EP0971041B1 - Monokristalline Superlegierung auf Nickelbasis mit hoher Gamma-prime-phase - Google Patents

Monokristalline Superlegierung auf Nickelbasis mit hoher Gamma-prime-phase Download PDF

Info

Publication number
EP0971041B1
EP0971041B1 EP99401533A EP99401533A EP0971041B1 EP 0971041 B1 EP0971041 B1 EP 0971041B1 EP 99401533 A EP99401533 A EP 99401533A EP 99401533 A EP99401533 A EP 99401533A EP 0971041 B1 EP0971041 B1 EP 0971041B1
Authority
EP
European Patent Office
Prior art keywords
alloys
alloy
phase
temperature
monocrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99401533A
Other languages
English (en)
French (fr)
Other versions
EP0971041A1 (de
Inventor
Pierre Caron
Jean-Louis Raffestin
Serge Naveos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office National dEtudes et de Recherches Aerospatiales ONERA
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP0971041A1 publication Critical patent/EP0971041A1/de
Application granted granted Critical
Publication of EP0971041B1 publication Critical patent/EP0971041B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Definitions

  • the present invention relates to superalloys based on nickel particularly suitable for the manufacture of monocrystalline blades stationary and mobile gas turbine engines, and showing a high creep resistance at very high temperatures while retaining good environmental resistance of combustion. These alloys are more particularly suitable to applications in aeronautical engines used to propulsion of airplanes and helicopters.
  • the nickel-based monocrystalline superalloys are the the most efficient materials used today for manufacture of stationary and movable turbine blades aeronautical gas turbomachines. ONERA's work in this area began in the late 1970s and are translated, among other things, by the filing of various patents of invention relating to monocrystalline superalloys intended for different fields of application: FR 2 503 188, FR 2 555 204, FR 2 557 598, FR 2 599 757, FR 2 643 085, FR 2 686 902.
  • the elements Cr, Co, Mo and part of the W mainly participate in the hardening of the austenitic matrix ( ⁇ phase) where they come into solution.
  • the elements Al, Ti, Ta and Nb favor the precipitation in the ⁇ matrix of hardening particles of a second phase of the Ni 3 type (Al, Ti, Ta, Nb) ( ⁇ 'phase).
  • Minor elements weight concentrations less than 0.5%) such as silicon (Si), hafnium (Hf), can also be added in order to optimize the resistance to the environment as demonstrated in FR 2 686 902.
  • first generation monocrystalline superalloys used are called "first generation", as by example the shades AM1 and MC2 both covered by the FR patent 2,557,598 and the AM3 alloy protected by the FR patent 2,599,757.
  • the MC2 alloy is considered to be the best performing alloy in terms of resistance creep up to 1100 ° C.
  • the future needs of engine manufacturers however, require the availability of alloys to blades more efficient than these first generation alloys. In particular, it is necessary to increase the maximum admissible temperatures by the alloys constituting the turbine blades.
  • the object of the invention is therefore to propose a new family of nickel-based monocrystalline superalloys showing improved creep resistance, in particular at temperatures above 1100 ° C, but also at lower temperatures of interest to various parts of blades, compared to those of industrially exploited alloys.
  • the invention relates to a nickel-based superalloy suitable for the manufacture of parts of turbomachines by monocrystalline solidification, characterized in that its mass composition is as follows: Cr 3.5 to 7.5% MB 0 to 1.5% Re 1.5 to 5.5% Ru 0 to 5.5% W 3.5 to 8.5% al 5 to 6.5% Ti 0 to 2.5% Your 4.5 to 9% Hf 0.08 to 0.12% Yes 0.08 to 0.12%, the complement to 100% being constituted by Ni and any impurities.
  • the invention proposes such a superalloy having the following composition by mass: Cr 3.5 to 5.5% MB 0 to 1.5% Re 4.5 to 5.5% Ru 2.5 to 5.5% W 4.5 to 6.5% al 5 to 6.5% Ti 0 to 1.5% Your 5 to 6.2% Hf 0.08 to 0.12% Yes 0.08 to 0.12%, the complement to 100% being constituted by Ni and any impurities.
