EP1012513A1 - Dispositif de production combinee electricite-chaleur destine a l'alimentation en energie - Google Patents

Dispositif de production combinee electricite-chaleur destine a l'alimentation en energie

Info

Publication number
EP1012513A1
EP1012513A1 EP98952574A EP98952574A EP1012513A1 EP 1012513 A1 EP1012513 A1 EP 1012513A1 EP 98952574 A EP98952574 A EP 98952574A EP 98952574 A EP98952574 A EP 98952574A EP 1012513 A1 EP1012513 A1 EP 1012513A1
Authority
EP
European Patent Office
Prior art keywords
heat
cooling
heating
hot
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98952574A
Other languages
German (de)
English (en)
Inventor
Jörg HARTAN
Ingo Gatzke
Ralph Bahke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VNG Verbuhdbetz Gas AG
Original Assignee
VNG Verbuhdbetz Gas AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VNG Verbuhdbetz Gas AG filed Critical VNG Verbuhdbetz Gas AG
Publication of EP1012513A1 publication Critical patent/EP1012513A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/30Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/70Electric generators driven by internal combustion engines [ICE]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/13Small-scale CHP systems characterised by their heat recovery units characterised by their heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/17Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2105/00Constructional aspects of small-scale CHP systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2105/00Constructional aspects of small-scale CHP systems
    • F24D2105/10Sound insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/02Photovoltaic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/18Flue gas recuperation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/22Ventilation air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/26Internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the energy supply unit according to DE 42 03 491 AI has no equipment for air conditioning the building and for the recovery of heat from the exhaust air. Renewable energies are not used.
  • a similar heating and power generation system for converting primary energy and ambient heat into electrical energy and useful heat is proposed by DE-OS 40 06 742 AI.
  • the centerpiece of the system is a boiler operated with a burner and a Stirling engine which can be heated with the same burner and which drives a generator and a heat pump.
  • the generator is preferably a linear generator which can be electrically connected to the drive motor of a heat pump, to the public power grid or to other consumers via a corresponding control. With the help of the heat pump, thermal energy is also recovered from the ambient heat and made available for heating purposes.
  • This solution does not provide for a subsystem for the air conditioning of buildings and facilities and for the recovery of thermal energy from the air conditioning systems.
  • a combined system for the generation of electrical energy using the waste heat from the domestic power generation for a room heating is known from DE 44 34 831 AI.
  • the electrical energy is generated with a gas engine generator arrangement, a heat exchanger operating as a heat source being connected to the gas engine generator arrangement via a waste heat recovery pipeline.
  • a heat transfer medium is heated in the source-side heat exchanger and the steam thus formed is fed to the heat exchangers for space heating.
  • the liquefied steam then flows back into the source-side heat exchanger of the gas engine-generator arrangement after its heat energy has been released.
  • an absorption cooling device is also provided, which is integrated in a circulating pipeline.
  • the circulating pipeline is filled with a heating medium subjected to gas-liquid phase changes. Heat exchangers, which are used to cool building floors, are connected to this circulation pipe.
  • the disadvantage of this device is that the system does not provide any means of using renewable energies.
  • a proposal for integrating solar collectors into a heating system that is operated with fossil primary energies is known from DE 26 91 774.
  • the proposed heating system is also equipped with a liquid heat storage and with heat pumps in order to achieve the highest possible efficient use of the heat generated by solar and primary energy.
  • the thermal energy generated by the solar collectors is used in this system as far as possible only for heating purposes. This system does not provide for further use of solar energy, for example in seasons when the sun is not so strong, and the use of further renewable energies.
  • the object is achieved by the features specified in claim 1.
  • Advantageous developments of the invention result from claims 2 to 10.
  • the invention is therefore not an addition or extension to known combined heat and power systems, but rather a new, completely independent and environmentally friendly solution that is extremely economical. In its entirety, it combines the complex functionalities of heating, power generation, hot water generation and cooling with efficient use of regenerative environmental energy.
  • the number of operating hours of the internal combustion engine can be designed with appropriate dimensioning of the overall system in such a way that, with proper maintenance, the longest possible service life is easily achieved with standard machines.
  • the integration of the heat pump system even makes it possible to use an inexpensive air-cooled fuel machine for this application, since the cylinder and housing waste heat can be usefully coupled into the storage system.
  • the system according to the invention which is equipped with a temperature and dew point-based control, ensures the highest possible utilization of regenerative energies through the use of an efficient, electronic control.
  • the runtime of the combined heat and power facilities and the consumption of primary energy can be reduced to a minimum as a result of energy storage.
