EP1019678A1 - Vorrichtung zum messen der masse eines strömenden mediums - Google Patents

Vorrichtung zum messen der masse eines strömenden mediums

Info

Publication number
EP1019678A1
EP1019678A1 EP99907286A EP99907286A EP1019678A1 EP 1019678 A1 EP1019678 A1 EP 1019678A1 EP 99907286 A EP99907286 A EP 99907286A EP 99907286 A EP99907286 A EP 99907286A EP 1019678 A1 EP1019678 A1 EP 1019678A1
Authority
EP
European Patent Office
Prior art keywords
flow tube
measuring
flow
sectional profile
structural grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99907286A
Other languages
English (en)
French (fr)
Inventor
Dieter Tank
Uwe Konzelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1019678A1 publication Critical patent/EP1019678A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/161Methods or devices for protecting against, or for damping, noise or other acoustic waves in general in systems with fluid flow

Definitions

  • the invention relates to a device for measuring the mass of a flowing medium according to the preamble of the main claim.
  • a device for measuring the mass of a medium flowing in a line, in particular the intake air mass of an internal combustion engine in which a measuring element, e.g. B. is introduced in the form of a hot wire.
  • a measuring element e.g. B.
  • considerable fluctuations or pulsations in the flow velocity occur in the bypass duct, the strength of which is dependent on the intake frequency of the individual pistons or on the speed of the internal combustion engine.
  • These flow fluctuations falsify the measurement result, namely the flow velocity prevailing on average in the bypass duct and the intake air mass of the internal combustion engine that can be calculated therefrom.
  • the intake duct of a brake engine to arrange a flow tube in the form of an inner tube.
  • the measuring element is also arranged in a bypass channel, which is located approximately in the middle of the flow tube.
  • the inside of the flow tube has friction surfaces which bring about a flow resistance which is dependent on the pulsation strength of the flow. With a high pulsation strength, the flow is therefore displaced into the inner region, i.e. into the region of the bypass channel having the measuring element, due to the friction effects occurring in the edge region of the flow tube, so that a reduction in the display without the flow tube is effectively compensated for with a high pulsation strength of the flow .
  • the flow tube known from DE 43 40 882 AI has therefore generally proven itself. The disadvantage, however, is that a loud, annoying whistling noise occurs during practical operation.
  • the device according to the invention for measuring the mass of a medium flowing in a line with the characterizing features of the main claim has the advantage that no disturbing whistling noises occur during operation or the whistling noises are at least significantly reduced.
  • the structural grooves according to the invention on the outlet end face surrounding the outlet opening prevent the detachment of eddies in the region of the outlet opening of the flow tube, which causes loud noise. It has been shown that the structural grooves according to the invention on the outlet end face surrounding the outlet opening do not reduce the above-described, fluidic advantages of the flow tube which improve the measurement accuracy. Advantageous further developments and improvements of the device specified in the main claim are possible through the measures listed in the subclaims.
  • structural grooves with a rectangular, triangular or trapezoidal cross-sectional profile can be used to achieve a particularly effective reduction in noise.
  • the structural grooves particularly preferably run radially to the longitudinal axis of the flow tube and are arranged at uniform angular intervals on the outlet end face. This results in a uniform segmentation of the outlet end face, which is advantageous for the suppression of noise.
  • the inlet end face surrounding the inlet opening of the flow tube is preferably unstructured in order not to increase the flow resistance in the region of the inlet opening.
  • Fig. 1 is a side view of a first embodiment of the invention
  • FIG. 2 is an enlarged, partially sectioned side view of a measuring module used in the exemplary embodiment of the device according to the invention shown in FIG. 1,
  • Fig. 3 is a view of the end portion of the one shown in Fig. 1
  • Embodiment used flow tube in the direction marked III in Fig. 1,
  • Fig. 4 is a view corresponding to Fig. 3 of a second, modified
  • Fig. 5 is a view corresponding to Fig. 3 of a third, modified embodiment
  • Fig. 6 is a view of the flow tube used in the embodiment shown in Fig. 1 in the marked VI in Fig. 1 4
  • the device 1 shown in section in FIG. 1 serves to measure the mass of a medium flowing in a line 2, in particular the intake air mass of an internal combustion engine.
  • the device 1 can e.g. B. by means of unillustrated at the ends provided connecting flanges as a mountable intermediate piece in an intake line through which the internal combustion engine sucks air from an air filter, not shown, from the environment, which is provided via a throttle valve assembly, not shown, which is provided for controlling the intake air mass, in reaches a combustion chamber of the internal combustion engine.
  • the device 1 comprises a flow tube 3, which is introduced approximately centrally in the line 2 and is attached to the inner wall 5 of the line 2 by means of spacers 4, which are only shown schematically.
  • spacers 4 can be provided, which, for. B. are arranged angularly offset from one another by 120 ° or 90 °.
  • the flow tube 3 is shaped like a cylinder and extends around a longitudinal axis 6, which coincides with the longitudinal axis of the line 2.
  • the flow tube 3 has an inlet opening 9 facing the main flow direction illustrated by the arrow 8, which is surrounded by an inlet end face 10.
  • Axially opposite the inlet opening is an outlet opening 11 which is surrounded by an outlet end face 12.
  • a measuring module 17 to be described in more detail, which has a measuring channel 33 tapering along the main flow direction 8 for receiving the measuring element 20.
  • a deflecting duct 34 adjoins the measuring duct 33, which, as can be seen in FIG. 2, is S-shaped and opens into the flow tube 3 at a deflecting duct outlet 46.
  • the measuring element 20 is aligned centrally with the measuring channel 33 and is located in the region of the longitudinal axis 6 of the flow tube 3.
  • the structure of the measuring module 17 is described in more detail below with reference to FIG. 2, which shows a sectional side view of the measuring module 17.
  • the measuring module 17 has a slender, cuboid shape that extends radially in the direction of a longitudinal axis 23 and is in a recess of the flow tube 3, not shown 5 introduced, for example, pluggable.
  • the longitudinal axis 23 of the measuring module 17 is oriented perpendicular to the longitudinal axis 6 of the flow tube 3 in the preferred exemplary embodiment shown.
  • the main flow direction is also illustrated in FIG. 2 with the arrows 8.
  • the measuring module 17 can, for. B. be made of plastic by injection molding.
  • the measuring element 20 projects centrally into the measuring channel 33 and is connected via electrical connecting lines 22 to an evaluation circuit (not shown).
  • the measuring element 20 is preferably produced by etching out a semiconductor body, for example a silicon wafer, in what is known as a micromechanical construction and has a structure which, for. B. is known from DE 195 24 634 AI.
  • the measuring element 20 has a membrane-shaped sensor region 21 which is formed by etching and which is delimited by the line II in FIG. 2.
