EP1002997B1 - Verfahren zur Luftzahlregelung eines vollvormischenden Gasbrenners - Google Patents
Verfahren zur Luftzahlregelung eines vollvormischenden Gasbrenners Download PDFInfo
- Publication number
- EP1002997B1 EP1002997B1 EP99122611A EP99122611A EP1002997B1 EP 1002997 B1 EP1002997 B1 EP 1002997B1 EP 99122611 A EP99122611 A EP 99122611A EP 99122611 A EP99122611 A EP 99122611A EP 1002997 B1 EP1002997 B1 EP 1002997B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- ionisation
- current
- air ratio
- signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/12—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
- F23N5/123—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/26—Measuring humidity
- F23N2225/30—Measuring humidity measuring lambda
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
- F23N2233/06—Ventilators at the air intake
- F23N2233/08—Ventilators at the air intake with variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N3/00—Regulating air supply or draught
- F23N3/08—Regulating air supply or draught by power-assisted systems
- F23N3/082—Regulating air supply or draught by power-assisted systems using electronic means
Definitions
- the invention relates to a method for air quantity control of a provided with a fan and with a gas control valve at least teilvormischenden, preferably vollvormischenden gas burner, being measured in the flame ionization signals using an ionization electrode, the fan speed is detected from the current ionization signal for the current air ratio representative first signal derived and this is compared with a predetermined setpoint, the fan speed in the derivative of the first signal and / or in the selection of the setpoint is taken into account, and from the comparison, a control signal for the gas control valve is derived.
- the air quantity control of gas burners is becoming more and more important in practice. With the help of air flow control, it is possible to operate gas burners in the optimum working range, in which the pollutant emissions, in particular the CO and NO x emissions are low, the thermal load of the gas burner is very uniform and both the burning behavior and the efficiency of the gas burner are optimal. It has been found that the optimum working range is between 1.15 and 1.3 for an air ratio. With a Heiliereregelung also the susceptibility of the gas burner can be reduced and a safe and quiet burner operation can be ensured.
- air-flow control is required because the composition of the fuel gas supplied by the supply network can vary greatly. Accordingly, the gas quality varies greatly, in particular the Wobbe index of the fuel gas. If the gas composition of the fuel gas changes, then the air ratio control intervenes and changes the gas supply with the aid of the gas control valve in such a way that the gas burner continues to operate at the desired air ratio.
- the air ratio can be determined with the aid of various measured variables. However, it has proved useful to determine the air ratio via the ionization signal detected with the aid of an ionization electrode (cf DE-C2-196 27 857).
- the ionization electrode provides a stable, easy to maintain and simultaneously low-priced air-fuel sensor, which can also be installed with very little effort, if it is not already available for flame monitoring anyway.
- the ionization signal allows a very reliable and accurate determination of the air ratio.
- DE-U1-296 12 014 discloses a gas burner for atmospheric premixing operation having at least two flame detection elements mounted at a different distance from the burner surface and controlling combustion with their signals via a regulator.
- the current air ratio can be determined from the ionization signal and controlled with a characteristic curve characteristic of the respective fan speed.
- a signal representative of the current air ratio can be derived, which in a specific power range is essentially independent of the burner output. This has the advantage that the air ratio over this power range can be controlled with a single characteristic.
- the representative of the current air ratio signal is compared with the setpoint for the desired air ratio setpoint of the characteristic, and from this comparison, a control signal for the gas control valve is derived.
- the object of the invention is therefore to enable in the aforementioned method, the verification of the operating state of the gas burner.
- This object is achieved in that a representative of the current burner power second signal is detected and this is compared with a predetermined value, being derived from this comparison information about the operating state of the gas burner.
- the invention is based on the finding that, if changes occur in the supply air or exhaust air system of the gas burner, the burner output set via the fan speed no longer corresponds to the actual burner output. In this case, the missing correlation between fan speed and burner power can be detected and compensated by detecting another signal representative of the current power. If the second signal representative of the current power deviates from the value specified for the set power, the gas burner does not produce the desired power.
- a service indicator will be activated.
- a shut-off mechanism can also intervene, which automatically shuts off the gas burner.
- the fan speed can be varied until the representative of the current power second signal corresponds to the predetermined value.
- the gas burner then has to be operated in consideration of the changed correlation between fan speed and firing power. In this way, a gas burner can be operated safely and with the desired performance over a long period of time.
- a development of the invention is characterized in that the first signal is used as the predetermined value for the comparison with the second signal.
- the power consumption of the fan or the temperature level of the boiler or the air mass flow is detected by the fan as a second signal.
- a particularly preferred alternative embodiment is characterized in that the second signal is derived from a current ionization signal, the second signal being representative of both the current power and the current air ratio.
- This embodiment is based on the finding that the ionization signal itself can be used to check the current power. Since the ionization signal is power-dependent, the current operating performance in a very wide power range can be checked according to customer requirements. If the second signal derived from the ionization signal and representative of the current air ratio and the current power deviates from the value specified for this air ratio and this power, the gas burner does not produce the desired power. The required steps can then be initiated.
- a development of the invention is characterized in that a signal representative of both the current power and the current air ratio is used as the first signal, wherein the first and the second signal have a different dependence on the air ratio and / or the power.
