EP0967396B1 - Procédé d' opération des turbo-compresseurs - Google Patents

Procédé d' opération des turbo-compresseurs Download PDF

Info

Publication number
EP0967396B1
EP0967396B1 EP99106086A EP99106086A EP0967396B1 EP 0967396 B1 EP0967396 B1 EP 0967396B1 EP 99106086 A EP99106086 A EP 99106086A EP 99106086 A EP99106086 A EP 99106086A EP 0967396 B1 EP0967396 B1 EP 0967396B1
Authority
EP
European Patent Office
Prior art keywords
regulator
magnitude
limiter
way
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99106086A
Other languages
German (de)
English (en)
Other versions
EP0967396A3 (fr
EP0967396A2 (fr
Inventor
Wilfried Dr.-Ing. Blotenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Turbo AG
Original Assignee
MAN Turbomaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Turbomaschinen AG filed Critical MAN Turbomaschinen AG
Publication of EP0967396A2 publication Critical patent/EP0967396A2/fr
Publication of EP0967396A3 publication Critical patent/EP0967396A3/fr
Application granted granted Critical
Publication of EP0967396B1 publication Critical patent/EP0967396B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0269Surge control by changing flow path between different stages or between a plurality of compressors; load distribution between compressors

Definitions

  • the invention relates to a method and a Device for operating turbocompressors with several mutually influencing controllers.
  • Turbocompressors are often equipped with multiple controllers equipped.
  • the surge limit controller of a turbocompressor monitors z. B. the location of the compressor operating point in the map and opens if it is too small Compressor throughput a surge control valve for Suction side or to the atmosphere.
  • pressure or flow regulators are often used, whose actuator adjustable guide vanes or Throttle valves are.
  • the drive can also adjust the speed for capacity adjustment be adjusted.
  • An adjustment of the surge limit control valve is affected also the compressor end pressure or the flow to Process.
  • An adjustment of the actuator of the process variable controller has an impact on the location of the Operating point in the map and can therefore the surge limit controller intervene.
  • surge limit controller is considered more critical Turbo machine protection regulator to the fastest possible Response behavior set.
  • fastest controllers available are used that control the fastest valves available.
  • the process variable control must match the time behavior of the Process adapted.
  • pressure regulations are characterized by significantly longer time constants than those required for surge limit control.
  • the surge limit controller regulates one Fault clears much faster than the process variable controller. He has the surge limit control valve in the new one position required before the process variable controller reacted noticeably. An additional Decoupling of the surge limit regulators from each other is in not necessary in these cases.
  • the surge limit controller reacts to this and opens it Pump limit control valve to protect the compressor Piece. This means that less process medium is used in the process promoted and the flow (or pressure) on the Compressor pressure side drops.
  • the process variable controller notices this and increases the conveying capacity of the Compressor. The result is that the working point away from the surge line.
  • the Process variable controller reacts to this by the Delivery capacity of the compressor reduced accordingly. However, this brings the operating point back in again the proximity of the surge limit, so that the surge limit controller Pump limit control valve opens again.
  • the process begins from the front and can change if the time parameters are not chosen correctly and unfavorable phase position to a continuous oscillation of process size and surge limit control valve to lead.
  • Turbo compressors with several stage groups are especially if the medium is between different stages are fed in or withdrawn, with individual surge limit regulations per step group protected.
  • the surge limit controller take place among each other. If there is a fault on the suction side of the low pressure stage the pressure ratio increased above this level the working point of this stage moves in In the direction of the surge limit, causing the surge limit controller to intervene the low pressure stage may be required can, the pump limit control valve of the low pressure stage a piece opens. This causes a lowering the final pressure of the low pressure stage or the inlet pressure the high pressure stage. This goes along with one Increase the pressure ratio of the high pressure stage what Now open the surge limit control valve of this stage has the consequence.
  • the surge limit control valves Because with gas compressors, the surge limit control valves the gas on the pressure side to the suction side relax, causes the high pressure side to open Pump limit control valve an increase in suction pressure this stage and thus an increase in the final pressure of the Low pressure stage. The surge limit control of the low pressure stage this will further intervene forced, the low pressure surge limit control valve opens further.
  • the surge limit controller acts more violently than absolutely necessary and the surge limit control valve is opened further than to protect the compressor required. This causes that after the decay pump surge control valves again getting closed. Because the fault in the low pressure part has started, the surge limit controller of the low pressure stage closes this valve again. This increases the final pressure this stage and thus also the suction pressure of the High pressure stage. The pressure ratio of the high pressure stage decreases and the corresponding surge limit controller closes the high-pressure surge limit control valve. this has now again an influence on the low pressure part etc. Are the controls set to open a transient disorder with some Overdrive can respond, a phase shift mutual influence of the two surge limit controllers cannot be excluded.