  • the mass composition of the superalloy is as follows: Cr 3.5 to 5.5% MB 0 to 1.5% Re 3.5 to 4.5% Ru 3.5 to 5.5% W 4.5 to 6.5% al 5.5 to 6.5% Ti 0 to 1% Your 4.5 to 5.5% Hf 0.08 to 0.12% Yes 0.08 to 0.12%, the complement to 100% being constituted by Ni and any impurities.
  • the invention thus provides a unique combination of features alloys, which the state of the art does not allow to predict.
  • the alloys of the invention are intended for the manufacture of monocrystalline parts, that is to say made up of a single metallurgical grain. This particular structure is obtained using a solidification process directed in a thermal gradient using a device for selecting grain or a monocrystalline germ at the beginning of solidification.
  • the superalloys essentially consist of two phases: the austenitic matrix ⁇ is a solid solution based on nickel in which particles of phase ⁇ ', an intermetallic compound whose composition is based on Ni 3 Al, precipitate during cooling to solid state.
  • the addition elements are distributed in the two phases ⁇ and ⁇ 'but generally show a particular affinity for one or the other of these two phases.
  • chromium, molybdenum, rhenium and ruthenium are distributed preferentially in the matrix ⁇ while aluminum, titanium and tantalum go preferentially in the phase ⁇ '.
  • compositions of the alloys of the invention were chosen so that two-phase microstructures can be obtained ⁇ / ⁇ ', consisting of a homogeneous precipitation of particles ⁇ 'in a matrix ⁇ at the end of the solidification steps monocrystalline and heat treatments detailed by the following.
  • treatment first thermal intended to dissolve the precipitates of phase ⁇ ' contained in dendrites and eliminate eutectic phases solidified between the dendrites.
  • the dissolution of precipitated ⁇ ' is performed when the treatment temperature thermal reaches the solvent temperature ⁇ '(temperature of dissolution of the precipitates of phase ⁇ ') characteristic of the chemical composition of the alloy.
  • the value of the solvus ⁇ ' varies periodically in the alloy monocrystalline solidification crude in relation to the local alloy chemistry.
  • This start temperature of eutectic fusion is in practice assimilated to solidus temperature (melting start temperature) of the alloy.
  • the temperature of the homogenization treatment must therefore remain below the solidus temperature.
  • This heat treatment sequence includes a first 3-hour pre-homogenization treatment at a temperature between 1300 and 1310 ° C, then a progressive increase of 30 ° C at the speed of 3 ° Ch -1 , before a new level of 3 hours at a temperature between 1330 and 1340 ° C, the final cooling to be carried out at a speed such that the final size of the precipitates of phase ⁇ 'is less than 300 nm. All of the ⁇ / ⁇ 'eutectic phases are thus eliminated.
  • the alloys of the invention were tested after being subjected to a sequence of homogenization treatments and dissolution of the ⁇ 'phase as described above, then two heat treatments for income allowing fix the size and the volume fraction of the precipitates of ⁇ 'phase.
  • a first income consists of a treatment of 4 to 16 hours at a temperature between 1050 and 1150 ° C allowing the size of the ⁇ 'phase precipitates to be fixed between 300 and 500 nm.
  • a second income treatment consists of in a treatment of 15 to 25 hours at a temperature included between 850 and 870 ° C to optimize the fraction of precipitated ⁇ 'phase.
  • These income treatments are compatible with coating diffusion treatments protectors and soldering treatments generally applied to monocrystalline turbine blades during their manufacturing. Micrographic examination shows that the precipitates of phase ⁇ 'are roughly cubic in shape and represent a volume fraction of at least 70% in the alloy. They are contained in the matrix ⁇ which appears in the form of fine corridors between these precipitates.
  • the resistance to creep at high temperature is all the more greater than the volume fraction of the hardening phase ⁇ ' precipitated in the alloy is high.
  • the alloys of the invention contain a volume fraction close to 70%.
