EP0996975B1 - Herstellungsverfahren eines feldeffekttransistors aus siliziumkarbid - Google Patents

Herstellungsverfahren eines feldeffekttransistors aus siliziumkarbid Download PDF

Info

Publication number
EP0996975B1
EP0996975B1 EP98934229A EP98934229A EP0996975B1 EP 0996975 B1 EP0996975 B1 EP 0996975B1 EP 98934229 A EP98934229 A EP 98934229A EP 98934229 A EP98934229 A EP 98934229A EP 0996975 B1 EP0996975 B1 EP 0996975B1
Authority
EP
European Patent Office
Prior art keywords
substrate
silicon carbide
regions
conductive layer
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98934229A
Other languages
English (en)
French (fr)
Other versions
EP0996975A1 (de
EP0996975B8 (de
Inventor
Robert T. Fuller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harris Corp
Original Assignee
Harris Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harris Corp filed Critical Harris Corp
Publication of EP0996975A1 publication Critical patent/EP0996975A1/de
Application granted granted Critical
Publication of EP0996975B1 publication Critical patent/EP0996975B1/de
Publication of EP0996975B8 publication Critical patent/EP0996975B8/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/931Silicon carbide semiconductor

Definitions

  • the present invention relates to a method of forming a field effect transistor (“FET”) device .
  • FET field effect transistor
  • Silicon carbide as a substrate is an excellent material for power devices due to its wideband gap and high blocking voltage.
  • dopants do not readily diffuse in silicon carbide substrate.
  • dopants have been implanted into a silicon carbide substrate to form lightly doped base regions and heavily doped source regions by using two separate masks.
  • J.N. Shenoy et al in "High-voltage double implanted power MOSFET's in 6H-SiC", IEEE Electron Device Letters, vol. 18, n o. 3, March 1997, pp. 93-95 discloses a silicon carbide field effect transistor including a silicon carbide substrate having an electrically insulating layer patterned on one surface thereof to form a gate insulator and an electrically conductive layer on the insulating layer to form a gate having a pair of spaced apart sidewalls.
  • lightly doped base regions are formed in the substrate located partially under the sidewalls of the gate and extending from the one surface of the substrate into an exposed substrate region, and heavily doped source regions are formed entirely within respective ones of the base regions.
  • a drain region is located on the surface of the substrate opposite the surface on which the gate is formed.
  • the base and source regions are formed by a double implantation process using two masks which need to be aligned and the source regions thus formed extend into the region of the substrate underlying the gate.
  • US-A-5 384 270 discloses a method of fabrication a silicon carbide field effect transistor wherein a gate electrode with inclined sidewalls is formed on the surface of a silicon carbide substrate and the gate electrode is used as a mask when injecting impurity ions into a region of the substrate not covered by the gate electrode to form a base region and in conjunction with a resist film mask when subsequently forming a source region within the base region.
  • the resulting base and source regions extend into the region of the substrate beneath the gate electrode.
  • the present invention avoids the use of two separate masks by providing a method of fabricating a field effect transistor as defined in claim 1.
  • a self-aligned implanted power FET preferably a MOSFET, in silicon carbide is fabricated with a single mask.
  • the cost for masks are decreased and alignment problems are diminished in relation to the two step technique.
  • Figure 1 illustrates a power FET device 10 formed in a monocrystalline silicon carbide substrate 12.
  • An insulative material gate 20 having a pair of spaced apart sidewalls 34, 36 is patterned on substrate 12.
  • Gate 20 comprises a first insulative material 14 overlayed with an electrically conductive layer 22.
