EP0998388B9 - Beutel zum verpacken fliessfähiger materialien - Google Patents

Beutel zum verpacken fliessfähiger materialien Download PDF

Info

Publication number
EP0998388B9
EP0998388B9 EP97905720A EP97905720A EP0998388B9 EP 0998388 B9 EP0998388 B9 EP 0998388B9 EP 97905720 A EP97905720 A EP 97905720A EP 97905720 A EP97905720 A EP 97905720A EP 0998388 B9 EP0998388 B9 EP 0998388B9
Authority
EP
European Patent Office
Prior art keywords
pouch
ethylene
percent
weight
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97905720A
Other languages
English (en)
French (fr)
Other versions
EP0998388A4 (de
EP0998388B1 (de
EP0998388A1 (de
Inventor
Daniel James Falla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of EP0998388A4 publication Critical patent/EP0998388A4/de
Publication of EP0998388A1 publication Critical patent/EP0998388A1/de
Publication of EP0998388B1 publication Critical patent/EP0998388B1/de
Application granted granted Critical
Publication of EP0998388B9 publication Critical patent/EP0998388B9/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form

Definitions

  • This invention relates to a pouch used in consumer packaging made from certain film structures useful for packaging flowable materials, for example liquids such as milk.
  • U.S. Patent Nos. 4,503,102 , 4,521,437 and 5,288,531 disclose the preparation of a polyethylene film for use in the manufacture of a disposable pouch for packaging of liquids such as milk.
  • U.S. Patent No. 4,503,102 discloses pouches made from a blend of a linear ethylene copolymer copolymerized from ethylene and an alpha-olefin at the C 4 to C 10 range and a ethylene-vinyl acetate polymer copolymerized from ethylene and vinyl acetate.
  • the linear polyethylene copolymer has a density of from 0.916 to 0.930 g/cm3 and a melt index of from 0.3 to 2.0 g/10 minutes.
  • the ethylene-vinyl acetate polymer has a weight ratio of ethylene to vinyl acetate from 2.2:1 to 24:1 and a melt index of from 0.2 to 10 g/10 minutes.
  • the blend disclosed in U.S. Patent No. 4,503,102 has a weight ratio of linear low density polyethylene to ethylene-vinyl acetate polymer of from 1.2:1 to 4:1
  • U.S. Patent No. 4,503,102 also discloses laminates having as a sealant film the aforementioned blend.
  • U.S. Patent No. 4,521,437 describes pouches made from a sealant film which is from 50 to 100 parts of a linear copolymer of ethylene and octene-1 having a density of from 0.916 to 0.930 g/cm3 and a melt index of 0.3 to 2.0 g/10 minutes and from 0 to 50 parts by weight of at least one polymer selected from the group consisting of a linear copolymer of ethylene and a C 4 -C 10 -alpha-olefin having a density of from 0.916 to 0.930 g/cm 3 and a melt index of from 0.3 to 2.0 g/10 minutes, a high-pressure polyethylene having a density of from 0.916 to 0.924 g/cm3 and a melt index of from 1 to 10 g/10 minutes and blends thereof.
  • the sealant film disclosed in the U:S. Patent No. 4,521,437 was selected on the basis of providing (a) pouches with a M-test value substantially smaller, at the same film thickness, than that obtained for pouches made with film of a blend of 85 parts of a linear ethylene/butene-1 copolymer having a density of 0.919 g/cm 3 and a melt index of 0.75 g/10 minutes and 15 parts of a high pressure polyethylene having a density of 0.918 g/cm3 and a melt index of 8.5 g/10 minutes, or (b) an M(2)-test value of less than 12%, for pouches having a volume of from greater than 1.3 to 5 liters, or (c) an M(1.3)-test value of less than 5% for pouches having a volume of from 0.1 to 1.3 liters.
  • the M, M(2) and M(1.3)-tests are defined pouch drop tests in U.S. Patent No. 4,521,437 .
  • the pouches may also be made from composite films in which the sealant film forms at least the inner layer.
  • the high-pressure polyethylene described in US. Patent No. 4, 521, 437 is not described as having a high melt strength and all of the high-pressure polyethylene resins employed in the examples have a melt index greater than 1 g/10 minutes.
  • there is teaching in said patent that for ethylene polymer blends strength does not correlate with hot tack strength or leaker performance.
  • U.S. Patent No. 5,288,531 discloses pouches made from a film structure having a blend of (a) from 10 to 100 percent by weight of at least one polymeric seal layer of an ultra low density linear ethylene copolymer interpolymerized from ethylene and at least one alpha-olefin in the range of C 3 -C 10 with a density of from 0.89 g/cm3 to less than 0.915 g/cm3 and (b) from 0 to 90 percent by weight of at least one polymer selected from the group consisting of a linear copolymer of ethylene and a C 3 -C 18 -alpha-olefin having a density of greater than 0.916 g/cm3 and a melt index of from 0.1 to 10 g/10 minutes, a high-pressure low density polyethylene having a density of from 0.916 to 0.930 g/cm3 and a melt index of from 0.1 to 10 g/10 minutes, or ethylene-vinyl acetate copo
  • the polyethylene pouches known in the prior art have some deficiencies.
  • the problems associated with films known in the prior art relate to the sealing properties and performance properties of the film for preparing pouches,
  • prior art films made into pouches in general have a high incident of "leakers", i.e., seal defects such as pinholes which develop at or near the seal in which flowable material, for example milk escapes from the pouch.
  • seal defects such as pinholes which develop at or near the seal in which flowable material, for example milk escapes from the pouch.
  • the seal and performance properties of the prior art films have been generally satisfactory, there is still a need in the industry for better seal and performance properties in films for manufacture of hermetically sealed pouches containing flowable materials. More particularly, there is a need for improved sealing properties of the film such as hot tack and melt strength in order to improve the processability of the film and to improve pouches made from the films.
  • the line speed of known packaging equipment used for manufacturing pouches such as form, fill and seal machines, is currently limited by the sealing properties of the film used in the machines.