  • the ⁇ 'phase gradually dissolves in the ⁇ matrix, slowly until around 1000 ° C, then more quickly above 1000 ° C.
  • the solvent temperature ⁇ ' is exceeded, the ⁇ 'precipitates are then completely dissolved.
  • the reduction of the volume fraction of the ⁇ 'phase when the temperature increases is one of the causes of the decrease in resistance creep of superalloys.
  • One of the major contributions of the invention is to increase by significantly the temperature of ⁇ 'solvus in order to conserve a high volume fraction of ⁇ 'phase at temperatures higher than 1100 ° C and therefore obtain resistance very high creep at these temperatures.
  • the invention therefore relates to so-called "high solvus ⁇ '" alloys showing very high creep resistance above 1100 ° C.
  • the experience acquired by the inventor in the field has shown that increases in concentrations of Al, Ti, Ta, Mo and W resulted in an increase in the ⁇ 'solvus.
  • additions of the elements Cr and Co led to a decrease of the temperature of the solvent ⁇ '.
  • rhenium and ruthenium previous work has not concluded explicitly about their specific role on temperature of ⁇ 'solvus.
  • the elements Mo and W also have a beneficial effect on the ⁇ 'solvus but these elements are heavy, in particular W, and their content must be controlled so as not to increase excessively the density of the alloys.
  • improving the creep resistance of monocrystalline superalloys can be obtained by increasing the concentrations of refractory elements Mo, W, Re and Ta which play a role important in the solid solution hardening of the phases ⁇ and ⁇ '.
  • These heavy elements also slow down the set of elementary mechanisms which are controlled by the diffusion of atoms, which has beneficial consequences on the creep resistance of alloys.
  • the addition of rhenium limits the magnification of particles ⁇ 'phase during high temperature maintenance, phenomenon which contributes to degradation over time mechanical properties of superalloys.
  • increasing concentrations of refractory elements slows the thermally activated movement of dislocations which propagate strain in superalloys, which has the effect of reducing the creep rate.
  • the refractory element concentrations must be however carefully balanced so as not to excessively increase the density of the alloys.
  • the refractory element Ru in the context of the invention, has the advantage of having a density two times weaker than that of rhenium.
  • works of the inventor in this field show that the Ru favors less that rhenium the precipitation of intermetallic phases fragile.
  • the alloys according to the invention also include simultaneous additions of silicon and hafnium. Such additions make it possible to optimize the resistance to oxidation at hot alloys by improving the adhesion of the layer protective alumina formed at high temperature.
  • Alloys according to the invention have been developed, solidified in the form of crystal-oriented single crystals ⁇ 001> and tested. This crystallographic orientation is that usually used for solidification directed monocrystalline blades of turbines. It gives to these parts an optimal combination of creep resistance and resistance to thermal fatigue and fatigue mechanical.
  • the nominal chemical compositions (% by weight) of a few alloys of the invention are collated in Table I, together with that of the reference alloy MC2 described in FR 2,557,598.
  • This alloy serves as reference because it is, to the knowledge of the inventor, the most efficient in creep among the alloys containing neither rhenium nor ruthenium.
  • these alloys show variable ⁇ / ⁇ 'eutectic fractions but the application of homogenization treatments such as those described above allow us to completely restore solution of the ⁇ 'phase precipitates and eliminate the phases ⁇ / ⁇ 'eutectics without causing local alloy melting.
  • Solvent temperatures ⁇ ' were measured by analysis thermal expansion on samples of alloys previously homogenized. The values of the ⁇ 'solvus have been reported in Table II. The value of the ⁇ 'solvus of the MC2 alloy measured under similar conditions is also reported for comparison in Table II. The Solvent temperatures ⁇ 'of the alloys of the invention are always higher than that of the reference alloy MC2, the differences varying between 26 and 54 ° C depending on the alloys.
