EP1008212B1 - Direktes hochleistungslaserdiodensystem mit hoher effizienz und zugehörende verfahren - Google Patents

Direktes hochleistungslaserdiodensystem mit hoher effizienz und zugehörende verfahren Download PDF

Info

Publication number
EP1008212B1
EP1008212B1 EP97945210A EP97945210A EP1008212B1 EP 1008212 B1 EP1008212 B1 EP 1008212B1 EP 97945210 A EP97945210 A EP 97945210A EP 97945210 A EP97945210 A EP 97945210A EP 1008212 B1 EP1008212 B1 EP 1008212B1
Authority
EP
European Patent Office
Prior art keywords
laser beams
laser
beams
output
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97945210A
Other languages
English (en)
French (fr)
Other versions
EP1008212A4 (de
EP1008212A1 (de
Inventor
Mark S. Zediker
Robert R. Rice
John M. Haake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
McDonnell Douglas Corp
Original Assignee
McDonnell Douglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by McDonnell Douglas Corp filed Critical McDonnell Douglas Corp
Publication of EP1008212A1 publication Critical patent/EP1008212A1/de
Publication of EP1008212A4 publication Critical patent/EP1008212A4/de
Application granted granted Critical
Publication of EP1008212B1 publication Critical patent/EP1008212B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Definitions

