EP1014489B1 - Antenne résonateur diélectrique - Google Patents

Antenne résonateur diélectrique Download PDF

Info

Publication number
EP1014489B1
EP1014489B1 EP99204261A EP99204261A EP1014489B1 EP 1014489 B1 EP1014489 B1 EP 1014489B1 EP 99204261 A EP99204261 A EP 99204261A EP 99204261 A EP99204261 A EP 99204261A EP 1014489 B1 EP1014489 B1 EP 1014489B1
Authority
EP
European Patent Office
Prior art keywords
dielectric resonator
resonator antenna
dra
antenna
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99204261A
Other languages
German (de)
English (en)
Other versions
EP1014489A3 (fr
EP1014489A2 (fr
Inventor
Rebekka Philips Corp. Int. Prop. GmbH. Porath
Frank Philips Corp. Int. Prop. GmbH. Heinrichs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property and Standards GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP1014489A2 publication Critical patent/EP1014489A2/fr
Publication of EP1014489A3 publication Critical patent/EP1014489A3/fr
Application granted granted Critical
Publication of EP1014489B1 publication Critical patent/EP1014489B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/24Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave constituted by a dielectric or ferromagnetic rod or pipe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0485Dielectric resonator antennas

Definitions

  • the invention relates to a dielectric resonator antenna (DRA).
  • DRA dielectric resonator antenna
  • the invention further relates to a transmitter, a receiver and a mobile radio device with a dielectric resonator antenna.
  • Dielectric resonator antennas are known as miniaturized antennas made of ceramic or another dielectric for microwave frequencies.
  • a dielectric resonator the dielectric of which is surrounded by air with a dielectric constant of ⁇ r >> 1, has a discrete spectrum of natural frequencies and natural modes due to the electromagnetic boundary conditions at the interfaces of the dielectric. These are defined by the special solution of the electromagnetic equations for the dielectric under the given boundary conditions at the interfaces.
  • the radiation of power is in the foreground with a resonator antenna. Since no conductive structures are used as the radiating element, the skin effect cannot have a negative effect.
  • Such antennas therefore have low ohmic losses at high frequencies.
  • a compact, miniaturized structure can also be achieved, since the dimensions can be reduced for a preselected natural frequency (transmission and reception frequency) by increasing ⁇ r .
  • the dimensions of a DRA given frequency are approximately inversely proportional to ⁇ r .
  • An increase in ⁇ r by a factor ⁇ thus results in a reduction in all dimensions by a factor ⁇ and thus the volume by a factor ⁇ 3/2 with a constant resonance frequency.
  • a material for a DRA must have good radio frequency capability, low dielectric losses and temperature stability. This severely limits the materials that can be used. Suitable materials have ⁇ r values of typically a maximum of 120.
  • Such a DR antenna 1 is shown in FIG. 1 in the basic form considered as an example.
  • other shapes are also possible, such as cylindrical or spherical geometries.
  • Dielectric resonator antennas are resonant components that only work in a narrow band around one of their resonance frequencies (natural frequencies). The problem of antenna miniaturization is equivalent to lowering the working frequency for given antenna dimensions. Therefore the lowest resonance (TE 2 111 mode) is used. This mode has symmetry levels in its electromagnetic fields, one of which is designated symmetry level 2. If the antenna is halved in the plane of symmetry 2 and an electrically conductive surface 3 is attached (for example a metal plate), the resonance frequency remains the same as that of an antenna with the original dimensions.
  • a structure is thus obtained in which the same mode is formed at the same frequency. This is shown in Figure 2.
  • a further miniaturization can be achieved with this antenna by means of a dielectric with a high dielectric constant ⁇ r .
  • a material with low dielectric losses is preferably selected.
  • dielectric resonator antenna Such a dielectric resonator antenna is described in the article "Dielectric Resonator Antennas - A review and general design relations for resonant frequency and bandwidth", Rajesh K. Mongia and Prakash Barthia, Intern. Journal of Microwave and Millimeterwave Computer-aided Engineering, Vol. 4, No. 3, 1994, pages 230-247.
  • a cuboid dielectric resonator antenna is described in particular in FIG. 9 and the associated description.
  • the original structure can be halved without changing the field distribution or other resonance characteristics for the TE z 111 mode (page 244, right column, Lines 1-7).
  • the DRA is excited via a feed line with microwave power by being introduced into the stray field in the vicinity of a microwave line (for example a microstrip line or the end of a coaxial line).
  • EP 0 982 799 A describes a dielectric resonator antenna with an electrical conductive layer disclosed in a plane of symmetry.