  • the sensor region 21 has an extremely small thickness and has a plurality of resistance layers, also formed by etching, which resist at least one temperature-dependent measurement and, for example, form a heating resistor. It is also possible to provide the measuring element 20 as a so-called hot film sensor element, the structure of which can be found, for example, in DE 36 38 138 AI.
  • the individual resistance layers of the measuring element 20 or the sensor region 21 are electrically connected by means of connecting lines 22 running inside the measuring module 17 to an evaluation circuit, not shown, which contains, for example, a bridge-type resistance measuring circuit.
  • the evaluation circuit is e.g. B. housed in a carrier part or a holding part of the measuring module 17.
  • the measuring module 17 has a measuring channel 33 extending in the axial direction and a z. B.
  • An S-shaped deflection channel 34 extends in the direction of the central axis 6 of the flow tube 3 from an opening 36, for example, which has a rectangular cross section, to an opening 35.
  • the measuring channel 33 is from a surface 38 distant from the central axis 6 and a lower surface 37 closer to the central axis 11 and two side surfaces are limited.
  • the plate-shaped measuring element 20 is oriented in the measuring channel with its greatest extent radially in the direction of the longitudinal axis 23 and is divided symmetrically by the latter, so that the medium flows around the measuring element 20 approximately parallel to the central axis 6.
  • the medium flows from the inlet opening 36 of the measuring channel 33 to the measuring element 20 and from there into the deflection channel 34 in order to leave the deflection channel 34 in the radial direction with respect to the longitudinal axis 6 from the deflection channel outlet 46.
  • Deflection duct outlet 46 like deflection duct 34, has, for example, a rectangular cross section and is provided on a lower outer surface 45 of measuring module 17 oriented parallel to longitudinal axis 6. Contrary to the main flow direction 8, the lower outer surface 45 is adjoined by a boundary surface 42 of the measuring module 17 opposite the main flow direction 8, which leads upstream of the inlet 36 in a rounded form from the lower outer surface 45 to the lower surface 37 of the measuring channel 33 as far as the inlet 36.
  • the flow tube 3 shown in FIG. 1 forms, with an inner surface 50 and an outer surface 51, friction surfaces 52, on which, in the case of pulsating flow when flowing along, due to flow effects such as vortices induced on the friction surfaces 52 or detachments occurring due to the pressure drop to the inner wall 50 Flow is more or less obstructed, so that in the area of the inner wall 50 there is a variable flow resistance that is dependent on the intensity of the pulsation.
  • the flow tube 3 therefore acts as a flow straightener.
  • the measuring element 20 generally tends to display a reduction when the pulsating flow occurs when the flow tube 3 is not present.
  • the flow tube 3 due to the flow resistance dependent on the pulsation strength of the flow, causes the flow to be displaced into the inner region of the flow tube 3, where the measuring module 17 with the measuring element 20 is arranged. Compared to a non-pulsating flow, an increased flow velocity therefore occurs in the case of a strongly pulsating flow in the inner region of the flow tube 3, which leads to a compensation of the deficiency indicator which is otherwise present.
  • the flow tube 3 has the disadvantage that loud whistling noises occur as undesirable disturbing noises during operation.
  • the disturbing noises presumably stem from the fact that vortices detach at the outlet opening 11 of the flow tube 3 with a relatively high repetition frequency, which leads to the whistling noise described.
  • the inventive design of the flow tube 3 counteracts this annoying whistling noise.
  • FIG. 3 shows a radial view of the end region of the flow tube 3 in the region of the outlet opening 11. The direction of view on which FIG. 3 is based is identified by the arrow III in FIG. 1.
  • the structure grooves 53 have a rectangular cross-sectional profile.
  • FIGS. 4 and 5 show alternative exemplary embodiments, with FIGS. 4 and 5 likewise showing a radial view of the end region at the outlet opening 11 of the flow tube 3.
  • the structure grooves 53 have a triangular cross-sectional profile.
  • the structure grooves 53 are separated by webs 54 with a trapezoidal cross-sectional profile.
  • the structure grooves 53 have a trapezoidal cross-sectional profile.
  • the structural grooves 53 are separated here by webs 54 with a triangular cross-sectional profile.
  • various other embodiments of the structural grooves are also conceivable, in particular part-circular structural grooves, trapezoidal structural grooves or roughening by means of irregularly deep and irregularly shaped, radially extending structural grooves 53.
  • the structural grooves 53 largely prevent or at least suppress detachment of eddies on the outlet end face 12 surrounding the outlet opening 11. Practical tests have shown that the measure according to the invention can achieve a significant reduction in the noise that occurs.
  • the function of the flow tube 3 as a flow straightener with the properties described above which improve the measurement accuracy in the case of strongly pulsating flows is not impaired by the structure grooves 53 according to the invention. Since in particular when using the device 1 in motor vehicles to measure the intake air mass of the Bremiki'aftmaschine whistling noises are extremely unpleasant and significantly impair driving comfort, the measure according to the invention achieves a considerable improvement.
  • FIG. 6 shows a front view of the flow tube 3 corresponding to the viewing clearing marked VI in FIG. 1.
  • the measuring module 17 has been omitted in FIG. 6 to simplify the illustration.
  • the radially extending structural grooves 53 which are separated from one another by the webs 54, can be clearly seen on the outlet end face 12 surrounding the outlet opening 11 of the flow tube 3.
  • the structural grooves 53 are not rectangular, as in the exemplary embodiment shown in FIGS. 1 and 3, but are designed with a triangular cross-sectional profile in accordance with the exemplary embodiment shown in FIG. 4. 8th
  • the structural grooves 53 are distributed at uniform angular intervals over the outlet end face 12, so that a uniform segmentation of the outlet end face 12 is achieved.
  • the inlet end face 10 surrounding the inlet opening 9 of the flow tube 3 is preferably unstructured, i. H. the inlet end face 10 has no structural grooves in order not to increase the flow resistance.
  • the inlet end face 10 can be rounded or streamlined to further reduce the flow resistance.
  • the device 1 is then also suitable for measuring flows with different main flow directions.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Eine Vorrichtung (1) zum Messen der Masse eines in einer Leitung (2) strömenden Mediums, insbesondere der Ansaugluftmasse einer Brennkraftmaschine, weist ein Strömungsrohr (3) auf, das in der Leitung (2) angeordnet ist. In dem Strömungsrohr (3) ist ein von dem strömenden Medium umströmtes Meßelement (20) angeordnet. Das Medium strömt an einer Einlaßöffnung (9) von der Leitung (2) in das Strömungsrohr (3) ein und an einer Auslaßöffnung (11) von dem Strömungsrohr (3) in die Leitung (2) aus. Eine die Auslaßöffnung (11) umgebende Auslaß-Stirnfläche (12) des Strömungsrohrs (3) weist Strukturrillen (53) auf, die bezüglich einer Längsachse (6) des Strömungsrohrs (3) mit einer radialen Richtungskomponente verlaufen.