  • the present invention relates generally to diode laser array systems. More specifically, the present invention relates to high efficiency, high power direct diode laser systems.
  • high power coherent laser systems find applications in such diverse fields as offensive and defensive weapon systems, e.g., non-visible light illuminators for special operation forces and protective laser grids, as well as material processing, e.g., welding, cutting, heat treating and ablating, and medicine, e.g., surgical and diagnostic aides.
  • offensive and defensive weapon systems e.g., non-visible light illuminators for special operation forces and protective laser grids
  • material processing e.g., welding, cutting, heat treating and ablating
  • medicine e.g., surgical and diagnostic aides.
  • Fig. 1 illustrates a one-dimensional semiconductor laser array 10 according to U.S. Patent No. 5,212,707, which is mounted on a heatsink 12.
  • the semiconductor laser array 10 has an associated lens assembly 22, 24 for collimating the laser array's output, which is positioned adjacent to the emitting facet of the semiconductor laser array 10.
  • Lens assembly 22, 24 is attached to the ears 25 of the heatsink 12.
  • the emitters 20 of the array 10 are supplied with power from an external power supply via wires 18, a standoff pad 16 and a power lead 14.
  • the semiconductor laser array 10 shown in Fig.1 includes ten individual emitters 20; and number of emitters 20 may be employed as determined by the requirements of the particular application.
  • the lens assembly as shown in Fig. 1, which is designed to collimate the output of the semiconductor laser array 10, includes a first refractive lens 22, typically of a biconvex design, and a second binary optical element 24, which is essentially a diffractive lens.
  • the refractive biconvex lens 22 collimates the fast axis of each emitter 20 while the binary optical element 24 serves to collimate the slow axis of each emitter 20 and correct all spherical aberrations including those introduced by the collimation performed by the refractive lens 22.
  • the binary optical element 24 includes a substrate on which a binary optical diffraction pattern 26 is etched.
  • the materials of the refractive lens 22 and the binary optical element 24 have substantially equivalent refractive indices such that minimal refraction occurs at the interface between the refractive lens 22 and the binary optical element 24.
  • the binary optical element 24 has a back surface 27 positioned adjacent to the front surface 28 of the refractive lens 24 and a front surface 28 on which the binary optic diffraction pattern 26 is etched. Since the binary optical diffraction pattern 26 is produced in accordance with typical binary optic technology, as well known to those of ordinary skill in the art (See U.S. Patent No. 4,846,552.), further discussion of this technology will not be provided.
  • the binary optic diffraction pattern 26 is typically an eight phase level structure (although a two, four, or sixteen-phase level structure could also be utilized) which corrects for optical path differences inherent in the divergent output light of an emitter of a semiconductor laser array.
  • the rays of light which exit the binary optic element 24 will have all travelled equal optical pathlengths, defined as a physical pathlength multiplied by the index of refraction of the material through which the light rays travelled which are equal or varied from that equal optical pathlength by only an integer multiple of the wavelength of the light being emitted.
  • An eight level binary optic diffractive pattern 26 is shown schematically in Fig. 1.
  • a two-dimensional semiconductor laser array can be fabricated from a plurality of the one-dimensional semiconductor laser arrays 10 shown in Fig. 1.
  • the one-dimensional semiconductor laser arrays 10 are stacked as shown in Fig. 2 within a heatsink which serves as a holding or clamping fixture 70.
  • the clamping fixture 70 is designed such that the one-dimensional semiconductor laser arrays 10 may be stacked on top of one another so that the outputs of each one-dimensional semiconductor laser array are substantially parallel to the outputs of the other semiconductor laser arrays.
  • the collimating lenses are aligned and attached.
  • the fabrication of the collimating lenses is done in a manner identical to that previously discussed such that the refractive lens 22 is cemented to the binary optical element 24 which has been designed to collimate the laser output of each emitter 20.
  • the alignment and attachment of the collimating lenses is accomplished in a sequential fashion for optimum efficiency.
  • the collimating lenses 80a associated with the first one-dimensional semiconductor laser array 10a are positioned as previously described such that the optical axes of each emitter 20 of the semiconductor laser array 10 are substantially aligned with the center of the collimating lens assembly 80a.
  • the second collimating lens assembly 80b is then placed in front of a second one-dimensional semiconductor laser array 10b and is held in position by means of a vacuum chuck 76 connected by a vacuum line to a vacuum source, as shown in Fig. 3.
  • the two-dimensional semiconductor laser array 10 is then supplied power such that the emitters 20 produce a light output.
  • a transform lens 72 is positioned within the path of the light emitted from the first and second one-dimensional semiconductor laser arrays.
  • the transform lens 72 may be a plano-convex or a biconvex lens, as shown in Fig. 3, such that a simulated far field will appear at the focal plane of the transform lens 72 when the input light to the transform lens 72 is collimated.
  • a line scan detector 74 is positioned at the focal plane. The output of the line scan detector is monitored to determine if proper collimation has been achieved.
  • the position of the second collimating lens assembly 80b is varied until proper collimation is observed at the focal plane of the transform lens. Once proper collimation is observed, the position of the second collimating lens assembly 80b is preserved by fixing the lens assembly in position in the ears 25 of the clamping fixture 70. An identical alignment procedure is done for each lens assembly and its corresponding one-dimensional semiconductor laser array 10, until the lens assembly for each semiconductor laser array 10 has been properly aligned such that the light is collimated and focused at the simulated far field.
  • the two-dimensional laser array when properly supplied with power produces a single collimated spot of laser output in the far field.
  • the output power of the two-dimensional semiconductor laser array may be quite high. For example, 25 watts of continuous wave laser energy was produced by a two-dimensional semiconductor laser array consisting of twelve one-dimensional semiconductor laser arrays with each one-dimensional semiconductor laser array having twenty one emitters. Additionally, the overall efficiency of the laser array from electrical input to power in the central lobe was approximately 26%.
  • U.S. Patent No. 5,299,222 discloses an alternative approach to producing a high power laser diode system that collects and concentrates laser output from a stack of diode laser bars in a form that is useful and flexible for pumping a laser, e.g., a solid state laser.
  • a laser e.g., a solid state laser.
  • the light beam output of stacked diode laser bars is coupled into a plurality of optical fibers.
  • the output light beams from the fibers may be used to pump a laser resonator.
  • the fibers can be grouped at various end points of a solid-state laser cavity for efficient end-pumping.
  • a light beam 11 is emitted by a plurality of diode laser bars in a diode laser bar stack 13, and light from a selected group of the bars is collected by one of a plurality of cylindrical lenses 15 positioned adjacent to but spaced apart from each diode bar in the stack 13.
  • Each diode laser bar may have an aspect ratio (length-to-width) as high as 10,000:1, or even higher, and the cylindrical lenses 15 are interposed to reduce the beam divergence angle in a first direction, relative to the beam divergence angle in a second, perpendicular direction, so that the resulting beam divergence angle in each of the two directions is roughly the same.
  • Two or more turning mirrors 17A, 17B, 17C and 17D separate mutually exclusive portions of the light beam 11 into non-overlapping light beam components 19A, 19B, 19C and 19D, respectively, and at least one pump light beam component, such as 19E, is optionally defined by a portion of the light beam 11 that does not encounter a turning mirror.