  • the object of the invention is to provide a method for Decoupling the control loops in the way to create that even with the same timing behavior of all sizes vibration-stimulating interaction of the control loops among themselves is avoided.
  • a typical machine train for compressing gas consists of three in a row in the direction of flow arranged step groups.
  • One of those stages consists of the suction line of the low pressure stage, the compressor, the pressure line and one Blow pipe with the surge limit control valve, further a flow calculator for calculating the intake flow and a calculator to determine the Head.
  • the computers are on signal lines and with the pipes and other signal lines connected to the comparator.
  • a comparator determines the difference from the setpoint (delivery head) minus Actual value (flow) and always causes when the Actual value is too small in relation to the setpoint, one gradual opening of the surge limit control valve until the Actual flow rate exactly that of the respective delivery head dependent target flow corresponds.
  • the adjustment takes place according to the invention via the maximum selection, the PI controller and the signal line to the surge limit control valve.
  • a check valve decouples the first Compressor from the downstream medium pressure stage.
  • the actual flow is smaller than that of the delivery head dependent target flow, is in the comparator determined control difference positive and adjusted via the control line the output of the surge limit controller in Direction of another opening surge limit valve.
  • the controllers are now given a maximum selection upstream, one input of which is known Difference from the setpoint and actual value of the associated Compressor. This maximum selection becomes the control difference of the other compressor stages also impressed.
  • the effect of the system deviation is such that a positive signal lowers the controller output and so that the surge limit control valve opens and a negative one Signal the surge limit control valve closes.
  • the maximum selection now causes that whenever one of the three Machinery enters an operating area that is a opening the surge limit control valve requires this size is imposed on all three surge limit regulators and everyone Regulator its associated surge limit control valve via the Control lines opens accordingly. A mutual Influencing is prevented because everyone Pump limit control valves simultaneously and at the same Open the controller setting by the same amount.
  • the control difference is a via the signal line First order delay element and an adding Limiter activated.
  • This delimiter adds the Inputs signed, d. that is, it subtracts from the control difference that was delayed via the delay element Control difference. Is in steady state this difference zero so that the adder is only that Passes the signal of the maximum selection.
  • the delimiter is set to a range from 0 to 1, it limits negative values to zero.
  • the output signal of the delay element follows delayed.
  • the control difference can be the output signal of the limiter already become positive when the control difference itself is still negative.
  • a constant can be added to the limiter become. This constant causes an offset.
  • the output of the limiter only becomes greater than zero if the difference between the two other input variables exceeded the threshold set as a constant Has.
  • the correction variable acts on the process variable controller then such that when approaching the surge limit or when crossing the control line the entrance of the Process size controller is changed so that the Effect of the surge limit controller supports and Compressor moves out of the danger area.
  • the limiter e.g. Belly be achieved that when the working point is approached the input signal of the process variable controller to the surge limit can be influenced in such a way that only minor Gradients for a reduction in compressor performance be allowed. This is the process variable controller still effective, but can only have a limited effect intervention.
  • the surge limit controllers or the process variable controllers a gradient limiter with integrated input amplifier, Limiter and integrator connected downstream.
  • the limiter limits the control difference of the process variable controller. Since the process variable controller is usually switched as a proportional integral controller (PI controller) the limiter limits the gradient for the integral adjustment of the manipulated variable. Will the Limiter set to the limit value zero, changed the manipulated variable of the process variable controller at all no more.
  • PI controller proportional integral controller
  • the upper and lower limit of the limiter depending on one Process size can be varied. This is the control difference of the surge limit controller as a manipulated variable used.
  • a function generator allows the definition a non-linear relationship between system deviation of the surge limit controller and the effective one Limiter Limits.
