was allowed to stir for 5 hours at room temperature. The solution was diluted with toluene and the polymer was precipitated in excess methanol. The precipitated polymer was filtered, washed with acetone, and dried ovemight under vacuum.
  • the isolated yield of polymer was 7.62 g (48%).
  • the NMR analysis of the copolymer indicated copolymer composition very close to the feed ratio. IR analysis of the copolymer indicated absence of any acid groups.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Polymerisation Methods In General (AREA)
EP98944729A 1997-09-12 1998-09-03 Fotoresist-zusammensetzungen die polyzyklische polymere mit säurelabilen gruppen enthalten Withdrawn EP1021750A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US928900 1986-11-10
US92890097A 1997-09-12 1997-09-12
PCT/US1998/018353 WO1999014635A1 (en) 1997-09-12 1998-09-03 Photoresist compositions comprising polycyclic polymers with acid labile pendant groups

Publications (1)

Publication Number Publication Date
EP1021750A1 true EP1021750A1 (de) 2000-07-26

Family

ID=25456971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98944729A Withdrawn EP1021750A1 (de) 1997-09-12 1998-09-03 Fotoresist-zusammensetzungen die polyzyklische polymere mit säurelabilen gruppen enthalten

Country Status (11)

Country Link
EP (1) EP1021750A1 (de)
JP (1) JP4416941B2 (de)
KR (1) KR100572899B1 (de)
CN (1) CN1251021C (de)
AU (1) AU747516C (de)
HK (1) HK1030992A1 (de)
ID (1) ID25549A (de)
MY (1) MY123980A (de)
RU (1) RU2199773C2 (de)
TW (1) TWI235285B (de)
WO (1) WO1999014635A1 (de)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ID26627A (id) * 1998-02-23 2001-01-25 B F Goodrich Company Cs Komposisi-komposisi penahan polisiklik dengan tahanan etsa yang ditingkatkan
JP5095048B2 (ja) * 1999-11-15 2012-12-12 信越化学工業株式会社 高分子化合物、レジスト材料及びパターン形成方法
EP1130468A3 (de) * 2000-02-25 2003-07-30 Shipley Company LLC Polymer und Photolackzusammensetzungen
KR100518993B1 (ko) * 2000-04-27 2005-10-06 신에쓰 가가꾸 고교 가부시끼가이샤 신규한 에스테르 화합물, 고분자 화합물, 레지스트 재료및 패턴 형성 방법
JP3997382B2 (ja) * 2000-04-28 2007-10-24 信越化学工業株式会社 脂環構造を有する新規エステル化合物及びその製造方法
TWI284782B (en) * 2000-04-28 2007-08-01 Shinetsu Chemical Co Polymers, resist compositions and patterning process
JP3997381B2 (ja) * 2000-04-28 2007-10-24 信越化学工業株式会社 脂環構造を有する新規エステル化合物及びその製造方法
JP4544389B2 (ja) * 2000-04-28 2010-09-15 信越化学工業株式会社 高分子化合物、レジスト材料及びパターン形成方法
JP4626736B2 (ja) * 2000-10-04 2011-02-09 Jsr株式会社 環状オレフィン系共重合体を含む光学透明材料および液晶表示基板材料
KR100555287B1 (ko) * 2001-01-17 2006-03-03 신에쓰 가가꾸 고교 가부시끼가이샤 에테르 화합물, 고분자 화합물, 레지스트 재료 및 패턴형성 방법
CN100386357C (zh) * 2002-04-08 2008-05-07 日本瑞翁株式会社 基于降冰片烯的开环聚合物,降冰片烯开环聚合物的加氢产物及它们的制备方法
KR100526403B1 (ko) 2002-07-10 2005-11-08 주식회사 엘지화학 에스테르기 또는 아세틸기를 포함하는 노보넨계부가중합체의 제조방법
CN1281653C (zh) * 2002-07-10 2006-10-25 Lg化学株式会社 降冰片烯-酯基加成聚合物及该降冰片烯-酯基加成聚合物的制备方法
US7989571B2 (en) 2002-07-10 2011-08-02 Lg Chem, Ltd. Method for producing norbornene monomer composition, norbornene polymer prepared therefrom, optical film comprising the norbornene polymer, and method for producing the norbornene polymer
AU2003280980A1 (en) 2002-07-10 2004-02-02 Lg Chem, Ltd. Method for preparing norbornene based addition polymer containing ester or acetyl functional group
KR100804251B1 (ko) * 2003-02-20 2008-02-18 프로메러스, 엘엘씨 포토레지스트 조성물용 용해속도 개질제
US20070112158A1 (en) * 2003-11-18 2007-05-17 Jsr Corporation Novel (co)polymer, process for producing the same, and process for producing carboxylated (co)polymer
JP2006100563A (ja) * 2004-09-29 2006-04-13 Sumitomo Bakelite Co Ltd 半導体装置
JP4554665B2 (ja) 2006-12-25 2010-09-29 富士フイルム株式会社 パターン形成方法、該パターン形成方法に用いられる多重現像用ポジ型レジスト組成物、該パターン形成方法に用いられるネガ現像用現像液及び該パターン形成方法に用いられるネガ現像用リンス液
US8530148B2 (en) 2006-12-25 2013-09-10 Fujifilm Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
US8637229B2 (en) 2006-12-25 2014-01-28 Fujifilm Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
US8034547B2 (en) 2007-04-13 2011-10-11 Fujifilm Corporation Pattern forming method, resist composition to be used in the pattern forming method, negative developing solution to be used in the pattern forming method and rinsing solution for negative development to be used in the pattern forming method
US8603733B2 (en) 2007-04-13 2013-12-10 Fujifilm Corporation Pattern forming method, and resist composition, developer and rinsing solution used in the pattern forming method
US7985534B2 (en) 2007-05-15 2011-07-26 Fujifilm Corporation Pattern forming method
US8476001B2 (en) 2007-05-15 2013-07-02 Fujifilm Corporation Pattern forming method
JP4617337B2 (ja) 2007-06-12 2011-01-26 富士フイルム株式会社 パターン形成方法
US8617794B2 (en) 2007-06-12 2013-12-31 Fujifilm Corporation Method of forming patterns
US8632942B2 (en) 2007-06-12 2014-01-21 Fujifilm Corporation Method of forming patterns
KR101452229B1 (ko) 2007-06-12 2014-10-22 후지필름 가부시키가이샤 네가티브 톤 현상용 레지스트 조성물 및 이것을 사용한 패턴형성방법
JP4590431B2 (ja) 2007-06-12 2010-12-01 富士フイルム株式会社 パターン形成方法
JP5332883B2 (ja) * 2009-04-30 2013-11-06 住友ベークライト株式会社 感光性組成物、光導波路、光配線、光電気混載基板、電子機器、および光導波路の形成方法
JP6459192B2 (ja) * 2014-03-20 2019-01-30 住友ベークライト株式会社 感光性樹脂組成物
KR102324819B1 (ko) 2014-12-12 2021-11-11 삼성전자주식회사 포토레지스트용 고분자, 포토레지스트 조성물, 패턴 형성 방법 및 반도체 장치의 제조 방법
KR101746789B1 (ko) 2014-12-18 2017-06-13 주식회사 엘지화학 고리형 올레핀 화합물의 (공)중합체를 포함하는 수직 배향막
GB201522304D0 (en) 2015-12-17 2016-02-03 Mars Inc Food product for reducing muscle breakdown

