EP0987421B1 - Verfahren zur Erkennung der Phase der Zylinder einer Mehrzylinder-Viertaktbrennkraftmaschine. - Google Patents

Verfahren zur Erkennung der Phase der Zylinder einer Mehrzylinder-Viertaktbrennkraftmaschine. Download PDF

Info

Publication number
EP0987421B1
EP0987421B1 EP99124420A EP99124420A EP0987421B1 EP 0987421 B1 EP0987421 B1 EP 0987421B1 EP 99124420 A EP99124420 A EP 99124420A EP 99124420 A EP99124420 A EP 99124420A EP 0987421 B1 EP0987421 B1 EP 0987421B1
Authority
EP
European Patent Office
Prior art keywords
engine
phase
variation
cylinder
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99124420A
Other languages
English (en)
French (fr)
Other versions
EP0987421A2 (de
EP0987421A3 (de
Inventor
Christophe Genin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli France SAS
Original Assignee
Magneti Marelli France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magneti Marelli France SAS filed Critical Magneti Marelli France SAS
Publication of EP0987421A2 publication Critical patent/EP0987421A2/de
Publication of EP0987421A3 publication Critical patent/EP0987421A3/de
Application granted granted Critical
Publication of EP0987421B1 publication Critical patent/EP0987421B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/077Circuits therefor, e.g. pulse generators
    • F02P7/0775Electronical verniers