  • the function generator can, for. B. be set so that with a control difference greater than 20% no limitation is effective up to a control difference of 3% can limit the square decrease with the control difference and at one Control difference below 3% the lower limit to zero put. Any other, including non-linear function curve is adjustable if necessary.
  • the top and the lower limit can also be configured separately. In this case, two function generators are separated for the upper and lower limits are used.
  • the Function encoder also directly on the control parameters of the Process size controller act and this accordingly to adjust.
  • the Controller (process variable controller or surge limit controller) Gradient limiter downstream.
  • a signal line transfers the output variable of the controller (process variable controller or surge limit controller) to the input amplifier a gradient limiter.
  • This amplifier is on set a high gain, so that at a slight difference between the output of the Controller and the output of the gradient limiter, fed back via an additional signal line, the Limiter receives a large input signal.
  • the limits of the delimiter determine the gradient for the Adjustment of the integrator.
  • the limiter is on the integrator only receives small values small input values and also adjusts its output if there is a deviation at the input of the amplifier only slowly.
  • the limit values can be set via another control line the limiter can be adjusted in the same way as previously for the limitation of the control difference of the Pump limit controller has been described.
  • the output line of the high pressure stage of the respective Final pressure can be recorded by a pressure transmitter and an additional target / actual value comparator are transferred, with another process variable controller the actuators of the guide vanes each of the three compressor stages can be addressed.
  • control parameters are between the maximum selection and the surge limit controller branched off and one Function generator supplied. This transfers its data on the above additional process variable controller.
  • an additional limiter of only specially selected controlled variables forwards.
  • the invention is based on schematic Embodiments described in more detail.
  • Fig. 1 shows an arrangement for decoupling a controller three-stage turbo compressor, in which each compressor stage (2, 22, 42) own surge limit control valves (5, 25, 45), each in the suction lines (1, 21, 41) of the own compressor stage (2, 22, 42) Blow off.
  • a machine train for the compression of gas consists of three arranged one behind the other in the direction of flow Level groups (2, 22, 42).
  • the three-stage compressor consists of the suction lines (1, 21, 41), the low pressure compressor (2), the medium pressure compressor (22) and the high pressure compressor (42), the pressure lines (3, 23, 43), the blow lines (4, 24, 44) with the surge limit control valves (5, 25, 45), the flow computers (6, 26, 46) for calculating the intake flow and the computer (7, 27, 47) for the minimum permissible target flow, which results from the final pressure or the delivery head is determined.
  • To calculate the Head is also the respective suction pressure and Suction temperature required.
  • the associated active lines are not shown.
  • the computers (6, 7), (26, 27) and (46, 47) are over Signal lines (8 and 9), (28 and 29) and (48 and 49) with the delivery pipelines and each over two further signal lines (10 and 11), (30 and 31) and (50 and 51) with the comparators (12, 32 and 52) connected.
  • Each comparator (12, 32, 52) determines the Difference from setpoint (delivery head) minus actual value (Flow) and always causes when the actual value in Ratio to setpoint is too small, a gradual one Opening of the corresponding surge limit control valves (5, 25 or 45) until the actual flow rate is exactly that of the respective flow rate dependent target flow equivalent.
  • the adjustment is made via a maximum selection (14, 34, 54), the surge limit controller (15, 35, 55) and the signal lines (16, 36, 56) to the surge limit control valve (5, 25, 45).
  • the check valve (17, 37) decouples the low pressure compressor (2) from the medium pressure compressor (22).
  • the measured values / signals of the target / actual value comparison (12, 32, 52) act via the control line (13, 33, 53) directly to the surge limit controller (15, 35, 55), which the Pump limit control valve (5, 25, 45) via the control line (16, 36, 56).
  • the actual flow is smaller than that of the delivery head dependent target flow, the control difference positive and adjusts the output of the surge limit controller (15, 35, 55) towards another opening one Valve (5, 25, 45).
  • the surge limit regulators (15, 35, 55) become one Maximum selection (14, 34 and 54) upstream, their an input the known difference between setpoint and Actual value of the associated surge limit control Compressor stage is. This maximum selection is the Control difference of the other target / actual value comparators (32 and 52) also stamped. The effect of Control difference is such that a positive signal Controller output (15, 35, 55) and thus the Pump limit control valve (5, 25, 45) opens and on negative signal the surge limit control valve (5, 25, 45) closes.
  • the maximum selection (14, 34, 54) now causes that whenever one of the three compressor stages (2, 22 or 42) enters an operating area that includes a opening the surge limit control valve (5, 22 or 42) requires this size for all three surge limit controllers (15, 35 and 55) and each surge limit controller (15, 35 or 55) its associated surge limit control valve (5, 25, 45) via the control line (16, 36, 56) opens accordingly. A mutual influence is prevented because all surge limit control valves (5, 25, 45) simultaneously and with the same Open the controller setting by the same amount.