  • the heat generated in the internal combustion engine which is used in conjunction with a generator to generate electrical energy and is used to drive the heat pump, is fed to the hot or cold storage at a different thermal level via the cooling system of the internal combustion engine.
  • part of the residual heat is extracted from the exhaust gases, the cooling water and the engine oil of the internal combustion engine at a relatively high thermal level and coupled in for further charging of the heat accumulator.
  • the internal combustion engine-generator unit is thermally encapsulated in a soundproof and heat-insulated housing.
  • the waste heat generated in the housing is injected into the cold store by an air-water heat exchanger at a thermally low level and can therefore also be used. These energies serve as a source for the heat pump.
  • the invention thus ensures almost complete use of the waste heat from the system, which corresponds to the combined heat and power (CHP) principle, including the use of the condensing effect.
  • CHP combined heat and power
  • a heat exchanger for the utilization of the waste water heat and during the winter operation also the solar collectors are connected on the primary side are used with the heat pump, which connects the hot storage tank with the cold storage tank, thermal energy from the environment, which has a relatively low level, and with a higher thermal level in the hot storage tank for the preparation of hot water for heating and for hot domestic water fed.
  • the use of the heat pump increases the effectiveness of the combined heat and power device according to the invention to the extent that more usable heat and electrical energy is provided than the primary energy used.
  • the primary energy used for heating, air conditioning (cooling), for generating electrical energy and for hot domestic water, in the present exemplary embodiment preferably natural gas, is supplied in a manner known per se to an internal combustion engine 1, for example a gas engine or a turbine that drives a generator 2 for generating electrical energy.
  • Internal combustion engine 1 and generator 2 are housed in a sound and heat insulated housing 36, which with a supply for supply and exhaust air 37; 38 is equipped for cooling purposes.
  • the house network 34 for the electrical power supply and the public e-network are connected via the e-network connection 32.
  • the connection to the public E-network is made with the interposition of meter units 15 for the supply and for the recovery / supply of electrical energy.
  • the generator 2 is preferably designed as an asynchronous machine which is rigidly connected to the internal combustion engine 1.
  • This variant offers the advantage that the generator is used as a drive to start the internal combustion engine 1 and, at the same time, complex network synchronizations can be dispensed with.
  • a so-called soft start circuit may be necessary for generators with high output.
  • the use of synchronous or direct current generators is of course possible and, among other things. then makes sense if an island operating mode of the electrical energy supply system is desired.
  • the internal combustion engine 1 runs up at the nominal speed of the motor in accordance with the mains frequency present.
  • the generator 2 is over-synchronized and current is fed into the connected network.
  • the load on the internal combustion engine can be regulated by measuring the power in such a way that the generator works with its specified nominal power. This condition forms the nominal operating point for the generation of electrical energy and waste heat.
  • the energy is supplied directly by the generator 2 and does not have to be charged from the public e-network.
  • the running time of the device for generating electrical energy can be controlled so that it always works when the electrical energy consumption in the building or in the public network is given.
  • the alternating current generated by the generator 2 is rectified in a photovoltaic system 16 and delivered to a battery system integrated in the system 16, in which the electrical energy is stored.
  • the electrical energy stored in this way for self-consumption is fed into the house network 34 by the inverter as AC voltage via the E-grid connection 33 and the switching device 40.
  • the photovoltaic system 16 is connected to the public electric network.
  • the solar panels included in the photovoltaic system 16 supplement the use with regenerative energy in a known manner.
  • an additional cold storage device 6 is part of the combined heat and power device according to the invention.
  • This cold storage 6 serves on the one hand as a heat supplier for the evaporator of the heat pump 3 in the heating mode during winter operation and as a cooling supplier in the cooling mode when air conditioning the buildings in summer mode.
  • the solar collectors 13, the condensing condenser 42 and the cooling system 10 of the internal combustion engine 1 and generator 2 are connected to the cold store 6, which is connected to the hot store 4 via the heat pump 3, on the primary side by means of the lines 5.
  • a heat exchanger for utilizing the waste heat from the exhaust air recooling 27 of the building is also connected to the cold store 6. All of the aforementioned modules deliver heat energy with a relatively lower thermal level to the cold store 6, which forms the heat energy source for the heat pump 3.
  • the cold store 6 there is a heat exchanger in the cold store 6 with a waste water waste heat recovery 20, which naturally has a waste water connection 19 and an overflow 31 for the sewer system, and via the valve 11 for the selectable changeover to summer and winter operation with the underfloor heating 28 and the heating / Heatsinks 29 connected to the building.
  • the cold store 6 is also advantageously equipped with a connection 7 for an additional cooling circuit.
