EP0996516B1 - Verfahren und vorrichtung zur herstellung von werkstücken oder blöcken aus schmelzbaren materialien - Google Patents
Verfahren und vorrichtung zur herstellung von werkstücken oder blöcken aus schmelzbaren materialien Download PDFInfo
- Publication number
- EP0996516B1 EP0996516B1 EP98943727A EP98943727A EP0996516B1 EP 0996516 B1 EP0996516 B1 EP 0996516B1 EP 98943727 A EP98943727 A EP 98943727A EP 98943727 A EP98943727 A EP 98943727A EP 0996516 B1 EP0996516 B1 EP 0996516B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- set forth
- cooling
- thermal conductor
- heat
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/04—Influencing the temperature of the metal, e.g. by heating or cooling the mould
- B22D27/045—Directionally solidified castings
Definitions
- the invention relates to a device for producing workpieces or blocks of fusible materials with a casting mold that is operated by means of a heating device is heated, and wherein the bottom of the mold has a cooling device assigned.
- tangible materials includes materials ceramic, including sapphires, rubies, spinels, etc., metals, metal alloys, or from the group of semiconductors with oriented, multicrystalline or to subsume monocrystalline structure.
- the starting material is either in the liquid phase of a casting mold fed or melted in the mold and then directed in the mold stiffens.
- Such a type of solidification is in different embodiments known.
- the mold is melted out pulled out of a heater. This ensures that the solidification front of progresses from bottom to top.
- the heat is then essentially removed laterally over the mold surface, which makes the setting as flat as possible Phase boundary between the already solidified and molten material in the Practice is not achieved.
- the present invention is based on that described above State of the art, the object of a method and a device with to further develop the features specified at the outset such that the solidification
- the melt is guided in a defined manner and continuously to initiate the cooling phase can be changed from the heating phase to the cooling phase.
- the device and the method in relation to this defined solidification offer the possibility of a wide variation with structurally simple means.
- the problem is solved in the method specified at the outset in that for the defined guidance of the solidification front during the cooling of the melted Material in a body associated with the bottom of the mold Cooling structure with at least one heat-conducting body in at least one associated Recess is inserted into the body from the bottom.
- the object is achieved in that the initially specified Device is characterized in that the cooling device has a cooling structure comprises at least one heat-conducting body which is assigned to at least one Recess in a body assigned to the floor by means of a sliding mechanism is insertable into the body from the bottom.
- solidification of the liquid starting material filled into the casting mold can be performed in a defined manner starting from the bottom of the casting mold by guiding the heat-conducting body in different positions in the recess of the body assigned to the bottom of the casting mold.
- the heat transfer and thus the cooling capacity can be set and also changed in a defined manner.
- crystallization rates of 0.2 mm / min to 2 mm / min can be achieved with cooling capacities in the range of 10 to 150 k / W per m 2 .
- the amount of heat to be dissipated per unit of time can change from Be advantageous to maintain a gas atmosphere around the cooling structure, the Pressure can be changed. By lowering the gas pressure to a few mbar the power density can then be regulated more sensitively.
- a gas atmosphere made of argon around the heat conducting body be maintained, being constantly flushed with such a gas, because straight additional contaminants are removed from the boiler room with argon can.
- the cooling structure can comprise several heat conducting bodies, those in slots and / or blind holes in the body, the bottom the mold is assigned, are insertable.
- heat conducting bodies Plates, bolts and / or rods that also have different cross-sectional geometries can be built.
- a heater below the bottom of the mold arranged such that the or the heat conducting body through the heating device in the body, which is assigned to the underside of the floor, in the inserted state penetrate this heater.
- the transition between heating and cooling the mold not only through the introduction the heat-conducting body can be determined into the recess (s), but also by additional regulation of the heating device as it is also for the maintenance the liquid phase of the starting material is essential, the bottom of the Heat mold.
- the heating device can be arranged in a support plate be assigned to the bottom of the mold and from which the mold will be carried. The support plate is then with holes or recesses provided, which serve the total available for heat transfer Change outside area in a wider area than this alone through the Base of the bottom of the mold would be possible.
- Preferred dimensions of such heat-conducting bodies are one diameter or a thickness and / or width of 5 mm to 20 mm, preferably from 10 mm to 14 mm.
- the web width remaining between adjacent recesses should also be in the body into which the heat sink is inserted, be between 5 and 20 mm.
- the depth of the heat sink introduced in the body must be at least 20 mm in order to ensure sufficient cooling capacity Ranges.