  • Control difference is one over the signal line (60) First order delay element (61) and an adding Limiter (63) activated.
  • This delimiter (63) adds the inputs according to the sign, i. H. he subtracts from the control difference via the delay element (61) Delayed control difference. In the stationary State, this difference is zero, so the Adder (64) only the signal of the maximum selection (14) passes on.
  • the limiter (63) is on one Range set from 0 to 1, it limits negative ones Values to zero.
  • the output signal (60.2) of the Delay element (61) delayed in time At a major change in the control difference can
  • the output signal of the limiter (63) is already positive if the control difference itself is still negative is.
  • the effect of the Correction quantity, d. H. the exit of the limiter (63) becomes zero if the control difference is stationary assumes non-zero value.
  • the limiter (63) can have a constant (62) can be added. This constant (62) causes an offset. The output of the limiter (63) will only greater than zero if the difference between the two other input variables (60.1 and 60.2) as Has exceeded the set threshold.
  • this constant (62) can also be used without the delaying action of the PT1 link (61) is used become.
  • Another way to prevent mutual Influencing different control loops consists of the gradient for manipulated variable changes to limit.
  • the setpoint / actual value comparator (72) the process variable setpoint and the actual process value is activated. The difference these two values act via the signal line (73) and the limiter (74) on the process variable controller (78). This controller adjusts the associated actuator of the Turbo compressor (guide vanes, throttle element, Speed) in such a way that the actual process value is accurate corresponds to the setpoint.
  • the upper and lower Limit of the limiter (74) depending on one Process size can be varied.
  • the control difference of the surge limit controller (15) as a manipulated variable used.
  • the function generator (75) permits Definition of a nonlinear relationship between Control difference between the surge limit controller and the effective one Limiter Limits.
  • the process variable controller (78) reacts with its set one (adjustable as a parameter set) Time behavior on the input size.
  • a big rule difference on Input causes controller (78) to output its output quickly changed, with a small control difference at the entrance the exit only changes slowly.
  • the time behavior of the output variable can be arbitrary to be influenced.
  • the limiter (74) can change the Controller output completely in one direction or another can be prevented by controlled limitation
  • the controller output (78) can even have positive values in Are controlled in the direction of larger output values, even if the control difference at the input the controller output wants to lower.
  • Control difference of the process variable controller (78) can also from the function generator (75) via the control line (76) directly to the control parameters, especially the proportional gain and the reset time become. Through this control intervention, the same will happen effected as by the limiter (74) in the input of the Process variable controller (78).
  • the controller (15/78) (surge limit controller (15) or process variable controller (78)) a gradient limiter (80) downstream.
  • the signal line (79) transmits the output size of the controller (15/78) to the input amplifier (81).
  • This amplifier (81) is set to a high gain, so that at a slight difference between the output of the Controller (79) and the output of the gradient limiter (84) fed back via the signal line (85) Limiter (82) receives a large input signal.
  • the Limit values of the limiter (82) determine the gradient for the adjustment of the integrator (83). Is the Limiter (82) set to small values receives the Integrator (83) only small input values and adjusted its output (84) even if there is a deviation at the input of the amplifier (81) only slowly.
  • the limit values of the Limiter (82) can be adjusted in the same way as previously for the limitation of the control difference of the Regulator (15/78) was described.
  • Fig. 5 shows a circuit diagram corresponding to Fig. 1 with one on the pressure line (43) after the check valve (57) the third compressor stage (42) arranged Pressure transmitter (20), the control data on a Signal line (88) to a target-actual value comparator (12) and process variable setpoints (89) from the control system receives.
  • a process variable controller (78) transmits the target / actual value comparisons (Controlled variables) via a control line (87) to the actuators (18) for adjusting the Guide vanes (19) in the low, medium and high pressure turbo compressor stages (2, 22, 42).
  • Fig. 7 shows a circuit diagram of a low pressure turbocompressor stage (2), in which the control differences of the Target / actual value comparator (12) or from (33) and (53) are first passed to the maximum selection (14). As in FIG. 6, these control data become shown, on a surge limit controller (15) and transfer there to the surge limit control valve (5).
  • the function generator (75) can also Control data from the maximum selection (14) via a Transfer control line (76) to a limiter (74) are upstream of the process variable controller (78) is. This (78) is connected via a control line (87) the actuator (18) of the guide vanes (19) Low pressure stage (2) connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Claims (17)