- the ionization signals themselves can be used as the first and / or second signal.
- the method according to the invention can be implemented particularly simply by measuring the current ionization signal, from which the first signal is derived, with the aid of a first supply voltage, and the current ionization signal, from which the second signal is derived, by means of a second supply voltage becomes.
- the ionization signals are measured by applying an AC voltage, preferably of 230V, to the ionization electrode.
- the polarity effect of the flame causes that only in each case a half-wave, an ionization current flows.
- the ionization signal can be obtained from a DC component of the tapped voltage derived.
- the signal is usually first applied to a low-pass filter.
- the ionization signals may be measured by applying a triangular voltage or a square wave voltage to the ionization electrode.
- the ionization signal measured to derive the signal representative of the current air ratio and the ionization signal measured to derive the signal representative of the current air ratio and current power need not be measured by applying the same voltage to the ionization electrode.
- the ionization signal for determining the signal representative of the current air number can be measured with the aid of an alternating voltage and the ionization signal for determining the signal representative of the current air number and for the current power with the aid of a triangular voltage or a rectangular voltage or vice versa.
- the ionization signals are used alternately to derive the first signal and to derive the second signal.
- the gas burner can be kept in the long term in the optimum operating range that the second signal at regular intervals, for. B. once a minute, is detected.
- reference measurements are carried out in which reference signals for different powers and different air numbers are detected and stored as a predetermined value for comparison with the second signal. If the second signal is derived from a current ionization signal, reference measurements are preferably carried out at the start of operation of the gas burner, in which detected reference ionization signals for different fan speeds and different air numbers and these are stored as a predetermined value for comparison with the second value.
- Fig. 1 shows a diagram in which the voltage of a measuring signal against the air ratio ⁇ is plotted. Six different measured signal curves are shown.
- the signal waveforms labeled Signal 1 are the signals representative of the current air ratio. These were derived from the measured at an alternating voltage of 230V ionization signal and the fan speed using a special evaluation circuit. The signals are shown for different powers. As can be seen, the curves lie almost completely on top of each other, d. H. These signals are actually power-independent.
- the signal waveforms labeled Signal 2 are the signals representative of the current air ratio and current power.
- an AC voltage of 230 V was again applied to the ionization electrode and the ionization signal then passed through a low-pass filter, bypassing the special evaluation circuit. It is noticeable that the curves, which in turn are recorded for different performances, differ greatly from one another.
- the voltage differences between the Meßsignalkurven are particularly large at a given air ratio in the lower power range.
- the air ratio control is carried out in normal operation using the superimposed signal 1 characteristics and to check the power, the AC voltage of 230V is applied to the ionization electrode and the special evaluation circuit is bypassed.
- Fig. 2 shows two diagrams in which the ionization signal is plotted against the fan speed for a second embodiment of the invention.
- the measured values shown were recorded at a constant air ratio ⁇ of 1.3.
- the ionization signals are shown at a supply voltage of the ionization electrode of 50V and 230V.
- the upper diagram shows the normal operating condition of the boiler.
- -1 is an ionization signal at a supply voltage of 50V of 109. This is the setpoint for controlling the air ratio of 1.3.
- the supply voltage of the ionization electrode is switched at regular intervals to the control voltage of 230V.
- the ionization signal is only approximately 102.
- the difference between the two signals is thus approximately 7.
- the difference between these two detected ionization signal values is in the range of 7, the operation of the gas burner is in the optimum operating range secured.
- the ionization signal can be detected by applying a voltage of any shape to the ionization electrode.
- the ionization signal can be measured by means of a DC voltage.
- the same transducer can be used to derive the signal representative of the current air ratio and the signal representative of the current air ratio and current power.
- two transducers can be assigned to the ionization electrode or even two separate ionization electrodes can be arranged in the flame region of the gas burner.
- the reference measurements can be carried out by the manufacturer before the start of operation.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Combustion (AREA)
- Regulation And Control Of Combustion (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur Luftzahlregelung eines mit einem Lüfter und mit einem Gas-Regelventil versehenen wenigstens teilvormischenden, vorzugsweise vollvormischenden Gasbrenners, wobei im Flammenbereich Ionisationssignale mit Hilfe einer Ionisations-Elektrode gemessen werden, die Lüfterdrehzahl erfasst wird, aus dem aktuellen Ionisationssignal ein für die aktuelle Luftzahl repräsentatives erstes Signal abgeleitet und dieses mit einem vorgegebenen Sollwert verglichen wird, wobei die Lüfterdrehzahl bei der Ableitung des ersten Signals und/oder bei der Auswahl des Sollwertes berücksichtigt wird, und aus dem Vergleich ein Stellsignal für das Gas-Regelventil abgeleitet wird.
- Die Luftzahlregelung von Gasbrennern nimmt in der Praxis immer stärker an Bedeutung zu. Mit Hilfe der Luftzahlregelung gelingt es, Gasbrenner im optimalen Arbeitsbereich zu betreiben, in dem die Schadstoffemissionen, insbesondere die CO- und NOx-Emissionen, gering sind, die thermische Belastung des Gasbrenners sehr gleichmäßig ist und sowohl das Brennverhalten als auch der Wirkungsgrad des Gasbrenners optimal sind. Es hat sich herausgestellt, dass der optimale Arbeitsbereich bei einer Luftzahl zwischen 1,15 und 1,3 liegt. Mit einer Luftzahlregelung kann zudem die Störanfälligkeit des Gasbrenners verringert und ein sicherer und geräuscharmer Brennerbetrieb sichergestellt werden.