  • Creep tests in tension were carried out on test pieces machined in monocrystalline bars of orientation ⁇ 001> of various alloys of the invention.
  • the bars were previously homogenized and then returned according to the procedures described above.
  • the values of the failure times for different creep conditions and for various alloys of the invention are compared in Table III with the values obtained under the same conditions on the reference monocrystalline alloy MC2.
  • the alloys of the invention show varying lifetimes which can be higher than those of the reference alloy MC2 according to the alloy and the temperature considered. Remarkable results are obtained in particular at 950 ° C and at 760 ° C in the case of certain alloys of the invention.
  • the best performing alloys are the MC544 alloys, MC645 and MC653. They show lifetimes in creep at less equal and generally greater than that of the alloy MC2 over the entire temperature range except alloy MC544 at 760 ° C. The most lifespan gains important are obtained at 950 and 1150 ° C.
  • Cyclic oxidation tests at 1100 ° C were carried out in the air on samples of superalloys of the invention homogenized and returned according to the procedures described before. Each test cycle includes maintaining one hour at 1100 ° C followed by cooling to temperature room. Cyclic oxidation behaviors of different alloys are illustrated in the graphs of Figures 1a and 1b where the variations in mass are reported specific (loss of mass per unit area) of samples as a function of the number of oxidation cycles of a hour. Tests were conducted under the same conditions on the reference alloy MC2. Oxidation resistance of a superalloy is all the better as its variation in specific mass is low. All the alloys of the invention thus show superior resistance to cyclic oxidation to that of the reference alloy MC2.
  • Cyclic corrosion tests were carried out at 850 ° C. on samples of alloys of the invention and of the reference alloy MC2.
  • the samples were previously homogenized and returned according to the procedures described above. Each cycle includes a one hour hold at 850 ° C followed by cooling to room temperature.
  • the samples are contaminated with Na 2 SO 4 (0.5 mg.cm -2 ) every 50 hours.
  • the variations in the specific mass of the alloy samples are plotted as a function of the number of cycles in the graphs of FIGS. 2a and 2b. Corrosion behavior is considered satisfactory when the mass of the sample varies little: this is the incubation period.
  • An accelerated corrosion stage occurs after the incubation stage. This accelerated corrosion most often results in rapid mass gain corresponding to the formation of corrosion products.
  • the graphs show poor behavior for the reference alloy MC2 for which the accelerated corrosion stage occurs quickly.
  • the alloys of the invention show incubation stages of variable durations, but in any case longer than that characterizing the reference alloy MC2, which demonstrates better resistance to cyclic corrosion.
  • microstructures of the alloys of the invention have been checked after isothermal aging treatments 200 hours at 1050 ° C and at the end of the creep tests breaking at 760, 950, 1050, 1100 and 1150 ° C in order to control their microstructural stability vis-à-vis the unwanted intermetallic phase precipitation of the type ⁇ , ⁇ or Laves phase.
  • Only the MC820 alloy shows rhenium-rich phase needle particles at the end of the 200 hour aging treatment at 1050 ° C as well at the end of the rupture creep tests at 1050 and 1100 ° C. These particles are located in the hearts of dendrites, where the rhenium preferentially separates during the directed solidification process. All other alloys of the invention cited in Table I are free of particles of undesirable phases rich in rhenium at term aging treatments and creep tests.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Supercharger (AREA)
  • Chemically Coating (AREA)
  • Silicon Compounds (AREA)