  1. Procédé pour faire fonctionner des turbomachines présentant au moins deux régulateurs s'influençant mutuellement,
    caractérisé en ce que des variables correctrices d'un premier et d'un second régulateurs échangées alternativement, le premier régulateur étant un régulateur de limite de pompe, interviennent dans la comparaison consigne/réel des deux régulateurs et découplent les sorties des variables de réglage des deux régulateurs de manière telle qu'une influence mutuelle est exclue.
  2. Procédé selon la revendication 1,
    caractérisé en ce que l'écart de régulation du premier régulateur agit sur une sélection de valeurs extrêmes en amont du second régulateur.
  3. Procédé selon la revendication 1,
    caractérisé en ce que la variable de commande qui déplace la vanne du régulateur de limite de pompe à vitesse de variable d'actionnement maximale agit, à partir de chaque régulateur, sur chaque actionneur.
  4. Procédé selon la revendication 1,
    caractérisé en ce que la variable correctrice efficace est calculée à partir de la différence entre une variable correctrice initiale temporisée par un temporisateur du premier ordre et la variable non temporisée.
  5. Procédé selon la revendication 4,
    caractérisé en ce qu'un décalage est appliqué à la variable correctrice.
  6. Procédé selon les revendications 4 et 5,
    caractérisé en ce que la variable correctrice limite le gradient pour la variation d'une variable de réglage d'un autre régulateur.
  7. Procédé selon la revendication 6,
    caractérisé en ce que le gradient pour la limitation de la variable de réglage est une fonction linéaire ou non linéaire de la variable correctrice.
  8. Procédé selon la revendication 6 ou 7,
    caractérisé en ce que la limitation pour la variable de réglage est activée ou désactivée en fonction d'une variable de processus.
  9. Procédé selon la revendication 6 à 8,
    caractérisé en ce que la variable correctrice agit sur les paramètres des régulateurs et les fait varier.
  10. Dispositif pour la mise en oeuvre du procédé de fonctionnement de turbocompresseurs à plusieurs étages présentant au moins deux régulateurs de limite de pompe s'influençant mutuellement,
    caractérisé en ce
    qu'en amont de chaque régulateur de limite de pompe (15, 35, 55) d'un étage de turbocompresseur (2, 22, 42) est montée une sélection de maximales (14, 34, 54), dans laquelle sont transmises à partir du comparateur de valeurs de consigne-réelle (12, 32, 52) des variables correctrices échangées alternativement par l'intermédiaire de lignes de commande (13, 33, 53) et
    que chaque régulateur de limite de pompe (15, 35, 55) agit par l'intermédiaire de lignes de commande (16, 36, 56) sur les vannes de régulation de limite de pompe (5, 25, 45) correspondantes.
  11. Dispositif selon la revendication 10,
    caractérisé en ce
    qu'en aval de chaque comparateur de valeurs de consigne-réelle (12, 32, 52) du régulateur de limite de pompe (15, 35, 55) sont respectivement montés un organe temporisateur du premier ordre (61) et un limiteur additionneur (63),
    que le limiteur (63) additionne les entrées de différence de régulation conformément à leur signe et les limite à des valeurs seuils réglable et
    que l'additionneur (64) transmet la différence de régulation calculée (sélection de valeurs extrêmes) au régulateur de limite de pompe (15, 35, 55).
  12. Dispositif selon la revendication 11,
    caractérisé en ce qu'à la variable correctrice, en amont du limiteur (63), est appliquée une constante (62).
  13. Dispositif selon la revendication 10,
    caractérisé en ce