Definitions

  • the invention relates to a method for recognizing or locating of the cylinder phase of a multi-cylinder internal combustion cycle engine four-stroke, of the type fitted with an ignition and / or injection system individually controlled fuel for each cylinder, and having a sensor, often called the engine angular position sensor, which is fixed by report to the engine and detects the passage opposite at least one position fixed on a rotary target, linked in rotation to the engine crankshaft, to provide a signal for the passage of the piston of an engine reference cylinder in a determined position, for example at about 100 ° angle before neutral top (P.M.H.) of this piston.
  • a sensor often called the engine angular position sensor
  • phase of engine cylinders must be identified or recognized, that is, each time instant during an engine cycle, we must know the position of each different engine pistons as well as the phase or time of the engine cycle each of the different cylinders of the latter, and in particular the passage of pistons at P.M.H. at the start of the admission phase, in order to define precisely the moment of fuel injection, and their passage to the position of P.M.H. at the start of the combustion-expansion phase, in order to precisely define ignition (instant and ignition energy), in case the combustion engine internal is a spark ignition engine.
  • sequential injection consists in actuating the different injectors successively and in a given order, in order to inject the metered amounts of fuel to the cylinders under the most severe conditions favorable compared to the corresponding admission phases.
  • a sequential ignition system allows to control successively and in an order given the ignition in the various cylinders, in the best conditions with respect to the corresponding combustion-expansion phases, that is to say, in practice, with a suitable ignition advance, relative to the P.M.H. at the start of the corresponding combustion-expansion phase, depending engine operating conditions without triggering simultaneously unnecessary and sometimes disturbing spark in another cylinder which is in an engine time unsuitable for receiving ignition.
  • Ignition and / or fuel injection systems of the type sequential for internal combustion engine generally include a engine control computer, which manages in particular the ignition and injection of fuel, and which must, for this purpose, permanently know the phase of the cylinders in order to precisely follow the progress of the engine cycle in each them, so that the engine control computer can calculate and control the quantity of fuel delivered by each injector, i.e. in fact the duration on the one hand, and so that the engine control can calculate the instant of ignition and trigger it by the control of a corresponding ignition coil, on the other hand.
  • a engine control computer which manages in particular the ignition and injection of fuel, and which must, for this purpose, permanently know the phase of the cylinders in order to precisely follow the progress of the engine cycle in each them, so that the engine control computer can calculate and control the quantity of fuel delivered by each injector, i.e. in fact the duration on the one hand, and so that the engine control can calculate the instant of ignition and trigger it by the control of a corresponding ignition coil, on the other hand.
  • a rotary target integral in rotation with the crankshaft or flywheel of inertia of the engine, and generally constituted by a ring gear, of which the teeth, distributed over the periphery of the crown, constitute landmarks measurement of engine speed and crankshaft position
  • a sensor for example with variable reluctance
  • the position mark In scrolling past the fixed sensor, the position mark generates a distinctive signal to each passage of the engine pistons in a known fixed position, which allows the engine control computer to calculate, among other things, the instants of passage to the top dead centers of the various pistons.
  • one engine cycle corresponds to two turns of the crankshaft, from so that the piston of the reference cylinder passes, during each cycle engine, twice by the P.M.H., but during two different phases of the engine cycle.
  • the order The ignition of the cylinders is generally given by the sequence 1, 3, 4, 2 and the pistons of cylinders 1 and 4 move simultaneously to top dead center, and alternately one at the start of an admission phase and the other at the start of a phase combustion-expansion, while the pistons of cylinders 2 and 3 also pass simultaneously with the P.M.H., with an offset of half a motor turn by compared to cylinders 1 and 4, and as the latter alternately at the start an intake phase and at the start of a combustion-expansion phase.
  • a second sensor possibly of the same type as the first, for example at variable reluctance, and sensitive to scrolling against markers, such as teeth, carried by a second rotating target, such as a ring gear, rotated at a speed which is half that of the crankshaft, so that this second target performs one complete rotation per engine cycle.
  • a second rotating target such as a ring gear
  • the second target integral in rotation with the shaft of the ignition distributor or, more frequently, the camshaft or its pulley drive.
  • the second rotary target, driven with the camshaft carries a single position mark, which cooperates with the second sensor to deliver a signal at two logic levels.
  • the cooperation of the first sensor with the first rotary target provides information on the angular position of the piston of a reference cylinder, while the cooperation of the second sensor and the second target provides the phase information of this reference cylinder, reason why the whole of the second sensor and the second rotating target is generally called the motor phase sensor.
  • FR-A-2 692 623 proposes a cylinder identification process which saves the phase sensor engine and replaces it with an engine torque analysis, to detect misfires of combustion following a command to stop fuel injection in a reference cylinder, when the piston passes from the latter to the P.M.H.
  • this method has the disadvantage that its implementation supposes the presence not only of an angular position sensor of the engine, to locate the passage to the P.M.H. the piston of a reference cylinder, but also a misfire detection system, capable of provide a signal to identify misfires occurring in the different cylinders.