- the individual heat conducting bodies can here, however, have a much greater length than the depth of penetration of 50 mm, i.e. the height of the heat sink can be between 100 and 150 mm, preferably about 130 mm.
- the heat conducting bodies are designed as round pins.
- the diameter of such a heat-conducting body in the design as a round bolt should not be less than 10 mm.
- the ratio between the effective exchange surface and the flat surface is almost independent of the selected bolt diameter with a remaining web width of 10 mm in the bolt diameter range between 10 and 20 mm.
- the individual heat-conducting bodies can have a cross-shaped or star-shaped shape when viewed in cross section. Such heat-conducting bodies then enter recesses in the body assigned to the bottom of the casting mold with a cross-sectional shape matched thereto, so that large areas are made available, both in the recesses and on the cooling bodies.
- the ratio of the sum of the cross-sectional areas of the heat-conducting bodies to the sum of the cross-sectional areas of the recesses should be between 1.5: 1 and 5.5: 1. This results in possible cooling capacities of around 10 to 150 kW / m 2 .
- the displacement of the heat-conducting bodies in the recesses of the body can be technically easily implemented by a lifting mechanism.
- a stroke of 50 mm and a heat-conducting body made of copper with a diameter of 12 mm and an effective heat-conducting body height of 130 mm and a hole spacing of 26 mm and a hole diameter of 14 mm the heat transfer coefficient at 1000 mbar argon atmosphere between the base plate and the heat-conducting body can be at a base plate temperature from 1400 ° C from 10 W / (m 2 x K) to about 240 / (m 2 x K). These values correspond to approximately 1400 to 1500 thermal conductors per square meter.
- the heat loss through thermal insulation is due to the small ratio of Diameter to bore length negligible, so that when retracted Cooling structure the heat losses through the open penetration are justifiable.
- Cooling structure arranged in a pressure-variable chamber become.
- the body is an integral part of the bottom of the mold and furthermore this bottom is still structured, for example with ridges and valleys, with the Raising the bottom of the mold from below the respective heat sink in appropriate holes can be inserted or pulled out.
- the arrangement according to the invention enables Setting a heat profile directly above the mold or mold bottom surface.
- the stem crystal size to be influenced.
- the deepest points of these individual wells are aligned with the corresponding heat-conducting bodies so that the crystallization starts at the deepest (coldest) points on the mold bottom. So that can consciously to achieve certain objectives, for example to initiate a thermal convection, a slightly planar or slightly convex phase boundary between solid and liquid material. Investigations have shown that specifically with the aim of cleaning in directional solidification a slightly curved phase interface is advantageous.
- the melting device comprises an oven with a upper furnace chamber 1a and a lower furnace chamber 1b into which a mold or mold 15, provided on the outside with thermal insulation 2, with suitable Supports 7 is held.
- the thermal insulation 2 is with lateral thermal insulation 14, a lower insulation 16 and an upper insulation 20 provided so that the mold is surrounded on all sides by this thermal insulation 2.
- the upper furnace chamber 1a is on the lower furnace chamber 1b with flange connections 12, in the area of which a seal 12a is inserted, so that the Oven chamber 1a, 1b opened by removing the upper oven chamber 1a and again can be tightly closed.
- Below the bottom 19 of the mold 15 is one lower heater 3 arranged. There is also an upper one above the mold Heating device 4 is provided.
- the two heaters 3 and 4 are over respective power supplies 5 and 6 are electrically supplied to the respective heating power 3, 4 to be able to adjust.
- the space between the upper and lower furnace chamber 1a and 1b and the mold 15 or the heat insulation 2 surrounding it can be evacuated via an evacuation nozzle 11 to the pressure inside to change this chamber 1a, 1b.
- the mold 15 is together with the thermal insulation 2 held on supports 7 so that between the bottom of the lower furnace chamber 1b and the bottom of the mold 15 there is sufficient free space.
- a cooling structure 26 is arranged below the bottom of the mold 15, which comprises a cooling plate 9, of the individual, spaced-apart heat-conducting bodies 10 project.
- These individual heat-conducting bodies 10 are recesses 17 assigned by both the lower insulation 16 and pass the support plate 13 on which the mold 15 stands with its bottom.
- these recesses 17 are in relation to the lower heating device 3, which is arranged in the mold support plate 13, placed so that it between pass individual coils of the heating device 3 and into the mold support plate 13 in the form of blind holes 13a.