Claims (6)

  1. Superlegierung auf Nickelbasis, angepasst an die Herstellung von Teilen für Turbotriebwerke durch monokristalline Erstarrung,
    dadurch gekennzeichnet, dass ihre Zusammensetzung in Massenanteilen die folgende ist: Cr 3,5 bis 7,5 % Mo 0 bis 1,5 % Re 1,5 bis 5,5 % Ru 0 bis 5,5 % W 3,5 bis 8,5 % Al 5 bis 6,5 % Ti 0 bis 2,5 % Ta 4,5 bis 9 % Hf 0,08 bis 0,12 % Si 0,08 bis 0,12 %,
    wobei das Komplement zu 100 % durch Ni und die eventuellen Verunreinigungen gebildet wird.
  2. Superlegierung nach Anspruch 1, dadurch gekennzeichnet, dass ihre Massenzusammensetzung die folgende ist: Cr 3,5 bis 5,5 % Mo 0 bis 1,5 % Re 4,5 bis 5,5 % Ru 2,5 bis 5,5 % W 4,5 bis 6,5 % Al 5 bis 6,5 % Ti 0 bis 1,5 % Ta 5 bis 6,2 % Hf 0,08 bis 0,12 % Si 0,08 bis 0,12 %,
    wobei das Komplement zu 100 % durch Ni und die eventuellen Verunreinigungen gebildet wird.
  3. Superlegierung nach Anspruch 1, dadurch gekennzeichnet, dass ihre Massenzusammensetzung die folgende ist: Cr 3,5 bis 5,5 % Mo 0 bis 1,5 % Re 3,5 bis 4,5 % Ru 3,5 bis 5,5 % W 4,5 bis 6,5 % Al 5,5 bis 6,5 % Ti 0 bis 1 % Ta 4,5 bis 5,5 % Hf 0,08 bis 0,12 % Si 0,08 bis 0,12 %,
    wobei das Komplement zu 100 % durch Ni und die eventuellen Verunreinigungen gebildet wird.
  4. Superlegierung nach Anspruch 1, dadurch gekennzeichnet, dass ihre Massenzusammensetzung die folgende ist: Cr 3,5 bis 4,5 % Mo 0,5 bis 1,5 % Re 3,5 bis 4,5 % Ru 3,5 bis 4,5 % W 4,5 bis 5,5 % Al 5,5 bis 6,5 % Ti 0 bis 1 % Ta 4,5 bis 5,5 % Hf 0,08 bis 0,12% Si 0,08 bis 0,12 %,
    wobei das Komplement zu 100 % durch Ni und die eventuellen Verunreinigungen gebildet wird.
  5. Superlegierung nach Anspruch 1, dadurch gekennzeichnet, dass ihre Massenzusammensetzung die folgende ist: Cr 4,5 bis 5,5 % Re 3,5 bis 4,5 % Ru 4,5 bis 5,5 % W 5,5 bis 6,5 % Al 5,5 bis 6,5 % Ti 0 bis 1 % Ta 4,5 bis 5,5 % Hf 0,08 bis 0,12% Si 0,08 bis 0,12 %,
    wobei das Komplement zu 100 % durch Ni und die eventuellen Verunreinigungen gebildet wird.
  6. Superlegierung nach Anspruch 1, dadurch gekennzeichnet, dass ihre Massenzusammensetzung die folgende ist: Cr 3,5 bis 4,5 % Mo 0,5 bis 1,5 % Re 4,5 bis 5,5 % Ru 2,5 bis 3,5 % W 5,5 bis 6,5 % Al 4,8 bis 5,8 % Ti 0,5 bis 1,5 % Ta 5,7 bis 6,7 % Hf 0,08 bis 0,12% Si 0,08 bis 0,12 %,
    wobei das Komplement zu 100 % durch Ni und die eventuellen Verunreinigungen gebildet wird.
EP99401533A 1998-07-07 1999-06-21 Monokristalline Superlegierung auf Nickelbasis mit hoher Gamma-prime-phase Expired - Lifetime EP0971041B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9808693A FR2780982B1 (fr) 1998-07-07 1998-07-07 Superalliage monocristallin a base de nickel a haut solvus
FR9808693 1998-07-07