  • Another disadvantage of this process is that it cannot be implemented. works only on an engine fitted with a fuel injection system at individually controlled by cylinder, so it cannot be used on a engine equipped for example with a fuel injection system of the type single point and a sequential ignition system.
  • the disturbance consists of a complete stop of the injection or ignition control for the reference cylinder, and the detection of any resulting variation in engine operation consists in detecting a possible misfire and the instant of the occurrence of this misfire.
  • EP-A-0 640 762 teaches observe the variations in engine speed that result from the disturbance, and to detect the passages of the acceleration of the cylinder piston of reference under an acceleration threshold.
  • the disadvantages of this method are require the presence of a misfire detection circuit, such as FR-A-2 692 623, and to allow the identification of the cylinders only after the passage the engine in steady state, not when the engine is started.
  • the disturbance consists in a modification of the instant of ignition in relation to normal operation, for the cylinder reference, i.e. an increase or decrease in the advance or ignition delay, when the engine is idling, and detection of any resulting variation in engine operation is to detect possible irregularities in engine rotation and variations in engine speed, or variations in the intake air flow to the engine at idle, in a quasi-stabilized regime.
  • the disadvantages of this method are that it cannot be applied to diesel engine, and to be effective only after switching the engine to quasi-stabilized speed.
  • the problem underlying the invention is to remedy the drawbacks of the processes known from EP-A-0 640 762 and FR-A-2 692 623, and to propose another method of recognizing the phase of the cylinders than that known from DE-A-42 42 419 and which can be implemented on an engine equipped with an angular position sensor, without phase sensor or system detection of misfire, the engine may have an installation individually controlled fuel injection and / or ignition system individually controlled by cylinder.
  • the recognition process phase of the cylinders according to the invention can be implemented that the ignition either sequential and any injection, for example single-point, multi-point, "full-group" (i.e.
  • injection is multipoint sequential and arbitrary ignition, for example static or twin-static (i.e. by producing sparks in two cylinders simultaneously with each engine turn).
  • the method of the invention is characterized in that the control of said disturbance consists in ordering a modification injection time compared to normal operation, other complete shutdown of the ignition control and the injection control, and in that the detection of any variation in engine operation in resulting consists in detecting a possible variation of the engine torque and the instant of the occurrence of said variation in engine torque.
  • cylinders of the same P.M.H. are controlled simultaneously from the moment of starting the engine or from the detection of an event likely to cause loss of knowledge of the cylinder phase and until recognition of the cylinder phase.
  • the method of the invention consists in observe the engine torque and detect its variations by observing and detection of variations in a signal representative of the gas torque value generated by each combustion in each of the engine cylinders.
  • the method is implemented on a motor on which the rotary target is a ring gear, integral with the flywheel or the engine crankshaft, and the teeth distributed around its periphery constitute measurement marks, for which said position mark, forming a singularity on the crown, constitutes a benchmark indexing reference measurement by turning the flywheel or crankshaft, the sensor fixed relative to the motor being a marker scroll sensor and mounted in the vicinity of the crown, so that it is advantageously possible, as known by FR-A-2 681 425, to deliver a signal representative of the gas torque from the durations, speeds and variations of the speed of movement of the marks in front of the sensor, thanks to the software torque sensor described in the aforementioned patent.
  • the advantageously consists in bringing the given instant closer to the order of disturbance of the detected instant of the occurrence of the torque variation engine or the absence of engine torque variation by calculating the number of passages by the P.M.H. of the piston of the reference cylinder between said two instants or from said given instant, and comparing it to at least a number predetermined, corresponding to a determined phase of the reference cylinder in the engine cycle, when the corresponding piston passes into said position determined.
  • the method of the invention can consist in performing at least one cycle said stages of phase recognition from the start of the motor, after at least the first passage of the piston of the reference cylinder in said determined position or, on the contrary, not to carry out at least one cycle of said phase recognition steps only after a predetermined whole number of engine cycles counted from the first passage of the cylinder piston reference in said determined position, the method being able moreover to consist of to relaunch substantially periodically at least one cycle of said stages of phase recognition to confirm or correct the recognition of the cylinder phase.
  • a four-stroke spark ignition engine and four cylinders in line is schematically represented in M.
  • the ignition in the cylinders of the engine M is provided via four coils ignition 1, 2, 3 and 4, each corresponding to the cylinder (not shown) of same order of engine M.
  • Ignition coils 1, 2, 3 and 4 are sequentially supplied with electric current, to ensure ignition, by a unit engine control electronics 6 which in particular also controls injection of fuel to the cylinders of the engine M.
  • this unit of engine control 6 fulfills in particular the functions of a computer and includes one or more read-only memories, one or more read-only memories as well as minus one processing unit in the form of a microprocessor or microcontroller.
  • the engine control unit 6 also has different input and output interfaces for receiving signals, respectively input, from different operating parameter sensors of the motor, in order to carry out operations, and deliver output signals to intended in particular for fuel injectors (not shown) and ignition coils 1, 2, 3 and 4.