    qu'entre le comparateur de valeurs de consigne-réelle (12, 32, 52) et le limiteur (74) est monté respectivement un transmetteur de fonction (75) ou
    que le comparateur de valeurs de consigne-réelle (12, 32, 52) par l'intermédiaire de la ligne de commande (60) est relié directement au régulateur de limite de pompe (15, 35, 55),
    qu'un autre comparateur de valeurs de consigne-réelle (72) est couplé au limiteur (74), qui transmet ses données à un régulateur de variable de processus (78) et
    que le régulateur de limite de pompe (15) est en outre couplé au transmetteur de fonction (75) par l'intermédiaire d'une ligne de signaux (60).
  14. Dispositif selon la revendication 10,
    caractérisé en ce
    qu'en aval du régulateur (15 ou 78) est monté un limiteur de gradient (80), les données du régulateur (15 ou 78) étant transmises à un amplificateur d'entrée (81),
    que l'amplificateur d'entrée (81) est relié à un limiteur (82) et celui-ci à un intégrateur (83) et
    que les données de sortie (84) sont transmises en retour à l'amplificateur d'entrée (81) par l'intermédiaire d'une ligne de commande (85).
  15. Dispositif selon la revendication 10,
    caractérisé en ce
    que sur la ligne de pression (43) est disposé un convertisseur de mesure de pression (20), qui transmet des données par l'intermédiaire d'une ligne de signaux (88) à un comparateur de valeurs de consigne-réelle (12),
    qu'un régulateur de variable de processus (78) transmet les comparaisons de valeurs de consigne-réelle (variables de régulation) par l'intermédiaire d'une ligne de commande (87) à l'actionneur (18) pour régler les aubes directrices (19) dans les étages de turbocompresseur (2, 22, 42) et
    que des valeurs de consigne (89) des variables de processus sont transmises par le système de pilotage au comparateur (20) de valeurs de consigne-réelle.
  16. Dispositif selon la revendication 15,
    caractérisé en ce
    que sur la ligne de pression (3) est disposé en aval du clapet anti-retour (17) un convertisseur de mesure de pression (20), qui transmet des données à un comparateur (72) de valeurs de consigne-réelle par l'intermédiaire d'une ligne de commande (71) et achemine celles-ci par l'intermédiaire d'une ligne de signaux (73) vers un régulateur de variables de processus (78),
    qu'une sélection de maximales (14) transmet des données du comparateur (12) de valeurs de consigne-réelle à un transmetteur de fonction (75) ou à un régulateur de limite de pompe (15),
    que la sélection de maximales (14) reçoit d'autres données par l'intermédiaire de la ligne de commande (33) et (35),
    que le régulateur de limite de pompe (15) est relié par une ligne de commande (16) à la vanne de limitation de pompe (5),
    que les données sont transmises au régulateur de variables de processus (78) par une ligne de commande (76) et
    que le régulateur de variables de processus (78) transmet ses données par l'intermédiaire d'une ligne de signaux (87) à l'actionneur (18) des aubes directrices (19) dans les étages de turbocompresseur (2, 12, 42).
  17. Dispositif selon les revendications 15 à 16,
    caractérisé en ce
    que le transmetteur de fonction (75) transmet par l'intermédiaire d'une ligne de commande (76) des données de la sélection de maximales (14) à un limiteur (74) qui est monté en amont du régulateur de variables de processus (78).
EP99106086A 1998-06-26 1999-03-26 Procédé d' opération des turbo-compresseurs Expired - Lifetime EP0967396B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19828368 1998-06-26
DE19828368A DE19828368C2 (de) 1998-06-26 1998-06-26 Verfahren und Vorrichtung zum Betreiben von zwei- oder mehrstufigen Verdichtern