- the heat-conducting body 10 should have a thickness and / or width, in FIG. 3B designated with the reference number 29, from 5 to 20 mm, preferably 10 to 14 mm.
- Adjacent heat conducting bodies 10 should be at least about 50 mm be spaced or the thickness of the web between adjacent heat-conducting bodies 10 remains, designated by the reference symbol 30 in FIG. 3B, should 50 mm.
- the length or height of the heat conducting body, i.e. in the vertical direction 3A to 3C, should be in the range of 100 to 150 mm lie, preferably be about 130 mm.
- the furnace chamber can be operated with a gas, preferably Argon, and the pressure in the furnace chamber during cooling or during the movement of the cooling structure 26 in the direction of the mold support plate 13, be managed.
- the pressure is set so that the full lifting height of the Thermally conductive body is used to achieve the most sensitive control behavior possible achieve.
- a mold 15 with thermal insulation 2 is shown schematically in FIG.
- the mold bottom itself designated by the reference number 33 in FIG is provided with bores or recesses 13a, in turn in which the respective Penetrate heat sink 10 of the cooling structure 26.
- the Mold bottom 33 which is assigned to the melt, is structured by individual depressions 25 and elevations 35, for example with a triangular cross section, are provided to increase the heat exchange surface.
- the respective recesses 13a are arranged so that they a corresponding increase 35 in the structuring of the mold bottom 33 assigned.
- This structuring of the mold bottom with the depressions 25 is also for specifying starting points for crystal growth, each on Bottom of the individual wells, an advantage. It is understandable that the side walls 19 of the mold 15 are tightly connected to the mold base 33.
- cooling capacities in the range from 10 to 150 kW / m 2 can be achieved , namely by different positioning of the heat-conducting bodies 10 in the respective recesses 13a can be reached, so that the respective solidification speed can be set in a defined manner.
- the individual heat-conducting bodies can be displaced differently from one another in order to dissipate different amounts of heat through different positions in the respective recesses 13a at different locations on the mold base.
- the external heat-conducting bodies 10 could be inserted into the respective recesses 13a earlier or later than the heat-conducting bodies 10 located further in the middle in order to adapt the solidification profile or the solidification front, for this purpose the lifting mechanism shown in the figures would then have to be inserted or lifting plunger 8 can be divided into several individual lifting plungers assigned to the respective heat-conducting bodies.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Description
- Figur 1
- einen schematischen Querschnitt durch eine Schmelzvorrichtung gemäß der Erfindung, wobei die Kühlstruktur mit aus den Ausnehmungen herausgefahrenen Wärmeleitkörpern dargestellt ist,
- Figur 2
- die Anordnung der Figur 1, allerdings mit in den Ausnehmungen eingeführten Wärmeleitkörpern,
- Figuren 3A bis 3C
- drei verschiedene mögliche Querschnittsformen der Wärmeleitkörper, wie sie in der Anordnung der Figuren 1 und 2 eingesetzt werden können, und
- Figur 4
- einen schematischen Aufbau einer Anordnung, bei der die Wärmeleitkörper in Ausnehmungen, die direkt im Boden der Gießform gebildet sind, verschiebbar sind, wobei zusätzlich der Boden der Gießform strukturiert ist.
Claims (22)
- Verfahren zur Herstellung von Werkstücken und Blöcken aus schmelzbaren Materialien, bei dem flüssiges Ausgangsmaterial in einer Gießform unter Einsatz einer Kühleinrichtung gerichtet erstarrt wird, dadurch gekennzeichnet, daß zur definierten Führung der Erstarrrungsfront während der Abkühlung des geschmolzenen Materials in einen dem Boden (19) der Gießform zugeordneten Körper (13, 33) eine Kühlstruktur (25) mit mindestens einem Wärmeleitkörper (10) in mindestens eine zugeordnete Ausnehmung (17, 13a) von der Unterseite her in den Körper eingeführt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Führung der Erstarrungsfront eine Kühlleistung im Breich von 10 bis 150 kW/m2 durch unterschiedliche Positionierungen des Wärmeleitkörpers eingestellt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Druck um die Kühlstruktur herum während der Abkühlung in definierter Weise zur Änderung der abzuführenden Wärmemenge pro Zeiteinheit verändert wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der mindestens eine Wärmeleitkörper während der Abkühlung von einem Edelgas, insbesondere Argon, umgeben ist.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mehrere Wärmeleitkörper entsprechend einer gewünschten Führung der Erstarrungsfront während der Abkühlung zu unterschiedlichen Stellungen in den zugeordneten Ausnehmungen verschoben werden.