- Statt einer einmaligen Luftzahleinstellung ist eine Luftzahlregelung erforderlich, da die Zusammensetzung des von dem Versorgungsnetz gelieferten Brenngases stark schwanken kann. Dementsprechend stark schwankt auch die Gasbeschaffenheit, insbesondere der Wobbeindex des Brenngases. Ändert sich die Gasbeschaffenheit des Brenngases, so greift die Luftzahlregelung ein und ändert die Gaszufuhr mit Hilfe des Gas-Regelventils derart, dass der Gasbrenner weiterhin bei der gewünschten Luftzahl arbeitet.
- Zur Luftzahlregelung kann die Luftzahl mit Hilfe von verschiedenen Messgrößen bestimmt werden. Es hat sich jedoch bewährt, die Luftzahl über das mit Hilfe einer Ionisations-Elektrode erfasste Ionisationssignal zu bestimmen (vgl. DE-C2-196 27 857). Die Ionisations-Elektrode stellt einen standfesten, leicht zu wartenden und gleichzeitig preisgünstigen Luftzahlsensor dar, der zudem mit äußerst geringem Aufwand installiert werden kann, sofern er nicht ohnehin zur Flammenüberwachung bereits vorhanden ist. Außerdem erlaubt das Ionisationssignal eine sehr zuverlässige und genaue Bestimmung der Luftzahl.
- Aus der EP-A2-0 770 824 ist ein Verfahren und zur Regelung eines Gasbrenners mit Hilfe einer lonisations-Elektrode bekannt, bei dem in Intervallen zwangsweise ein Kalibrierzyklus durchfahren wird.
- Die DE-U1-296 12 014 offenbart einen Gasbrenner für atmosphärischen vormischenden Betrieb mit mindestens zwei Flammendetektiohselementen, die in einem unterschiedlichen Abstand zur Brenneroberfläche angebracht sind und mit ihren Signalen über einen Regler die Verbrennung steuern.
- Wenn die Lüfterdrehzahl bekannt ist, kann aus dem Ionisationssignal die aktuelle Luftzahl bestimmt und mit einer für die jeweilige Lüfterdrehzahl charakteristischen Kennlinie geregelt werden.
- Alternativ kann aus dem Ionisationssignal und der Lüfterdrehzahl bei Verwendung entsprechender Auswerteschaltungen ein für die aktuelle Luftzahl repräsentatives Signal abgeleitet werden, welches in einem bestimmten Leistungsbereich im Wesentlichen unabhängig von der Brennerleistung ist. Dies hat den Vorteil, dass die Luftzahl über diesen Leistungsbereich mit einer einzigen Kennlinie geregelt werden kann. Das für die aktuelle Luftzahl repräsentative Signal wird mit dem für die gewünschte Luftzahl vorgegebenen Sollwert der Kennlinie verglichen, und aus diesem Vergleich wird ein Stellsignal für das Gas-Regelventil abgeleitet.
- Es hat sich jedoch gezeigt, dass mit der Zeit Veränderungen am Zuluft- bzw. Abluftsystem des Gasbrenners auftreten können, welche dazu führen, dass der Gasbrenner trotz der obigen Luftzahlregelung nicht mehr im optimalen Arbeitsbereich arbeitet.
- Aufgabe der Erfindung ist es daher, bei dem eingangs genannten Verfahren die Überprüfung des Betriebszustandes des Gasbrenners zu ermöglichen.
- Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass ein für die aktuelle Brennerleistung repräsentatives zweites Signal erfasst wird und dieses mit einem vorgegebenen Wert verglichen wird, wobei aus diesem Vergleich Informationen über den Betriebszustand des Gasbrenners abgeleitet werden.
- Der Erfindung liegt die Erkenntnis zugrunde, dass sofern Veränderungen am Zuluft- bzw. Abluftsystem des Gasbrenners auftreten, die über die Lüfterdrehzahl eingestellte Brennerleistung nicht mehr der tatsächlichen Brennerleistung entspricht. In diesem Fall kann die fehlende Korrelation zwischen Lüfterdrehzahl und Brennerleistung dadurch erfasst und kompensiert werden, dass ein anderes für die aktuelle Leistung repräsentatives Signal erfasst wird. Weicht das für die aktuelle Leistung repräsentative zweite Signal von dem für die eingestellte Leistung vorgegebenen Wert ab, erbringt der Gasbrenner nicht die gewünschte Leistung.
- In diesem Fall kann z. B., wenn die Abweichung einen vorgegebenen Schwellwert überschreitet, eine Wartungsanzeige aktiviert werden. Bei einer besonders großen Abweichung kann ferner ein Abschaltmechanismus eingreifen, welcher den Gasbrenner automatisch abschaltet. Alternativ kann die Lüfterdrehzahl solange variiert werden, bis das für die aktuelle Leistung repräsentative zweite Signal dem vorgegebenen Wert entspricht. Bei dieser Ausführungsform muss der Gasbrenner dann unter Berücksichtigung der geänderten Korrelation zwischen Lüfterdrehzahl und Brenneneistung weiter betrieben werden. Auf diese Weise kann ein Gasbrenner über einen langen Zeitraum sicher und mit der gewünschten Leistung betrieben werden.