  • Prior art polyethylene films have low melt strength. Therefore, the speed at which a form, fill and seal machine can produce a pouch is limited and, thus, the number of pouches produced on a form, fill and seal machine is limited. If the melt strength is increased, then the speed of a form, fill and seal machine can be increased and, thus, the number of pouches produced can be increased.
  • the present invention provides a pouch containing a flowable material, said pouch being made from a film structure with at least one seal layer of a polymeric composition
  • a polymeric composition comprising: (a) from 10 to 100 percent, based on the total weight of said composition, of a mixture of (1) from 5 to 95 percent by weight, based on 100 weight parts of said mixture, of linear ethylene copolymer interpolymerized from ethylene and at least one alpha-olefin in the range of C3-C18 and having a density from 0.916 to 0.940g/cm3 and a melt Index of less than 10g/10 minutes, and a molecular weight distribution, Mw/Mn, ratio of greater than 4.0, and a peak melting point greater than 100°C as measured by a differential scanning colorimeter, and (2) from 5 to 95 percent by weight, based on 100 weight parts of said mixture, of high pressure low density polyethylene having a density from 0.916 to 0.930g/cm 3 , a melt index of less than 1
  • One embodiment of the present invention is a pouch made from a two-layer coextruded film containing an outer layer of linear low density polyethylene and an inner seal layer of the aforementioned polymeric composition.
  • Another embodiment of the present invention is a pouch made from a three-layer coextruded film containing an outer layer and a core layer of linear low density polyethylene and an inner seal layer of the aforementioned polymeric composition.
  • Another aspect of the present invention is a process for preparing the aforementioned pouch.
  • Yet another embodiment of the present invention is a pouch made from a three-layer coextruded film containing an outer layer and a core layer of high pressure low density polyethylene and an inner seal layer of the aforementioned polymeric composition.
  • the film structures for the pouches of the present invention have an improved melt strength and heat seal strength, particularly the end-seal strength.
  • Use of the films for making pouches of the present invention in form, fill and seal machines leads to machine speeds higher than currently obtainable with the use of commercially available film.
  • the pouch of the present invention for example as shown in Figure 1 and 2, for packaging flowable materials is manufactured from a monolayer film structure of a polymeric seal layer which is a blend of a linear low density polyethylene and a high pressure low density polyethylene having a high melt strength.
  • the blend can also contain an ethylene vinylacetate copolymer.
  • Melt strength which is also referred to in the relevant art as “melt tension” is defined and quantified herein to mean the stress or force (as applied by a wind-up drum equipped with a strain cell) required to draw a molten extrudate at some specified rate above its melting point as it passes through the die of a standard plastometer such as the one described in ASTM D1238-E. Melt strength values, which are reported herein in centi-Newtons (cN), are determined using a Gottfert Rheotens at 190°C.
  • melt strength tends to increase with increased molecular weight, or with broadening of the molecular weight distribution and/or with increased melt flow ratios.
  • the melt strength of the high pressure low density polyethylene of the present invention is greater than 10 cN as determined using a Gottfert Rheotens unit at 190°C, preferably from 13 to 40 cN, and most preferably 15 to 25cN.
  • the melt strength of the polymeric composition of the present invention is greater than 10 cN as determined using Gottfert Rheotens unit at 190°C, preferably from 15 to 70 cN, and most preferably 15 to 50.
  • LLDPE linear low density polyethylene
  • DOWLEXTM 2045 Trademark of and commercially available from The Dow Chemical Company
  • the LLDPE is generally a linear copolymer of ethylene and a minor amount of an ⁇ -olefin having from 3 to 18 carbon atoms, preferably from 4 to 10 carbon atoms and most preferably 8 carbon atoms.
  • the LLDPE for the polymeric composition of the present invention has a density of from 0.916 to 0.940 g/cm 3 , most preferably from 0.918 to 0.926 g/cm 3 ; has a melt index of less than 10 g/10 minutes , preferably from 0.1 to 10 g/10 minutes , most preferably from 0.5 to 2 g/10 minutes and generally has an I 10 /I 2 ratio of from 0.1 to 20, preferably from 5 to 20, and most preferably 7 to 20.
  • the LLDPE can be prepared by the continuous, batch or semi-batch solution, slurry or gas phase polymerization of ethylene and one or more optional ⁇ -olefin comonomers in the presence of a Ziegler Natta catalyst, such as by the process disclosed in U.S. Patent No. 4,076,698 to Anderson et al.
  • the interpolymerization process can be a solution, slurry or gas phase technique or combinations thereof.
  • Suitable ⁇ -olefin for use as comonomers include 1-propylene, 1-butene, 1-isobutylene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene and 1-octene, as well as other monomer types such as styrene, halo- or alkyl-substituted styrenes, tetrafluoro-ethylene, vinyl benzocyclobutane, 1,4-hexadiene, 1,7-octadiene, and cycloalkenes, e.g., cyclopentene, cyclohexene and cyclooctene.
  • the ⁇ -olefin will be 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, or mixtures thereof. More preferably, the ⁇ -olefin will be 1-hexene, 1-heptene, 1-octene, or mixtures thereof, as coatings, profiles and films fabricated with the resultant extrusion composition will have especially improved abuse properties where such higher ⁇ -olefins are utilized as comonomers. However, most preferably, the ⁇ -olefin will be 1-octene and the polymerization process will be a continuous solution process.