  • Within substrate 12 is lightly doped base regions 16 located partially under sidewalls 34, 36 and extending into exposed substrate region 30. Associated with the lightly doped base regions 16 are heavily doped source regions 18 aligned with the exposed substrate 30.
  • a drain contact 32 is formed the FET 10.
  • first insulative material 14 is applied over a monocrystalline substrate 12.
  • substrate 12 is a starting wafer composed for example of monocrystalline silicon carbide.
  • First insulation material 14, preferably an oxide layer, is formed on the upper surface 38 of wafer 12.
  • Oxide layer 14 is formed by low temperature chemical vapor deposition techniques, epitaxially, or rapid thermal oxidation processes that form an insulative material ranging from 250 to 350 angstroms. These processes ensure first insulative material 14 is adequately attached on substrate 12 for further deposition of elements.
  • a layer of electrically conductive material 22, as illustrated in figure 2b is applied on insulative material 14.
  • Conductive material 22 ranges from 4,500 to 5,500 angstroms thick and can be applied by a low-pressure chemical vapor deposition (LPCVD) process.
  • LPCVD low-pressure chemical vapor deposition
  • conductive material 22 is polysilicon.
  • the next step entails depositing a layer of a second insulative material 24 on conductive material 22.
  • Second insulative material 24, preferably an oxide layer, is deposited by the same techniques as first insulation material 14.
  • second insulation material 24, preferably, is thinner than the desired thickness of substrate 12.
  • an etch resistant mask 40 is patterned on second insulative material 24. Portions of second insulative material 24 not aligned with mask 40 are removed by conventional etching techniques, such as reactive ion etching, to expose first portion 26 of conductive material 22.
  • a first dopant of one polarity is implanted in substrate 12 aligned with first portion 26.
  • the first dopant is a high implant energy source used to penetrate conductive material 22, first insulative material 14 and substrate 12.
  • the implant is a dose of 2e12, energy of 360KeV of boron and forms a lightly doped base regions 16, commonly a p-well.
  • Second insulative material 24 and mask 40 block the boron ions from penetrating into substrate 12 aligned with material 24 and mask 40.
  • mask 40 is removed exposing the remaining second insulation material 24.
  • a third insulative material 28 is formed on the sidewalls of second insulative material 24. Portions of conductive material 22 not aligned with second insulative material 24 and third insulative material 28, preferably a nitride material, is removed. Conductive material 22 is removed by conventional etching techniques disclosed above. Thereby, exposing area 30 of the first insulative material 14 that is smaller than first portion 26.
  • a second dopant of opposite polarity to the first dopant is then implanted in substrate 12 aligned with area 30.
  • the second dopant normally forms a heavily doped source regions 18, commonly a n-well, with arsenic ions. Heavily doped source regions 18 are located within associated lightly doped base regions 16.
  • Second insulative material 24 and third insulative material 28 blocks the arsenic ions from entering the underlying substrate 12.
  • remaining second insulative material 24 and third insulative material 28 are removed.
  • This removal process preferably, occurs by known stripping procedures known in the semiconductor industry.
  • remaining conductive material 22 and first insulation material 14 aligned with conductive material 22 is gate 20.
  • first insulation material 14 not aligned with conductive material 22 can be removed as well by conventional semiconductor processes.
  • Underside of substrate 12 is subsequently planarized to a desired thickness. Once the underside of substrate 12 is planarized, a drain contact 32 is applied to the underside. In one embodiment of drain contact 32, underside of substrate 12 is metalized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Bipolar Transistors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Junction Field-Effect Transistors (AREA)

Claims (5)