Description

Vorrichtung zum Messen der Masse eines strömenden Mediums
Stand der Technik
Die Erfindung geht aus von einer Vorrichtung zum Messen der Masse eines strömenden Mediums nach der Gattung des Hauptanspruchs.
Aus der EP 0 087 621 Bl ist eine Vorrichtung zum Messen der Masse eines in einer Leitung strömenden Mediums, insbesondere der Ansaugluftmasse einer Brennkraftmaschine, bekannt, bei welcher in einem versetzt zu einem Hauptansaugkanal ausgebildeten Bypasskanal ein Meßelement, z. B. in Form eines Hitzdrahtes, eingebracht ist. Durch das Öffnen und Schließen der Einlaßventile der einzelnen Zylinder der Brerinkraftmaschine treten erhebliche Schwankungen, bzw. Pulsationen der Strömungsgeschwindigkeit im Bypasskanal auf, deren Stärke abhängig von der Ansaugfrequenz der einzelnen Kolben, bzw. von der Drehzahl der Brennkraftmaschine ist. Diese Strömungsschwankungen verfälschen das Meßergebnis, nämlich die im Mittel im Bypasskanal herrschende Strömungsgeschwindigkeit und die daraus errechenbare Ansaugluftmasse der Brennkraftmaschine erheblich. Abhängig von der Stärke der Pulsationen der Strömungsgeschwindigkeit ist beispielsweise im Teillastbereich der Brennkraftmaschine eine Minderanzeige der mittleren Strömungsgeschwindigkeit und bei voll geöffneter Drosselklappe eine Mehranzeige feststellbar. Um diesen bei pulsierenden Strömungen auftretenden Meßfehler zu verringern, werden bei der aus der EP 0 087 621 Bl bekannten Vorrichtung bestimmte, durch Rechnung und durch zahlreiche Messungen ermittelte Längenverhältnisse und Querschnittsverhältiύsse von Hauptansaugkanal und Bypasskanal ausgewählt, wobei die Lage des Meßelements im Bypasskanal vorgeschrieben ist. Dies beschränkt einerseits die konstruktiven Gestaltungsmöglichkeiten und Einbaumöglichkeiten der Vorrichtung erheblich und andererseits erfordert die Ausbildung der Vorrichtung einen großen Bauraum. In der DE 43 40 882 AI wird zur Verringerung der Strömungsschwankungen vorgeschlagen, in der zu messenden Leitung, z. B. dem Ansaugkanal einer Bremkraftmaschine ein Strömungsrohr in Form eines Innenrohrs anzuordnen. Das Meßelement ist auch hier in einem Bypasskanal angeordnet, welcher sich in etwa in der Mitte des Strömungsrohres befindet. Das Strömungsrohr weist an seiner Innenseite Reibflächen auf, die einen von der Pulsationsstärke der Strömung abhängigen Strömungswiderstand bewirken. Bei einer hohen Pulsationsstärke wird daher aufgrund der in dem Randbereich des Strömungsrohrs auftretenden Reibungseffekte die Strömung in den Innenbereich, also in den Bereich des das Meßelement aufweisenden Bypasskanals, verdrängt, so daß eine ohne das Strömungsrohr auftretende Minderanzeige bei einer hohen Pulsationsstärke der Strömung wirkungsvoll kompensiert wird. Das aus der DE 43 40 882 AI bekannte Strömungsrohr hat sich daher grundsätzlich bewährt. Nachteilig ist jedoch, daß beim praktischen Betrieb ein lautes, störendes Pfeifgeräusch auftritt.
Auf die DE 44 07 209 Cl wird noch insofern verwiesen, als es aus dieser Druckschrift bekannt ist, das Meßelement in einem sich in Strömungsrichtung verjüngenden Meßkanal anzuordnen, an welchen sich ein S-förmiger Umlenkkanal anschließt. Mit dieser Anordnung läßt sich die Unabhängigkeit des Meßergebnisses von der Pulsationsstärke der Strömung weiter verbessern. Insbesondere ist die Anordnung weitgehend unempfindlich gegen eine bei hohen Pulsationsstärken auftretende Rückströmung entgegen der H auptströmungsrichtung .
Vorteile der Erfindung
Die erfindungs gemäße Vorrichtung zur Messung der Masse eines in einer Leitung strömenden Mediums mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den Vorteil, daß beim Betrieb keine störenden Pfeifgeräusche auftreten oder die Pfeifgeräusche zumindest deutlich reduziert sind. Die erfindungsgemäßen Strukturrillen an der die Auslaßöffnung umgebenden Auslaß -Stirnfläche verhindern ein laute Störgeräusche hervorrufendes Ablösen von Wirbeln im Bereich der Auslaßöffnung des Strömungsrohrs. Es hat sich gezeigt, daß die erfindungsgemäßen Strukturrillen an der die Auslaßöffnung umgebenden Auslaß-Stirnfläche die vorstehend beschriebenen, die Meß enauigkeit verbessernden, strömungstechnischen Vorteile des Strömungsrohrs nicht mindern. Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Vorrichtung möglich.