- Vorrichtung zur Herstellung von Werkstücken oder Blöcken aus schmelzbarem Material mit einer Gießform, die mittels einer Heizeinrichtung beheizbar ist, und wobei dem Boden der Gießform eine Kühleinrichtung zugeordnet ist, dadurch gekennzeichnet, daß die Kühleinrichtung eine Kühlstruktur (25) mit mindestens einem Wärmeleitkörper (10) umfaßt, der in mindestens eine zugeordnete Ausnehmung (17, 13a) in einem dem Boden (19) zugeordneten Körper (13; 33)mittels eines Verschiebemechanismus (18) von der Unterseite her in den Körper (13; 33) einführbar ist.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Kühtstruktur (25) mehrere Wärmeleitkörper (10) umfaßt, die in zugeordnete Schlitze und/oder Sacklochbohrungen (13a) im Körper (13; 33) einführbar sind.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß dem Boden der Gießform eine Heizeinrichtung (3) zugeordnet ist und der Wärmeleitkörper (10) durch die Heizeinrichtung (3) im eingeführten Zustand hindurchragt.
- Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Wärmeleitkörper (10) durch Platten, Bolzen und/oder Stäbe gebildet sind.
- Vorrichtung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß die Wärmeleitkörper (10) eine Dicke und/oder Breite (29) von 5 mm bis 20 mm, vorzugsweise von 10 bis 14 mm, aufweisen.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die verbleibende Stegbreite (30) zwischen benachbarten Ausnehmungen (13a) im Körper zwischen 5 und 20 mm beträgt.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Einführtiefe des Wärmeleitkörpers (10) in den Körper mindestens etwa 20 mm beträgt.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Höhe des Wärmeleitkörpers zwischen 100 und 150 mm, vorzugsweise etwa 130 mm, beträgt.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Raum zwischen dem Wärmeleitkörper (10) und der Ausnehmung (17) mit Argon gefüllt (gespült) ist.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Wärmeleitkörper (10) senkrecht zu seiner Höhe einen kreuz- oder sternförmigen Querschnitt aufweist, wobei die Ausnehmung (17) diesem Querschnitt jeweils angepaßt ist.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Wärmeieitkörper (10) zumindest an seinem dem Körper abgewandten Ende mit einem Kühlmedium (18) zwangsgekühlt ist.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß das Verhältnis der Summe der Querschnittsflächen der Wärmeleitkörper (10) zu der Summe der Querschnittsflächen der Ausnehmungen (13a) zwischen 1,5 : 1 und 5,5 : 1 beträgt.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Körper (33) ein integraler Teil des Bodens der Gießform (15) ist.
- Vorrichtung nach Anspruch 6, dadurach gekennzeichnet, daß der Körper (13) eine Tragestruktur (13) bildet, auf die die Gießform (15) aufgesetzt ist.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Boden (33) der Gießform (15) auf seiner der Schmelze zugewandten Seite Erhöhungen und Vertiefungen (25) aufweist.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß sich die Ausnehmung (13a) in eine Erhöhung (35) hinein erstreckt.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Kühlstruktur (26) in einer hinsichtlich des Drucks veränderbaren Kammer (1a, 1b) angeordnet ist.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19730378 | 1997-07-16 | ||
DE19730378 | 1997-07-16 | ||
PCT/EP1998/004351 WO1999003621A1 (de) | 1997-07-16 | 1998-07-14 | Verfahren und vorrichtung zur herstellung von werkstücken oder blöcken aus schmelzbaren materialien |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0996516A1 EP0996516A1 (de) | 2000-05-03 |
EP0996516B1 true EP0996516B1 (de) | 2001-08-29 |
Family
ID=7835817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98943727A Expired - Lifetime EP0996516B1 (de) | 1997-07-16 | 1998-07-14 | Verfahren und vorrichtung zur herstellung von werkstücken oder blöcken aus schmelzbaren materialien |
Country Status (5)
Country | Link |
---|---|
US (1) | US6464198B1 (de) |
EP (1) | EP0996516B1 (de) |
JP (1) | JP2001510095A (de) |
DE (2) | DE19831388A1 (de) |