  • a cylinder ignition sequence is carried out in the following order: 1, 3, 4, 2.
  • the input signals from the engine control unit 6 include the pulses delivered by a variable reluctance sensor 7, fixed on the block of the motor M and mounted opposite and close to a toothed ring 8 integral with flywheel rotation.
  • the crown 8 has teeth evenly distributed 9, forming measurement marks, as well as a singularity 10, which constitutes an indexing mark of the teeth 9 and an angular position mark of the motor which, when it passes next to the sensor 7, causes the latter to deliver to unit 6 a signal indicating the passage of the pistons of cylinders 1 and 4 simultaneously with P.M.H.
  • the sensor 7 is also sensitive to the movement of teeth 9 and 10 to deliver pulses proportional to the frequency of passage of the teeth, so that unit 6 can develop an engine speed signal.
  • unit 6 can also generate a signal representative of the gas torque generated, by each combustion in each of the cylinders of the engine M, at from the pulses received from the sensor 7.
  • the observation of the engine torque and the detection of its variation resulting from the ignition disturbance control on cylinder 1, chosen as the reference cylinder, and the detection of the instant of the occurrence of this variation in engine torque can be ensured by observation and detection of variations in a gas torque signal represented by information of a different nature than that mentioned above, for example from pressure signals in the combustion chambers.
  • This reconciliation between the instants of the command of the ignition disturbance and the detection of its consequence on the torque motor can be ensured by comparison of the number of P.M.H. between these two instants with a predetermined threshold number, for example 2 P.M.H., so that if the signal 13 for variation of the engine torque is detected less than two P.M.H. after that of the ignition disturbance control 12, as is the case in FIG. 3c, it can be deduced that the cylinder 1 was in the combustion-expansion phase, while if the number of P.M.H. consecutive to that of the order 12 is greater than 2 before detecting a torque variation engine, as shown in figure 3d, we deduce that cylinder 1 was in admission phase.
  • a predetermined threshold number for example 2 P.M.H.
  • the disturbance is controlled on the cylinder coil reference during a complete engine cycle.
  • One or more consecutive cycles of the recognition stages of phase described above can or can be carried out from the start of the engine, for example after the first or the first few passages of the piston of cylinder 1 at P.M.H.
  • the cycle of phase recognition steps can be carried out after the engine launch phase, i.e. after a predetermined whole number of engine cycles, this number being counted from, for example, from the first passage of the piston of cylinder 1 to the P.M.H.
  • the motor M differs from the motor in FIG. 1 only in that that it includes, instead of a sequential ignition installation, an installation fuel supply by sequential multi-point injection, whereby each of cylinders 1 to 4 of engine M is supplied with fuel by a corresponding injector 21, 22, 23 or 24, controlled by the engine control unit 26, analogous to unit 6 of FIG. 1, and which also controls the ignition, of any appropriately.
  • engine control unit 26 develops also a motor speed signal, a signal for the passage of pistons of cylinders 1 and 4 at P.M.H., as well as a signal representative of the torque gas from the pulses it receives from the sensor 7, fixed, as in the previous example, on the motor M and sensitive to the movement of the teeth 9 and the singularity 10 of the ring gear 8 rotating with the crankshaft, in the same conditions as explained above.
  • the engine control unit 26 comprises therefore also the device for measuring the torque of an internal combustion engine internal combustion which is the subject of French patent FR 2 681 425 and implements the process described in this patent.
  • the unit 26 controls, sequentially, the instants of opening of the injectors 21, 22, 23 and 24 as well as the durations opening of these injectors in order to inject quantities of fuel dosed in depending on the engine operating conditions M.
  • the phase recognition method comprises the following steps: firstly, upon reception of signal 31 from the FIG. 6a, corresponding to the passage of the singularity 10 opposite the sensor 7, and indicating the passage of the pistons of cylinders 1 and 4 to the P.M.H., we control, on cylinder 1 chosen as reference cylinder, a disturbance in the control of the corresponding injector 21, this disturbance consisting of an increase or decrease in the duration of injection, without be able to be a total injection cut-off. Simultaneously, the control unit engine 26 controls a static twin ignition of cylinders 1 and 4. On then observe the engine torque to detect its variation resulting from the injection disturbance control marked at 32 in FIG.
  • the approximation of the given instant of the disturbance command and the detected instant of the occurrence of the variation of engine torque, through the variation of the gas torque is ensured by calculating the number of passages by the P.M.H. the piston of the reference cylinder between the two moments, and comparing this number to at least one threshold number predetermined, to deduce the phase of the reference cylinder when passing through P.M.H. initial considered and to know the phase of all cylinders.
  • all of the engine's cylinders can have their phase identified from knowledge of the phase of the reference cylinder, and the injection disturbance on the injector 21 can be controlled during a complete engine cycle.
  • a recognition cycle of phase can be driven as soon as the engine starts, or a number of engine cycles after this start, and can be repeated if necessary substantially periodically for confirmation or correction of the knowledge of the cylinder phase resulting from a recognition cycle anterior phase.
  • phase recognition method described with reference to Figures 4 to 6 can be implemented on a diesel engine, the disturbance control relating only to the injection of fuel into the selected reference cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (9)