Es hat sich gezeigt, daß durch Strukturrillen mit rechteckförmigem, dreieckförmigem oder trapezförmigem Querschnittsprofil sich eine besonders wirkungsvolle Reduzierung der Störgeräusche erreichen läßt. Besonders bevorzugt verlaufen die Strukturrillen radial zu der Längsachse des Strömungsrohrs und sind in gleichmäßigen Winkelabständen an der Auslaß-Stirnfläche angeordnet. Dadurch wird eine gleichmäßige Segmentierung der Auslaß-Stirnfläche erreicht, was für die Unterdrückung der Störgeräusche vorteilhaft ist. Die die Einlaßöffnung des Strömungsrohrs umgebende Einlaß-Stirnfläche ist vorzugsweise unstrukturiert, um den Strömungswiderstand im Bereich der Einlaßöffnung nicht zu erhöhen.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 eine Seitenansicht eines ersten Ausführungsbeispiels der erfindungsgemäßen
Vorrichtung in einer Schnittdarstellung,
Fig. 2 eine vergrößerte, teilweise geschnittene Seitenansicht eines bei dem in Fig. 1 gezeigten Ausfuhrungsbeispiel der erfindungsgemäßen Vorrichtung verwendeten Meßmoduls,
Fig. 3 eine Ansicht des Endbereichs des bei dem in Fig. 1 dargestellten
Ausführungsbeispiel verwendeten Strömungsrohrs in der in Fig. 1 mit III gekennzeichneten Richtung,
Fig. 4 eine Ansicht entsprechend Fig. 3 eines zweiten, modifizierten
Ausführungsbeispiels ,
Fig. 5 eine Ansicht entsprechend Fig. 3 eines dritten, modifizierten Ausführungsbeispiels, und
Fig. 6 eine Ansicht des bei dem in Fig. 1 dargestellten Ausführungsbeispiel verwendeten Strömungsrohrs in der in Fig. 1 mit VI gekennzeichneten 4
Richtung, wobei jedoch die Strukturrillen wie in Fig. 4 dargestellt ausgebildet sind.
Beschreibung der Ausführungsbeispiele
Die in Fig. 1 in Schnittdarstellung gezeigte Vorrichtung 1 dient zur Messung der Masse eines in einer Leitung 2 strömenden Mediums, insbesondere der Ansaugluftmasse einer Brennkraftmaschine. Die Vorrichtung 1 kann z. B. mittels nicht dargestellter an den Enden vorgesehener Anschlußflansche als montierbares Zwischenstück in einer Ansaugleitung eingebaut sein, durch welche die Brennkraftmaschine von einem nicht dargestellten Luftfilter Luft aus der Umgebung ansaugt, die über einen nicht dargestellten Drosselklappenstutzen, der zur Steuerung der Ansaugluftmasse vorgesehen ist, in einen Brennraum der Brennkraftmaschine gelangt.
Die Vorrichtung 1 umfaßt ein Strömungsrohr 3, das etwa mittig in die Leitung 2 eingebracht ist und mittels nur schematisch dargestellter Abstandshalter 4 an der Innenwandung 5 der Leitung 2 angebracht ist. Dabei können mehrere Abstandshalter 4 vorgesehen sein, die z. B. um 120° oder 90° zueinander winkelversetzt angeordnet sind.
Das Strömungsrohr 3 ist im dargestellten Ausführungsbeispiel zylinderfömiig ausgeformt und erstreckt sich um eine Längsachse 6, die mit der Längsachse der Leitung 2 zusammenfällt. Das Strömungsrohr 3 hat eine der durch den Pfeil 8 veranschaulichten Hauptströmungsrichtung zugewandte Einlaßöffnung 9, die von einer Einlaß-Stirnfläche 10 umgeben ist. Der Einlaßöffnung axial gegenüberliegend befindet sich eine Auslaßöffnung 11, die von einer Auslaß -Stirnfläche 12 umgeben ist.
Innerhalb des Strömungsrohrs 3 befindet sich ein noch näher zu beschreibendes Meßmodul 17, das einen sich entlang der Hauptströmungsrichtung 8 verjüngenden Meßkanal 33 zur Aufnahme des Meßelements 20 aufweist. An den Meßkanal 33 schließt sich ein Umlenkkanal 34 an, der, wie aus Fig. 2 zu erkennen, S-förmig ausgebildet ist und an einem Umlenkkanal-Auslaß 46 in das Strömungsrohr 3 ausmündet. Das Meßelement 20 ist mittig zu dem Meßkanal 33 ausgerichtet und befindet sich im Bereich der Längsachse 6 des Strömungsrohrs 3.
Der Aufbau des Meßmoduls 17 wird nachfolgend unter Bezugnahme auf Fig. 2, die eine geschnittene Seitenansicht des Meßmoduls 17 zeigt, näher beschrieben. Das Meßmodul 17 hat eine schlanke, sich radial in Richtung einer Längsachse 23 länglich erstreckende, quaderförmige Gestalt und ist in eine nicht dargestellte Ausnehmung des Strömungsrohrs 3 5 beispielsweise steckbar eingeführt. Die Längsachse 23 des Meßmoduls 17 ist im dargestellten, bevorzugten Ausführungsbeispiel senkrecht zu der Längsachse 6 des Strömungsrohrs 3 orientiert. Die Hauptströmungsrichtung ist auch in Fig. 2 mit den Pfeilen 8 veranschaulicht. Das Meßmodul 17 kann z. B. aus Kunststoff in Spritzgußtechnik gefertigt sein.