WO (1) | WO1999003621A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008039457A1 (de) | 2008-08-25 | 2009-09-17 | Schott Ag | Vorrichtung und Verfahren zum gerichteten Erstarren einer Schmelze |
DE102008029951A1 (de) | 2008-06-26 | 2009-12-31 | Schott Ag | Wärmeisolationsanordnung für Schmelztiegel und deren Verwendung sowie Vorrichtung und Verfahren zur Herstellung von ein- oder multikristallinen Materialien |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19855061B4 (de) * | 1998-11-28 | 2012-05-16 | Ald Vacuum Technologies Ag | Schmelzofen zum Schmelzen von Silizium |
DE19934940C2 (de) * | 1999-07-26 | 2001-12-13 | Ald Vacuum Techn Ag | Vorrichtung zum Herstellen von gerichtet erstarrten Blöcken und Betriebsverfahren hierfür |
DE10021585C1 (de) * | 2000-05-04 | 2002-02-28 | Ald Vacuum Techn Ag | Verfahren und Vorrichtung zum Einschmelzen und Erstarren von Metallen und Halbmetallen in einer Kokille |
DE10047397B4 (de) * | 2000-09-26 | 2004-02-05 | Ald Vacuum Technologies Ag | Vorrichtung zum Schmelzen und gerichteten Erstarren eines Metalls |
US7000675B2 (en) * | 2003-04-09 | 2006-02-21 | Tooling And Equipment International | Chill assembly |
DE102006017621B4 (de) * | 2006-04-12 | 2008-12-24 | Schott Ag | Vorrichtung und Verfahren zur Herstellung von multikristallinem Silizium |
DE102007038851A1 (de) * | 2007-08-16 | 2009-02-19 | Schott Ag | Verfahren zur Herstellung von monokristallinen Metall- oder Halbmetallkörpern |
DE102009022412A1 (de) | 2009-05-22 | 2010-11-25 | Ald Vacuum Technologies Gmbh | Vorrichtung zum gerichteten Erstarren geschmolzener Metalle |
ITVI20120246A1 (it) * | 2012-10-01 | 2014-04-02 | Graphite Hi Tech S R L Unipersonal E | Contenitore in grafite con coperchio. |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1976386A (en) * | 1931-01-08 | 1934-10-09 | Katherine Parsons | Casting of ingots |
US2420003A (en) * | 1942-09-14 | 1947-05-06 | Miller Engineering Corp | Temperature control mold |
GB1126538A (en) * | 1965-07-16 | 1968-09-05 | United Aircraft Corp | Improvements in and relating to chill plate construction |
US3321932A (en) * | 1965-10-21 | 1967-05-30 | Raymond C Stewart | Ice cube tray for producing substantially clear ice cubes |
US3538981A (en) * | 1968-08-05 | 1970-11-10 | United Aircraft Corp | Apparatus for casting directionally solidified articles |
FR2158138B1 (de) * | 1971-11-05 | 1974-11-15 | Onera (Off Nat Aerospatiale) | |
US3939895A (en) * | 1974-11-18 | 1976-02-24 | General Electric Company | Method for casting directionally solidified articles |
DE2646060A1 (de) * | 1976-10-13 | 1978-04-20 | Friedhelm Prof Dr Ing Kahn | Verfahren und vorrichtungen zur steuerung des waermehaushalts von giessformen |
GB2041236A (en) * | 1979-01-18 | 1980-09-10 | Crystal Syst | Method and apparatus for growing crystals |
DE3323896A1 (de) | 1983-07-02 | 1985-01-17 | Leybold-Heraeus GmbH, 5000 Köln | Verfahren und vorrichtung zum gerichteten erstarren von schmelzen |
GB2279585B (en) | 1993-07-08 | 1996-11-20 | Crystalox Ltd | Crystallising molten materials |
-
1998
- 1998-07-14 WO PCT/EP1998/004351 patent/WO1999003621A1/de active IP Right Grant
- 1998-07-14 DE DE19831388A patent/DE19831388A1/de not_active Withdrawn
- 1998-07-14 EP EP98943727A patent/EP0996516B1/de not_active Expired - Lifetime
- 1998-07-14 US US09/445,318 patent/US6464198B1/en not_active Expired - Fee Related
- 1998-07-14 DE DE59801335T patent/DE59801335D1/de not_active Expired - Lifetime
- 1998-07-14 JP JP2000502901A patent/JP2001510095A/ja not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008029951A1 (de) | 2008-06-26 | 2009-12-31 | Schott Ag | Wärmeisolationsanordnung für Schmelztiegel und deren Verwendung sowie Vorrichtung und Verfahren zur Herstellung von ein- oder multikristallinen Materialien |
DE102008039457A1 (de) | 2008-08-25 | 2009-09-17 | Schott Ag | Vorrichtung und Verfahren zum gerichteten Erstarren einer Schmelze |
Also Published As
Publication number | Publication date |
---|---|
DE19831388A1 (de) | 1999-01-21 |
JP2001510095A (ja) | 2001-07-31 |
EP0996516A1 (de) | 2000-05-03 |
US6464198B1 (en) | 2002-10-15 |