  • Each light beam component 19A, 19B, 19C, 19D and 19E is then focussed by suitable focusing optics 21A, 21B, 21C, 21D and 21E, respectively, into a corresponding multimode optical fiber 23A, 23B, 23C, 23D and 23E, respectively, with the diameters of the fibers being chosen to fully capture the optical beam intended for that fiber.
  • each optical fiber has a diameter of about 500 ⁇ m, but this fiber diameter may be as large as a few mm.
  • the numerical aperture NA of the multimode fiber 23j lies in the range 0.15-0.3 but may be as high as 0.6.
  • Each optical fiber 23j delivers the component pump light beam propagating therein to a selected position and with a selected angular orientation relative to the laser cavity to be pumped by this collection of component pump light beams.
  • Each optical fiber 23j is provided with an anti-reflective coating at the diode laser wavelength P, and the coating is either applied directly to the fiber end or to a separate glass window that is bonded to the light-receiving end of that fiber.
  • the core material of the fiber 23j may be glass, and the cladding material of the fiber may be glass or plastic, with a smaller refractive index than the core refractive index, which determines by the numerical aperture of the fiber in a manner well known in the art.
  • An object according to the present invention is to provide a direct diode laser system generating a high fluence level at a workpiece.
  • the invention is defined in claim 1.
  • Another object according to the present invention is to provide a direct diode laser system which generates a high power laser beam.
  • the high power laser beam can be focused onto a single spot for interaction with a workpiece.
  • the high power laser beam may be directed into one end of a solid state laser.
  • a still further object of the present invention is to provide a direct diode laser system which generates a high fluence level at a workpiece using dichroic coupling of multiple frequency collimated laser beams.
  • all of the collimated laser beams can be generated using laser diode arrays.
  • Yet another object of the present invention is to provide a direct diode laser system which generates a high fluence level at a workpiece using both dichroic and polarization coupling of multiple frequency collimated laser beams.
  • all of the collimated laser beams can be generated using laser diode arrays.
  • An additional object of the present invention is to provide a direct diode laser system which generates a high fluence level at a workpiece by simultaneously coupling thousands of collimated laser diode outputs into a single fiber via a single lens.
  • Another object of the present invention is to provide a direct diode laser system which generates a linearly scalable high power level output.
  • a direct diode laser system which includes N laser head assemblies (LHAs) generating N output beams, N optical fibers receiving respective ones of the N output beams and generating N received output beams, and a torch head recollimating and focusing the N received output beams onto a single spot.
  • LHAs laser head assemblies
  • each of the laser head assemblies of the direct diode laser system includes M modules generating M laser beams, wherein each of the M laser beams has a corresponding single wavelength of light, M-1 dichroic filters, wherein each of the M-1 dichroic filter transmits a corresponding one wavelength of the M laser beams and reflects all other wavelengths of the M laser beams, and a fiber coupling device collecting the M laser beams to produce a respective one of the N output beams.
  • a direct diode laser system including N laser head assemblies (LHAs) generating N output beams, wherein each of the N laser head assemblies includes M first modules generating M first laser beams, wherein each of the M first laser beams has a corresponding single wavelength of light, M-1 first dichroic filters defining a first optical waveguide for directing all of the M first laser beams into a first optical path, wherein each of the M-1 first dichroic filters transmits a corresponding one of the M first laser beams having a respective wavelength and reflects all other wavelengths of the M first laser beams, a fiber coupling device disposed adjacent to the first optical path for collecting the M first laser beams to produce a respective one of the N output beams, N optical fibers receiving respective N output beams and generating N received output beams, and a torch head recollimating and focusing the N received output beams on a single spot.
  • LHAs laser head assemblies
  • a method for generating a high energy laser beam including steps for:
  • Fig. 5 is a high level block diagram of the high efficiency, high power direct diode laser system (DLS) 1 according to alternate preferred embodiments of the present invention.
  • the DLS 1 includes a power supply 100 providing power to both a controller 200 and N laser head assembly (LHA) controllers generally denoted 300.
  • N laser head assemblies (LHAs) generally denoted 400 receive the output power of the LHA controllers 300, respectively, and provide N optical output laser beams to a torch head 500 via N optical fibers.
  • the torch head 500 advantageously can be augmented by a laser head 510 ( See Fig. 9.), and, thus, the alternative designation in Fig. 5.
  • the number N of LHA controllers 300 and LHA's 400 can be varied as required to provide a desired output power of the DLS 1.
  • 4 LHA controllers 300A, 300B, 300C and 300N providing electrical power to 4 LHAs 400A, 400B, 400C and 400N, respectively, are included in the DLS 1.
  • the block diagram of Fig. 5 illustrates a DLS 1, in which the optical output laser beams of 4 LHAs 400, each producing 800 watts of power, are combined to deliver over 3200 watts of cw power to a single focusing lens. As discussed in greater detail below with respect to Fig.
  • each respective LHA 400 advantageously can be fiber coupled and at the distal end of each fiber (approximately 1 mm diameter) they can be recollimated.
  • the 4 collimated laser sources, i.e. , the 4 output optical beams preferably are collected by a single lens, which focuses the 3200 watts of total power onto a single point. It will be appreciated that this latter technique is commonly used in industrial laser systems to increase fluence on the work piece.
  • the power supply provides DC power to controller 200 and LHA controllers 300.
  • controller 200 acts as a master controller with respect to the N LHA controllers 300, which act as slave controllers.
  • N LHA controllers 300 controls and varies the output optical beam of the respective LHA 400, as discussed in greater detail below.
  • Fig. 6 is an intermediate level block diagram showing additional details of the LHA 400 and torch head 500 components illustrated in Fig. 5.
  • each of the N LHAs 400 includes M diode laser modules 410, of which the output beams of M/2 modules and combined with the output beams of the other M/2 modules 410 using polarization combiner 450.
  • the combined output beam of each of the N polarization combiners 450 is provided to torch head 500 via fiber coupling optics 460 and a respective optical fiber 470.
  • M diode laser modules 410 are disposed on a support plate or optic bed in groups of M/2 modules 410, the left and right groups of modules 410 being disposed on opposite sides of a polarization combiner (polarizer) 450.
  • the output beams of the left set of M/2 modules 410 are combined using (M/2)-1 dichroic filters 420 and directed to the reflecting surface of polarizer 450.
  • the output beams of the right set of M/2 modules 410 are combined using an additional (M/2)-1 dichroic filters 420 and directed to the transmitting surface of polarizer 450 via waveplate 440.
  • Polarizer 450 combines the left and right sets of M/2 laser beams produced by the left and right M/2 module sets in a manner well known to those of ordinary skill in the art.
  • fiber coupling optics may include a relay mirror 462, a transform lens 464 and a fiber coupler 466, arranged in that order along the optical path of the LHA 400.
  • polarizer 450 and the relay mirror 463 provide 2 axis adjustment while the transform lens 464 provides 5 axis adjustment.
  • waveplate 440 produces polarization rotation of the output beams of the right group of M/2 modules.