Publications (2)

Publication Number Publication Date
EP0971041A1 EP0971041A1 (de) 2000-01-12
EP0971041B1 true EP0971041B1 (de) 2002-10-02

Family

ID=9528367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99401533A Expired - Lifetime EP0971041B1 (de) 1998-07-07 1999-06-21 Monokristalline Superlegierung auf Nickelbasis mit hoher Gamma-prime-phase

Country Status (7)

Country Link
EP (1) EP0971041B1 (de)
JP (1) JP3902714B2 (de)
AT (1) ATE225410T1 (de)
CA (1) CA2276154C (de)
DE (1) DE69903224T2 (de)
ES (1) ES2181375T3 (de)
FR (1) FR2780982B1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824606B2 (en) 2006-09-21 2010-11-02 Honeywell International Inc. Nickel-based alloys and articles made therefrom
WO2013150189A1 (fr) 2012-04-02 2013-10-10 Office National D'etudes Et De Recherches Aérospatiales (Onera) Procédé d'obtention d'un revêtement d'aluminiure de nickel sur un substrat métallique, et pièce munie d'un tel revêtement
RU2749981C2 (ru) * 2016-10-25 2021-06-21 Сафран Суперсплав на основе никеля, монокристаллическая лопатка и газотурбинный двигатель
EP3710611B1 (de) * 2017-11-14 2024-01-10 Safran Superlegierung auf nickelbasis, einkristallschaufel und turbomaschine

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2813392B1 (fr) * 2000-08-28 2002-12-06 Snecma Moteurs Procede de revelation structurale pour superalliages monocristallins
JP2004149859A (ja) * 2002-10-30 2004-05-27 National Institute For Materials Science γ’析出強化型白金族元素添加Ni基超合金設計支援プログラムおよびγ’析出強化型白金族元素添加Ni基超合金設計支援装置
EP1568794B1 (de) * 2002-12-06 2009-02-04 Independent Administrative Institution National Institute for Materials Science Monokristalline nickel-basis-superlegierung
US8968643B2 (en) 2002-12-06 2015-03-03 National Institute For Materials Science Ni-based single crystal super alloy
FR2881439B1 (fr) 2005-02-01 2007-12-07 Onera (Off Nat Aerospatiale) Revetement protecteur pour superalliage monocristallin
JP5024797B2 (ja) * 2005-03-28 2012-09-12 独立行政法人物質・材料研究機構 コバルトフリーのNi基超合金
KR101355329B1 (ko) * 2006-10-02 2014-01-23 소에이 가가쿠 고교 가부시키가이샤 니켈-레늄 합금 분말 및 그것을 함유하는 도체 페이스트
JP5327519B2 (ja) 2006-10-02 2013-10-30 昭栄化学工業株式会社 ニッケル−レニウム合金粉末及びそれを含有する導体ペースト
FR2914319B1 (fr) * 2007-03-30 2009-06-26 Snecma Sa Barriere thermique deposee directement sur superalliages monocristallins.
JP5467306B2 (ja) * 2008-06-26 2014-04-09 独立行政法人物質・材料研究機構 Ni基単結晶超合金とこれを基材とする合金部材
JP5467307B2 (ja) * 2008-06-26 2014-04-09 独立行政法人物質・材料研究機構 Ni基単結晶超合金とそれよりえられた合金部材
EP2420584B1 (de) * 2009-04-17 2013-06-19 IHI Corporation Einkristall-Superlegierung auf Nickelbasis und diese Superlegierung enthaltende Turbinenschaufel
IT1394975B1 (it) 2009-07-29 2012-08-07 Nuovo Pignone Spa Superlega a base di nichel, componente meccanico realizzato con detta superlega, turbomacchina comprendente tale componente e metodi relativi
GB2540964A (en) * 2015-07-31 2017-02-08 Univ Oxford Innovation Ltd A nickel-based alloy
TWI595098B (zh) * 2016-06-22 2017-08-11 國立清華大學 高熵超合金
KR101862059B1 (ko) 2016-11-29 2018-05-29 국방과학연구소 고강도 니켈기 초내열합금의 설계 방법
FR3073527B1 (fr) 2017-11-14 2019-11-29 Safran Superalliage a base de nickel, aube monocristalline et turbomachine
FR3091709B1 (fr) * 2019-01-16 2021-01-22 Safran Superalliage à base de nickel à tenue mécanique élevée à haute température
FR3092340B1 (fr) * 2019-01-31 2021-02-12 Safran Superalliage à base de nickel à tenue mécanique et environnementale élevée à haute température et à faible densitée
US20200255924A1 (en) * 2019-02-08 2020-08-13 United Technologies Corporation High Temperature Combustor and Vane Alloy
FR3097879B1 (fr) * 2019-06-28 2021-05-28 Safran Aircraft Engines Procede de fabrication d’une piece en superalliage monocristallin