Das Meßelement 20 ragt mittig in den Meßkanal 33 und ist über elektrische Verbindungsleitungen 22 mit einer nicht dargestellten Auswerteschaltung verbunden. Das Meßelement 20 ist vorzugsweise durch Ausätzen eines Halbleiterkörpers, beispielsweise eines Siliziumwafers in sogenannter mikromechanischer Bauweise hergestellt und besitzt einen Aufbau, der z. B. aus der DE 195 24 634 AI bekannt ist. Das Meßelement 20 hat einen durch Ausätzen entstandenen membranförmigen Sensorbereich 21, der in Fig. 2 von der Linie II begrenzt ist. Der Sensorbereich 21 hat eine äußerst geringe Dicke und besitzt mehrere, ebenfalls durch Ausätzen entstandene Widerstandsschichten, die wenigstens einen temperaturabhängigen Meß widerstand und beispielsweise einen Heizwiderstand bilden. Es ist auch möglich, das Meßelement 20 als sogenanntes Heißfilmsensorelement vorzusehen, dessen Aufbau beispielsweise der DE 36 38 138 AI entnehmbar ist.
Die einzelnen Widerstandsschichten des Meßelements 20 bzw. des Sensorbereichs 21 sind mittels im Inneren des Meßmoduls 17 verlaufender Anschlußleitungen 22 mit einer nicht dargestellten Auswerteschaltung elektrisch verbunden, die beispielsweise eine brückenä nliche Widerstandsmeßschaltung enthält. Die Auswerteschaltung ist z. B. in einem Trägerteil oder einem Halteteil des Meßmoduls 17 untergebracht.
Wie bereits erwähnt, besitzt das Meßmodul 17 einen sich in axialer Richtung erstreckenden Meßkanal 33 und einen z. B. eine S-Form aufweisenden Umlenkkanal 34. Der Meßkanal 33 erstreckt sich in Richtung der Mittelachse 6 des Strömungsrohrs 3 von einer beispielsweise einen rechteckförmigen Querschnitt aufweisenden Öffnung 36 bis zu einer Mündung 35. Der Meßkanal 33 ist von einer der Mittelachse 6 entfernten Oberfläche 38 und einer der Mittelachse 11 näheren Unterfläche 37 sowie zwei Seitenflächen begrenzt. Das plattenförmige Meßelement 20 ist im Meßkanal mit seiner größten Erstreckung radial in Richtung der Längsachse 23 orientiert und wird symmetrisch von dieser aufgeteilt, so daß das Meßelement 20 in etwa parallel zur Mittelachse 6 vom Medium umströmt wird.
Das Medium strömt von der Einlaßöffnung 36 des Meßkanals 33 zum Meßelen ent 20 und von diesem in den Umlenkkanal 34, um den Umlenkkanal 34 in radialer Richtung bezüglich der Längsachse 6 aus dem Umlenkkanal- Auslaß 46 zu verlassen. Der 6
Umlenkkanal-Auslaß 46 besitzt wie der Umlenkkanal 34 beispielsweise einen rechteckförmigen Querschnitt und ist an einer parallel zur Längsachse 6 orientierten, unteren Außenfläche 45 des Meßmoduls 17 vorgesehen. Entgegen der Hauptströmungsrichtung 8 schließt sich an die untere Außenfläche 45 eine der Hauptströmungsrichtung 8 entgegenstehende Berandungsfläche 42 des Meßmoduls 17 an, die stromaufwärts des Einlasses 36 in abgerundeter Form von der unteren Außenfläche 45 zur Unterfläche 37 des Meßkanals 33 bis an den Einlaß 36 führt.
Das in Fig. 1 dargestellte Strömungsrohr 3 bildet mit einer Innenfläche 50 und einer Außenfläche 51 Reibflächen 52, an denen bei pulsierender Strömung beim Entlangströmen durch auftretende Strömungseffekte, wie beispielsweise an den Reibflächen 52 induzierte Wirbel oder durch den Druckabfall zur Innenwandung 50 auftretende Ablösungen, die Strömung mehr oder weniger behindert wird, so daß im Bereich der Innenwandung 50 ein von der Pulsationsstärke abhängiger, veränderlicher Strömungswiderstand vorhanden ist. Das Strömungsrohr 3 wirkt daher als Strömungsgleichrichter. Wie bereits erwähnt, neigt das Meßelement 20 bei auftretender pulsierender Strömung grundsätzlich zu einer Minder anzeige, wenn das Strömungsrohr 3 nicht vorhanden ist. Das Strörnungsrohr 3 bewirkt jedoch aufgrund des von der Pulsationsstärke der Strömung abhängigen Strömungswiderstands eine Verdrängung der Strömung in den Innenbereich des Strömungsrohrs 3, wo das Meßmodul 17 mit dem Meßelement 20 angeordnet ist. Gegenüber einer nicht pulsierenden Strömung tritt daher bei einer stark pulsierenden Strömung im Innenbereich des Strömungsrohrs 3 eine erhöhte Strömungsgeschwindigkeit auf, die zu einer Kompensation der sonst vorhandenen Minderanzeige fuhrt.
Das Strömungsrohr 3 hat jedoch ohne die erfmdungsgemäße Maßnahme den Nachteil, daß beim Betrieb laute Pfeifgeräusche als unerwünschte Störgeräusche auftreten. Die Störgeräusche rühren vermutlich daher, daß an der Auslaßöffnung 11 des Strömungsrohrs 3 sich mit relativ hoher Wiederholfrequenz Wirbel ablösen, was zu dem beschriebenen Pfeifgeräusch führt. Die erfindungsgemäße Ausbildung des Strömungsrohrs 3 wirkt diesem störenden Pfeifgeräusch entgegen.