  • a dielectric Resonator antenna to create a better coupling to a lead proposed that in the plane of symmetry at least one of the electrically conductive Insulated electrical contact layer is provided, and that the electrical layer and the electrical contact for connecting the dielectric resonator antenna to at least one feed line is provided for a signal to be transmitted or received are.
  • two solid with the dielectric arise in one plane Resonator antenna connected electrical contacts through which the antenna on a Circuit board (PCB) in the known SMD technology (soldering on the surface of the circuit board) can be assembled. This will result in a significantly better coupling of performance into the Antenna reached.
  • PCB Circuit board
  • EP 0982 799 A also describes a transmitter and Receiver with such a dielectric resonator antenna and a mobile radio device with such an antenna.
  • the object of the invention is therefore to create a dielectric resonator antenna, which offers better options for reducing the dimensions.
  • an electrically conductive layer is provided in at least one curved surface in which the tangential component of the electric field of an eigenmode assigned to the dielectric resonator antenna disappears, that a cuboid made of a dielectric material with the side lengths a , b and d is provided in the orthogonal directions x, y and z, and that a curved surface of the shape is provided with the electrically conductive layer, the following applies for the integration parameter C: 0>C> ⁇ .
  • the antenna can be spherical, cuboid or in some other geometric shape be, for example, taking into account manufacturing technology or aesthetic Is selected.
  • the antenna has a discrete spectrum of propagable eigenmodes and natural frequencies, which are determined by solving the Maxwell equations for electromagnetic fields under the given boundary conditions. Therefore, a given DR antenna is always assigned defined eigenmodes. If the lowest mode (TE z 111 mode corresponds to the smallest resonance) is considered, the smallest dimensions for the DRA result.
  • the eigenmodes there are certain distributions of the associated electric field in the antenna, the field vector of which can be divided into a tangential and normal component at each location. According to the invention, such curved surfaces are provided with an electrically conductive layer, which are characterized by a vanishing tangential component of the electric field.
  • the conductive layer receives these conditions for the electric field, and thus also for the associated eigenmode.
  • the electrically conductive layer in the curved surface is preferably obtained by cutting the DRA along the curved surface and applying a metallization (e.g. a silver paste) on the cutting surface. Therefore, the volume of the DRA can be reduced considerably, although the same mode continues to develop at the same frequency. Since there are several curved surfaces identified in this way, a particularly advantageous surface can be selected, for example, according to the desired degree of miniaturization, the required bandwidth of the antenna being produced, and the manufacturing conditions.
  • a rectangular cuboid forms one of the basic shapes for dielectric Resonator antennas are used.
  • This basic form can be used particularly well describe a Cartesian coordinate system whose zero point is advantageous in a corner of the cuboid is chosen so that the edges of the cuboid on the x, y and z axes lie and positive side lengths a, b and d arise. Then they can curved surfaces specified in a particularly simple manner with the above formula become.
  • the curved Surface such a surface is provided, which is formed by means of a parameter C ⁇ 1.
  • a parameter C ⁇ 1 is described because then the task of reducing the dimensions the dielectric resonator antenna is solved particularly well. So that will a significantly greater reduction in the volume of the dielectric resonator antenna achieved than is possible in a curved surface without an electrically conductive layer.
  • the object of the invention is achieved by a transmitter, a receiver and a mobile radio device with such a dielectric resonator antenna in which an electrically conductive layer in at least one curved surface, in which the tangential component of an electric field associated with one of the dielectric resonator antennas Eigenmode disappears, is provided.
  • FIG. 3 shows a dielectric resonator antenna DRA 1 in a basic form with rectangular side faces and side lengths a, b and d in the directions x, y and z of a Cartesian coordinate system.
  • the DRA 1 has a discrete spectrum of natural frequencies, which are determined by the geometric shape and the external dimensions and by the relative dielectric constant ⁇ r of the material used. In order to use the DRA 1 as an antenna for microwave power at a defined frequency, its natural frequency must be close to the defined frequency.
  • the DRA 1 is designed for the center frequency 942.5 MHz of the GSM900 standard as a given frequency.
  • the cuboidal DRA 1 thus has dimensions of approximately a ⁇ b ⁇ 30mm and d ⁇ 5.5mm. Since this dimension seems too large for an integration in devices of mobile communication, the DRA 1 is reduced, as shown in FIGS. 4A and 4B.