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933483A (en) * 1972-07-14 1976-01-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Silicon-containing nickel-aluminum-molybdenum heat resisting alloy
US4222794A (en) * 1979-07-02 1980-09-16 United Technologies Corporation Single crystal nickel superalloy
US4719080A (en) * 1985-06-10 1988-01-12 United Technologies Corporation Advanced high strength single crystal superalloy compositions
US4781772A (en) * 1988-02-22 1988-11-01 Inco Alloys International, Inc. ODS alloy having intermediate high temperature strength
FR2643085B1 (fr) * 1989-02-10 1991-05-10 Onera (Off Nat Aerospatiale) Superalliage a base de nickel pour aubes de turbines industrielles
US5151249A (en) * 1989-12-29 1992-09-29 General Electric Company Nickel-based single crystal superalloy and method of making
EP0637476B1 (de) * 1993-08-06 2000-02-23 Hitachi, Ltd. Gasturbinenschaufel, Verfahren zur Herstellung derselben sowie Gasturbine mit dieser Schaufel
US5783318A (en) * 1994-06-22 1998-07-21 United Technologies Corporation Repaired nickel based superalloy
JPH08143995A (ja) * 1994-11-17 1996-06-04 Hitachi Ltd Ni基単結晶合金及びそれを用いたガスタービン
DE69701900T2 (de) * 1996-02-09 2000-12-07 Hitachi Metals, Ltd. Hochfeste Superlegierung auf Nickelbasis für gerichtet erstarrte Giesteilen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824606B2 (en) 2006-09-21 2010-11-02 Honeywell International Inc. Nickel-based alloys and articles made therefrom
WO2013150189A1 (fr) 2012-04-02 2013-10-10 Office National D'etudes Et De Recherches Aérospatiales (Onera) Procédé d'obtention d'un revêtement d'aluminiure de nickel sur un substrat métallique, et pièce munie d'un tel revêtement
RU2749981C2 (ru) * 2016-10-25 2021-06-21 Сафран Суперсплав на основе никеля, монокристаллическая лопатка и газотурбинный двигатель
EP3710611B1 (de) * 2017-11-14 2024-01-10 Safran Superlegierung auf nickelbasis, einkristallschaufel und turbomaschine

Also Published As

Publication number Publication date
ES2181375T3 (es) 2003-02-16
DE69903224T2 (de) 2003-12-11
EP0971041A1 (de) 2000-01-12
ATE225410T1 (de) 2002-10-15
JP2000034531A (ja) 2000-02-02
CA2276154C (en) 2007-09-18
JP3902714B2 (ja) 2007-04-11
FR2780982A1 (fr) 2000-01-14
DE69903224D1 (de) 2002-11-07
FR2780982B1 (fr) 2000-09-08
CA2276154A1 (en) 2000-01-07