Erfindungsgemäß ist es vorgesehen, an der die Auslaßöffnung 11 umgebenden Auslaß- Stirnfläche 12 des Strömungsrohrs 3 Strukturrillen 53 vorzusehen, die bezüglich der Längsachse 6 des Strömungsrohrs 3 mit einer radialen Richtungskomponente verlaufen. Vorzugsweise sind die Auslaßöffnung 11 und die die Auslaßöffnung 11 umgebende Auslaß-Stirnfläche 12 radial zu der Längsachse 6 des Strömungsrohrs 3 ausgerichtet. Die Strukturrillen 53 verlaufen dann vorzugsweise radial zu der Längsachse 6 des Strömunssrohrs 3. Fig. 3 zeigt eine radiale Ansicht des Endbereichs des Strömungsrohrs 3 im Bereich der Auslaßöffnung 11. Die der Fig. 3 zugrundeliegende Blickrichtung ist in Fig. 1 mit dem Pfeil III gekennzeichnet. Bei dem in den Fig. 1 und 3 gezeigten Ausführungsbeispiel weisen die Strukturrillen 53 ein rechteckförmiges Querschnittsprofil auf. Die Fig. 4 und 5 zeigen alternative Ausführungsbeispiele, wobei die Fig. 4 und 5 ebenfalls eine radiale Ansicht des Endbereichs an der Auslaßöffnung 11 des Strömungsrohrs 3 zeigen. Bei dem Ausführungsbeispiel der Fig. 4 weisen die Strukturrillen 53 ein dreieckförmiges Querschnittsprofil auf. Die Strukturrillen 53 sind durch Stege 54 mit einem trapezförmigen Querschnittsprofil getrennt. Bei dem in Fig. 5 dargestellten Ausführungsbeispiel weisen die Strukturrillen 53 ein trapezförmiges Querschnittsprofil auf. Die Stmkturrillen 53 sind hier durch Stege 54 mit dreieckförmigem Querschnittsprofil getrennt. Selbstverständlich sind auch vielfältige andere Ausführungsformen der Strukturrillen denkbar, insbesondere teilkreisförmige Strukturrillen, trapezförmige Strukturrillen oder eine Aufrauhung durch ungleichmäßig tiefe und ungleichmäßig ausgeformte, radial verlaufende Strukturrillen 53.
Durch die Strukturrillen 53 wird eine Ablösung von Wirbeln an der die Auslaßöffnung 11 umgebenden Auslaß-Stirnfläche 12 weitgehend vermieden oder zumindest unterdrückt. Praktische Versuche haben gezeigt, daß durch die erfindungsgemäße Maßnahme sich eine signifikante Verringerung der auftretenden Störgeräusche erreichen läßt. Die Funktion des Strömungsrohrs 3 als Strömungsgleichrichter mit den die Meßgenauigkeit bei stark pulsierenden Strömungen verbessernden, vorstehend beschriebenen Eigenschaften, wird durch die erfindungsgemäßen Strukturrillen 53 nicht beeinträchtigt. Da insbesondere beim Einsatz der Vorrichtung 1 bei Kraftfahrzeugen zum Messen der Ansaugluftmasse der Bremiki'aftmaschine auftretende Pfeif geräusche äußerst unangenehm sind und den Fahrkomfort erheblich beeinträchtigen, wird durch die erfmdungsgemäße Maßnahme eine erhebliche Verbesserung erzielt.
Zum verbesserten Verständnis der Erfindung zeigt Fig. 6 eine Frontansicht des Strömungsrohrs 3 entsprechend der in Fig. 1 mit VI gekennzeichneten Blicklichtung. Das Meßmodul 17 wurde in Fig. 6 zur Vereinfachung der Darstellung weggelassen. Aus Fig. 6 sind an der die Auslaßöffnung 11 des Strömungsrohrs 3 umgebenden Auslaß -Stirnfläche 12 deutlich die radial verlaufenden Strukturrillen 53 zu erkennen, die durch die Stege 54 voneinander getrennt sind. In Fig. 6 sind die Strukturrillen 53 nicht wie bei dem in den Fig. 1 und 3 dargestellten Ausführungsbeispiel rechteckig sondern entsprechend dem in Fig. 4 dargestellten Ausführungsbeispiel mit dreieckförmigem Querschnittsprofil ausgestaltet. 8
Entsprechend dem in Fig. 6 dargestellten bevorzugten Ausführungsbeispiel sind die Strukturrillen 53 in gleichmäßigen Winkelabständen über die Auslaß-Stirnfläche 12 verteilt angeordnet, so daß eine gleichmäßige Segmentierung der Auslaß-Stirnfläche 12 erreicht wird. Die die Einlaßöffnung 9 des Strömungsrohrs 3 umgebende Einlaß-Stimfläche 10 ist vorzugsweise unstrukturiert, d. h. die Einlaß-Stimfläche 10 weist keine Strukturrillen auf, um den Strömungswiderstand nicht zu erhöhen. Die Einlaß-Stimfläche 10 kann abgerundet oder stromlinienförmig ausgebildet sein, um den Strömungswiderstand noch weiter zu verringern. Grundsätzlich ist es jedoch auch möglich, die Strukturrillen 53 sowohl an der Auslaß-Stirnfläche 11 als auch an der Einlaß-Stimfläche 10 vorzusehen, was den Vorteil hat, daß die Einbauorientiemng des Strömungsrohrs 3 beliebig ist. Dies kann den Fertigungsaufwand verringern. Ferner ist die Vorrichtung 1 dann auch zum Messen von Strömungen mit unterschiedlichen Hauptströmungsrichtungen geeignet.