  • FIG. 4A shows a cross section through the cuboid DRA 1 in a plane perpendicular to the shortest side length d.
  • the side lengths a and b lie in the x and y directions.
  • a field distribution of an electric field is drawn in, which belongs to the eigenmode with the lowest frequency of the DRA 1.
  • this electrical field distribution clearly shows two planes of symmetry 4 and 5 which are perpendicular to one another and which are marked in cross-section by broken lines.
  • the two planes of symmetry are perpendicular to the plane of the drawing.
  • the reduced DRA 8 shown in FIG. 4B is obtained.
  • the volume of the DRA 1 can be reduced by a factor of 4 to a / 2 * b / while the frequency remains the same.
  • the DRA 8 results with the dimensions 15 * 15 * 5.5 mm 3 . However, these dimensions are still so large that there may be an obstacle to their use, particularly in mobile telephones.
  • FIG. 5 shows the reduced DRA 8 with the metallized side surfaces 6 and 7 in same cross-section shown again.
  • the additional lines drawn are cross-sectional lines of curved surfaces perpendicular to the plane of the drawing the DRA 8.
  • the tangential component of the electrical disappears in these areas Field that according to FIG. 4A to the eigenmode with the lowest frequency DRA 1 or DRA 8 belongs. Any curved surface is covered with another Provide metallization. As a result, the boundary conditions are also in this area kept constant if the upper part of the DRA 8 is subsequently removed. In the remaining one
  • the antenna consequently forms the same eigenmode with the same excitation the same frequency. Since there are a number of areas with this property, the dimensions of the DRA 8 can continue with the same resonance frequency be reduced.
  • a zero point 0 of the Cartesian coordinate system is shown in FIG. 5, so that the curved surfaces can be described mathematically.
  • a / 2 xb / 2 xd a / 2 and b / 2 are the side lengths in the x and y directions (cf. FIGS. 4B and 5).
  • the zero point 0 lies in a corner point of the cuboid DRA 8.
  • the curved surfaces of the vanishing tangential component consequently have that Form ⁇ (x, y (x), z), x ⁇ [0, a / 2], z ⁇ [0, d] ⁇ . Since there are several such curved surfaces, an integration parameter C is included, for which 0 ⁇ C ⁇ gilt applies.
  • the integration parameter C determines the amount h of the remaining DRA.
  • the cut one So part is smaller than a / 2 * b / 2, which was achieved by using the planes of symmetry Size.
  • This method is in principle for every value of C and therefore for any small one h possible, so that there is no fundamental limit to the reduction in dimensions a DRA 1 with a constant resonance frequency.
  • other parameters can how the bandwidth limit the practically applicable degree of miniaturization.
  • the resulting DRA 9 is shown in FIG. 6.
  • the plane of symmetry 10 as can already be seen in FIG. 4B, is also a metallized one curved surface 11. Since the height h can be much smaller than b / 2, the resonance frequency but the same as a rectangular DRA 8 with flat surfaces of dimensions d x a / 2 x b / 2, it becomes a miniaturized DRA 9 with the same Created resonance frequency.
  • FIG. 7 shows in a block diagram the function blocks of a transmit and one Reception path of a mobile radio device with a DRA 9, such as one Mobile phone conforms to the GSM standard.
  • the DRA 9 is equipped with an antenna switch or frequency duplexer 12, which is in a receive or transmit mode connects the receive or transmit path to the DRA 9.
  • reception mode the analog radio signals arrive at an A / D converter via a receiving circuit 13 14.
  • the digital signals generated are demodulated in a demodulator 15 and then fed to a digital signal processor (DSP) 16.
  • DSP 16 digital signal processor
  • the DSP 16 successively the functions equalization, decryption, not shown in detail Channel decoding and speech decoding performed.
  • analog signals are generated which are output via a loudspeaker 18.
  • the analog voice signals recorded by a microphone 19 converted with an A / D converter 20 and then fed to a DSP 21.
  • the DSP 21 performs the speech coding functions which are complementary to the receiving operation, Channel coding and encryption through, all functions of one single DSP.
  • the binary coded data words are in one Modulator 22 GMSK modulated and then in a D / A converter 23 into analog radio signals converted.
  • a transmitter output stage 24 with a power amplifier produces this Radio signal to be transmitted via the DRA 9.
  • the description of the transmission or reception path 9, 13, 14, 15, 16, 17, 18 or 9, 19, 20, 21, 22, 23, 24 corresponds to that of a single transmitter or receiver.
  • the frequency duplexer 12 need not be provided, but use the send and receive path its own DRA 9 as an antenna.
  • Can be used in any other area of radio transmission e.g. for cordless phones according to DECT or CT, for directional or trunked radio devices or pagers).
  • the DRA 9 can be adapted to the transmission frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Claims (5)