  • each of the left and right sets of modules 410 produce output beams each having a different single wavelength, the wavelength separation between the output beams being only dependent on the quality of the dichroic filters used in the DLS 1. (M/2)-1 of the modules 410 are disposed behind a respective optical bandpass filter 420 which transmits only the output beam from that module and reflects all other wavelengths of light. Since the module is mechanically independent of the associated dichroic filter 420, the dichroic filters 420 can be aligned separately from the modules 410. After all of the modules 410 are combined in wavelength, then the broadband polarizer 450 is used to combine the output beams from the opposing groups of M/2 modules 410 into a single high brightness beam.
  • each module 410 in one of the left and right groups of modules 410 produces laser light at a single selected wavelength.
  • the selected wavelength corresponds to the bandpass wavelength of one of the dichroic filters 420.
  • the selected wavelength preferably is within the range of approximately 450 nm to 2.5 ⁇ m, and the selected wavelengths preferably all fall within the 760-1050 nm range, with the range of 800-980 nm being most preferable for the exemplary case illustrated in Fig. 7.
  • the minimum differential wavelength for any two of the modules 410 is approximately 10 nm, which corresponds to the minimum band pass of the dichroic filters 420 available using present technology.
  • the number M of modules 410 in each LHA 400 is 20 for each 100 nm in bandwidth of the output of torch head 500 when both dichroic filters 420 and polarizer 450 are employed and 10 for each 100 nm in bandwidth when only dichroic filters 420 are employed.
  • the number M of modules can be increased as the passband of each of the dichroic filters 420 decreases.
  • dichroic filters 420 advantageously can be low, high or band pass filters.
  • the wavelengths produced by the modules 410 advantageously can be selected to facilitate use of the DLS 1.
  • a single one of the modules 410 can produce a wavelength in the visible portion of the spectrum so as to provide a guide beam for reasons of safety.
  • Each of the modules 410 advantageously can be constructed as shown in Fig. 8, wherein a plurality of laser diode arrays 414 are supported by a heatsink 412 within a case 418.
  • 3 or more tilt correcting mirrors 416 are used to combine the outputs of the laser diode arrays 414 into a highly collimated output beam.
  • each module 410 advantageously includes P laser diodes. It will be appreciated that the only significant limit on the number P is the number of laser diodes which can be effectively cooled.
  • modules 410 while similar to those disclosed in U.S. Patent No. 5,212,707 in some respects, are significantly different in a number of other respects.
  • the modules described in U.S. Patent No. 5,212,707 were actually fabricated and tested as part of a 100 watt fiber coupled system that was sold by the assignee in 1993. While these modules produced highly collimated laser diode arrays, there have since been several new developments in technology that have enabled the modules 410 to be enhanced vis-a-vis those disclosed in U.S. Patent No. 5,212,707.
  • the basic emitters used in the patent were index guided devices, i.e., rib lasers.
  • the modules 410 according to the present invention advantageously can be gain guided structures, in particular, 20 micron wide oxide defined stripes. While the laser diode array 414 does not produce the same divergence as the index guided structures described in U.S. Patent No. 5,212,707, they do produce significantly higher output power levels. Moreover, the additional improvements that have developed since the '707 patent was issued include:
  • the module 410 illustrated in Fig. 8 includes pointing mirrors 416 in the basic module structure. These pointing mirrors are used to direct the output beam exiting the module 410 through the optical path illustrated in Fig. 7 and into the optical fiber 470.
  • the pointing mirrors 416 provide the fine adjustments required to achieve a high coupling efficiency to the optical fiber 470.
  • the first commercial systems according to U.S. Patent No. 5,212,707 provided 100 watt output power by polarization coupling two of the laser diode arrays shown in Figs. 2 and 3. This approach to intramodule coupling was discarded in favor of the module configuration shown in Fig. 8, which advantageously decreases the overall size of module 410 while increasing fluence at the workpiece.
  • Another improvement to the basic design of the modules 410 is the use of stackable microchannnel coolers to increase the packing density of the laser diodes and consequently reduce the overall size of the system.
  • cooling systems such as that disclosed in U.S. Patent No. 5,495,490, can be used.
  • a preferred embodiment of the torch head 500 includes N collimating lenses 504, which receive output beams from optical fibers 470 via N fiber outputs 502 and which, in conjunction with transform lens 506, focus the N output beams onto a single spot.
  • the output of MxNxP laser diodes are focused onto a single spot by torch head 500.
  • the output of the LHAs 400 can be combined to end pump a solid state laser rod 510 using an identical or similar structure as that shown in Fig. 9.
  • the number of collimating lenses in torch head 500 is N, the number of LHAs 400.
  • the laser rod 510 advantageously can be replaced by either a rare-earth doped optical fiber or a dye laser, i. e., any laser amplifying medium can be serially coupled to head 500.
  • the DLS 1 shown in Fig. 5 is for an exemplary case in which the output beams of four LHAs 400 are combined to deliver over 3200 watts of cw power to a single focusing lens 506. It should be noted that the output beam of each LHA 400 is produced by dichroic and polarization combining of the outputs of twelve modules 410.
  • the output power of the DLS 1 can be varied in a number of ways.
  • the number N of LHAs 400 can be varied. For example, doubling the number N of LHAs 400 would double the combined power of the output beams.
  • the number M of modules 410 and corresponding dichroic filters could be varied to vary the output power level. In an exemplary case, reducing the number M from 12 to 6 would halve the output power of that particular LHA 400.
  • the output power of the DLS 1 can advantageously be varied by controlling either the number MxN of system modules 410 energized or by controlling the excitation power level to some portion of the MxN modules 410.
  • the output power can be adjusted by uniformly adjusting the excitation current to the MxN modules 410, it will be appreciated that control at the upper and lower limits of system power may be difficult. For that reason, selected portions of the MxN modules may be controlled while the remainder of the MxN modules 410 may be either on or off, depending on the desired system output power. It should also be recognized that the output power of the selected MxN modules 410 may be varied in accordance with excitation current in a cw operating mode or may be varied in accordance with duty cycle in a pulsed operating mode.
  • the output of each respective module is fiber coupled to an optical fiber 470.
  • the transform lens 464 focuses and couples the entire output beam of LHA 400 into fiber 470.
  • the sine of the convergence angle as the light beam arrives at the light-receiving end of the fiber 470 is less than the numerical aperture NA of that fiber.
  • the NA of the fiber 470 is less than 0.47.
  • the NA of the fiber 470 is ⁇ 0.19 and, most preferably, the NA of the optical power is ⁇ 0.16.
  • the fiber coupling lens 464 is a lens designed specifically for focusing the collection of beams from the wide wavelength band system ofLHA 400 into the optical fiber 470.
  • the number of modules 410 shown in the exemplary case illustrated in Fig. 7 was chosen to meet the optical power budget required at the fiber output and is entirely dependent on the quality of the optics used. As discussed previously, the only criteria is that the system produce 800 watts out of the fiber and be contained within a 0.16 NA.
  • Another key application for this technology will be as an optical pump for solid state lasers, as discussed above, based on rare earth elements.
  • This configuration facilitates excellent end pumping of a solid state laser rod, rare-earth doped fiber or dye laser.
  • this configuration has proven to be the most efficient means yet devised for converting incoherent laser diode pump light into a high quality, high brightness beam.