Claims

Ansprüche
1. Vorrichtung (1) zum Messen der Masse eines in einer Leitung (2) strömenden Mediums, insbesondere der Ansaugluftmasse einer Brennkraftmaschüie, mit einem in der Leitung (2) angeordneten Strömungsrohr (3) zur Aufnahme eines von dem strömenden Medium umströmten Meßelements (20), wobei das Medium an einer Einlaßöffnung (9) von der Leitung (2) in das Strömungsrohr (3) einströmt und an einer Auslaßöffnung (11) von dem Strömungsrohr (3) in die Leitung (2) ausströmt, dadurch gekennzeichnet, daß eine die Auslaßöffnung (11) umgebende Auslaß-Stirnfläche (12) des Strömungsrohrs (3) Strukturrillen (53) aufweist, die bezüglich einer Längsachse (6) des Strömungsrohrs (3) mit einer radialen Richtungskomponente verlaufen.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Strukturrillen (53) ein rechteckförmiges Querschnittsprofil aufweisen.
3. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß die Strukturrillen (53) ein dreieckförmiges Querschnittsprofil aufweisen.
4. Vorrichtung nach Anspruch 3 , dadurch gekennzeichnet, daß die Strukturrillen (53) mit dreieckförmigem Querschnittsprofil durch Stege (54) mit trapezförmigem Querschnittsprofil getrennt sind.
5. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, 10 daß die Strukturrillen (53) ein trapezförmiges Querschnittsprofil aufweisen.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Strukturrillen (53) mit trapezförmigem Querschnittsprofil durch Stege (54) mit dreieckförmigem Querschnittsprofil getrennt sind.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Auslaß-Stirnfläche (12) radial zu der Längsachse (6) des Strömungsrohrs (3) ausgerichtet ist und die Strukturrillen (53) radial zu der Längsachse (6) des Strömungsrohrs (3) verlaufen.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Strukturrillen (53) an der Auslaß-Stirnfläche (12) in gleichmäßigen Winkelabständen angeordnet sind.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß eine die Einlaßöffnung (9) umgebende Einlaß-Stirnfläche (10) unstrukturiert ist.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Meßelement (20) in einem innerhalb des Strömungsrohrs (3) vorgesehenen, sich in Richtung von der Einlaßöffnung (9) zu der Auslaßöffnung (11) des Strömungsrohres (3) verjüngenden Meßkanal (33) angeordnet ist.
11. Vorrichtung nach Ansprach 10, dadurch gekennzeichnet, daß sich an den Meßkanal (33) ein S-förmiger Umlenkkanal (34) anschließt, der in das Strömungsrohr (3) ausmündet.
EP99907286A 1998-04-08 1999-01-28 Vorrichtung zum messen der masse eines strömenden mediums Withdrawn EP1019678A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19815658A DE19815658A1 (de) 1998-04-08 1998-04-08 Vorrichtung zum Messen der Masse eines strömenden Mediums
DE19815658 1998-04-08
PCT/DE1999/000201 WO1999053275A1 (de) 1998-04-08 1999-01-28 Vorrichtung zum messen der masse eines strömenden mediums

Publications (1)

Publication Number Publication Date
EP1019678A1 true EP1019678A1 (de) 2000-07-19

Family

ID=7863926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99907286A Withdrawn EP1019678A1 (de) 1998-04-08 1999-01-28 Vorrichtung zum messen der masse eines strömenden mediums

Country Status (7)