  1. Verfahren zur Wiedererkennung der Phase der Zylinder eines mehrzylindrigen Verbrennungsmotors (M) mit vier Takten, der mit einer für jeden Zylinder einzeln gesteuerten Brennstoff-Einspritzanlage (21, 22, 23, 24, 26) ausgestattet ist und einen Messfühler (7) aufweist, um ein Signal zu liefern, welches erlaubt, den Durchgang des Kolbens eines Bezugszylinders des Motors in einer bestimmten Position zu erkennen, wobei das Verfahren aufweist wenigstens einen Zyklus von Schritten, bestehend aus:
    Steuern einer Störgröße (12, 32) am Bezugszylinder und zu einem mit dem Durchgang (11,31) des Kolbens des Bezugszylinders in der vorbestimmten Position gegebenen Zeitpunkt, derart, dass eine Variation der Funktionsweise des Motors eingeleitet wird,
    Überwachen der Funktionsweise des Motors und Erfassen einer möglichen Variation (13, 33, 34) der Funktionsweise, die sich aus der Steuerung der Störgröße (13, 32) am Bezugszylinder ergibt, und Erfassen des Zeitpunktes des Auftretens der Variation des Motordrehmoments (13, 33, 34) oder des Nicht-Vorhandenseins einer Variation der Funktionsweise des Motors,
    Gegenüberstellen des gegebenen Zeitpunkts der Steuerung der Störgröße (12, 32) und des erfassten Zeitpunkts des Auftretens der Variation der Funktionsweise des Motors (13, 33, 34) oder des Nicht-Vorhandenseins einer Variation der Funktionsweise des Motors, um die Phase des Motorzyklus, in welcher sich der Bezugszylinder in der bestimmten Position (11, 31) befindet, herzuleiten, und
    Wiedererkennen der Phase aller Zylinder des Motors (M) ausgehend von der Kenntnis der Phase des Bezugszylinders,
    dadurch gekennzeichnet, dass die Steuerung der Störgröße (32) darin besteht, eine Modifikation der Einspritzdauer im Vergleich zu einer normalen Funktionsweise anders als durch eine vollständige Unterbrechung der Einspritzsteuerung zu steuern, und dadurch, dass die Erfassung der sich darauf ergebenden möglichen Variation der Funktionsweise des Motors darin besteht, eine mögliche Variation (13, 33, 34) des Motordrehmoments und des Zeitpunktes des Auftretens dieser Variation des Motordrehmoments zu erfassen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Zylinder mit dem gleichen oberen Totpunkt seit dem Zeitpunkt des Anlassens des Motors oder seit der Erfassung eines Ereignisses, das dazu geeignet ist, das Erkennen der Phase der Zylinder verloren gehen zu lassen, und bis zur Wiedererkennung der Phase der Zylinder simultan gesteuert werden.
  3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass dieses darin besteht, das Motordrehmoment zu beobachten und seine Variationen durch Beobachtung und aus der Erfassung von Variationen eines Signals, das für den Wert des durch jede Verbrennung in jedem der Zylinder des Motors (M) erzeugten Gasmoments repräsentativ ist, zu erfassen.
  4. Verfahren nach Anspruch3, für einen Motor (M), bei welchem eine drehbare Prallscheibe, die mit dem Messfühler (7) zusammenwirkt, um das Durchgangssignal des Kolbens des Bezugszylinders in der bestimmten Position zu liefern, ein Zahnkranz (8) ist, der mit dem Schwungrad oder mit der Kurbelwelle des Motors (M) fest verbunden ist und dessen an seinem Umfang verteilten Zähne (9) Ablesemarken bilden, für welche eine Positionsmarke, die auf dem Kranz (8) eine singuläre Stelle (10) bildet, einen Bezugsindex der Ablesemarken (9) pro Umdrehung des Schwungrades oder der Kurbelwelle bildet, wobei der in Bezug zum Motor fest liegende Messfühler (7) ein Messfühler für das Vorbeilaufen der Marken (9, 10) ist, der in der Nähe des Zahnkranzes (8) angebracht ist, dadurch gekennzeichnet, dass dieses darin besteht, ein für das Gasmoment repräsentatives Signal ausgehend von den Zeitspannen, den Geschwindigkeiten und den Variationen der Geschwindigkeiten des Vorbeilaufens der Marken (9, 10) zu liefern.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass dieses darin besteht, den von der Störungssteuerung (12, 32) gegebenen Zeitpunkt dem erfassten Zeitpunkt des Auftretens der Variation des Motordrehmoments (13, 33, 34) oder Nicht-Vorhandenseins einer Variation des Motordrehmoments gegenüber zu stellen, indem der Zahl der Durchgänge durch den oberen Totpunkt des Kolbens des Bezugszylinders zwischen den zwei Zeitpunkten oder ausgehend von dem gegebenen Zeitpunkt berechnet wird und indem diese mit wenigstens einer vorbestimmten Zahl, die einer bestimmten Phase des Bezugszylinders im Motorzyklus entspricht, beim Durchgang des entsprechenden Kolbens in dieser bestimmten Position verglichen wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass dieses darin besteht, wenigstens einen dieser Schritte der Wiedererkennung der Phase gleich nach dem Anlassen des Motors (M) nach wenigstens dem ersten Durchgang des Kolbens des Bezugszylinders in der bestimmten Position auszuführen.
  7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass dieses darin besteht, wenigstens einen Zyklus der Schritte der Wiedererkennung der Phase nur nach einer vorbestimmten Gesamtzahl von Motorzyklen auszuführen, die ausgehend vom ersten Durchgang des Kolbens des Bezugszylinders in der vorbestimmten Position gezählt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass dieses darin besteht, im Wesentlichen periodisch wenigstens einen Zyklus der Schritte zur Wiedererkennung der Phase zu wiederholen, um die Erkennung der Phase der Zylinder zu bestätigen oder zu korrigieren.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass dieses darin besteht, die Störgröße (12, 32) in dem Bezugszylinder während eines Motorzyklus zu steuern.
EP99124420A 1995-05-15 1996-05-13 Verfahren zur Erkennung der Phase der Zylinder einer Mehrzylinder-Viertaktbrennkraftmaschine. Expired - Lifetime EP0987421B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9505711A FR2734322B1 (fr) 1995-05-15 1995-05-15 Procede de reconnaissance de la phase des cylindres d'un moteur multicylindres a combustion interne a cycle a quatre temps
FR9505711 1995-05-15
EP96916198A EP0826099B1 (de) 1995-05-15 1996-05-13 Verfahren zur erkennun der phase der zylinder einer mehrzylinder-viertaktbrennkraftmaschine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP96916198A Division EP0826099B1 (de) 1995-05-15 1996-05-13 Verfahren zur erkennun der phase der zylinder einer mehrzylinder-viertaktbrennkraftmaschine