  1. Antenne résonateur diélectrique (9) caractérisée en ce    qu'une couche électriquement conductrice est prévue dans au moins une surface arquée (11) dans laquelle la composante tangentielle du champ électrique d'un mode spécifique affecté à l'antenne résonateur diélectrique (9) disparaít, que, pour la formation de l'antenne résonateur diélectrique (9) il est prévu un parallélépipède en un matériau diélectrique avec les longueurs de côté a, b et d dans les directions orthogonales x, y et z et
       qu'une surface arquée (11) de forme
    Figure 00170001
       est dotée de la couche électriquement conductrice, 0 < C < 8 étant applicable pour le paramètre d'intégration C.
  2. Antenne résonateur diélectrique (9) selon la revendication 1,
        caractérisée en ce    qu'une telle surface qui est formée à l'aide d'un paramètre C < 1 est prévue pour la formation de la surface arquée (11).
  3. Radiotéléphone mobile (9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24) avec une antenne résonateur diélectrique (9) selon la revendication 1
        caractérisé en ce    que, dans l'antenne résonateur diélectrique (9), il est prévu une couche électriquement conductrice dans au moins une surface arquée (11) dans laquelle disparaít la composante tangentielle d'un champ électrique d'un mode spécifique affecté à l'antenne résonateur diélectrique (9).
  4. Récepteur (9, 19, 20, 21, 22, 23, 24) avec une antenne résonateur diélectrique (9) selon la revendication 1.
  5. Emetteur (9, 13, 14, 15, 16, 17, 18) avec une antenne résonateur diélectrique selon la revendication 1.
EP99204261A 1998-12-18 1999-12-09 Antenne résonateur diélectrique Expired - Lifetime EP1014489B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19858799 1998-12-18
DE19858799A DE19858799A1 (de) 1998-12-18 1998-12-18 Dielektrische Resonatorantenne