  • the molecular weight distribution of the ethylene ⁇ -olefin interpolymer compositions and the high pressure ethylene polymer compositions are determined by gel permeation chromatography (GPC) on a Waters 150 high temperature chromatographic unit equipped with differential refractometer and three columns of mixed porosity.
  • the columns are supplied by Polymer Laboratories and are commonly packed with pore sizes of 10 3 , ,10 4 , 10 5 and 10 6 ⁇ .
  • the solvent is 1,2,4-trichlorobenzene, from which 0.3 percent by weight solutions of the samples are prepared for injection.
  • the flow rate is 1.0 milliliters/minute, unit operating temperature is 140°C and the injection size is 100 microliters.
  • the molecular weight determination with respect to the polymer backbone is deduced by using narrow molecular weight distribution polystyrene standard (from Polymer Laboratories) in conjunction with their elution volumes.
  • the Mw/Mn is preferably 2 to 7, especially 4.
  • LDPE having high melt strength in a film structure for pouches of the present invention (1) provided a pouch that can be fabricated at a fast rate through a form, fill and seal machine, and (2) provides a pouch package having few leakers, particularly when the pouch of the present invention is compared to pouches made with linear low density polyethylene, low density polyethylene or a combination thereof.
  • the film structure of the pouch of the present invention also includes a multilayer or composite film structure 30, preferably containing the above-described polymer seal layer being the inner layer of the pouch.
  • the multilayer film structure for the pouch of the present invention may contain various combination of film layers as long as the seal layer forms part of the ultimate film structure.
  • the multilayer film structure for the pouch of the present invention may be a coextruded film, a coated film or a laminated film.
  • the film structure also included the seal layer in combination with a barrier film such as polyester, nylon, EVOH, polyvinylidene dichloride (PVDC) such as SARANTM (Trademark of The Dow Chemical Company) and metallized films.
  • PVDC polyvinylidene dichloride
  • SARANTM Trademark of The Dow Chemical Company
  • the end use for the pouch tends to dictate, in a large degree, the selection of the other material or materials used in combination with the seal layer film.
  • the pouches described herein will refer to seal layers used at least on the inside of the pouch.
  • One embodiment of the film structure 30 for the pouch of the present invention comprises seal layer 31 of a blend of LLDPE and high melt strength LDPE of this invention and at least one polymeric outer layer 32.
  • the polymeric outer layer 32 is preferably a polyethylene film layer, more preferably a LLDPE.
  • An example of a commercially available LLDPE is DOWLEXTM 2045 (Trademark of the commercially available from The Dow Chemical Company).
  • the thickness of the outer layer 32 may be any thickness so long as the seal layer 31 has a minimum thickness of 0.1 mil (2.5 microns).
  • film structure 30 for the pouch of the present invention comprises the polymeric layer 32 sandwiched between two polymeric seal layers 31.
  • Still another embodiment of the film structure 30 for the pouch of the present invention comprises at least one polymeric core layer 33 between at least one polymeric outer layer 32 and at least one polymeric seal layer 31.
  • the polymeric layer 33 may be the same LLDPE film layer as the outer layer 32 or preferably a different LLDPE, and more preferably an LLDPE, for example DOWLEXTM 204S (Trademark of and commercially available from The Dow Chemical Company) that has a higher density than the outer layer 32.
  • the thickness of the core layer 33 may be any thickness so long as the seal layer 31 has a minimum thickness of 0.1 mil (2.5 microns).
  • the ultimate film thickness of the final film product used for making the pouch of the present invention is from 0.5 mil (12.7 microns) to 10 mils (254 microns), preferably from 1 mil (25.4 microns) to 5 mils (127 microns); more preferably from 2 mils (50.8 microns) to 4 mils (100 microns).
  • Additives known to those skilled in the art, such as anti-block agents, slip additives, UV stabilizers, pigments and processing aids may be added to the polymers from which the pouches of the present invention are made.
  • the film structure for the pouches of the present invention has design flexibility. Different LLDPE can be used in the outer and core layers to optimize specific film properties such as film stiffness. Thus, the film can be optimized for specific applications such as for a vertical form, film and seal machine.
  • the polyethylene film structure used to make a pouch of the present invention is made by either the blown tube extrusion method or the cast extrusion method, methods well known in the art.
  • the blown tube extrusion method is described, for example, in Modern Plastics Mid-October 1989 Encyclopedia Issue, Volume 66, Number 11, pages 264 to 266 .
  • the cast extrusion method is described, for example, in Modern Plastics Mid-October 1989 Encyclopedia Issue, Volume 66, Number 11, pages 256 to 257 .
  • Embodiments of the pouches of the present invention are hermetically sealed containers filled with "flowable materials".
  • flowable materials it is meant, materials which are flowable under gravity or which may be pumped.
  • the term “flowable materials” does not include gaseous materials.
  • the flowable materials include liquids for example milk, water, fruit juice, oil; emulsions for example ice cream mix, soft margarine; pastes for example meat pates, peanut butter; preservers for example jams, pie fillings marmalade; jellies; doughs; ground meat for example sausage meat; powders for example gelatin powders, detergents; granular solids for example nuts, sugar; and like materials.
  • the pouch of the present invention is particularly useful for liquid foods for example milk.
  • the flowable material may also include oleaginous liquids for example cooking oil or motor oil.
  • the film structure for the pouch of the present invention is made, the film structure is cut to the desired width for use in conventional pouch-forming machines.