Claims (21)

  1. Diodenlasersystem umfassend:
    N Laserkopfanordnungen (LHAs) (400), welche N Ausgangsstrahlen erzeugen, wobei jede der N LHAs aufweist:
    - M Module (410), welche M Laserstrahlen erzeugen, wobei jeder der M Laserstrahlen eine einzige unterschiedliche Wellenlänge aufweist;
    - M-2 dichroitische Filter (420), wobei jedes der M-2 dichroitischen Filter einen entsprechenden der M Laserstrahlen durchlässt und alle anderen der M Laserstrahlen reflektiert;
    - eine Faserkopplungsvorrichtung (460), welche die M Laserstrahlen sammelt, um einen entsprechenden der N Ausgangsstrahlen zu erzeugen;
    - N optische Fasern (470), welche entsprechende der N Ausgangsstrahlen aufnehmen und N aufgenommene Ausgangsstrahlen erzeugen; und
    - eine optische Anordnung (504, 506), welche die N empfangenen Ausgangsstrahlen auf einen einzigen Punkt wieder kollimiert und fokussiert,
    - wobei N und M beide Integer ≥ 2 sind.
  2. Diodenlasersystem nach Anspruch 1, weiter N LHA-Steuerungen (300) umfassend, welche die Ausgangsleistung, die von einer entsprechenden der N LHAs erzeugt wird, steuern.
  3. Diodenlasersystem nach Anspruch 1, weiter eine LHA-Steuerung (200) umfassend, welche die Ausgangsleistung, die von allen der N LHAs erzeugt wird, steuert.
  4. Diodelasersystem nach Anspruch 1, wobei die optische Anordnung umfasst:
    - N Kollimationslinsen (504), um entsprechende der N Ausgangsstrahlen wieder zu kollimieren; und
    - eine einzige Transformationslinse (506), welche die wieder kollimierten N Ausgangsstrahlen auf den einzigen Punkt fokussiert.
  5. Diodenlasersystem nach Anspruch 4, wobei der einzige Punkt mit einem Ende eines Festkörperlaserstabs korrespondiert.
  6. Diodenlasersystem nach Anspruch 4, wobei der einzige Punkt mit einem Ende einer Seltenerde dotierten optischen Faser korrespondiert.
  7. Diodenlasersystem nach Anspruch 1, wobei jede der LHAs umfasst:
    - M/2 erste Module (410), welche M/2 erste Laserstrahlen erzeugen, wobei jeder der M/2 ersten Laserstrahlen eine einzige entsprechende Wellenlänge aufweist;
    - (M/2)-1 dichroitische erste Filter (420), wobei jedes der (M/2)-1 dichroitischen ersten Filter einen entsprechenden der M/2 ersten Laserstrahlen durchlässt und alle anderen der M/2 ersten Laserstrahlen reflektiert;
    - M/2 zweite Module (410), welche M/2 zweite Laserstrahlen erzeugen, wobei jeder der M/2 zweiten Laserstrahlen eine einzige entsprechende Wellenlänge aufweist;
    - (M/2)-1 dichroitische zweite Filter (420), wobei jedes der (M/2)-1 dichroitischen zweiten Filter eine entsprechende der M/2 zweiten Laserstrahlen durchlässt und alle anderen der M/2 zweiten Laserstrahlen reflektiert;
    - ein Polarisationsfilter (450), welches die ersten und zweiten M/2 Laserstrahlen koppelt, um dadurch M polarisationsgekoppelte Laserstrahlen zu erzeugen; und
    - eine Faserkopplungsvorrichtung (466), um die M polarisationsgekoppelten Laserstrahlen zu sammeln, um einen entsprechenden der N Ausgangsstrahlen zu erzeugen.
  8. Diodenlasersystem nach Anspruch 1, wobei jedes der M-2 dichroitischen Filter den entsprechenden der M Laserstrahlen bandpassfiltert und alle anderen der M Laserstrahlen reflektiert.
  9. Diodenlasersystem nach einem der Ansprüche 1-8, wobei jede der N LHAs aufweist:
    - (M/2)-1 erste dichroitische Filter (420), welche einen ersten optischen Hohlleiter definieren, um alle der M ersten Laserstrahlen in einen ersten optischen Pfad zu leiten, wobei jedes der (M/2)-1 ersten dichroitischen Filter (420) einen entsprechenden der M ersten Laserstrahlen durchlässt und alle anderen der M ersten Laserstrahlen reflektiert;
    - wobei die Faserkopplungsvorrichtung (466) benachbart zu dem ersten optischen Pfad angeordnet ist, wobei N und M beide Integer ≥ 2 sind.
  10. Diodenlasersystem nach Anspruch 9, wobei der einzige Punkt mit einem Ende eines Laserverstärkungsmediums korrespondiert.
  11. Diodenlasersystem nach Anspruch 9, wobei jede der LHAs weiter umfasst:
    - (M/2) zweite Module (410), welche M zweite Laserstrahlen erzeugen, wobei jeder der M zweiten Laserstrahlen eine einzige unterschiedliche Wellenlänge aufweist;
    - (M/2)-1 zweite dichroitische Filter (420), welche einen zweiten optischen Hohlleiter definieren, um alle der M zweiten Laserstrahlen in einen zweiten optischen Pfad zu leiten, wobei jedes der (M/2)-1 zweiten dichroitischen Filter (420) einen entsprechenden der M zweiten Laserstrahlen durchlässt und alle anderen der M zweiten Laserstrahlen reflektiert;
    - ein Drehelement (440), um die Polarisation der M zweiten Laserstrahlen zu drehen; und
    - ein Polarisationsfilter (450), welches sich an der Schnittstelle des ersten und zweiten optischen Pfades befindet und welches die M ersten und M zweiten Laserstrahlen in den zweiten optischen Pfad koppelt, um dadurch 2M polarisationsgekoppelte Laserstrahlen zu erzeugen;