  • the exhaust system of the internal combustion engine 1 and the solar collectors 13 are connected on the primary side for charging it with thermal energy through the connecting lines 8.
  • the oil cooler of the internal combustion engine 1 with connecting lines gen 8 connected and thus directly coupled to the hot storage 4.
  • the condenser of the heat pump 3 serves as a further heat source for the hot store 4.
  • An alternative heat generation device in the form of a conventional gas burner 39 (redundancy) supplements the system according to the invention.
  • the flow 21 of the heating installations is connected on the secondary side to the cold storage 6 for the air conditioning of the rooms, to which the recooling 27 for heat recovery from the exhaust air of the building is connected in winter operation.
  • the changeover to summer and winter operation is carried out with the help of the changeover valves 11; 12 and the valves 41, 42 and 43 are realized, all of which are controlled with the aid of the electronic control unit 9.
  • a gas burner 39 is provided as an alternative heat generating device in the exhaust line of the internal combustion engine 1, which has an exhaust gas flow switch 35 for summer and winter operation, which in connection with exhaust gas heat exchanger 24 for charging the hot storage tank 4 directly via the connecting lines 8 is connected to this.
  • the outside temperature-controlled regulation of the heating flow 21 takes place in a special way via the mixer 18 connected to the hot storage 4 on the secondary side operated with several connection points. These are the hot water connection on the input side from the upper area of the hot storage 4, the hot water connection from the central area of the hot storage 4 and the return 14 of the heating system and on the output side the flow 21 of the heating system.
  • the electronic control unit 9 is used to automatically switch between the input lines for regulating the flow temperature.
  • the heating / cooling flow 21 is operated in the middle storage area in connection with the cooler return 14. If the setpoint of the outside temperature-controlled control is above the temperature in the storage medium area, the admixture from the return 14 is interrupted.
  • the admixture then takes place from the upper area of the hot storage 4 with hot water.
  • This special arrangement of the input streams for the mixer 18 minimizes the consumption of hot water and thus greatly reduces the system start-ups for recharging the hot storage tank 4. This effect directly benefits the life of the internal combustion engine 1.
  • the return 14 of the heating installation is fed to the hot storage 4 at the lowest point and in this way supports the thermal stratification in the storage 4 a preheater 26 is arranged for heating the incoming fresh air of the ventilation system.
  • Heat exchangers are provided within the hot storage tank 4, by means of which the hot service water in the lower part of the hot storage tank 4, which, as described above, is preferably designed as a stratified storage tank, is preheated. This on the one hand supports the desired cooling of the hot storage 4 in this storage area and at the same time minimizes the heat removal in the upper, hot storage area.
  • a downstream simple thermal mixer 30 is used to set the desired end temperature of the treated hot water.
  • a major advantage of the combined heat and power device according to the invention is that the proposed system can be used effectively for heating purposes and for air conditioning / cooling of the buildings and facilities in the cold seasons without additional equipment or changes in the system.
  • the medium (water) located in the cold store 6 is cooled down to approximately 0 ° C. using the heat pump 3.
  • This cold water is via switch valves 11; 12 for the cooling operation in summer and for heating operation in winter, fed to the mixer 18 and mixed to a temperature just above the dew point of the air in the rooms to be cooled and via the cooling / heating surfaces 29 and, if appropriate, the underfloor heating systems 28 to the corresponding rooms Cooling supplied.
  • the existing heating system thus cools the rooms without requiring additional system-related expenses.
  • the solar collectors 13 integrated in the device according to the invention fulfill two tasks. Due to the direct connection of the solar collectors 13 to the hot storage tank 4, the solar energy in summer operation is used directly for the treatment of hot service water and, if necessary, for the treatment of warm water for heating purposes. This arrangement corresponds to the well-known classic application of solar systems in a temperature range above 50 ° C.
  • the solar energy is generally no longer sufficient to heat the heat transfer medium of the solar collectors 13 to the desired temperature level of over 50 ° C.
  • the collectors are therefore only used to a limited extent in the winter period.
  • collector flow temperatures of the solar collectors 13 of substantially less than 50 ° C. can be used efficiently all year round by the relatively low temperature level of the solar collectors 13 during the colder season and the even colder heat transfer medium in the cold store 6 is supplied via a heat exchanger.
  • heat is transported from the environment into the cold store 6 at a relatively low temperature level.
  • the heat pump 3 uses this heat energy raised to a usable thermal level of about 50 ° C and fed to the hot storage 4, as already described.
  • the device according to the invention differs fundamentally from known plants and systems and at the same time minimizes the plant-side effort by consistently using the solar collectors 13 in both summer and winter.
  • the changeover to summer and winter operation is in turn carried out with the aid of the changeover valves 22; 23 made.
  • E mains connection E-mains connection house connection flue gas flow switchover housing supply air exhaust air gas burner switchover valve condensing condenser valve valve connecting cable