Publications (3)

Publication Number Publication Date
EP1014489A2 EP1014489A2 (fr) 2000-06-28
EP1014489A3 EP1014489A3 (fr) 2002-01-16
EP1014489B1 true EP1014489B1 (fr) 2003-11-12

Family

ID=7891791

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99204261A Expired - Lifetime EP1014489B1 (fr) 1998-12-18 1999-12-09 Antenne résonateur diélectrique

Country Status (7)

Country Link
US (1) US6373441B1 (fr)
EP (1) EP1014489B1 (fr)
JP (1) JP2000209019A (fr)
KR (1) KR100710729B1 (fr)
CN (1) CN1126194C (fr)
DE (2) DE19858799A1 (fr)
TW (1) TW456070B (fr)

Families Citing this family (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2387995B (en) * 2002-04-23 2006-01-25 Hutchison Whampoa Three G Ip Improved portable telecommunication terminal
GB0219011D0 (en) * 2002-08-15 2002-09-25 Antenova Ltd Improvements relating to antenna isolation and diversity in relation to dielectric resonator antennas
US7995001B2 (en) 2003-02-18 2011-08-09 Tadahiro Ohmi Antenna for portable terminal and portable terminal using same
US7710325B2 (en) * 2006-08-15 2010-05-04 Intel Corporation Multi-band dielectric resonator antenna
EP2165416A1 (fr) * 2007-06-01 2010-03-24 Nxp B.V. Résonateurs de type mems
WO2008150013A1 (fr) 2007-06-07 2008-12-11 Hitachi Metals, Ltd. Antenne à puce, son procédé de fabrication, dispositif d'antenne comprenant l'antenne à puce et dispositif de communication
US9123995B2 (en) 2012-03-06 2015-09-01 City University Of Hong Kong Dielectric antenna and method of discretely emitting radiation pattern using same
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10374315B2 (en) 2015-10-28 2019-08-06 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10355361B2 (en) 2015-10-28 2019-07-16 Rogers Corporation Dielectric resonator antenna and method of making the same
US10476164B2 (en) 2015-10-28 2019-11-12 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US11367959B2 (en) 2015-10-28 2022-06-21 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10601137B2 (en) 2015-10-28 2020-03-24 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US11876295B2 (en) 2017-05-02 2024-01-16 Rogers Corporation Electromagnetic reflector for use in a dielectric resonator antenna system
US11283189B2 (en) 2017-05-02 2022-03-22 Rogers Corporation Connected dielectric resonator antenna array and method of making the same
CN110754017B (zh) 2017-06-07 2023-04-04 罗杰斯公司 介质谐振器天线系统
US11616302B2 (en) 2018-01-15 2023-03-28 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US10910722B2 (en) 2018-01-15 2021-02-02 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US10892544B2 (en) 2018-01-15 2021-01-12 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11552390B2 (en) 2018-09-11 2023-01-10 Rogers Corporation Dielectric resonator antenna system
US11031697B2 (en) 2018-11-29 2021-06-08 Rogers Corporation Electromagnetic device
US11637377B2 (en) 2018-12-04 2023-04-25 Rogers Corporation Dielectric electromagnetic structure and method of making the same
CN109687112A (zh) * 2019-01-22 2019-04-26 南通大学 一种小型化介质贴片天线
US11482790B2 (en) 2020-04-08 2022-10-25 Rogers Corporation Dielectric lens and electromagnetic device with same
CN115548685A (zh) * 2022-09-06 2022-12-30 深圳市信维通信股份有限公司 一种介质谐振器天线及其设计方法和通信设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652556A (en) * 1994-05-05 1997-07-29 Hewlett-Packard Company Whispering gallery-type dielectric resonator with increased resonant frequency spacing, improved temperature stability, and reduced microphony
JP3060871B2 (ja) * 1995-01-09 2000-07-10 株式会社村田製作所 アンテナ
US6198450B1 (en) * 1995-06-20 2001-03-06 Naoki Adachi Dielectric resonator antenna for a mobile communication
CA2176656C (fr) * 1995-07-13 2003-10-28 Matthew Bjorn Oliver Antenne a large bande utilisant un resonateur dielectrique pour rayonnement a polarisation circulaire
CA2173679A1 (fr) * 1996-04-09 1997-10-10 Apisak Ittipiboon Antenne a resonateur dielectrique multi-segment non homogene a large bande
DE19837266A1 (de) * 1998-08-17 2000-02-24 Philips Corp Intellectual Pty Dielektrische Resonatorantenne