Publications (3)

Publication Number Publication Date
EP0987421A2 EP0987421A2 (de) 2000-03-22
EP0987421A3 EP0987421A3 (de) 2002-08-28
EP0987421B1 true EP0987421B1 (de) 2004-10-13

Family

ID=9478975

Family Applications (2)

Application Number Title Priority Date Filing Date
EP96916198A Expired - Lifetime EP0826099B1 (de) 1995-05-15 1996-05-13 Verfahren zur erkennun der phase der zylinder einer mehrzylinder-viertaktbrennkraftmaschine
EP99124420A Expired - Lifetime EP0987421B1 (de) 1995-05-15 1996-05-13 Verfahren zur Erkennung der Phase der Zylinder einer Mehrzylinder-Viertaktbrennkraftmaschine.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP96916198A Expired - Lifetime EP0826099B1 (de) 1995-05-15 1996-05-13 Verfahren zur erkennun der phase der zylinder einer mehrzylinder-viertaktbrennkraftmaschine

Country Status (6)

Country Link
US (1) US5970784A (de)
EP (2) EP0826099B1 (de)
DE (2) DE69633642T2 (de)
ES (1) ES2230791T3 (de)
FR (1) FR2734322B1 (de)
WO (1) WO1996036803A1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749885B1 (fr) * 1996-06-14 1998-07-31 Renault Procede pour produire un signal de synchronisation permettant le pilotage d'un systeme d'injection electronique d'un moteur a combustion interne
AU4627797A (en) * 1997-10-09 1999-05-03 Renault Method for producing a synchronising signal for controlling an internal combustion engine electronic injection system
DE19810214B4 (de) * 1998-03-10 2009-09-17 Robert Bosch Gmbh Verfahren zur Synchronisation einer mehrzylindrigen Brennkraftmaschine
GB2342447A (en) * 1998-10-03 2000-04-12 Ford Motor Co Verifying engine cycle of an injection IC engine
DE19934112A1 (de) * 1999-07-21 2001-01-25 Bosch Gmbh Robert Einrichtung und Verfahren zur Erkennung und Beeinflussung der Phasenlage bei einer Brennkraftmaschine
KR100353987B1 (ko) * 1999-12-30 2002-09-27 현대자동차주식회사 자동차의 엔진 기통 판별 장치
US6640777B2 (en) * 2000-10-12 2003-11-04 Kabushiki Kaisha Moric Method and device for controlling fuel injection in internal combustion engine
JP4270534B2 (ja) 2000-10-12 2009-06-03 ヤマハモーターエレクトロニクス株式会社 内燃エンジンの負荷検出方法、制御方法、点火時期制御方法および点火時期制御装置
US6523523B2 (en) * 2000-11-13 2003-02-25 Siemens Vdo Automotive Corporation Camless engine with crankshaft position feedback
DE10111479A1 (de) 2001-03-09 2002-09-19 Bosch Gmbh Robert Verfahren zur Phasendetektion mittels Zündzeitpunktvariation
DE10120800B4 (de) * 2001-04-27 2005-10-20 Bosch Gmbh Robert Verfahren zur Phasendetektion mittels Einspritzausblendung an Verbrennungskraftmaschinen
JP4061951B2 (ja) * 2001-05-16 2008-03-19 国産電機株式会社 4サイクル内燃機関の行程判定方法及び装置
TWI221880B (en) 2001-10-24 2004-10-11 Yamaha Motor Co Ltd Engine control device
DE10228147B3 (de) * 2002-06-24 2004-01-22 Siemens Ag Verfahren zum Bestimmen der Start-Winkelposition einer Brennkraftmaschine
DE10246806A1 (de) * 2002-10-08 2004-04-22 Daimlerchrysler Ag Geberrad
FR2853935B1 (fr) * 2003-04-17 2007-03-02 Siemens Vdo Automotive Procede de synchronisation de l'injection avec la phase moteur dans un moteur a commande electronique des injecteurs
EP1533508B1 (de) * 2003-11-19 2007-04-11 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Verfahren zur Ermittlung der Stellung eines Zylinders einer Brennkraftmaschine