- Eine Weiterbildung der Erfindung ist dadurch gekennzeichnet, dass für den Vergleich mit dem zweiten Signal das erste Signal als vorgegebener Wert verwendet wird.
- Vorteilhafterweise wird als zweites Signal die Leistungsaufnahme des Lüfters oder das Temperaturniveau des Kessels oder der Luftmassenstrom durch den Lüfter erfasst.
- Ein besonders bevorzugtes alternatives Ausführungsbeispiel ist dadurch gekennzeichnet, daß das zweite Signal aus einem aktuellen Ionisationssignal abgeleitet wird, wobei das zweite Signal sowohl für die aktuelle Leistung, als auch für die aktuelle Luftzahl repräsentativ ist. Diesem Ausführungsbeispiel liegt die Erkenntnis zugrunde, daß das Ionisationssignal selbst zur Überprüfung der aktuellen Leistung verwendet werden kann. Da das Ionisationssignal leistungsabhängig ist, kann dem Kundenbedarf entsprechend die aktuelle Betriebsleistung in einem sehr breiten Leistungsbereich überprüft werden. Weicht das aus dem Ionisationssignal abgeleitete, für die aktuelle Luftzahl und die aktuelle Leistung repräsentative zweite Signal von dem für diese Luftzahl und diese Leistung vorgegebenen Wert ab, erbringt der Gasbrenner nicht die gewünschte Leistung. Es können dann die erforderlichen Schritte eingeleitet werden.
- Eine Weiterbildung der Erfindung ist dadurch gekennzeichnet, daß auch als erstes Signal ein sowohl für die aktuelle Leistung als auch für die aktuelle Luftzahl repräsentatives Signal verwendet wird, wobei das erste und das zweite Signal eine unterschiedliche Abhängigkeit von der Luftzahl und/oder der Leistung aufweisen. Vorteilhafterweise können die Ionisationssignale selbst als erstes und/oder zweites Signal verwendet werden.
- Besonders einfach läßt sich das erfindungsgemäße Verfahren dadurch realisieren, daß das aktuelle Ionisationssignal, aus welchem das erste Signal abgeleitet wird, mit Hilfe einer ersten Speisespannung gemessen wird, und das aktuelle Ionisationssignal, aus welchem das zweite Signal abgeleitet wird, mit Hilfe einer zweiten Speisespannung gemessen wird.
- Vorteilhafterweise werden die Ionisationssignale dadurch gemessen, daß eine Wechselspannung, vorzugsweise von 230V, an die Ionisations-Elektrode angelegt wird. Der Polaritätseffekt der Flamme bewirkt, daß nur bei jeweils einer Halbwelle ein Ionisationsstrom fließt. Dadurch läßt sich aus einem Gleichanteil der abgegriffenen Spannung das Ionisationssignal ableiten. Ein auf diese Weise gemessenes Ionisationssignal läßt sich besonders zuverlässig und genau auswerten. Zur Auswertung wird das Signal in der Regel zunächst an ein Tiefpaßfilter angelegt.
- Alternativ können die Ionisationssignale dadurch gemessen werden, daß eine Dreiecksspannung oder eine Rechteckspannung an die Ionisations-Elektrode angelegt wird.
- Das zur Ableitung des für die aktuelle Luftzahl repräsentativen Signals gemessene Ionisationssignal und das zur Ableitung des für die aktuelle Luftzahl und die aktuelle Leistung repräsentativen Signals gemessene Ionisationssignal müssen nicht durch Anlegen der gleichen Spannung an die Ionisations-Elektrode gemessen werden. Z.B. kann das Ionisationssignal zur Bestimmung des für die aktuelle Luftzahl repräsentativen Signals mit Hilfe einer Wechselspannung und das Ionisationssignal zur Bestimmung des für die aktuelle Luftzahl und für die aktuelle Leistung repräsentativen Signals mit Hilfe einer Dreiecksspannung oder einer Rechteckspannung gemessen werden oder umgekehrt.
- Vorzugsweise werden die Ionisationssignale abwechselnd zur Ableitung des ersten Signals und zur Ableitung des zweiten Signals genutzt.
- Der Gasbrenner kann dadurch langfristig im optimalen Betriebsbereich gehalten werden, daß das zweite Signal in regelmäßigen Zeitabständen, z. B. einmal pro Minute, erfaßt wird.
- Zur Eichung des Systems ist es vorteilhaft, daß bei dem Betriebsstart des Gasbrenners Referenzmessungen durchgeführt werden, bei denen Referenzsignale für verschiedene Leistungen und verschiedene Luftzahlen erfaßt und diese als vorgegebener Wert für den Vergleich mit dem zweiten Signal gespeichert werden. Sofern das zweite Signal aus einem aktuellen Ionisationssignal abgeleitet wird, werden bei dem Betriebsstart des Gasbrenners vorzugsweise Referenzmessungen durchgeführt, bei denen Referenz-Ionisationssignale für verschiedene Lüfterdrehzahlen und verschiedene Luftzahlen erfaßt und diese als vorgegebener Wert für den Vergleich mit dem zweiten Wert gespeichert werden.