Abstract

L'invention concerne un dispositif de production combinée électricité-chaleur destiné au chauffage, au refroidissement et à l'alimentation en énergie électrique de bâtiments et d'installations. Ce dispositif de production comprend un moteur à combustion interne (1), un générateur (2) et un accumulateur de chaleur (4) auquel est affecté un accumulateur de froid (6). Ces deux accumulateurs (4, 6) sont reliés par l'intermédiaire d'une pompe à chaleur (3), l'accumulateur de froid (6) servant de source de chaleur pour la pompe à chaleur (3). Les modules de l'installation, qui produisent de l'énergie thermique d'un niveau thermique relativement élevé, sont reliés à l'accumulateur de chaleur (4) tandis que les modules qui fournissent de l'énergie thermique d'un niveau thermique relativement bas sont reliés à l'accumulateur de froid (6).
EP98952574A 1997-09-09 1998-09-09 Dispositif de production combinee electricite-chaleur destine a l'alimentation en energie Withdrawn EP1012513A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19740398A DE19740398C2 (de) 1997-09-09 1997-09-09 Kraft-Wärme-gekoppelte Einrichtung zur Energieversorgung
DE19740398 1997-09-09
PCT/DE1998/002756 WO1999013276A1 (fr) 1997-09-09 1998-09-09 Dispositif de production combinee electricite-chaleur destine a l'alimentation en energie

Publications (1)

Publication Number Publication Date
EP1012513A1 true EP1012513A1 (fr) 2000-06-28

Family

ID=7842317

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98952574A Withdrawn EP1012513A1 (fr) 1997-09-09 1998-09-09 Dispositif de production combinee electricite-chaleur destine a l'alimentation en energie

Country Status (4)