  1. Verfahren zur Herstellung eines Feldeffekttransistors (10) in einem monokristallinen Substrat (12) aus Siliziumkarbid, folgende Schritte umfassend:
    a) Bilden einer ersten elektrisch isolierenden Schicht (14) auf einer Oberfläche des Siliziumkarbidsubstrats (12),
    b) Abscheiden einer elektrisch leitenden Schicht (22) auf der Oberfläche der ersten elektrisch isolierenden Schicht (14),
    c) Abscheiden einer zweiten elektrisch isolierenden Schicht (24) auf der Oberfläche der elektrisch leitenden Schicht (22),
    d) teilweises Entfernen der zweiten elektrisch isolierenden Schicht (24), um erste freiliegende Abschnitte (26) der elektrisch leitenden Schicht (22) zu bilden und um zwei erste, voneinander beabstandetete Bereiche des monokristallinen Substrats (12) aus Siliziumkarbid zu definieren, um Basis-Bereiche zu bilden,
    e) leichtes Implantieren eines ersten Dotierstoffes einer ersten Polarität in die ersten, voneinander beabstandeten Bereiche des monokristallinen Substrats (12) aus Siliziumkarbid durch die ersten freiliegenden Bereiche (26) der elektrisch leitenden Schicht (22) und durch die darunterliegenden Abschnitte der ersten elektrisch isolierenden Schicht, um leicht dotierte Basis-Bereiche (16) in den ersten, voneinander beabstandeten Bereichen zu bilden,
    f) Bilden eines dritten elektrisch isolierenden Materials (28) an den Seitenwandungen der zweiten elektrisch isolierenden Schicht (24), um zweite freiliegende Abschnitte (26) der elektrisch leitenden Schicht (22) zu definieren,
    g) Entfernen der zweiten elektrisch leitenden Schicht (22) an den zweiten freiliegenden Bereichen, um freiliegende Abschnitte (30) der ersten elektrisch isolierenden Schicht zu bilden und um zweite, voneinander beabstandete Bereiche des monokristallinen Substrats (12) aus Siliziumkarbid in den entsprechenden ersten, voneinander beabstandeten Bereichen zu definieren,
    h) starkes Implantieren eines zweiten Dotierstoffes einer zweiten, zur ersten Polarität entgegengesetzten Polarität in die zweiten, voneinander beabstandeten Bereiche des monokristallinen Substrats (12) aus Siliziumkarbid durch die freiliegenden Abschnitte (30) der ersten elektrisch isolierenden Schicht, um stark dotierte Source-Bereiche (18) in den zweiten, voneinander beabstandeten Bereichen (12) innerhalb der leicht dotierten Basis-Bereiche (16) zu bilden, wodurch sich die Basis-Bereiche zu der einen Oberfläche des Substrats erstrecken, und
    i) Entfernen des dritten elektrisch isolierenden Materials und der Reste der zweiten elektrisch isolierenden Schicht, um nach Schritt h) ein Gate (20) zu bilden.
  2. Verfahren nach Anspruch 1, wobei die zweite elektrisch isolierende Schicht dünner als eine festgelegte Dicke ist und die andere Oberfläche des monokristallinen Substrats (12) aus Siliziumkarbid gegenüber der einen Oberfläche derart planarisiert wird, dass die Dicke des monokristallinen Substrats (12) aus Siliziumkarbid auf die festgelegten Dicke reduziert wird.
  3. Verfahren nach Anspruch 1 oder 2, wobei das dritte elektrisch isolierende Material ein Nitridmaterial ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die erste und die zweite elektrisch isolierende Schicht aus Oxidmaterialien bestehen.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die elektrisch leitende Schicht aus einem Polysiliziummaterial besteht.
EP98934229A 1997-06-30 1998-06-30 Herstellungsverfahren eines feldeffekttransistors aus siliziumkarbid Expired - Lifetime EP0996975B8 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US884726 1997-06-30
US08/884,726 US5877041A (en) 1997-06-30 1997-06-30 Self-aligned power field effect transistor in silicon carbide
PCT/US1998/013703 WO1999000833A1 (en) 1997-06-30 1998-06-30 Self-aligned power field effect transistor in silicon carbide

Publications (3)

Publication Number Publication Date
EP0996975A1 EP0996975A1 (de) 2000-05-03
EP0996975B1 true EP0996975B1 (de) 2011-01-05
EP0996975B8 EP0996975B8 (de) 2011-09-14

Family

ID=25385251

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98934229A Expired - Lifetime EP0996975B8 (de) 1997-06-30 1998-06-30 Herstellungsverfahren eines feldeffekttransistors aus siliziumkarbid

Country Status (9)