    - wobei die Faserkopplungsvorrichtung (466) die 2M polarisationsgekoppelten Laserstrahlen sammelt, um einen entsprechenden der N Ausgangsstrahlen zu erzeugen.
  12. Diodenlasersystem nach Anspruch 9, wobei die Faserkopplungsvorrichtung eine Transformationslinse (464) umfasst, welche die M ersten Laserstrahlen aufnimmt und mit einem der N optischen Fasern koppelt, um dadurch einen entsprechenden der N Ausgangsstrahlen zu erzeugen.
  13. Diodenlasersystem nach Anspruch 1, weiter umfassend:
    - Mittel um N Laserstrahlen zu erzeugen, wobei jeder der N Laserstrahlen mehrere Lichtwellenlängen aufweist und wobei die Erzeugungsmittel umfassen:
    - (M/2) erste Mittel (410), um M erste Laserstrahlen zu erzeugen, wobei jeder der M ersten Laserstrahlen eine einzige unterschiedliche Wellenlänge aufweist;
    - (M/2)-1 erste Filtermittel (420), welche einen ersten optischen Hohlleiter definieren, um alle der M ersten Laserstrahlen in einen ersten optischen Pfad zu leiten, wobei jedes der (M/2)-1 ersten Filtermittel (420) einen entsprechenden der M ersten Laserstrahlen durchlässt und alle anderen der M ersten Laserstrahlen reflektiert;
    - wobei N und M beide Integer ≥ 2 sind.
  14. Diodenlasersystem nach Anspruch 13, wobei die optische Anordnung umfasst:
    - N Kollimationslinsen (504), um die N×M Laserstrahlen wieder zu kollimieren; und
    - eine einzelne Transformationslinse (506), welche die wieder kollimierten N×M Laserstrahlen auf den einzelnen Punkt fokusiert.
  15. Diodenlasersystem Anspruch 13, wobei der einzelne Punkt mit einem Ende eines Farbstofflasers korrespondiert.
  16. Diodenlasersystem nach Anspruch 13, wobei die Erzeugungsmittel weiter umfassen:
    - (M/2) zweite Mittel (410), um M zweite Laserstrahlen zu erzeugen, wobei jeder der M zweiten Laserstrahlen eine einzige unterschiedliche Wellenlänge aufweist;
    - (M/2)-1 zweite Filtermittel (420), welche einen zweiten optischen Hohlleiter definieren, um alle der M zweiten Laserstrahlen in einen zweiten optischen Pfad zu leiten, wobei jedes der (M/2)-1 zweiten Filtermittel (420) einen entsprechenden der M zweiten Laserstrahlen durchlässt und alle anderen der M zweiten Laserstrahlen reflektiert;
    - Drehmittel (440), um die Polarisationen der M zweiten Laserstrahlen zu drehen; und
    - Polarisationsmittel (450), welche sich an der Schnittstelle des ersten und zweiten Pfades befinden, um die M ersten und M zweiten Laserstrahlen in den zweiten optischen Pfad zu koppeln, um dadurch 2M polarisationsgekoppelte Laserstrahlen zu erzeugen;
    - wobei die Faserkopplungsmittel die 2M polarisationsgekoppelten Laserstrahlen sammeln, um einen entsprechenden der N Laserstrahlen zu erzeugen.
  17. Diodenlasersystem nach Anspruch 16, wobei die Faserkopplungsvorrichtung eine Transformationslinse umfasst, um die 2M polarisationsgekoppelten Laserstrahlen aufzunehmen und mit einem der N optischen Fasermitteln zu koppeln, um dadurch einen entsprechenden der N Ausgangsstrahlen zu erzeugen.
  18. Verfahren zum Erzeugen eines Energielaserstrahles, umfassend:
    - (a) Erzeugen von P kollimierten Laserstrahlen mit einer M-ten Wellenlänge;
    - (b) Wiederholen des Schrittes (a) M-mal, um so MxP kollimierte Laserstrahlen mit M unterschiedlichen Wellenlängen zu erzeugen;
    - (c) Koppeln der M×P kollimierten Laserstrahlen in einen optischen Pfad (470);
    - (d) Koppeln der M×P kollimierten Laserstrahlen in eine i-te optische Faser, um dadurch einen entsprechenden i-ten Ausgangslaserstrahl zu erzeugen, wobei i von 1 bis N läuft;
    - (e) Wiederholen der Schritte (a) bis (d) N-mal, um dadurch N Ausgangslaserstrahlen zu erzeugen;
    - (f) wieder Kollimieren der N Ausgangsstrahlen, um N wieder kollimierte Laserstrahlen zu erzeugen; und
    - (g) Fokussieren der N wieder kollimierten Laserstrahlen auf einen einzigen Punkt,
    - wobei M, N und P jeweils Integer ≥ 2 sind.
  19. Verfahren nach Anspruch 18, wobei der Schritt (c) ein dichroitisches Koppeln der MxP kollimierten Laserstrahlen in den optischen Pfad umfasst.
  20. Verfahren nach Anspruch 18, wobei der Schritt (c) ein dichroitisches Koppeln und Polarisationskoppeln der MxP kollimierten Laserstrahlen in den optischen Pfad umfasst.
  21. Verfahren nach Anspruch 18, wobei der Schritt (c) ein Polarisationskoppeln der MxP kollimierten Laserstrahlen in den optischen Pfad umfasst.
EP97945210A 1996-09-27 1997-09-16 Direktes hochleistungslaserdiodensystem mit hoher effizienz und zugehörende verfahren Expired - Lifetime EP1008212B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US722619 1996-09-27
US08/722,619 US5715270A (en) 1996-09-27 1996-09-27 High efficiency, high power direct diode laser systems and methods therefor
PCT/US1997/016445 WO1998013910A1 (en) 1996-09-27 1997-09-16 High efficiency, high power direct diode laser systems and methods therefor