Country Link
EP (1) EP1012513A1 (fr)
AU (1) AU1022299A (fr)
DE (1) DE19740398C2 (fr)
WO (1) WO1999013276A1 (fr)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19940465A1 (de) * 1999-08-26 2001-04-12 Gesalfina Ag Kraft-Wärme-Kälte-Kopplungsverfahren und Kraftwerkeinrichtung zur Durchführung des Verfahrens
FR2805033B1 (fr) * 2000-02-16 2002-06-21 Michel Paquot Centrale thermodynamique de production centralisee d'eau chaude et d'eau glacee
WO2002015365A2 (fr) * 2000-08-11 2002-02-21 Nisource Energy Technologies Systeme de gestion d'energie et procedes permettant d'optimiser la generation d'energie distribuee
ES2172472B1 (es) * 2001-02-22 2003-06-16 Univ Vigo Grupo autonomo termo-electrico con motor termico, generador electrico, bomba de calor y recuperacion, acumulacion y distribucion de energia.
GB0208335D0 (en) * 2002-04-11 2002-05-22 Young Robert L An automomous unit for supplying energy
GB0228105D0 (en) * 2002-12-03 2003-01-08 Thomason John A Method and apparatus for conserving heat
KR100550575B1 (ko) * 2004-08-17 2006-02-10 엘지전자 주식회사 제습기를 갖는 발전 공조 시스템
DE102004041785A1 (de) * 2004-08-21 2006-02-23 Gast, Karl Heinz, Dipl.-Ing. (FH) Verfahren und Einrichtung zum Betreiben von Systemen mit Aggregatzustand wechselnden Medien
EP1693625B1 (fr) * 2005-01-21 2008-09-10 C.R.F. Società Consortile per Azioni Un système modulaire pour la production d'énergie
DE102006028521A1 (de) * 2006-06-21 2007-12-27 Iff Kollmannsberger Kg Heizanlage und Verfahren zum Betreiben einer solchen Heizanlage
KR101270615B1 (ko) * 2006-07-25 2013-06-07 엘지전자 주식회사 코제너레이션 및 그 제어 방법
KR20080015264A (ko) * 2006-08-14 2008-02-19 엘지전자 주식회사 코제너레이션
CN101055121B (zh) * 2007-05-31 2010-05-19 上海交通大学 微型分布式太阳能驱动冷热电联供系统
DE202007011546U1 (de) * 2007-08-17 2009-01-02 Kroll, Markus Temperiereinrichtung auf Wärmepumpenbasis
DE102007044681A1 (de) * 2007-09-19 2009-04-09 Joerg Rix Solarbetriebene Wärmeanlage
DE102007063141A1 (de) 2007-12-26 2009-07-02 Schwieger Piper Wichmann GbR (vertretungsberechtigter Gesellschafter: John Piper, 31311 Uetze Heizungsvorrichtung zum Beheizen eines Gebäudes mittels einer von einer Verbrennungskraftmaschine angetriebenen Wärmepumpe
DE202008013091U1 (de) * 2008-10-06 2009-01-02 Geppert, Henri Kälte-Wärme-Kopplungsanlage
DE102009010420B4 (de) 2009-02-26 2016-03-24 Schwieger Piper Wichmann GbR (vertretungsberechtigter Gesellschafter: Dr.Hartwig Schwieger, 29227 Celle) Heizungsvorrichtung zum Beheizen eines Gebäudes mittels einer Verbrennungskraftmaschine
KR101199687B1 (ko) * 2009-10-01 2012-11-08 주식회사 경동나비엔 소형 열병합 발전 시스템의 운전방법
EP2550487B1 (fr) * 2010-03-22 2014-07-09 VNG - Verbundnetz Gas AG Procédé et installation de préparation d'eau chaude
DE102010015254A1 (de) * 2010-04-15 2011-10-20 Stefan Wluka Einrichtung mit einem Verbrennungsmotor, einem Stromgenerator und einem Heizgerät
NL2004629C2 (nl) * 2010-04-29 2011-11-01 Gasterra B V Werkwijze voor het aanpassen van een centrale-verwarming systeem, alsmede een centrale-verwarming systeem.
NL2004970C2 (nl) * 2010-06-25 2011-12-28 Gasterra B V Centrale verwarmingsysteem, alsmede werkwijze voor het verwarmen van ten minste een ruimte.
DE102010039922A1 (de) * 2010-08-30 2012-03-01 Evelin Sommer Thermodynamische Einheit zur Verbesserung der Effizienz von Blockheizkraftwerken
DE102010044122A1 (de) * 2010-11-18 2012-05-24 BSH Bosch und Siemens Hausgeräte GmbH Wärmepumpe zur Warmwasserbereitung
CH705028B1 (de) * 2011-05-27 2016-10-14 Vaillant Gmbh Anlage zur Kraft-Wärme-Kopplung mit kombinierten Wärmespeichern.
CH705372B1 (de) * 2011-08-02 2015-06-15 Ws Projektentwicklungs Ag Kompaktanlage zur Bereitstellung von Wärmeenergie an einen Verbraucher mit einem Heizsystem.
JP2014190617A (ja) * 2013-03-27 2014-10-06 Aisin Seiki Co Ltd 温水供給装置
DE102013106603A1 (de) 2013-06-25 2015-01-08 Helene Meinecke Verfahren und Anordnung zur Wärme- und Stromerzeugung
DE102014207540A1 (de) * 2014-04-22 2015-10-22 Vaillant Gmbh Heizgerät mit Wärmepumpe
DE202014105186U1 (de) * 2014-10-29 2014-11-13 Josef Reiter Heizungsanlage
DE102015009086B4 (de) 2015-07-17 2017-10-19 Cta Anlagenbau Dienstleistungs Gmbh Verfahren und Vorrichtung zum Betreiben eines Mini/Mikro-Blockheizkraftwerkes für Einfamilienhäuser
EP3327361A1 (fr) * 2016-11-28 2018-05-30 International Solar Energy Research Center Konstanz E.V. Centrale de cogénération et son procédé de fonctionnement
GB2559114A (en) * 2016-12-20 2018-08-01 Encora Tech Limited A dynamically adaptive combined heat and power system and method thereof
DE102017006550A1 (de) * 2017-07-11 2019-01-17 Thomas Noll HVACC-Anlage zum Heizen, Lüften, Klimatisieren und zur zentralen Kältemittelversorgung für ein Gebäude
SK8540Y1 (sk) * 2018-01-18 2019-09-03 Heloro S R O Spôsob a systém chladenia pri výrobe tepla spaľovaním
IT201900006975A1 (it) * 2019-05-17 2020-11-17 Bb Eng S R L S Unipersonale Impianto di cogenerazione migliorato
DE102020103082A1 (de) 2020-02-06 2021-08-12 Wolfgang Jaske und Dr. Peter Wolf GbR (vertretungsberechtigter Gesellschafter: Wolfgang Jaske, 49811 Lingen; Dr. Peter Wolf, 26209 Hatten) Verfahren und Vorrichtung zur Bereitstellung und Speicherung eines Wärmeträgers mit wenigstens drei Temperaturniveaus für ein Wärmenetz
US20230280046A1 (en) * 2020-07-28 2023-09-07 Actionzero Escopod Limited An energy system for supply of hot water
DE102021107698A1 (de) * 2021-03-26 2022-09-29 Peter Hulin-Bischof Niedertemperatur-Wärmenetz