Similar Documents

Publication Publication Date Title
EP0971041B1 (de) Monokristalline Superlegierung auf Nickelbasis mit hoher Gamma-prime-phase
CA2583140C (fr) Alliage a base de nickel
EP0063511B1 (de) Monokristalline Superlegierung mit einer Matrix auf Nickelbasis, Verfahren zur Verbesserung der Eigenschaften von Erzeugnissen aus dieser Legierung und nach diesem Verfahren erhaltene Erzeugnisse
EP0237378B1 (de) Superlegierung mit Matrix auf Nickelbasis, hergestellt mittels pulvermetallurgischer Technik und aus dieser Legierung hergestellte Rotorscheiben für Gasturbinen
EP3850118B1 (de) Superlegierungen auf nickelbasis
EP2393951A2 (de) Verfahren zur herstellung eines teils aus einer superlegierung auf basis von nickel und entsprechendes teil
FR2731714A1 (fr) Superalliages a base de nickel pour la production d'articles monocristallins ayant une tolerance amelioree aux joints de grains a faible desorientation
FR2712307A1 (fr) Articles en super-alliage à haute résistance mécanique et à la fissuration et leur procédé de fabrication.
FR2461016A1 (fr) Article de superalliage de nickel a structure monocristalline et procede de fabrication
EP3710610B1 (de) Superlegierung auf nickelbasis, einkristalline schaufel und turbomaschine
EP3710611B1 (de) Superlegierung auf nickelbasis, einkristallschaufel und turbomaschine
EP1211335B1 (de) Superlegierung auf Nickelbasis mit sehr hoher Beständigkeit gegen Heisskorrosion für Einkristallturbinenschaufeln von industriellen Turbinen
WO2021116607A1 (fr) Superalliage a base de nickel
EP1211336B1 (de) Superlegierung auf Nickelbasis für Einkristallturbinenschaufeln von industriellen Turbinen mit hoher Beständigkeit gegen Heisskorrosion
FR2860804A1 (fr) Superalliage a base de nickel et pieces coulees en monocristal
EP0187573B1 (de) Legierung auf Nickelbasis
FR2543577A1 (fr) Superalliages a base de nickel renforces par du monocarbure et pieces solidifiees unidirectionnellement obtenues a partir de ces alliages
EP3918101B1 (de) Superlegierung auf nickelbasis mit mit hoher mechanischer festigkeit und hoher beständigkeit gegen umwelteinflüsse bei hoher temperatur und mit geringer dichte
FR3117506A1 (fr) Procede de fabrication d'une piece en superalliage monocristallin
FR3117507A1 (fr) Procede de fabrication d'une piece en superalliage monocristallin
EP3990672A1 (de) Verfahren zur herstellung eines teils aus einer monokristallinen superlegierung
WO2024047315A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
FR3121453A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991215

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20011228

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021002

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021002

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021002

REF Corresponds to:

Ref document number: 225410

Country of ref document: AT

Date of ref document: 20021015

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69903224

Country of ref document: DE

Date of ref document: 20021107

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2181375

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030621

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 0971041E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030703

BERE Be: lapsed

Owner name: OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPAT

Effective date: 20030630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080101

ZE Nl: corrections to earlier entries in headings pe - xe

Free format text: PAT. BUL. 3/2008, RUBRIEK VE, ONDERDEEL 4, BLZ. 400: PATENT 0971041 SHOULD BE DELETED.

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180522

Year of fee payment: 20

Ref country code: CH

Payment date: 20180528

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180525

Year of fee payment: 20

Ref country code: AT

Payment date: 20180524

Year of fee payment: 20

Ref country code: IT

Payment date: 20180523

Year of fee payment: 20

Ref country code: NL

Payment date: 20180528

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180702

Year of fee payment: 20

Ref country code: GB

Payment date: 20180522

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69903224

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20190620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190620

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 225410

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190620

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190622