Publications (3)

Publication Number Publication Date
EP1008212A1 EP1008212A1 (de) 2000-06-14
EP1008212A4 EP1008212A4 (de) 2001-02-28
EP1008212B1 true EP1008212B1 (de) 2006-06-14

Family

ID=24902626

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97945210A Expired - Lifetime EP1008212B1 (de) 1996-09-27 1997-09-16 Direktes hochleistungslaserdiodensystem mit hoher effizienz und zugehörende verfahren

Country Status (6)

Country Link
US (2) US5715270A (de)
EP (1) EP1008212B1 (de)
JP (1) JP2001501777A (de)
AU (1) AU4646197A (de)
DE (1) DE69736133T2 (de)
WO (1) WO1998013910A1 (de)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5988862A (en) * 1996-04-24 1999-11-23 Cyra Technologies, Inc. Integrated system for quickly and accurately imaging and modeling three dimensional objects
US5715270A (en) 1996-09-27 1998-02-03 Mcdonnell Douglas Corporation High efficiency, high power direct diode laser systems and methods therefor
US6331692B1 (en) * 1996-10-12 2001-12-18 Volker Krause Diode laser, laser optics, device for laser treatment of a workpiece, process for a laser treatment of workpiece
AU772542B2 (en) * 1998-11-12 2004-04-29 University Of Sydney, The Diode array side-pumping of a laser system
AUPP717098A0 (en) * 1998-11-12 1998-12-10 University Of Sydney, The Diode array side-pumping of waveguides
US6229940B1 (en) 1998-11-30 2001-05-08 Mcdonnell Douglas Corporation Incoherent fiber optic laser system
US6266359B1 (en) * 1999-09-02 2001-07-24 Alphamicron, Inc. Splicing asymmetric reflective array for combining high power laser beams
US7027475B1 (en) * 2000-04-11 2006-04-11 Nuvonyx, Inc. Tailored index single mode optical amplifiers and devices and systems including same
US6451152B1 (en) 2000-05-24 2002-09-17 The Boeing Company Method for heating and controlling temperature of composite material during automated placement
US6724794B2 (en) * 2001-06-29 2004-04-20 Xanoptix, Inc. Opto-electronic device integration
US6753199B2 (en) 2001-06-29 2004-06-22 Xanoptix, Inc. Topside active optical device apparatus and method
US6633421B2 (en) 2001-06-29 2003-10-14 Xanoptrix, Inc. Integrated arrays of modulators and lasers on electronics
US6753197B2 (en) 2001-06-29 2004-06-22 Xanoptix, Inc. Opto-electronic device integration
US6775308B2 (en) 2001-06-29 2004-08-10 Xanoptix, Inc. Multi-wavelength semiconductor laser arrays and applications thereof
US6790691B2 (en) 2001-06-29 2004-09-14 Xanoptix, Inc. Opto-electronic device integration
US7831151B2 (en) * 2001-06-29 2010-11-09 John Trezza Redundant optical device array
US6731665B2 (en) * 2001-06-29 2004-05-04 Xanoptix Inc. Laser arrays for high power fiber amplifier pumps
CN100552685C (zh) * 2001-11-17 2009-10-21 株式会社Insstek 使用激光包层和激光辅助的直接金属制造工艺中的图像成像和图像处理技术实时监测和控制淀积高度的方法和系统
CN101694582B (zh) * 2001-11-17 2012-04-18 株式会社Insstek 实时监测和控制淀积高度的方法和系统
US6987240B2 (en) * 2002-04-18 2006-01-17 Applied Materials, Inc. Thermal flux processing by scanning
ES2378067T3 (es) 2002-05-08 2012-04-04 Phoseon Technology, Inc. Fuente de luz de estado sólido de alta eficacia y métodos de uso y fabricación
WO2006072071A2 (en) * 2004-12-30 2006-07-06 Phoseon Technology Inc. Methods and systems relating to light sources for use in industrial processes
FI116010B (fi) * 2002-05-22 2005-08-31 Cavitar Oy Menetelmä ja laserlaite suuren optisen tehotiheyden tuottamiseksi
US6965469B2 (en) 2002-11-20 2005-11-15 The Boeing Company Fiber amplifier having a non-doped inner core and at least one doped gain region
JP2005005511A (ja) * 2003-06-12 2005-01-06 Fanuc Ltd 半導体レーザ装置
US7819550B2 (en) * 2003-10-31 2010-10-26 Phoseon Technology, Inc. Collection optics for led array with offset hemispherical or faceted surfaces
WO2005043954A2 (en) * 2003-10-31 2005-05-12 Phoseon Technology, Inc. Series wiring of highly reliable light sources
US7046703B2 (en) * 2003-12-18 2006-05-16 The Boeing Company Bessel free electron laser device
EP1735844B1 (de) * 2004-03-18 2019-06-19 Phoseon Technology, Inc. Verwendung eines hochdichten leuchtdioden-arrays mit mikro-reflektoren für aushärtungsverfahren
WO2005094390A2 (en) 2004-03-30 2005-10-13 Phoseon Technology, Inc. Led array having array-based led detectors
WO2005101535A2 (en) * 2004-04-12 2005-10-27 Phoseon Technology, Inc. High density led array
TWI302756B (en) 2004-04-19 2008-11-01 Phoseon Technology Inc Imaging semiconductor structures using solid state illumination
DE102004040107A1 (de) * 2004-08-18 2006-02-23 Arctos Showlasertechnik E.Kfm. Laservorrichtung zur Erzeugung eines roten Laserstrahls
DK1953881T3 (da) 2004-08-18 2010-09-06 Arctos Showlasertechnik E K Laseranordning til frembringelse af en laserstråle
US20060269687A1 (en) * 2005-05-31 2006-11-30 Federal-Mogul World Wide, Inc. Selective area fusing of a slurry coating using a laser
US7881355B2 (en) * 2005-12-15 2011-02-01 Mind Melters, Inc. System and method for generating intense laser light from laser diode arrays
US7642527B2 (en) * 2005-12-30 2010-01-05 Phoseon Technology, Inc. Multi-attribute light effects for use in curing and other applications involving photoreactions and processing
US7458358B2 (en) * 2006-05-10 2008-12-02 Federal Mogul World Wide, Inc. Thermal oxidation protective surface for steel pistons
DE102007002498A1 (de) * 2006-07-24 2008-01-31 Arctos Showlasertechnik E.Kfm. Vorrichtung und Verfahren zur Erzeugung von Laserstrahlen
US20080117944A1 (en) * 2006-11-16 2008-05-22 Nlight Photonics Corporation Diode laser ramping power supply
US7710639B2 (en) * 2006-12-12 2010-05-04 Northrop Grumman Space & Mission Systems Corporation System and method for uniform illumination of a target area
US20080234670A1 (en) * 2007-03-15 2008-09-25 Rogers C Brian System and apparatus providing a controlled light source for medicinal applications
DE102007045845A1 (de) * 2007-09-26 2009-04-09 Arctos Showlasertechnik E.Kfm. Laservorrichtung
US7760776B2 (en) * 2007-11-02 2010-07-20 Glen Ivan Redford Scalable, reconfigurable, laser combiner
US9063289B1 (en) 2008-06-30 2015-06-23 Nlight Photonics Corporation Multimode fiber combiners
US9285541B2 (en) 2008-08-21 2016-03-15 Nlight Photonics Corporation UV-green converting fiber laser using active tapers
US8873134B2 (en) 2008-08-21 2014-10-28 Nlight Photonics Corporation Hybrid laser amplifier system including active taper
US9158070B2 (en) 2008-08-21 2015-10-13 Nlight Photonics Corporation Active tapers with reduced nonlinearity
US9494738B1 (en) 2009-05-28 2016-11-15 Nlight, Inc. Single mode fiber combiners
US8660156B2 (en) * 2009-09-03 2014-02-25 Lawrence Livermore National Security, Llc Method and system for powering and cooling semiconductor lasers
US9484706B1 (en) 2012-06-12 2016-11-01 Nlight, Inc. Tapered core fiber manufacturing methods
US8896827B2 (en) 2012-06-26 2014-11-25 Kla-Tencor Corporation Diode laser based broad band light sources for wafer inspection tools
US9343868B2 (en) 2012-08-28 2016-05-17 Optical Engines Inc. Efficient generation of intense laser light from multiple laser light sources using misaligned collimating optical elements
WO2014105757A1 (en) 2012-12-31 2014-07-03 Nlight Photonics Corporation All fiber low dynamic pointing high power lma fiber amplifier
WO2014105756A1 (en) 2012-12-31 2014-07-03 Nlight Photonics Corporation Spatially stable high brightness fiber
JP6334682B2 (ja) 2013-04-29 2018-05-30 ヌブル インク 三次元プリンティングのための装置、システムおよび方法
WO2015130920A1 (en) 2014-02-26 2015-09-03 Bien Chann Systems and methods for multiple-beam laser arrangements with variable beam parameter product
EP3207602A4 (de) * 2014-10-15 2018-06-20 Lumentum Operations LLC Lasersystem und verfahren zur einstellung der ausgangsleistung des lasersystems
US10754165B2 (en) 2014-11-07 2020-08-25 PhotonX TherapeutX, Inc. High efficiency optical combiner for multiple non-coherent light sources
US9853416B2 (en) 2016-01-11 2017-12-26 Alcatel-Lucent Usa Inc. Multimode vertical-cavity surface-emitting laser
US10075257B2 (en) 2016-01-11 2018-09-11 Nokia Of America Corporation Optical spatial division multiplexing usable at short reach
CN106785898A (zh) * 2017-02-20 2017-05-31 广东工业大学 一种半导体激光器光纤耦合系统
DE102020118421B4 (de) * 2020-07-13 2023-08-03 Focuslight Technologies Inc. Laservorrichtung
JPWO2022064938A1 (de) * 2020-09-28 2022-03-31