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2530503C2 (de) * 1975-07-09 1986-06-19 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Wärmepumpenanlage
JPS5540367Y2 (fr) 1975-11-19 1980-09-20
DE2619744C2 (de) * 1976-05-05 1982-05-19 Robert Bosch Gmbh, 7000 Stuttgart Anlage zum Beheizen eines Gebäudes und zur Warmwasserbereitung
DE3027085A1 (de) * 1980-07-17 1982-02-11 Adolf H. 7322 Donzdorf Borst Anlage zur gewinnung von biogas
US4309877A (en) * 1980-09-08 1982-01-12 Co-Gen, Inc. Total energy system including means for utilizing supplementary heats
DE3116624C2 (de) * 1981-04-27 1985-08-29 Daimler-Benz Ag, 7000 Stuttgart Energieversorgungssystem für Wärme und Elektrizität
NL8105368A (nl) * 1981-11-27 1983-06-16 Schulte & Lestraden Bv Systeem voor het opwekken en gebruiken van energie.
WO1983002820A1 (fr) * 1982-02-03 1983-08-18 Söllner, Robert Dispositif de chauffage ou de refroidissement
GB8902662D0 (en) * 1989-02-07 1989-03-30 Ridett Alan H Improvements in or relating to buildings
DE3912114A1 (de) * 1989-04-13 1989-11-30 Ekkehard Dipl Ing Bretting Sonderblockheizkraftwerk
DE4006742A1 (de) * 1990-03-03 1991-09-05 Messerschmitt Boelkow Blohm Heizungs- und stromerzeugungsanlage
DE4102636C2 (de) * 1991-01-30 1994-05-11 Dieter Creon Energieversorgungsanlage mit einem Verbrennungsmotor und einem Generator
DE4203491A1 (de) * 1992-02-07 1993-08-12 Honeywell Regelsysteme Gmbh Energieversorgungseinheit
US5607013A (en) * 1994-01-27 1997-03-04 Takenaka Corporation Cogeneration system
DE4407595A1 (de) * 1994-03-08 1995-09-14 Adolf Dipl Ing Michel Energieblock
DE19607125A1 (de) * 1995-11-20 1997-05-22 Eder Christian Dipl Betriebsw Verfahren zur Vollversorgung von Gebäudekomplexen mit Strom, Hoch- und Niedertemperaturwärme, Kühl- und Tiefkühlkälte mit einem Motorheizkraftwerk, mit Absorbern, FCKW-freier Kälteverteilung, Abtaueinrichtung auf NT-Wärmebasis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9913276A1 *