US7171298B2 (en) * 2005-06-30 2007-01-30 Temic Automotive Of North America, Inc. Method and system for identifying phase in an internal combustion engine
US7392790B2 (en) * 2006-01-20 2008-07-01 Caterpillar Inc. System and method for resolving crossed electrical leads
US7370635B2 (en) * 2006-01-20 2008-05-13 Caterpillar Inc. System and method for resolving electrical leads
DE102006031569B3 (de) * 2006-07-07 2008-03-27 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US8899203B2 (en) * 2007-06-22 2014-12-02 Ford Global Technologies, Llc Engine position identification
US9404791B2 (en) * 2009-06-06 2016-08-02 Nuovo Pignone S.P.A. Lateral, angular and torsional vibration monitoring of rotordynamic systems
DE102010054554A1 (de) * 2009-12-22 2011-06-30 Schaeffler Technologies GmbH & Co. KG, 91074 Geberrad für eine Kurbelwellenwinkel-Sensoranordnung
US10718286B2 (en) * 2016-08-23 2020-07-21 Ford Global Technologies, Llc System and method for controlling fuel supplied to an engine
FR3072125A1 (fr) * 2017-10-09 2019-04-12 Continental Automotive France Procede et systeme de validation de la phase d'un moteur de vehicule
TR202018782A1 (tr) 2020-11-23 2022-06-21 Valeo Otomotiv Sanayi Ve Ticaret Anonim Sirketi Bi̇r volan ve i̇lgi̇li̇ üreti̇m yöntemi̇

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4543936A (en) * 1984-09-17 1985-10-01 General Motors Corporation Sequential fuel injection sync pulse generator
IT1184957B (it) * 1985-06-04 1987-10-28 Weber Spa Sistema di alimentazione di carburante all avviamento di un motore endotermico comprendente un sistema di iniezione elettronica
KR930008814B1 (ko) * 1988-10-12 1993-09-15 미쯔비시 덴끼 가부시끼가이샤 내연기관의 기통 식별장치
US5196844A (en) * 1989-08-22 1993-03-23 Nissan Motor Company, Ltd. Method and apparatus for detecting reference rotational angle for each cylinder in multiple-cylinder internal combustion engine
US5402675A (en) * 1990-01-26 1995-04-04 Robert Bosch Gmbh Method for recognizing the power stroke of a four-stroke engine
FR2681425B1 (fr) * 1991-09-12 1993-11-26 Renault Regie Nale Usines Procede et dispositif de mesure du couple d'un moteur thermique a combustion interne.
FR2692623B1 (fr) * 1992-06-23 1995-07-07 Renault Procede de reperage cylindres pour le pilotage d'un systeme d'injection electronique d'un moteur a combustion interne.
US5321979A (en) * 1993-03-15 1994-06-21 General Motors Corporation Engine position detection using manifold pressure
US5613473A (en) * 1993-08-26 1997-03-25 Siemens Aktiengesellschaft Method of identifying the stroke positions in an internal combustion engine upon startup
EP0640762B1 (de) * 1993-08-26 1996-10-23 Siemens Aktiengesellschaft Zylinder Synchronisation einer Mehrzylinder Brennkraftmaschine durch Detektion eines gezielten Verbrennungsaussetzers
JP3336762B2 (ja) * 1994-09-13 2002-10-21 三菱電機株式会社 内燃機関の気筒識別装置
US5562082A (en) * 1995-03-20 1996-10-08 Delco Electronics Corp. Engine cycle identification from engine speed
US5703283A (en) * 1995-11-24 1997-12-30 Motorola Inc. Detrending engine positional data for rotating position encoders
US5715780A (en) * 1996-10-21 1998-02-10 General Motors Corporation Cam phaser position detection
US5756888A (en) * 1997-03-20 1998-05-26 Marquez-Escoto; Jose G. Compression stroke indicator