  • the embodiments of the pouch of the present invention shown in Figures 1 and 2 are made in so-called form, fill and seal machines well known in the art.
  • a pouch 10 being a tubular member 11 having a longitudinal lap seal 12 and transverse seals 13 such that, a "pillow-shaped" pouch is formed when the pouch is filled with flowable material.
  • a pouch 20 being a tubular member 21 having a peripheral fin seal 22 along three sides of the tubular member 21, for example, the top seal 22a and the longitudinal side seals 22b and 22c, and having a bottom substantially concave or "bowt-shaped” member 23 sealed to the bottom portion of the tubular member 21 such that when viewed in cross-section, longitudinally, substantially a semi-circular or “bowed-shaped” bottom portion is formed when the pouch is filled with flowable material.
  • the pouch shown in Figure 2 is an example of so-called "Enviro-Pak" pouch known in the art.
  • the pouch manufactured according to the present invention is preferably the pouch shown in Figure 1 made on so-called vertical form, fill and seal (VFFS) machines well known in the art.
  • VFFS vertical form, fill and seal
  • Examples of commercially available VFFS machines include those manufactured by Hayssen, Thimonnier, Tetra Pak, or Prepac.
  • a VFFS machine is described in the following reference: F. C. Lewis, "Form-Fill-Seal," Packaging Encyclopedia, page 180, 1980 .
  • a sheet of the plastic film structure described herein is fed into a VFFS machine where the sheet is formed into a continuous tube in a tube-forming section.
  • the tubular member is formed by sealing the longitudinal edges of the film together - either by lapping the plastic film and sealing the film using an inside/outside seal or by fin sealing the plastic film using an inside/inside seal.
  • a sealing bar seals the tube transversely at one end being the bottom of the "pouch", and then the fill material, for example milk, is added to the "pouch.”
  • the sealing bar then seals the top end of the pouch and either burns through the plastic film or cuts the film, thus, separating the formed completed pouch from the tube.
  • the process of making a pouch with a VFFS machine is generally described in U.S. Patent Nos. 4,503,102 and 4,521,437 .
  • the capacity of the pouches of the present invention may vary.
  • the pouches may contain from 5 milliliters to 10 liters, preferably from 1 milliliter to 8 liters, and more preferably from 1 milliliter to 5 liters of flowable material.
  • the film structure for the pouch of the present invention has precisely controlled strength.
  • the use of the film structure described in the present invention for making a pouch results in a stronger pouch, and, therefore, more preferably, the pouch contains fewer use-related leakers.
  • the use of a LLDPE and LDPE blend in the seal layer of the present invention in a two or three-layer coextruded film product will provide a film structure that can be used for making pouches at a faster rate in the VFFS and such pouches produced will contain fewer leakers.
  • the polyethylene pouch of the present invention is a good alternative.
  • the use of the polyethylene pouch for packaging consumer liquids such as milk has its advantages over containers used in the past: the glass bottle, paper carton, and high density polyethylene jug.
  • the previously used containers consumed large amounts of natural resources in their manufacture, required a significant amount of space in landfill, used a large amount of storage space and used more energy in temperature control of the product (due to the heat transfer properties of the container).
  • the polyethylene pouch of the present invention made of thin polyethylene film, used for liquid packaging, offers many advantages over the containers used in the past.
  • the polyethylene pouch (1) consumes less natural resources, (2) requires less space in a landfill, (3) can be recycled, (4) can be processed easily, (5) requires less storage space, (6) uses less energy for storage (heat transfer properties of package), (7) can be safely incinerated and (8) can be reused, for example, the empty pouch can be used for other applications such as freezer bags, sandwich bags, and general purpose storage bags.
  • Erucamide, a slip agent; SiO 2 , an antiblock agent; and a processing aid were added to each of the resins described in Table I such that the final concentrations of the additives were as follows: 1200 ppm Erucamide; 2500 ppm SiO 2 .
  • the hot tack strength of sample films was measured using the "DTC Hot Tack Test Method," which measures the force required to separate a heat seal before the seal has had a chance to fully cool (crystallize). This simulates the filling of material into a pouch before the seal has had a chance to cool.
  • the "DTC Hot Tack Test Method” is a test method using a DTC Hot Tack Tester Model #52D according to the following conditions: Specimen Width: 25.4 mm Sealing Time: 0.5 seconds Sealing Pressure: 0.27 N/mm/mm Delay Time: 0.5 seconds Peel Speed: 150 mm/seconds Number of Samples/Temperature 5 Temperature Increments: 5°C Temperature Range: 75°C -150°C
  • the heat seal strength of sample films was measured using the "DTC Heat Seal Strength Test Method," which is measure designed to measure the force required to separate a seal after the material has cooled to 23°C temperature.
  • the film samples were exposed to a relative humidity of 50 percent and a temperature of 23°C for a minimum of 24 hours prior to testing.
  • the "DTC Heat Seal Strength Test Method” uses a DTC Hot Tack Tester Model #52D, wherein the heat seal portion of the tester is used, according to the following conditions: Specimen Width 25.4 mm Sealing Time 0.5 seconds Sealing Pressure 0.27 N/mm/mm Number of Samples/temperatures 5 Temperatures Increments 5°C Temperature Range 80°C - 150°C
  • the seal strength of the film samples was determined using an Instron Tensile Tester Model #1122 according to the following test conditions: Direction of Pull 90° to seal Crosshead Speed 500 mm/minute Full Scale Load 5 kg Number of Samples/Threshold 1 percent of FSL Break Criterion 80 percent Gauge Length 2.0 inches (50.8 millimeters) Sample Width 1.0 inch (25.4 millimeters) Table III: Multilayer (A/B/A) Films for Physical Property Testing Example No.