- Weitere vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen gekennzeichnet.
- Im folgenden wird die Erfindung anhand zweier in der Zeichnung dargestellter Ausführungsbeispiele näher erläutert. In der Zeichnung zeigen:
- Fig. 1 ein erstes erfindungsgemäßes Ausführungsbeispiel veranschaulichendes Diagramm; und
- Fig. 2 zwei ein zweites erfindungsgemäßes Ausführungsbeispiel veranschaulichende Diagramme.
- Fig. 1 zeigt ein Diagramm, in dem die Spannung eines Meßsignals gegen die Luftzahl λ aufgetragen ist. Es sind sechs verschiedene Meßsignalkurven dargestellt. Bei den mit Signal 1 bezeichneten Meßsignalkurven handelt es sich um die für die aktuelle Luftzahl repräsentativen Signale. Diese wurden aus dem bei einer Wechselspannung von 230V gemessenen Ionisationssignal und der Lüfterdrehzahl mit Hilfe einer speziellen Auswerteschaltung abgeleitet. Die Signale sind für verschiedene Leistungen dargestellt. Wie zu sehen ist, liegen die Kurven fast vollständig übereinander, d. h. diese Signale sind tatsächlich leistungsunabhängig.
- Bei den mit Signal 2 bezeichneten Meßsignalkurven handelt es sich um die für die aktuelle Luftzahl und die aktuelle Leistung repräsentativen Signale. Zur Messung wurde wiederum eine Wechselspannung von 230V an die Ionisations-Elektrode angelegt und das Ionisationssignal anschließend unter Umgehung der speziellen Auswerteschaltung durch ein Tiefpaßfilter geschickt. Es fällt auf, daß die wiederum für unterschiedliche Leistungen aufgenommenen Kurven stark voneinander abweichen. Die Spannungsunterschiede zwischen den Meßsignalkurven sind bei einer vorgegebenen Luftzahl im unteren Leistungsbereich besonders groß. Somit kann ein sehr großer Leistungsbereich des Gasbrenners dadurch zuverlässig überwacht werden, daß die Luftzahlregelung im Normalbetrieb mit Hilfe der übereinanderliegenden Signal 1-Kennlinien erfolgt und zur Überprüfung der Leistung die Wechselspannung von 230V an die Ionisations-Elektrode angelegt und die spezielle Auswerteschaltung umgangen wird. Durch Vergleich des bei letztgenannter Messung erzielten Meßwerts mit den verschiedenen vorgegebenen Signal 2-Kurven kann festgestellt werden, ob der Gasbrenner tatsächlich die gewünschte Leistung erbringt.
- Fig. 2 zeigt zwei Diagramme, in denen das Ionisationssignal gegen die Gebläsedrehzahl für ein zweites Ausführungsbeispiel der Erfindung aufgetragen ist. Die dargestellten Meßwerte wurden bei konstanter Luftzahl λ von 1,3 aufgenommen. In beiden Diagrammen sind die Ionisationssignale bei einer Speisespannung der Ionisations-Elektrode von 50V und von 230V dargestellt. Das obere Diagramm veranschaulicht den normalen Betriebszustand des Kessels. Bei der eingestellten Gaszufuhr ergibt sich bei einer Drehzahl von 2000min.-1 ein Ionisationssignal bei einer Speisespannung von 50V von 109. Dies ist der Sollwert für die Regelung der Luftzahl von 1,3. Zur Überprüfung des Systems wird die Speisespannung der Ionisations-Elektrode in regelmäßigen Zeitabständen auf die Kontrollspannung von 230V umgeschaltet. Wie dem obigen Diagramm zu entnehmen ist, beträgt in diesem Fall das Ionisationssignal nur ungefähr 102. Die Differenz zwischen beiden Signalen ist somit ungefähr 7. Solange die Differenz zwischen diesen beiden ermittelten Ionisationssignalwerten im Bereich von 7 liegt, ist der Betrieb des Gasbrenners im optimalen Arbeitsbereich gesichert.
- Sofern das Luft-Abgassystem verstopft ist, z. B. durch eine Störung im Schornstein, verschiebt sich der gesamte Arbeitsbereich zu höheren Drehzahlen hin, wie in dem unteren Diagramm in Fig. 2 zu sehen ist. Bei der vorgegebenen Gaszufuhr wurde in diesem Fall die Differenz zwischen den beiden Ionisationssignalen bei 2000min.-1 ungefähr 14 betragen. Durch Vergleich dieser Abweichung mit der Abweichung von 7 im normalen Betriebszustand kann auf einfache Weise festgestellt werden, daß der Gasbrenner nicht die gewünschte Leistung erbringt. Während bei dem ersten Ausführungsbeispiel die Auswertschaltung umgeschaltet wurde, werden bei diesem zweiten Ausführungsbeispiel durch Umschaltung der Speisespannung zwei Ionisationssignale erzeugt, die eine unterschiedliche Abhängigkeit von der aktuellen Leistung des Gasbrenners haben. In beiden Fällen gelingt es so, einen Gasbrenner über einen langen Zeitraum sicher und mit der gewünschten Leistung zu betreiben.