DE59801335D1 (de) | 2001-10-04 |
WO1999003621A1 (de) | 1999-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006017621B4 (de) | Vorrichtung und Verfahren zur Herstellung von multikristallinem Silizium | |
DE68919737T2 (de) | Vorrichtung und Verfahren zur Züchtung von grossen Einkristallen in Platten-/Scheibenform. | |
EP2028292B1 (de) | Verfahren zur Herstellung von monokristallinen Metall- oder Halbmetallkörpern | |
EP1866247B1 (de) | Vorrichtung und verfahren zum kristallisieren von nichteisenmetallen | |
EP0996516B1 (de) | Verfahren und vorrichtung zur herstellung von werkstücken oder blöcken aus schmelzbaren materialien | |
DE60020505T2 (de) | Schmelzflüssiger Metallbadofen und Giessverfahren | |
DE3323896C2 (de) | ||
DE2461553A1 (de) | Verfahren zum erzeugen von einkristallen | |
DE19602554C1 (de) | Verfahren und Vorrichtung zum gleichzeitigen Gießen und gerichteten Erstarren von mehreren Gußkörpern | |
DE2730161C2 (de) | ||
DE2657551A1 (de) | Vorrichtung zur herstellung von guss mit gerichtetem gefuege | |
DE102008029951B4 (de) | Wärmeisolationsanordnung für Schmelztiegel und deren Verwendung sowie Vorrichtung und Verfahren zur Herstellung von ein- oder multikristallinen Materialien | |
DE3840448C2 (de) | Stranggießkokille | |
DE19934940C2 (de) | Vorrichtung zum Herstellen von gerichtet erstarrten Blöcken und Betriebsverfahren hierfür | |
DE10021585C1 (de) | Verfahren und Vorrichtung zum Einschmelzen und Erstarren von Metallen und Halbmetallen in einer Kokille | |
EP0218088B1 (de) | Verfahren zur gerichteten Erstarrung von Metallschmelzen | |
WO2010043350A1 (de) | Vorrichtung zum kristallisieren von nicht-eisen-metallen | |
DE19855061B4 (de) | Schmelzofen zum Schmelzen von Silizium | |
DE1100887B (de) | Verfahren und Vorrichtung zur Herstellung von Rohren aus durchsichtigem, reinem Quarz | |
EP0218087B1 (de) | Verfahren zum Aufschmelzen und gerichteten Erstarren von Metallen | |
DE102008039457A1 (de) | Vorrichtung und Verfahren zum gerichteten Erstarren einer Schmelze | |
EP3785822A1 (de) | Vorrichtung und verfahren zur herstellung eines gussstückes bevorzugt als vormaterial | |
DE1801659A1 (de) | Verfahren und Vorrichtung zur Herstellung von Gussteilen aus Metallen | |
DE10026921C2 (de) | Spule | |
DE2538832C3 (de) | Vorrichtung zum Herstellen von Metalleinkristallen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19991021 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB NL SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20010110 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL SE |
|
REF | Corresponds to: |
Ref document number: 59801335 Country of ref document: DE Date of ref document: 20011004 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ALD VACUUM TECHNOLOGIES AG |
|
RIN2 | Information on inventor provided after grant (corrected) |
Free format text: ALD VACUUM TECHNOLOGIES AG |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20011210 |
|
EN | Fr: translation not filed | ||
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: ALD VACUUM TECHNOLOGIES AG |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
NLS | Nl: assignments of ep-patents |
Owner name: ALD VACUUM TECHNOLOGIES AG |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ERR Free format text: BOPI DE PUBLICATION N: 02/04 PAGES: 246 PARTIE DU BULLETIN CONCERNEE: BREVETS EUROPEENS DONT LA TRADUCTION N'A PAS ETE REMISE A I'INPI IL Y A LIEU DE SUPPRIMER: LA MENTION DE LA NON REMISE. LA REMISE DE LA TRADUCTION EST PUBLIEE DANS LE PRESENT BOPI. |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090722 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100714 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20100729 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20100715 Year of fee payment: 13 Ref country code: FR Payment date: 20100805 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100722 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20120201 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110714 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110715 |