Also Published As

Publication number Publication date
FR2734322A1 (fr) 1996-11-22
DE69633642D1 (de) 2004-11-18
EP0987421A2 (de) 2000-03-22
EP0826099A1 (de) 1998-03-04
WO1996036803A1 (fr) 1996-11-21
DE69609416D1 (de) 2000-08-24
FR2734322B1 (fr) 1997-07-25
US5970784A (en) 1999-10-26
EP0987421A3 (de) 2002-08-28
DE69633642T2 (de) 2006-02-02
EP0826099B1 (de) 2000-07-19
DE69609416T2 (de) 2001-03-01
ES2230791T3 (es) 2005-05-01

Similar Documents

Publication Publication Date Title
EP0987421B1 (de) Verfahren zur Erkennung der Phase der Zylinder einer Mehrzylinder-Viertaktbrennkraftmaschine.
EP0576334B1 (de) Verfahren zur Zylinderidentifikation für die Steuerung eines elektronischen Einspritzsystems eines Verbrennungsmotors
EP2232035B1 (de) VERFAHREN ZUR ERZEUGUNG EINES SYNCHRONISATIONSSIGNALS FÜR eine Brennkraftmaschine
WO2007147484A1 (fr) Procede de detection de rate d'allumage et dispositif correspondant
FR2752458A1 (fr) Procede pour le controle, avec selectivite entre cylindres, de l'etancheite des chambres de combustion de moteurs a combustion interne
EP0102273B1 (de) Zünd- und Einspritzungssteueranlage für eine Brennkraftmaschine
EP0995022B1 (de) Kraftstoffeinspritzungsverfahren für eine brennkraftmaschine während des starts
JPH11132089A (ja) 内燃機関のスタートの際の所定のシリンダーの燃焼サイクルの検知のための方法及び装置
EP0029374B1 (de) Signal-generator zur Korrektur der Einstellung der Frühzündung in Abhängigkeit vom Klopfverhalten
FR3072124A1 (fr) Procede et systeme de detection du sens de rotation d'un moteur de vehicule
FR2749885A1 (fr) Procede pour produire un signal de synchronisation permettant le pilotage d'un systeme d'injection electronique d'un moteur a combustion interne
FR3059717A1 (fr) Procede de synchronisation d'un moteur a combustion interne
EP0614005B1 (de) Einspritzsteuerungs-Verfahren für Mehrpunkteinspritzung, Einspritzmotoren mit gesteuerter Zündung
FR2523214A1 (fr) Dispositif et procede de determination de la position du piston dans le cylindre d'un moteur a mouvement alternatif
WO1998029718A1 (fr) Procede de calcul du couple d'un moteur thermique a injection commandee electroniquement
FR3072125A1 (fr) Procede et systeme de validation de la phase d'un moteur de vehicule
FR2911919A1 (fr) Procede de synchronisation d'un moteur a combustion interne
WO1999019616A1 (fr) Procede pour produire un signal de synchronisation permettant le pilotage d'un systeme d'injection electronique d'un moteur a combustion interne
EP0932751A1 (de) Synchronisationsverfahren für das elektronische regelsystem einer brennkraftmaschine
FR2950393A1 (fr) Procede de determination du cycle d'un moteur a cylindres impair
FR3088377A1 (fr) Procede de synchronisation d'un moteur en v
FR2821887A1 (fr) Procede de detection de la phase du cycle d'un moteur a combustion interne a nombre de cylindres impair
FR3108676A1 (fr) Procédé et dispositif de contrôle moteur avec signal vilebrequin reconstitué
FR3141217A1 (fr) Procédé de gestion d’une phase de redémarrage d’un moteur à combustion interne en mode dégradé
FR2925592A3 (fr) Dispositif pour produire un signal de synchronisation du cycle de fonctionnement d'un moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991207

AC Divisional application: reference to earlier application

Ref document number: 826099

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES GB IT SE

AKX Designation fees paid

Designated state(s): DE ES GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 0826099

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69633642

Country of ref document: DE

Date of ref document: 20041118

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2230791

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090522

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090422

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090505

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100513

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100514

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110705

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150508

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150512

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69633642

Country of ref document: DE