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4106943A (en) * 1973-09-27 1978-08-15 Japan Synthetic Rubber Co., Ltd. Photosensitive cross-linkable azide containing polymeric composition
US4571375A (en) * 1983-10-24 1986-02-18 Benedikt George M Ring-opened polynorbornene negative photoresist with bisazide
JP3804138B2 (ja) * 1996-02-09 2006-08-02 Jsr株式会社 ArFエキシマレーザー照射用感放射線性樹脂組成物
EP0885405B1 (de) * 1996-03-07 2005-06-08 Sumitomo Bakelite Co., Ltd. Photoresist zusammensetzungen mit polycyclischen polymeren mit säurelabilen gruppen am ende
KR100261022B1 (ko) * 1996-10-11 2000-09-01 윤종용 화학증폭형 레지스트 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9914635A1 *

Also Published As

Publication number Publication date
RU2199773C2 (ru) 2003-02-27
AU747516B2 (en) 2002-05-16
TWI235285B (en) 2005-07-01
MY123980A (en) 2006-06-30
HK1030992A1 (en) 2001-05-25
ID25549A (id) 2000-10-12
AU747516C (en) 2003-07-24
WO1999014635A1 (en) 1999-03-25
JP2001516804A (ja) 2001-10-02
JP4416941B2 (ja) 2010-02-17
AU9219998A (en) 1999-04-05
CN1276884A (zh) 2000-12-13
KR100572899B1 (ko) 2006-04-24
KR20010023940A (ko) 2001-03-26
CN1251021C (zh) 2006-04-12

Similar Documents

Publication Publication Date Title
AU747516C (en) Photoresist compositions comprising polycyclic polymers with acid labile pendant groups
EP0885405B1 (de) Photoresist zusammensetzungen mit polycyclischen polymeren mit säurelabilen gruppen am ende
US6723486B2 (en) Photoresist compositions comprising polycyclic polymers with acid labile pendant groups
US6420503B1 (en) Norbornene sulfonamide polymers
US7341818B2 (en) Norbornene-type monomers and polymers containing pendent lactone or sultone groups
US6303724B1 (en) Polycyclic copolymer compositions
US6235849B1 (en) Method of preparing norbornene sulfonamide polymers
KR100880313B1 (ko) 중합체 조성물 및 이의 용도

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20011019

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GOODRICH CORPORATION

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GOODRICH CORPORATION

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION

Owner name: SUMITOMO BAKELITE CO., LTD.

17Q First examination report despatched

Effective date: 20011019

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070130