Country Link
US (1) US5877041A (de)
EP (1) EP0996975B8 (de)
JP (1) JP4173629B2 (de)
KR (1) KR100592401B1 (de)
AT (1) ATE494630T1 (de)
AU (1) AU8380098A (de)
CA (1) CA2296103A1 (de)
DE (1) DE69842085D1 (de)
WO (1) WO1999000833A1 (de)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3206727B2 (ja) * 1997-02-20 2001-09-10 富士電機株式会社 炭化けい素縦型mosfetおよびその製造方法
US5886368A (en) * 1997-07-29 1999-03-23 Micron Technology, Inc. Transistor with silicon oxycarbide gate and methods of fabrication and use
US7196929B1 (en) 1997-07-29 2007-03-27 Micron Technology Inc Method for operating a memory device having an amorphous silicon carbide gate insulator
US7154153B1 (en) 1997-07-29 2006-12-26 Micron Technology, Inc. Memory device
US6936849B1 (en) 1997-07-29 2005-08-30 Micron Technology, Inc. Silicon carbide gate transistor
US6794255B1 (en) 1997-07-29 2004-09-21 Micron Technology, Inc. Carburized silicon gate insulators for integrated circuits
US6965123B1 (en) 1997-07-29 2005-11-15 Micron Technology, Inc. Transistor with variable electron affinity gate and methods of fabrication and use
US6031263A (en) 1997-07-29 2000-02-29 Micron Technology, Inc. DEAPROM and transistor with gallium nitride or gallium aluminum nitride gate
US6746893B1 (en) 1997-07-29 2004-06-08 Micron Technology, Inc. Transistor with variable electron affinity gate and methods of fabrication and use
US6100169A (en) 1998-06-08 2000-08-08 Cree, Inc. Methods of fabricating silicon carbide power devices by controlled annealing
US6107142A (en) * 1998-06-08 2000-08-22 Cree Research, Inc. Self-aligned methods of fabricating silicon carbide power devices by implantation and lateral diffusion
US6429041B1 (en) 2000-07-13 2002-08-06 Cree, Inc. Methods of fabricating silicon carbide inversion channel devices without the need to utilize P-type implantation
US6956238B2 (en) * 2000-10-03 2005-10-18 Cree, Inc. Silicon carbide power metal-oxide semiconductor field effect transistors having a shorting channel and methods of fabricating silicon carbide metal-oxide semiconductor field effect transistors having a shorting channel
US7221010B2 (en) 2002-12-20 2007-05-22 Cree, Inc. Vertical JFET limited silicon carbide power metal-oxide semiconductor field effect transistors
US6979863B2 (en) * 2003-04-24 2005-12-27 Cree, Inc. Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same
US7074643B2 (en) * 2003-04-24 2006-07-11 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same
US7138292B2 (en) * 2003-09-10 2006-11-21 Lsi Logic Corporation Apparatus and method of manufacture for integrated circuit and CMOS device including epitaxially grown dielectric on silicon carbide
US7118970B2 (en) * 2004-06-22 2006-10-10 Cree, Inc. Methods of fabricating silicon carbide devices with hybrid well regions
US7615801B2 (en) * 2005-05-18 2009-11-10 Cree, Inc. High voltage silicon carbide devices having bi-directional blocking capabilities
US20060261346A1 (en) * 2005-05-18 2006-11-23 Sei-Hyung Ryu High voltage silicon carbide devices having bi-directional blocking capabilities and methods of fabricating the same
US7414268B2 (en) 2005-05-18 2008-08-19 Cree, Inc. High voltage silicon carbide MOS-bipolar devices having bi-directional blocking capabilities
US7391057B2 (en) * 2005-05-18 2008-06-24 Cree, Inc. High voltage silicon carbide devices having bi-directional blocking capabilities
US7528040B2 (en) 2005-05-24 2009-05-05 Cree, Inc. Methods of fabricating silicon carbide devices having smooth channels
US8432012B2 (en) 2006-08-01 2013-04-30 Cree, Inc. Semiconductor devices including schottky diodes having overlapping doped regions and methods of fabricating same
US7728402B2 (en) * 2006-08-01 2010-06-01 Cree, Inc. Semiconductor devices including schottky diodes with controlled breakdown