- Im Rahmen der Erfindung sind zahlreiche Abwandlungen möglich. Z.B. kann das Ionisationssignal durch Anlegen einer Spannung einer beliebigen Form an die Ionisations-Elektrode erfaßt werden. Genauso kann das Ionisationssignal mit Hilfe einer Gleichspannung gemessen werden. Zur Abtastung des Ionisationssignals von der Ionisations-Elektrode kann zur Ableitung des für die aktuelle Luftzahl repräsentativen Signals und des für die aktuelle Luftzahl und die aktuelle Leistung repräsentativen Signals der gleiche Meßwertaufnehmer verwendet werden. Alternativ können zwei Meßwertaufnehmer der Ionisations-Elektrode zugeordnet werden oder im Flammenbereich des Gasbrenners sogar zwei separate Ionisations-Elektroden angeordnet werden. Schließlich können die Referenzmessungen statt beim Betriebsstart bereits vorher herstellerseitig durchgeführt werden.
Claims (14)
- Verfahren zur Luftzahlregelung eines mit einem Lüfter und einem Gas-Regelventil versehenen wenigstens teilvormischenden Gasbrenners, wobei im Flammenbereich Ionisationssignale mit Hilfe einer lonisations-Elektrode gemessen werden,
die Lüfterdrehzahl erfasst wird,
aus dem aktuellen Ionisationssignal ein für die aktuelle Luftzahl repräsentatives erstes Signal abgeleitet und dieses mit einem Sollwert verglichen wird, wobei die Lüfterdrehzahl bei der Ableitung des ersten Signals und/oder bei der Auswahl des Sollwertes berücksichtigt wird, und
aus dem Vergleich ein Stellsignal für das Gas-Regelventil abgeleitet wird,
dadurch gekennzeichnet, dass
ein für die aktuelle Brenneneistung repräsentatives zweites Signal erfasst wird und dieses mit einem vorgegebenen Wert verglichen wird,
wobei aus diesem Vergleich Informationen über den Betriebszustand des Gasbrenners abgeleitet werden. - Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß für den Vergleich mit dem zweiten Signal das erste Signal als vorgegebener Wert verwendet wird.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als zweites Signal die Leistungsaufnahme des Lüfters oder das Temperaturniveau des Kessels oder der Luftmassenstrom durch den Lüfter erfaßt wird.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das zweite Signal aus einem aktuellen Ionisationssignal abgeleitet wird, wobei das zweite Signal sowohl für die aktuelle Leistung als auch für die aktuelle Luftzahl repräsentativ ist.
- Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß auch als erstes Signal ein sowohl für die aktuelle Leistung als auch für die aktuelle Luftzahl repräsentatives Signal verwendet wird, wobei das erste und das zweite Signal eine unterschiedliche Abhängigkeit von der Luftzahl und/oder der Leistung aufweisen.
- Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Ionisationssignale selbst als erstes und/oder zweites Signal verwendet werden.
- Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß das aktuelle Ionisationssignal, aus welchem das erste Signal abgeleitet wird, mit Hilfe einer ersten Speisespannung gemessen wird, und das aktuelle Ionisationssignal, aus welchem das zweite Signal abgeleitet wird, mit Hilfe einer zweiten Speisespannung gemessen wird.
- Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Ionisationssignale dadurch gemessen werden, daß eine Wechselspannung an die Ionisations-Elektrode angelegt wird.
- Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Ionisationssignale dadurch gemessen werden, daß eine Dreieckspannung oder eine Rechteckspannung an die Ionisations-Elektrode angelegt wird.
- Verfahren nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, daß die Ionisationssignale abwechselnd zur Ableitung des ersten Signales und zur Ableitung des zweiten Signals genutzt werden.
- Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das zweite Signal in regelmäßigen Zeitabständen, z. B. einmal pro Minute, erfaßt wird.
- Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß bei dem Betriebsstart des Gasbrenners Referenzmessungen durchgeführt werden, bei denen Referenzsignale für verschiedene Leistungen erfaßt und diese als vorgegebener Wert für den Vergleich mit dem zweiten Signal gespeichert werden.
- Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß bei dem Betriebsstart des Gasbrenners Referenzmessungen durchgeführt werden, bei denen Referenz-Ionisationssignale für verschiedene Lüfterdrehzahlen und verschiedene Luftzahlen erfaßt und diese als vorgegebener Wert für den Vergleich mit dem zweiten Signal gespeichert gespeichert werden.
- Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Gasbrenner abgeschaltet oder neu kalibriert oder eine Störung angezeigt wird, wenn die Abweichung des zweiten Signals von dem vorgegebenen Wert größer als ein vorgegebener Schwellwert ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19853567A DE19853567A1 (de) | 1998-11-20 | 1998-11-20 | Verfahren zur Luftzahlregelung eines vollvormischenden Gasbrenners |
DE19853567 | 1998-11-20 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1002997A2 EP1002997A2 (de) | 2000-05-24 |
EP1002997A3 EP1002997A3 (de) | 2003-01-15 |
EP1002997B1 true EP1002997B1 (de) | 2004-04-28 |
Family
ID=7888448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99122611A Expired - Lifetime EP1002997B1 (de) | 1998-11-20 | 1999-11-11 | Verfahren zur Luftzahlregelung eines vollvormischenden Gasbrenners |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1002997B1 (de) |
AT (1) | ATE265655T1 (de) |
DE (2) | DE19853567A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009057121A1 (de) * | 2009-12-08 | 2011-06-09 | Scheer Heizsysteme & Produktionstechnik Gmbh | Verfahren zur qualitativen Überwachung und Regelung des Verbrennungszustandes eines Heizkesselsystems mittels eines Ionisationsflammenwächters |
DE102010008908A1 (de) * | 2010-02-23 | 2011-08-25 | Robert Bosch GmbH, 70469 | Verfahren zum Betreiben eines Brenners und zum Luftzahl-geregelten Modulieren einer Brennerleistung |
DE102012023606A1 (de) * | 2012-12-04 | 2014-06-05 | Robert Bosch Gmbh | Verfahren zur Verbrennungsregelung bei einem Gas-oder Ölbrenner |
EP2796787A1 (de) | 2013-04-26 | 2014-10-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Überwachung von Verbrennungsanlagen |
EP3680553A1 (de) | 2019-01-10 | 2020-07-15 | Vaillant GmbH | Verfahren zum regeln des verbrennungsluftverhältnisses am brenner eines heizgerätes |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6939127B2 (en) | 2001-03-23 | 2005-09-06 | Gvp Gesellschaft Zur Vermarktung Der Porenbrennertechnik Mbh | Method and device for adjusting air ratio |
AT412902B (de) * | 2003-09-23 | 2005-08-25 | Vaillant Gmbh | Verfahren zur anpassung der geräteheizleistung eines gebläseunterstützten heizgerätes |
DE102004055716C5 (de) * | 2004-06-23 | 2010-02-11 | Ebm-Papst Landshut Gmbh | Verfahren zur Regelung einer Feuerungseinrichtung und Feuerungseinrichtung (Elektronischer Verbund I) |
DE102010004826A1 (de) | 2010-01-15 | 2011-07-21 | Honeywell Technologies S.A.R.L. | Verfahren zum Betreiben eines Gasbrenners |
DE102011102575A1 (de) | 2011-05-26 | 2012-11-29 | Robert Bosch Gmbh | Verfahren zum Kalibrieren und Betreiben eines Brenners |
DE102015225886A1 (de) * | 2015-12-18 | 2017-06-22 | Robert Bosch Gmbh | Heizgerätesystem und Verfahren mit einem Heizgerätesystem |
DE102016211345A1 (de) * | 2016-06-24 | 2017-12-28 | Robert Bosch Gmbh | Verfahren zum Ermitteln von Betriebsdaten einer Gasheizvorrichtung |
DE102020104210A1 (de) * | 2020-02-18 | 2021-08-19 | Vaillant Gmbh | Verfahren und Vorrichtung zur Regelung eines Brenngas-Luft-Gemisches in einem Heizgerät bei variabler Leistung |
IT202100032360A1 (it) | 2021-12-23 | 2023-06-23 | Sit Spa | Metodo e apparato per il monitoraggio e controllo della combustione in apparecchi bruciatori a gas combustibile |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2638819A1 (fr) * | 1988-11-10 | 1990-05-11 | Vaillant Sarl | Procede et un dispositif pour la preparation d'un melange combustible-air destine a une combustion |
DE59604283D1 (de) * | 1995-10-25 | 2000-03-02 | Stiebel Eltron Gmbh & Co Kg | Verfahren und Schaltung zur Regelung eines Gasbrenners |
DE19627857C2 (de) * | 1996-07-11 | 1998-07-09 | Stiebel Eltron Gmbh & Co Kg | Verfahren zum Betrieb eines Gasgebläsebrenners |
DE29612014U1 (de) * | 1996-07-10 | 1996-09-05 | Buderus Heiztechnik Gmbh, 35576 Wetzlar | Gasbrenner |
-
1998
- 1998-11-20 DE DE19853567A patent/DE19853567A1/de not_active Withdrawn
-
1999
- 1999-11-11 AT AT99122611T patent/ATE265655T1/de active
- 1999-11-11 EP EP99122611A patent/EP1002997B1/de not_active Expired - Lifetime
- 1999-11-11 DE DE59909316T patent/DE59909316D1/de not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009057121A1 (de) * | 2009-12-08 | 2011-06-09 | Scheer Heizsysteme & Produktionstechnik Gmbh | Verfahren zur qualitativen Überwachung und Regelung des Verbrennungszustandes eines Heizkesselsystems mittels eines Ionisationsflammenwächters |
DE102010008908A1 (de) * | 2010-02-23 | 2011-08-25 | Robert Bosch GmbH, 70469 | Verfahren zum Betreiben eines Brenners und zum Luftzahl-geregelten Modulieren einer Brennerleistung |
DE102010008908B4 (de) | 2010-02-23 | 2018-12-20 | Robert Bosch Gmbh | Verfahren zum Betreiben eines Brenners und zum Luftzahl-geregelten Modulieren einer Brennerleistung |
DE102012023606A1 (de) * | 2012-12-04 | 2014-06-05 | Robert Bosch Gmbh | Verfahren zur Verbrennungsregelung bei einem Gas-oder Ölbrenner |
DE102012023606B4 (de) | 2012-12-04 | 2019-02-21 | Robert Bosch Gmbh | Verfahren zur Verbrennungsregelung bei einem Gas-oder Ölbrenner |