  • a AFFINITY PL 1880 ? 2.54 (*) % refers to percent by weight of LDPE in the blend
  • Table III Physical properties of films shown in Table III are reported in Table IV below. Some results of hottack and heat seal strength are reported in Tables VI and VII.
  • Table IV Physical Properties of Multilayer Films AFF 1880+2 0% 135l 80% Id IN core) AFF 1880+ 20% 135l 3MIL AFF 1880+ 20% 135l AFF 1880 + 20% XU 60021.6 2 AFF 1880 + 20% 5031 AFF 1880 + 20% 526l AFFINITY 1880 Gauge mil 2.49 3.18 2.46 2.50 2.50 2.10 2.54 Elmendorf Tear f M253D
  • Table VI Hottack/Heat Seal Strength Hot Tack Strength, N/in DOWLEX 2045 DOWLEX 2045 + 20% LDPE 135I DOWLEX 2045 + 20% LDPE 609C DOWLEX 2045 + 20% XU60021.62 TEMPERATURE °C 90 0.23 0.14 0.22 0.19 95 0.17 0.21 0.15 0.19 100 0.64 0.62 0.66 0.68
  • the present invention is illustrated by the following examples but is not to be limited thereby.
  • the film samples described in Table III were made as a monolayer using a Macro blown film line.
  • the extruder was 2-1/2 inches (6.4 cm) in diameter and had a 24:1 L/D ratio and a barrier screw with a Maddock mixing head.
  • a 6 inch (15.2 cm) diameter die was used with a 60 mil (1,524 microns) die gap for the manufacture of the test films.
  • the fabrication conditions for the blown film live were a blow-up ratio of 2.5 and a melt temperature of 220°C.
  • the films described in Table III were slit to a width of 15 inches (38.1 cm)to produce 2-liter milk pouches using a Prepac IS6 Vertical, Form, Fill and Seal machine located at a commercial dairy.
  • the unit packaged 2-liter milk filled pouches at the rate of 30 pouches per minute per filling head under normal operating conditions.
  • approximately 16-20 milk-filled pouches were collected. They were inspected for initial seal integrity. 6-8 pouches were tested on site for heat seal strength and 10 pouches were drained, washed and dried for further evaluation.
  • the seal strength was determined using an Instron Tensile Tester Model #1122. Sample were expose to a relative humidity of 50% and 23°C for 24-48 hours prior to testing. The Instron test conditions were as follows: Direction of pull: 90° to seal Crosshead speed: 500 mm/min. Full Scale Load: 5 kg Threshold: 1% of FSL Break Criterion 80% Gauge length: 2.0 in. (50.8 mm) Sample width: 1.0 in. (25.4 mm)
  • the DOWLEX 2045 films were found to have significant seal thinning and end seal stringers as shown in Table IX.
  • the pouches made with 20% 609C were found to have some seal thinning and some end seal stringers.
  • No seal thinning or stringers were found with the 20% 135I and XU 60021.62 films.
  • seal strengths are shown in Table X. Seal strength was found to increase as the melt strength of the blend increased. This finding is graphically illustrated in Fig. 6 using a blend of 80% by weight of LLDPE and 20% by weight of LDPE, except the first data point having melt strength of 6.4 cN did not contain any LDPE. No correlation was evident between LDPE melt index and seal strength.
  • the films made with 20% 135I and XU 60021.62 showed very little seal thinning and no end seal stringers (fine polymer filaments coming from the seal area), while the films made with 100% DOWLEX 2045 had significant seal thinning and stringers.
  • the weakest part of a good seal is typically the film just in front of the seal bead. Any thinning of this film results in lower seal strengths since this is the region that fails when the seal is stressed. Comparing the melt strength of the resin blends (Table II) with the amount of film thinning seen with the pouches made with a commercial VFFS unit (Table XI), it is seen that, as the melt strength of the resin blend increased, the amount of film thinning decreased. No correlation was seen between film thinning (Table XI) and melt index of LDPE in resin blends (Table I).
  • Table VIII Liconsa Dairy Prepac VFFS Evaluation Subjective Seal Strengths Run # LLDPE LDPE % LDPE # Pouches Tested # Seal Failure 1 DOWLEX 2045 0 7 3 2 DOWLEX 2045 609C 20 8 2 3 DOWLEX 2045 135l 20 6 0 4 DOWLEX 2045 XU.62 20 7 0
  • Table IX Liconsa Dairy Prepac VFFS Evaluation Visual Examination of End Seals Run # LLDPE LDPE % LDPE Visual Examination of Seal 1 DOWLEX 2045 - 0 heavy stringers, seal thinning 2 DOWLEX 2045 609C 20 heavy stringers, seal thinning 3 DOWLEX 2045 135I 20 no stringers 4 DOWLEX 2045 XU.62 20 no stringers
  • Table XII Resin Blends Blend Description Blend Description 1 DOWLEX 2045 2 DOWLEX + 10% LDPE XU 60021.62 3 DOWLEX + 20% LDPE XU 60021.62 4 DOWLEX + 30% LDPE XU 60021.62 5 DOWLEX + 40% LDPE XU 60021.62 6 DOWLEX + 50% LDPE XU 60021.62 7 DOWLEX + 60% LDPE XU 60021.62 8 DOWLEX + 70% LDPE XU 60021.62 9 DOWLEX + 80% LDPE XU 60021.62 10 DOWLEX + 90% LDPE XU 60021.62 (*) % refers to percent by weight of the amount of LDPE in various blends.
  • the resin blends of Table XII were used to fabricate 2.8 mil (71 microns)thick films using a MACRO ® blown film line having a barrier screw with a diameter of 2 1/2 inches (63.5 mm, 24:1 L/D ratio and Maddock mixing head. A six inch (15.2 cm) die with a 60 mil (1524 microns) die gap was used. A Macro dual lip air ring supplied with chilled air was used. Each resin was blended to a target of 1200 ppm erucamide slip and 2500 ppm SiO 2 antiblock. Each film was tested for hottack and heat seal strength, values reported in Table XIII and Table XIV, respectively.
  • the hottack strength was determined using a DTC Hottack Tester Model #D52D under the conditions described hereinabove.
  • the test films were heat sealed using the DTC Hottack Tester Model #D52D under the conditions described hereinabove.
  • the heat seal strength was determined using an Instron Tensile Tester Model #1122. Test samples were exposed to a relative humidity of 50 percent and 23°C for 24 to 48 hours prior to testing. The Instron test conditions were the same as described hereinabove.
  • HOTTACK (0.5 X LLDPE hottack) + (0.5 X LDPE hottack) Predicted vs. Actual Hottack Strength Temp. (°C)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Bag Frames (AREA)