EP2631951B1 (de) * 2006-08-17 2017-10-11 Cree, Inc. Bipolare Hochleistungstransistoren mit isoliertem Gatter
US8835987B2 (en) * 2007-02-27 2014-09-16 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US20090159896A1 (en) * 2007-12-20 2009-06-25 General Electric Company Silicon carbide mosfet devices and methods of making
US8232558B2 (en) 2008-05-21 2012-07-31 Cree, Inc. Junction barrier Schottky diodes with current surge capability
US8288220B2 (en) * 2009-03-27 2012-10-16 Cree, Inc. Methods of forming semiconductor devices including epitaxial layers and related structures
US8294507B2 (en) 2009-05-08 2012-10-23 Cree, Inc. Wide bandgap bipolar turn-off thyristor having non-negative temperature coefficient and related control circuits
US8629509B2 (en) * 2009-06-02 2014-01-14 Cree, Inc. High voltage insulated gate bipolar transistors with minority carrier diverter
US8193848B2 (en) 2009-06-02 2012-06-05 Cree, Inc. Power switching devices having controllable surge current capabilities
US8541787B2 (en) * 2009-07-15 2013-09-24 Cree, Inc. High breakdown voltage wide band-gap MOS-gated bipolar junction transistors with avalanche capability
US8354690B2 (en) 2009-08-31 2013-01-15 Cree, Inc. Solid-state pinch off thyristor circuits
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US8415671B2 (en) 2010-04-16 2013-04-09 Cree, Inc. Wide band-gap MOSFETs having a heterojunction under gate trenches thereof and related methods of forming such devices
CN102376574B (zh) * 2010-08-09 2014-11-12 上海华虹宏力半导体制造有限公司 半导体器件的制造方法
JP5883563B2 (ja) * 2011-01-31 2016-03-15 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US9029945B2 (en) 2011-05-06 2015-05-12 Cree, Inc. Field effect transistor devices with low source resistance
US9142662B2 (en) 2011-05-06 2015-09-22 Cree, Inc. Field effect transistor devices with low source resistance
US9373617B2 (en) 2011-09-11 2016-06-21 Cree, Inc. High current, low switching loss SiC power module
US8680587B2 (en) 2011-09-11 2014-03-25 Cree, Inc. Schottky diode
WO2013036370A1 (en) 2011-09-11 2013-03-14 Cree, Inc. High current density power module comprising transistors with improved layout
US8664665B2 (en) 2011-09-11 2014-03-04 Cree, Inc. Schottky diode employing recesses for elements of junction barrier array
US8618582B2 (en) 2011-09-11 2013-12-31 Cree, Inc. Edge termination structure employing recesses for edge termination elements
US9640617B2 (en) 2011-09-11 2017-05-02 Cree, Inc. High performance power module
WO2016084158A1 (ja) 2014-11-26 2016-06-02 新電元工業株式会社 炭化珪素半導体装置及びその製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322802A (en) * 1993-01-25 1994-06-21 North Carolina State University At Raleigh Method of fabricating silicon carbide field effect transistor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2542448B2 (ja) * 1990-05-24 1996-10-09 シャープ株式会社 電界効果トランジスタおよびその製造方法
US5612260A (en) * 1992-06-05 1997-03-18 Cree Research, Inc. Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures
JP3146694B2 (ja) * 1992-11-12 2001-03-19 富士電機株式会社 炭化けい素mosfetおよび炭化けい素mosfetの製造方法
JPH0799312A (ja) * 1993-02-22 1995-04-11 Texas Instr Inc <Ti> 半導体装置とその製法
US5395780A (en) * 1993-10-12 1995-03-07 Goldstar Electron Co., Ltd. Process for fabricating MOS transistor
KR0153878B1 (ko) * 1994-06-07 1998-10-15 쿠미하시 요시유키 탄화규소반도체장치와 그 제조방법
US5543637A (en) * 1994-11-14 1996-08-06 North Carolina State University Silicon carbide semiconductor devices having buried silicon carbide conduction barrier layers therein
US5510281A (en) * 1995-03-20 1996-04-23 General Electric Company Method of fabricating a self-aligned DMOS transistor device using SiC and spacers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322802A (en) * 1993-01-25 1994-06-21 North Carolina State University At Raleigh Method of fabricating silicon carbide field effect transistor