Also Published As

Publication number Publication date
CN1259777A (zh) 2000-07-12
EP1014489A3 (fr) 2002-01-16
US6373441B1 (en) 2002-04-16
KR20000048184A (ko) 2000-07-25
DE19858799A1 (de) 2000-06-21
EP1014489A2 (fr) 2000-06-28
KR100710729B1 (ko) 2007-04-24
DE59907706D1 (de) 2003-12-18
CN1126194C (zh) 2003-10-29
JP2000209019A (ja) 2000-07-28
TW456070B (en) 2001-09-21

Similar Documents

Publication Publication Date Title
EP1014489B1 (fr) Antenne résonateur diélectrique
EP1018780B1 (fr) Antenne diélectrique de résonateur
EP0982799B1 (fr) Antenne diélectrique à résonateur
DE10333541B4 (de) Mehrfrequenz-Schlitzantennenvorrichtung
DE60115131T2 (de) Chip-Antennenelement und dieses aufweisendes Nachrichtenübertragungsgerät
DE60026276T2 (de) Antennenstruktur, Verfahren zur Kopplung eines Signals an die Antennenstruktur, Antenneneinheit und Mobilstation mit einer derartigen Antennenstruktur
DE102005040499B4 (de) Oberflächenmontierte Antenne und diese verwendende Antennenvorrichtung sowie Drahtloskommunikationsvorrichtung
DE60018258T2 (de) Antenne und Armbanduhr-Funkempfänger mit einer derartigen Antenne
DE19983824B4 (de) Oberflächenstückantenne für mehrere Bänder
DE60010099T2 (de) Halbeingebaute gedruckte multibandantenne
EP1195845B1 (fr) Antenne radioélectrique miniaturisée
DE60118449T2 (de) Oberflächenmontierte Antenne und Kommunikationsvorrichtung mit einer derartigen Antenne
DE60216670T2 (de) Antenne
EP1204160B1 (fr) Antenne hyperfréquence multibandes
DE69718548T2 (de) Integrierte filterkonstruktion
WO2004027924A1 (fr) Appareil de telephonie mobile a debit d&#39;absorption specifique reduit
DE10204877A1 (de) Funkkommunikationsgerät sowie Leiterplatine mit mindestens einem stromleitfähigen Korrekturelement
JPWO2008146932A1 (ja) アンテナ
DE60128700T2 (de) Drahtloses funkgerät
DE60318813T2 (de) Kompakte Diversity-Antenne
DE19836952A1 (de) Sende- und Empfangsvorrichtung
DE10113349A1 (de) Antenne mit Substrat und Leiterbahnstruktur
DE60208731T2 (de) Eingebaute Mehrband-Planarantenne mit Inverted-L-Haupt- und Parasitär- Antennenelementen
DE10210341A1 (de) Mehrband-Mikrowellenantenne
DE19722506A1 (de) Funkgerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 01Q 9/04 A, 7H 01Q 1/24 B, 7H 01Q 13/24 B

17P Request for examination filed

Effective date: 20020716

AKX Designation fees paid

Free format text: DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

17Q First examination report despatched

Effective date: 20020823

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59907706

Country of ref document: DE

Date of ref document: 20031218

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040106

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040813

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20061218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061231

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070208

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061227

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071209