Claims (25)

  1. Beutel, enthaltend ein fließfähiges Material, wobei der Beutel hergestellt ist aus einer Folienstruktur mit mindestens einer Dichtschicht aus einer polymeren Zusammensetzung, umfassend:
    (a) von 10 bis 100 Prozent, basierend auf dem Gesamtgewicht der Zusammensetzung, eines Gemischs aus (1) von 5 bis 95 Gewichtsprozent, basierend auf 100 Gewichtsteilen des Gemischs, lineares Ethylencopolymer, interpolymerisiert aus Ethylen und mindestens einem alpha-Olefin im Bereich von C3-C18 und mit einer Dichte von 0,916 bis 0,940 g/cm3 und einem Schmelzindex von weniger als 10 g/10 Minuten, und einem Molekulargewichtsverteilungsverhältnis, Mw/Mn, von größer als 4,0, und einem Maximumschmelzpunkt von größer als 100 °C gemäß Messung mit einem Differenzialscanningkalorimeter, und (2) von 5 bis 95 Gewichtsprozent, basierend auf 100 Gewichtsteilen des Gemischs, eines Hochdruckpolyethylens mit geringer Dichte mit einer Dichte von 0,916 bis 0,930 g/cm3, einem Schmelzindex von kleiner als 1 g/10 Minuten und einer Schmelzfestigkeit von größer als 10 cN, gemäß Bestimmung unter Verwendung einer Gottfert Rheotens-Einheit bei 190 °C; und
    (b) von 0 bis 90 Prozent, basierend auf dem Gesamtgewicht der Zusammensetzung, eines Ethylen-Vinylacetat-Copolymers mit einem Gewichtsverhältnis von Ethylen zu Vinylacetat von 2,2:1 bis 24:1 und einem Schmelzindex von 0,2 bis 10 g/10 Minuten.
  2. Beutel, enthaltend ein fließfähiges Material, wobei der Beutel hergestellt ist aus einer Mehrschichtfolienstruktur, umfassend:
    (I) eine Schicht aus einer polymeren Zusammensetzung, umfassend:
    (a) von 10 bis 100 Prozent, basierend auf dem Gesamtgewicht der Zusammensetzung, eines Gemischs aus (1) von 5 bis 95 Gewichtsprozent, basierend auf 100 Gewichtsteilen des Gemischs, lineares Ethylencopolymer, interpolymerisiert aus Ethylen und mindestens einem alpha-Olefin im Bereich von C3-C18 und mit einer Dichte von 0,916 bis 0,940 g/cm3 und einem Schmelzindex von weniger als 10 g/10 Minuten, und einem Molekulargewichtsverteilungsverhältnis, Mw/Mn, von größer als 4,0, und einem Maximumschmelzpunkt von größer als 100 °C gemäß Messung mit einem Differenzialscanningkalorimeter, und (2) von 5 bis 95 Gewichtsprozent, basierend auf 100 Gewichtsteilen des Gemischs, eines Hochdruckpolyethylens mit geringer Dichte mit einer Dichte von 0,916 bis 0,930 g/cm3, einem Schmelzindex von kleiner als 1 g/10 Minuten und einer Schmelzfestigkeit von größer als 10 cN, gemäß Bestimmung unter Verwendung einer Gottfert Rheotens-Einheit bei 190 °C; und
    (b) von 0 bis 90 Prozent, basierend auf dem Gesamtgewicht der Zusammensetzung, eines Ethylen-Vinylacetat-Copolymers mit einem Gewichtsverhältnis von Ethylen zu Vinylacetat von 2,2:1 bis 24:1 und einem Schmelzindex von 0,2 bis 10 g/10 Minuten; und
    (II) mindestens eine Schicht aus linearem Ethylencopolymer, interpolymerisiert aus Ethylen und mindestens einem alpha-Olefin im Bereich von C3-C18 und mit einer Dichte von 0,916 bis 0,940 g/cm3 und einem Schmelzindex von 0,1 bis 10 g/10 Minuten.
  3. Beutel nach Anspruch 1, worin die Folienstruktur in einer Schlauchform ist und der Beutel querverschweißte Enden aufweist.
  4. Beutel nach Anspruch 2, mit (III) einer Schicht aus einem Hochdruckpolyethylen mit einer Dichte von 0,916 bis 0,930 g/cm3 und einem Schmelzindex von 0,1 bis 10 g/10 Minuten.
  5. Beutel nach Anspruch 2, worin Schicht (I) eine Dichtschicht ist.
  6. Beutel nach Anspruch 2, worin Schicht (II) eine äußere Schicht ist und Schicht (I) eine Dichtschicht ist.
  7. Beutel nach Anspruch 4, worin Schicht (II) eine äußere Schicht ist, Schicht
    (III) eine Kernschicht ist und Schicht (I) eine Dichtschicht ist.
  8. Beutel nach Anspruch 1, worin der Beutel von 5 ml bis 10.000 ml aufnimmt.
  9. Beutel nach Anspruch 1, worin das fließfähige Material Milch ist.
  10. Beutel nach Anspruch 1, worin das Copolymer von Ethylen einen Molekulargewichtsverteilungsindex (l10/l2) von 0,1 bis 20 aufweist.
  11. Beutel nach Anspruch 1, worin die Folienstruktur ein Gleitmittel, ein Antiblockmittel und optional ein Verarbeitungshilfsmittel enthält.
  12. Beutel nach Anspruch 1, worin die Folienstruktur ein Pigment enthält, um die Folienstruktur opak zu machen.
  13. Beutel nach Anspruch 1, worin die Folienstruktur ein Ultraviolettlichtabsorbierendes Additiv enthält.
  14. Beutel nach Anspruch 1, worin das alpha-Olefin der Folienstruktur 1-Octen ist.
  15. Beutel nach Anspruch 1, worin die Schmelzfestigkeit des Hochdruckpolyethylens mit geringer Dichte im Bereich von 10 bis 40 cN ist.
  16. Beutel nach Anspruch 1, worin die Schmelzfestigkeit des Hochdruckpolyethylens mit geringer Dichte im Bereich von 13 bis 25 cN ist.
  17. Beutel nach Anspruch 1, worin die Schmelzfestigkeit der polymeren Zusammensetzung im Bereich von 10 bis 70 cN ist.
  18. Beutel nach Anspruch 1, worin die Foliendicke in der Kantenregion um weniger als 25 Prozent verringert ist.
  19. Folienstruktur aus einer polymeren Zusammensetzung für eine Verpackungsanwendung, umfassend:
    (a) von 10 bis 100 Prozent, basierend auf dem Gesamtgewicht der Zusammensetzung, eines Gemischs aus (1) von 5 bis 95 Gewichtsprozent, basierend auf 100 Gewichtsteilen des Gemischs, lineares Ethylencopolymer, interpolymerisiert aus Ethylen und mindestens einem alpha-Olefin im Bereich von C3-C18 und mit einer Dichte von 0,916 bis 0,940 g/cm3 und einem Schmelzindex von weniger als 10 g/10 Minuten, und einem Molekulargewichtsverteilungsverhältnis, Mw/Mn, von größer als 4,0, und einem Maximumschmelzpunkt von größer als 100 °C gemäß Messung mit einem Differenzialscanningkalorimeter, und (2) von 5 bis 95 Gewichtsprozent, basierend auf 100 Gewichtsteilen des Gemischs, eines Hochdruckpolyethylens mit geringer Dichte mit einer Dichte von 0,916 bis 0,930 g/cm3, einem Schmelzindex von kleiner als 1 g/10 Minuten und einer Schmelzfestigkeit von größer als 10 cN, gemäß Bestimmung unter Verwendung einer Gottfert Rheotens-Einheit bei 190 °C; und
    (b) von 0 bis 90 Prozent, basierend auf dem Gesamtgewicht der Zusammensetzung, eines Ethylen-Vinylacetat-Copolymers mit einem Gewichtsverhältnis von Ethylen zu Vinylacetat von 2,2:1 bis 24:1 und einem Schmelzindex von 0,2 bis 10 g/10 Minuten.
  20. Folie nach Anspruch 19, worin die Konzentration von Ethylenvinylacetatcopolymer 5 bis 85 Prozent, basierend auf dem Gesamtgewicht der Zusammensetzung, ist.
  21. Folie nach Anspruch 19, worin die Konzentration von Ethylenvinylacetatcopolymer 5 bis 25 Prozent, basierend auf dem Gesamtgewicht der Zusammensetzung, ist.
  22. Folie nach Anspruch 19, worin die Schmelzfestigkeit der polymeren Zusammensetzung im Bereich von 10 bis 70 cN ist.
  23. Verfahren zum Herstellen eines Beutels, enthaltend ein fließfähiges Material, umfassend das Bilden einer Folienstruktur, entweder durch Blasschlauchextrudieren oder Gießextrudieren, Formen der Folienstruktur in ein Schlauchelement und Querverschweißen von gegenüberliegenden Enden des Schlauchelements, wobei das Schlauchelement eine Folienstruktur für ein Beutelbehältnis mit mindestens einer Dichtschicht aus einer polymeren Zusammensetzung umfasst, umfassend:
    (a) von 10 bis 100 Prozent, basierend auf dem Gesamtgewicht der Zusammensetzung, eines Gemischs aus (1) von 5 bis 95 Gewichtsprozent, basierend auf 100 Gewichtsteilen des Gemischs, lineares Ethylencopolymer, interpolymerisiert aus Ethylen und mindestens einem alpha-Olefin im Bereich von C3-C18 und mit einer Dichte von 0,916 bis 0,940 g/cm3 und einem Schmelzindex von weniger als 10 g/10 Minuten, und einem Molekulargewichtsverteilungsverhältnis, Mw/Mn, von größer als 4,0, und einem Maximumschmelzpunkt von größer als 100 °C gemäß Messung mit einem Differenzialscanningkalorimeter, und (2) von 5 bis 95 Gewichtsprozent, basierend auf 100 Gewichtsteilen des Gemischs, eines Hochdruckpolyethylens mit geringer Dichte mit einer Dichte von 0,916 bis 0,930 g/cm3, einem Schmelzindex von kleiner als 1 g/10 Minuten und einer Schmelzfestigkeit von größer als 10 cN, gemäß Bestimmung unter Verwendung einer Gottfert Rheotens-Einheit bei 190 °C; und
    (b) von 0 bis 90 Prozent, basierend auf dem Gesamtgewicht der Zusammensetzung, mindestens eines Copolymers, ausgewählt aus der Gruppe, bestehend aus einem Ethylen-Vinylacetat-Copolymer mit einem Gewichtsverhältnis von Ethylen zu Vinylacetat von 2,2:1 bis 24:1 und einem Schmelzindex von 0,2 bis 10 g/10 Minuten.
  24. Verfahren zum Herstellen eines Beutels, enthaltend ein fließfähiges Material, umfassend das Bilden einer Folienstruktur, entweder durch Blasschlauchextrudieren oder Gießextrudieren, Formen der Folienstruktur in ein Schlauchelement und Querverschweißen von gegenüberliegenden Enden des Schlauchelements, wobei das Schlauchelement umfasst:
    (I) eine Schicht aus einer polymeren Zusammensetzung, umfassend:
    (a) von 10 bis 100 Prozent, basierend auf dem Gesamtgewicht der Zusammensetzung, eines Gemischs aus (1) von 5 bis 95 Gewichtsprozent, basierend auf 100 Gewichtsteilen des Gemischs, lineares Ethylencopolymer, interpolymerisiert aus Ethylen und mindestens einem alpha-Olefin im Bereich von C3-C18 und mit einer Dichte von 0,916 bis 0,940 g/cm3 und einem Schmelzindex von weniger als 10 g/10 Minuten, und einem Molekulargewichtsverteilungsverhältnis, Mw/Mn, von größer als 4,0, und einem Maximumschmelzpunkt von größer als 100 °C gemäß Messung mit einem Differenzialscanningkalorimeter, und (2) von 5 bis 95 Gewichtsprozent, basierend auf 100 Gewichtsteilen des Gemischs, eines Hochdruckpolyethylens mit geringer Dichte mit einer Dichte von 0,916 bis 0,930 g/cm3, einem Schmelzindex von kleiner als 1 g/10 Minuten und einer Schmelzfestigkeit von größer als 10 cN, gemäß Bestimmung unter Verwendung einer Gottfert Rheotens-Einheit bei 190 °C; und
    (b) von 0 bis 90 Prozent, basierend auf dem Gesamtgewicht der Zusammensetzung, mindestens eines Copolymers, ausgewählt aus der Gruppe, bestehend aus einem Ethylen-Vinylacetat-Copolymer, mit einem Gewichtsverhältnis von Ethylen zu Vinylacetat von 2,2:1 bis 24:1 und einem Schmelzindex von 0,2 bis 10 g/10 Minuten;
    (II) mindestens eine Schicht aus linearem Ethylencopolymer, interpolymerisiert aus Ethylen und mindestens einem alpha-Olefin im Bereich von C3-C18 und mit einer Dichte von 0,916 bis 0,940 g/cm3 und einem Schmelzindex von 0,1 bis 10 g/10 Minuten.
  25. Verfahren nach Anspruch 24, worin die Folienstruktur umfasst:
    (III) mindestens eine Schicht aus einem Hochdruckpolyethylen mit einer Dichte von 0,916 bis 0,930 g/cm3 und einem Schmelzindex von 0,1 bis 10 g/10 Minuten.
EP97905720A 1997-02-11 1997-02-11 Beutel zum verpacken fliessfähiger materialien Expired - Lifetime EP0998388B9 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1997/001671 WO1998034844A1 (en) 1997-02-11 1997-02-11 Pouches for packaging flowable materials