Also Published As

Publication number Publication date
DE69842085D1 (de) 2011-02-17
JP4173629B2 (ja) 2008-10-29
KR20010020583A (ko) 2001-03-15
JP2001509637A (ja) 2001-07-24
US5877041A (en) 1999-03-02
ATE494630T1 (de) 2011-01-15
AU8380098A (en) 1999-01-19
EP0996975A1 (de) 2000-05-03
EP0996975B8 (de) 2011-09-14
CA2296103A1 (en) 1999-01-07
KR100592401B1 (ko) 2006-06-22
WO1999000833A1 (en) 1999-01-07

Similar Documents

Publication Publication Date Title
EP0996975B1 (de) Herstellungsverfahren eines feldeffekttransistors aus siliziumkarbid
CA1256588A (en) Process for forming ldd mos/cmos structures
US5641698A (en) Method of fabricating FET device with double spacer
USH986H (en) Field effect-transistor with asymmetrical structure
US5510281A (en) Method of fabricating a self-aligned DMOS transistor device using SiC and spacers
US6100561A (en) Method for forming LDD CMOS using double spacers and large-tilt-angle ion implantation
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
US5714393A (en) Diode-connected semiconductor device and method of manufacture
US5631484A (en) Method of manufacturing a semiconductor device and termination structure
US5478763A (en) High performance field effect transistor and method of manufacture thereof
EP0083785A2 (de) Verfahren zur Herstellung von selbstalignierten Feldeffekttransistoren für integrierte Schaltungen
EP0083088A2 (de) Verfahren zur Herstellung eines Feldeffekttransistors mit sehr kurzer Kanallänge
US6413881B1 (en) Process for forming thin gate oxide with enhanced reliability by nitridation of upper surface of gate of oxide to form barrier of nitrogen atoms in upper surface region of gate oxide, and resulting product
JPS6150394B2 (de)
EP0422152B1 (de) Seitenwand-dotierungsverfahren für mesa-strukturen von sos- und soi-bauelementen
US4516143A (en) Self-aligned power MOSFET with integral source-base short and methods of making
JPH05251709A (ja) ソース・ベース間短絡部を有する電力用mos−fetおよびその製造方法
EP0767972B1 (de) Lineare kondensatoren für hochtemperaturanwendungen
US4471523A (en) Self-aligned field implant for oxide-isolated CMOS FET
US5179031A (en) Method of manufacturing a polysilicon emitter and a polysilicon gate using the same etch of polysilicon on a thin gate oxide
US6110788A (en) Surface channel MOS transistors, methods for making the same, and semiconductor devices containing the same
US5972768A (en) Method of manufacturing semiconductor device having low contact resistance
EP0225426B1 (de) Verfahren zum Herstellen eines MOS-Transistors auf einem Substrat
US5923984A (en) Method of making enhancement-mode and depletion-mode IGFETS with different gate materials
US4586243A (en) Method for more uniformly spacing features in a semiconductor monolithic integrated circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 20030507

17Q First examination report despatched

Effective date: 20030507

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: HETHOD OF FABRICATING A FIELD EFFECT TRANSISTOR IN SILICON CARBIDE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69842085

Country of ref document: DE

Date of ref document: 20110217

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 69842085

Country of ref document: DE

Effective date: 20110217

RTI2 Title (correction)

Free format text: METHOD OF FABRICATING A FIELD EFFECT TRANSISTOR IN SILICON CARBIDE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69842085

Country of ref document: DE

Representative=s name: BOEHMERT & BOEHMERT, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69842085

Country of ref document: DE

Representative=s name: BOEHMERT & BOEHMERT ANWALTSPARTNERSCHAFT MBB -, DE

Effective date: 20110720

Ref country code: DE

Ref legal event code: R082

Ref document number: 69842085

Country of ref document: DE

Representative=s name: BOEHMERT & BOEHMERT, DE

Effective date: 20110720

Ref country code: DE

Ref legal event code: R081

Ref document number: 69842085

Country of ref document: DE

Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, SOUTH POR, US

Free format text: FORMER OWNER: HARRIS CORP., MELBOURNE, FLA., US

Effective date: 20110720

Ref country code: DE

Ref legal event code: R081

Ref document number: 69842085

Country of ref document: DE

Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, US

Free format text: FORMER OWNER: HARRIS CORP., MELBOURNE, US

Effective date: 20110720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110629

Year of fee payment: 14

26N No opposition filed

Effective date: 20111006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110105

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 69842085

Country of ref document: DE

Effective date: 20111006

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69842085

Country of ref document: DE

Effective date: 20130101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130101