Country Link
US (1) US6272920B1 (de)
EP (1) EP1019678A1 (de)
JP (1) JP2002506529A (de)
KR (1) KR100580135B1 (de)
CN (1) CN1175252C (de)
DE (1) DE19815658A1 (de)
WO (1) WO1999053275A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6422070B2 (en) * 1994-03-04 2002-07-23 Robert Bosch Gmbh Device for measuring the mass of a flowing medium
DE19927818C2 (de) * 1999-06-18 2003-10-23 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines strömenden Mediums
DE10009154A1 (de) * 2000-02-26 2001-09-13 Bosch Gmbh Robert Vorrichtung zur Messung von zumindest einem Parameter eines strömenden Mediums
DE10047908A1 (de) * 2000-09-27 2002-04-11 Siemens Ag Massenstrommesser
JP2002202166A (ja) * 2000-12-27 2002-07-19 Mitsui Mining & Smelting Co Ltd 流量計
DE10135142A1 (de) * 2001-04-20 2002-10-31 Bosch Gmbh Robert Vorrichtung zur Bestimmung zumindest eines Parameters eines in einer Leitung strömenden Mediums
JP3785338B2 (ja) * 2001-07-25 2006-06-14 株式会社日立製作所 熱式流量計測装置
DE10230531B4 (de) * 2002-07-05 2018-01-18 Robert Bosch Gmbh Vorrichtung zur Bestimmung wenigstens eines Parameters eines in einer Leitung strömenden Mediums
US6899081B2 (en) 2002-09-20 2005-05-31 Visteon Global Technologies, Inc. Flow conditioning device
DE10316450B4 (de) * 2003-04-10 2019-08-08 Robert Bosch Gmbh Vorrichtung zur Bestimmung wenigstens eines Parameters eines in einer Leitung strömenden Mediums
FR2864617B1 (fr) * 2003-12-29 2006-06-23 Jean Francois Pineau Jauge et microcapteur de debit de fluide gazeux ainsi que dispositif de mesure les comportant
DE202004005746U1 (de) * 2004-04-13 2004-06-17 Festo Ag & Co. Schalldämpfersystem
JP4752472B2 (ja) * 2005-12-02 2011-08-17 株式会社デンソー 空気流量測定装置
DE202008010058U1 (de) * 2008-07-25 2009-12-03 Mann+Hummel Gmbh Luftfiltersystem eines Kraftfahrzeuges
DE102008042164B4 (de) 2008-09-17 2022-07-14 Robert Bosch Gmbh Vorrichtung zur Bestimmung eines Parameters eines strömenden Mediums
US8807118B2 (en) * 2010-06-17 2014-08-19 Cummins Filtration Ip Inc. Integrated idealized inlet for engine air induction system
DE102010025898A1 (de) * 2010-07-02 2012-01-05 Audi Ag Baukastensatz und Verfahren zum Herstellen eines Luftmassenmessers für Kraftwagen und Verfahren zum Herstellen eines Kraftwagens
DE102012224049A1 (de) * 2012-12-20 2014-06-26 Robert Bosch Gmbh Sensorvorrichtung zur Erfassung mindestens einer Strömungseigenschaft eines fluiden Mediums
JP5955351B2 (ja) * 2014-06-27 2016-07-20 株式会社鷺宮製作所 フローセンサ
DE102015008146A1 (de) 2015-06-24 2016-12-29 Diehl Metering Gmbh Durchflusszähler
JP2017198498A (ja) * 2016-04-26 2017-11-02 株式会社Soken 流量測定装置
DE102019008902A1 (de) * 2018-12-28 2020-07-02 Marquardt Gmbh Baueinheit für eine Fluid-Leitung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2477436A (en) * 1945-04-30 1949-07-26 Clyde E Bannister Fluid-conducting and pressurecushioning device
DE2333903B2 (de) * 1973-06-29 1976-08-12 Stroemungsprofil zur auftriebserzeugung
US4418578A (en) * 1982-07-26 1983-12-06 Ford Motor Company Low noise vortex shedding fluid flow sensor
US5133647A (en) * 1989-07-07 1992-07-28 Ultra-Precision Manufacturing, Ltd. Pulse damper
DE4340882A1 (de) * 1993-12-01 1995-06-08 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines strömenden Mediums

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9953275A1 *

Also Published As

Publication number Publication date
JP2002506529A (ja) 2002-02-26
CN1175252C (zh) 2004-11-10
KR20010012584A (ko) 2001-02-15
CN1263594A (zh) 2000-08-16
US6272920B1 (en) 2001-08-14
WO1999053275A1 (de) 1999-10-21
KR100580135B1 (ko) 2006-05-16
DE19815658A1 (de) 1999-10-14

Similar Documents

Publication Publication Date Title
EP1019678A1 (de) Vorrichtung zum messen der masse eines strömenden mediums
DE4340882A1 (de) Vorrichtung zur Messung der Masse eines strömenden Mediums
EP0991920B1 (de) Messvorrichtung zum messen der masse eines in einer leitung strömenden mediums
DE4407209C2 (de) Vorrichtung zur Messung der Masse eines in einer Leitung strömenden Mediums
DE19964452B4 (de) Flussratensensor
EP1127250A1 (de) Vorrichtung zur messung wenigstens eines parameters eines strömenden mediums
EP0845099B1 (de) Vorrichtung zur messung der masse eines strömenden mediums
EP0741859B1 (de) Vorrichtung zur messung der masse eines strömenden mediums
DE19643996A1 (de) Vorrichtung zur Messung der Masse eines strömenden Mediums
DE19724659A1 (de) Vorrichtung zum Messen einer Gasflußrate
EP1019679B1 (de) Messvorrichtung zum messen der masse eines strömenden mediums
DE10009154A1 (de) Vorrichtung zur Messung von zumindest einem Parameter eines strömenden Mediums
DE19522648A1 (de) Thermisches Strömungsmeßgerät mit geringer Turbulenz in der Fluidströmung
DE102008042807B4 (de) Vorrichtung zur Bestimmung eines Parameters eines strömenden fluiden Mediums
DE102004009025B4 (de) Luftströmungsmengenmessvorrichtung
DE102013216348A1 (de) Einlassvorrichtung
DE102016209150A1 (de) Sensor zur Bestimmung wenigstens eines Parameters eines durch einen Messkanal strömenden fluiden Mediums
EP1340056A1 (de) Luftstrommesser mit vorrichtung zur abscheidung femdpartikel
EP1272820A1 (de) Schutzgitter für einen massendurchflusssensor in einem ansaugluftkanal
EP1224437B1 (de) Schutzgitter für massendurchflusssensor in einem ansaugluftkanal
EP3769052B1 (de) Sensoranordnung
EP1519099A1 (de) Strömungskreis mit Geräuschdämpfung
EP1301759A1 (de) Strömungsmesser mit einem element, das die wirbelbildung des strömenden mediums reduziert
DE102012204646A1 (de) Vorrichtung zur Erfassung eines Drucks und einer Temperatur eines Fluids
DE102017117389A1 (de) Strömungsmessvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20080102

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110802