Publications (4)

Publication Number Publication Date
EP0998388A4 EP0998388A4 (de) 2000-05-10
EP0998388A1 EP0998388A1 (de) 2000-05-10
EP0998388B1 EP0998388B1 (de) 2007-04-04
EP0998388B9 true EP0998388B9 (de) 2007-10-03

Family

ID=22260321

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97905720A Expired - Lifetime EP0998388B9 (de) 1997-02-11 1997-02-11 Beutel zum verpacken fliessfähiger materialien

Country Status (8)

Country Link
EP (1) EP0998388B9 (de)
JP (1) JP2001512402A (de)
CN (1) CN1078160C (de)
AU (1) AU742162B2 (de)
CA (1) CA2280910C (de)
DE (1) DE69737571T2 (de)
ES (1) ES2284182T3 (de)
WO (1) WO1998034844A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010079676A (ko) * 1998-08-21 2001-08-22 세이모르 트라치모브스키 누출 빈도 성능이 개선된 액체 패키지
KR100700482B1 (ko) * 2000-06-19 2007-03-28 소른톤 트러스티 컴퍼니 리미티드 유동성 물질을 담기 위한 용기
GB0023548D0 (en) * 2000-09-26 2000-11-08 Elopak Systems A film
EP1836254B1 (de) * 2005-01-03 2009-08-19 Dow Global Technologies Inc. Elastomere harzzusammensetzungen mit verbesserter festigkeit gegenüber zugresonanz
WO2007121590A1 (en) 2006-04-26 2007-11-01 Liqui-Box Canada Inc. Flex crack resistant low density polyethylene films
CN102020056B (zh) * 2009-09-21 2012-11-07 刘建林 多层共挤可降低漏包率的液体包装膜
ES2380568T3 (es) 2009-11-10 2012-05-16 Basell Polyolefine Gmbh LDPE de alta presión, para aplicaciones médicas
CA2794604C (en) 2010-04-16 2018-01-09 Liqui-Box Corporation Multi-layer, ethylene polymer-based films with high-density polyethylene based stiffening layer
BR112012025478A2 (pt) 2010-04-16 2019-09-24 Liqui Box Corp filme multicamadas para produzir bolsas para conter materiais dispersíveis e processo para produzir bolsas preenchidas com um material dispersível
US9283736B2 (en) 2010-04-16 2016-03-15 Liqui-Box Corporation Multi-layer, ethylene polymer-based films with novel polypropylene blend-based stiffening layer
CN102729563B (zh) * 2012-06-01 2015-01-07 朝阳佛瑞达科技有限公司 具有纸感外观易降解的uht液态奶高阻隔包装膜
CN103819806A (zh) * 2014-02-17 2014-05-28 上海福助工业有限公司 纯pe单层塑料薄膜、由其制备的棱角包装袋及其生产方法
MX2020005058A (es) 2017-11-14 2020-08-17 Liqui Box Corp Bolsas asepticas a granel resistentes al agrietamiento por flexion y resistentes termicamente para envasado flexible.
CN110157074A (zh) * 2019-05-30 2019-08-23 厦门市杏林意美包装有限公司 一种易撕pe膜材料及其制备方法和应用
CN111661472A (zh) * 2020-05-14 2020-09-15 慈溪市和达塑料制品有限公司 平底封装垃圾袋及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503102A (en) 1982-01-20 1985-03-05 Du Pont Of Canada, Inc. Pouches of ethylene-α-olefin copolymer/ethylene-vinyl acetate copolymer blends
AU565262B2 (en) 1982-06-02 1987-09-10 Du Pont Canada Inc. Pouches of copolymer film
US5288531A (en) * 1991-08-09 1994-02-22 The Dow Chemical Company Pouch for packaging flowable materials
US5344884A (en) * 1992-10-08 1994-09-06 Phillips Petroleum Company Polyethylene blends
US5360648A (en) * 1993-06-24 1994-11-01 The Dow Chemical Company Pouch for packaging flowable materials

Also Published As

Publication number Publication date
CA2280910A1 (en) 1998-08-13
WO1998034844A1 (en) 1998-08-13
DE69737571D1 (de) 2007-05-16
CN1246099A (zh) 2000-03-01
CA2280910C (en) 2004-06-22
EP0998388A4 (de) 2000-05-10
EP0998388B1 (de) 2007-04-04
AU2254797A (en) 1998-08-26
ES2284182T3 (es) 2007-11-01
DE69737571T2 (de) 2007-12-20
AU742162B2 (en) 2001-12-20
EP0998388A1 (de) 2000-05-10
JP2001512402A (ja) 2001-08-21
CN1078160C (zh) 2002-01-23

Similar Documents

Publication Publication Date Title
EP0865361B2 (de) Beutel für die verpackung von flüssigkeiten
US6117465A (en) Pouches for packaging flowable materials
EP0866744B2 (de) Neuer beutel zum verpacken von flüssigem material
US5288531A (en) Pouch for packaging flowable materials
CA2165340C (en) Pouch for packaging flowable materials
EP0743902B1 (de) Mehrschnittfolie aus ethylencopolymer
EP0998388B9 (de) Beutel zum verpacken fliessfähiger materialien
NZ336920A (en) Pouches for packaging flowable materials with polymeric composition comprising 5-95% ethylene copolymer and C3-C18 alpha olefin
WO1999006476A1 (en) Pouch for packaging flowable materials
KR20000070945A (ko) 유동성 물질을 포장하기 위한 파우치
MXPA99007377A (en) Pouches for packaging flowable materials
MXPA98004440A (en) Novedos bags to pack fluible materials in bol
NO326217B1 (no) Pose inneholdende et materiale med stromningsevne, fremgangsmate for fremstilling derav, samt en filmsammensetning av en polymerblanding til en forpakningsanvendelse.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990913

A4 Supplementary search report drawn up and despatched

Effective date: 20000324

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): BE CH DE ES FI FR GB IT LI NL SE

Kind code of ref document: A1

Designated state(s): BE CH DE ES FI FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DOW GLOBAL TECHNOLOGIES INC.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FI FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69737571

Country of ref document: DE

Date of ref document: 20070516

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2284182

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120221

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130301

Year of fee payment: 17

Ref country code: GB

Payment date: 20130207

Year of fee payment: 17

Ref country code: ES

Payment date: 20130214

Year of fee payment: 17

Ref country code: DE

Payment date: 20130206

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130212

Year of fee payment: 17

Ref country code: NL

Payment date: 20130209

Year of fee payment: 17

BERE Be: lapsed

Owner name: DOW GLOBAL TECHNOLOGIES INC.

Effective date: 20140228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69737571

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69737571

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140211

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140211