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2258751B1 (de) * 1974-01-18 1978-12-08 Thomson Csf
JPS54103055A (en) 1978-01-31 1979-08-14 Nippon Telegr & Teleph Corp <Ntt> Spectrometer
US4823357A (en) * 1986-11-10 1989-04-18 The United States Of America As Represented By The Secretary Of The Air Force Diffraction limited dichroic combiner diode laser
US5048911A (en) * 1988-11-15 1991-09-17 Universiti Malaya Coupling of multiple laser beams to a single optical fiber
US4933688A (en) * 1989-01-03 1990-06-12 Eastman Kodak Company Laser printer having uniform circumferential laser placement
JPH0485978A (ja) * 1990-07-30 1992-03-18 Sony Corp 端面励起型固体レーザー発振器
JPH04255280A (ja) * 1991-02-07 1992-09-10 Nippon Steel Corp 半導体レーザ励起固体レーザ装置
JPH055817A (ja) 1991-06-28 1993-01-14 Nec Corp 半導体レーザモジユール
JP3325279B2 (ja) 1991-07-31 2002-09-17 東京エレクトロン株式会社 超高純度ガス供給系配管の溶接方法
US5212707A (en) * 1991-12-06 1993-05-18 Mcdonnell Douglas Corporation Array of diffraction limited lasers and method of aligning same
US5299222A (en) * 1992-03-11 1994-03-29 Lightwave Electronics Multiple diode laser stack for pumping a solid-state laser
US5586132A (en) 1994-07-27 1996-12-17 Laser Industries Ltd. Method and apparatus for generating bright light sources
US5495490A (en) * 1995-02-28 1996-02-27 Mcdonnell Douglas Corporation Immersion method and apparatus for cooling a semiconductor laser device
US5715270A (en) 1996-09-27 1998-02-03 Mcdonnell Douglas Corporation High efficiency, high power direct diode laser systems and methods therefor

Also Published As

Publication number Publication date
USRE40173E1 (en) 2008-03-25
EP1008212A4 (de) 2001-02-28
DE69736133T2 (de) 2007-01-04
US5715270A (en) 1998-02-03
DE69736133D1 (de) 2006-07-27
EP1008212A1 (de) 2000-06-14
WO1998013910A1 (en) 1998-04-02
JP2001501777A (ja) 2001-02-06
AU4646197A (en) 1998-04-17

Similar Documents

Publication Publication Date Title
EP1008212B1 (de) Direktes hochleistungslaserdiodensystem mit hoher effizienz und zugehörende verfahren
EP0515410B1 (de) Festkörper-laserdioden-lichtquelle
EP0541658B2 (de) Hochleistungs-lichtquelle
US5586132A (en) Method and apparatus for generating bright light sources
US5185758A (en) Multiple-laser pump optical system
US5081637A (en) Multiple-laser pump optical system
US7680170B2 (en) Coupling devices and methods for stacked laser emitter arrays
US20090190218A1 (en) High power and high brightness diode-laser array for material processing applications
JP2020523793A (ja) 超高密度波長ビーム結合レーザシステム
EP1972043A1 (de) System und verfahren zur erzeugung eines intensiven laserlichts aus laserdiodenarrays
EP0680620A1 (de) Hochleistungshalblederlasersystem
GB2298082A (en) Optically pumped laser in which light from pump source is split into two component beams
Treusch et al. Fiber-coupling technique for high-power diode laser arrays
Du et al. Fiber-coupling technique with micro step-mirrors for high-power diode laser bars
WO1991001056A1 (en) Segmented, fibre coupled diode laser arrays
JPH1117268A (ja) 半導体レーザーアレイ装置
JPH07287189A (ja) 光路変換器およびそれを用いたレーザ装置
US20080253419A1 (en) Diode Pumped Laser
JPH10261825A (ja) 半導体レーザ光整形光学系及び半導体レーザ励起固体レーザ装置
Leger et al. Design of Diffractive Optics for Concentration of Light From Diode Laser Arrays
JPH06268299A (ja) レーザ用励起光源
WO2001082430A1 (fr) Regle de diodes laser
AU5953290A (en) Segmented, fibre coupled diode laser arrays

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990423

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

A4 Supplementary search report drawn up and despatched

Effective date: 20010117

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20030318

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 69736133

Country of ref document: DE

Date of ref document: 20060727

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070315

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160926

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160928

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160923

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69736133

Country of ref document: DE