EP2796787A1 (de) | 2013-04-26 | 2014-10-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Überwachung von Verbrennungsanlagen |
DE102013207720A1 (de) * | 2013-04-26 | 2014-10-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Überwachung von Verbrennungsanlagen |
EP3680553A1 (de) | 2019-01-10 | 2020-07-15 | Vaillant GmbH | Verfahren zum regeln des verbrennungsluftverhältnisses am brenner eines heizgerätes |
DE102019100467A1 (de) | 2019-01-10 | 2020-07-16 | Vaillant Gmbh | Verfahren zum Regeln des Verbrennungsluftverhältnisses am Brenner eines Heizgerätes |
Also Published As
Publication number | Publication date |
---|---|
DE19853567A1 (de) | 2000-05-25 |
DE59909316D1 (de) | 2004-06-03 |
ATE265655T1 (de) | 2004-05-15 |
EP1002997A2 (de) | 2000-05-24 |
EP1002997A3 (de) | 2003-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1002997B1 (de) | Verfahren zur Luftzahlregelung eines vollvormischenden Gasbrenners | |
EP0770824B1 (de) | Verfahren und Schaltung zur Regelung eines Gasbrenners | |
DE19539568C1 (de) | Verfahren und Schaltung zur Regelung eines Gasbrenners | |
EP1154202B1 (de) | Regeleinrichtung für einen Brenner | |
DE4433425C2 (de) | Regeleinrichtung zum Einstellen eines Gas-Verbrennungsluft-Gemisches bei einem Gasbrenner | |
DE69910126T2 (de) | Verbrennunungsverfahren eines Brennstoffes mit einem sauerstoffreichen Oxidationsmittel | |
EP1331444B1 (de) | Verfahren zur Regelung eines Gasbrenners | |
DE19502901C1 (de) | Regeleinrichtung für einen Gasbrenner | |
DE102011079325A1 (de) | Verfahren zur Luftzahlregelung eines Brenners | |
AT505442A1 (de) | Verfahren zur brenngas-luft-einstellung für einen brenngasbetriebenen brenner | |
EP3690318A2 (de) | Verfahren und vorrichtung zur regelung eines brenngas-luft-gemisches in einem heizgerät | |
DE102019119186A1 (de) | Verfahren und Vorrichtung zur Regelung eines Brenngas-Luft-Gemisches in einem Heizgerät | |
EP3841326A1 (de) | Heizvorrichtung und verfahren zum regeln eines gebläsebetriebenen gasbrenners | |
EP2017531A2 (de) | Verfahren zur Überprüfung eines Ionisationselektrodensignals bei Brennern | |
EP0615095B1 (de) | Brennerregler | |
DE19854824C1 (de) | Verfahren und Schaltung zur Regelung eines Gasbrenners | |
EP1293728B1 (de) | Verfahren zur Leistungseinstellung gasbetriebener Gargeräte sowie dieses Verfahren nutzendes Gargerät | |
EP3870899A1 (de) | Verfahren zur überprüfung eines gasgemischsensors und ionisationssensors bei einem brenngasbetriebenen heizgerät | |
DE10300602B4 (de) | Verfahren zur Regelung eines Gasbrenners | |
EP2354657B1 (de) | Verfahren zum Betreiben eines Gasbrenners | |
DE10220773A1 (de) | Verfahren und Einrichtung zur Regelung eines Verbrennungsprozesses, insbesondere eines Brenners | |
EP0614051B1 (de) | Feuerungsautomat | |
EP3767174B1 (de) | Verfahren und vorrichtung zur nachkalibrierung eines messsystems zur regelung eines brenngas-luft-gemisches in einem heizgerät | |
EP2105669B1 (de) | Flammenueberwachungs- und Bewertungseinrichtung | |
EP0655583B1 (de) | Verfahren zur Regelung und Überwachung von Verbrennung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HEIDER, HENNING Inventor name: SCHLUMP, ANSGAR Inventor name: LINDEMANN, JOERG Inventor name: PETERSMANN, MARTIN |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7F 23N 5/12 A, 7F 23N 1/02 B, 7F 23N 3/08 B |
|
17P | Request for examination filed |
Effective date: 20030109 |
|
17Q | First examination report despatched |
Effective date: 20030402 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040428 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040428 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040428 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040428 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 59909316 Country of ref document: DE Date of ref document: 20040603 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: WEITERBEHANDLUNG GUTGEHEISSEN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040928 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20171124 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20171130 Year of fee payment: 19 Ref country code: BE Payment date: 20171124 Year of fee payment: 19 Ref country code: AT Payment date: 20171128 Year of fee payment: 19 Ref country code: CH Payment date: 20171124 Year of fee payment: 19 Ref country code: IT Payment date: 20171122 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180131 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20181127 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59909316 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20181201 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 265655 Country of ref document: AT Kind code of ref document: T Effective date: 20181111 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181111 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181201 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190601 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181111 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181111 |