Also Published As

Publication number Publication date
DE19740398A1 (de) 1999-03-11
AU1022299A (en) 1999-03-29
WO1999013276A1 (fr) 1999-03-18
DE19740398C2 (de) 1999-12-02

Similar Documents

Publication Publication Date Title
WO1999013276A1 (fr) Dispositif de production combinee electricite-chaleur destine a l'alimentation en energie
DE19535752A1 (de) Steuerverfahren und Anordnung für ein unabhängiges Energieversorgungssystem
EP0445510A2 (fr) Installation de chauffage et de génération de courant
AT12844U1 (de) Verfahren zum Betreiben einer stationären Kraftanlage mit wenigstens einer Brennkraftmaschine
EP0008680A2 (fr) Procédé de production d'énergie thermique en combinant une unité de puissance thermique avec une pompe à chaleur
WO2009077163A2 (fr) Système de chauffage producteur de courant
EP2299098B1 (fr) Installation pour alimentation en énergie thermique
DE10133733A1 (de) Kraft-Wärme-Kopplungssystem
WO2010075598A2 (fr) Procédé et installation pour la trigénération héliothermique de courant, de chaleur et de froid
DE102006040147B4 (de) Hausenergieversorgungsanlage
DE10003186A1 (de) Verfahren und Vorrichtung zur Strom- und Wärmeerzeugung
EP0940637B1 (fr) Installation de production d'énergie compacte
DE202005009663U1 (de) Blockheizkraftwerk
DE102011014531B4 (de) Verfahren zur Integration elektrischer Wärmepumpen in die Warmwasser- und Heizwärmeversorgung
DE202006018520U1 (de) Klimaanlage plus (Solar) erneuerbare Energien als elektrischer Strom- und Wärmegenerator und Speicher
DE202008001386U1 (de) Heizanlage durch Anordnung eines Verbrennungsmotors mit Generator und Luft-Wasser Wärmepumpe
DE3736676A1 (de) Verfahren zur deckung des bedarfes an strom und waerme von wohnhaeusern und kleinbetrieben
DE4321574A1 (de) Verfahren und Anordnung zur Erzeugung von Wärmeenergie für Zentralheizungs- und Fernwärmeanlagen unter Verwendung von Prozeßabwärme oder Umweltwärme
WO2011134784A2 (fr) Système de couplage pour une installation à énergie hybride
DE10233230A1 (de) 1. Leistungsgesteigerte Wärmepumpe 2. Gekoppelte Wärmepumpe-Expansionsmaschine 3. Vollmodulierte Wärmepumpe 4. Kombination 2.+3. / s. Tag-Nacht-Speicherung
Campanari et al. The combination of SOFC and microturbine for civil and industrial cogeneration
DE2612058A1 (de) Fernwaermeanlage
DE102007027572A1 (de) Temperatur-Differenz betriebener Stromgenerator = TDSG
DE3413772A1 (de) Einrichtung zur energieversorgung von gebaeuden unter nutzung der sonnenergie als energiequelle
DE202014003951U1 (de) Energieversorgungseinrichtung für Wärmepumpen und/oder Klimageräte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DK ES FI FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20020726

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021206