Publications (3)

Publication Number Publication Date
EP0967396A2 EP0967396A2 (fr) 1999-12-29
EP0967396A3 EP0967396A3 (fr) 2001-07-25
EP0967396B1 true EP0967396B1 (fr) 2003-05-07

Family

ID=7872019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99106086A Expired - Lifetime EP0967396B1 (fr) 1998-06-26 1999-03-26 Procédé d' opération des turbo-compresseurs

Country Status (3)

Country Link
US (1) US6164901A (fr)
EP (1) EP0967396B1 (fr)
DE (2) DE19828368C2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110529420A (zh) * 2019-09-16 2019-12-03 浙江中控技术股份有限公司 一种压缩机的解耦控制方法、系统及存储介质

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1242732B1 (fr) * 1999-12-18 2007-02-07 Robert Bosch Gmbh Procede et dispositif de commande de l'unite d'entrainement d'un vehicule
US6778883B1 (en) * 1999-12-18 2004-08-17 Robert Bosch Gmbh Method and device for controlling the drive unit of a vehicle
JP3751208B2 (ja) * 2001-02-23 2006-03-01 株式会社神戸製鋼所 多段可変速圧縮機の制御方法
DE10208676A1 (de) * 2002-02-28 2003-09-04 Man Turbomasch Ag Ghh Borsig Verfahren zum Regeln von mehreren Strömungsmaschinen im Parallel- oder Reihenbetrieb
DE10304063A1 (de) 2003-01-31 2004-08-12 Man Turbomaschinen Ag Verfahren zum sicheren Betreiben von Turbokompressoren mit einer Pumpgrenzregelung und einem Pumpgrenzregelventil
US20070189905A1 (en) * 2006-02-13 2007-08-16 Ingersoll-Rand Company Multi-stage compression system and method of operating the same
US8173853B2 (en) * 2006-04-11 2012-05-08 Basf Se Process for preparing acetylene by partial oxidation of hydrocarbons
US8017823B2 (en) * 2006-04-11 2011-09-13 Basf, Se Process for the manufacture of acetylene by partial oxidation of hydrocarbons
DE102006030108A1 (de) * 2006-06-28 2008-01-03 Man Turbo Ag Vorrichtung und Verfahren zum Durchführen eines Ventiltests an einer Turbomaschine
US8591199B2 (en) * 2007-01-11 2013-11-26 Conocophillips Company Multi-stage compressor/driver system and method of operation
DE102008058799B4 (de) 2008-11-24 2012-04-26 Siemens Aktiengesellschaft Verfahren zum Betrieb eines mehrstufigen Verdichters
DE102009004376B4 (de) * 2009-01-12 2016-06-16 Man Diesel & Turbo Se Verfahren und System zur Steuerung eines Turbokompressorverbundes
GB0919771D0 (en) * 2009-11-12 2009-12-30 Rolls Royce Plc Gas compression
IT1402481B1 (it) * 2010-10-27 2013-09-13 Nuovo Pignone Spa Metodo e dispositivo che effettua una compensazione del tempo morto di anti-pompaggio basata su modello
US9074606B1 (en) * 2012-03-02 2015-07-07 Rmoore Controls L.L.C. Compressor surge control
CN104533820B (zh) * 2014-12-26 2017-01-11 沈阳鼓风机集团自动控制系统工程有限公司 一种防喘振控制方法及装置
WO2017138036A1 (fr) * 2016-02-09 2017-08-17 三菱重工コンプレッサ株式会社 Système amplificateur
RU2016112469A (ru) 2016-04-01 2017-10-04 Фишер-Роузмаунт Системз, Инк. Способы и устройство для обнаружения и предотвращения помпажа компрессора

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2828124C2 (de) * 1978-06-27 1981-11-19 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Verfahren zur Verhinderung des Pumpens von Turboverdichtern
US4640665A (en) * 1982-09-15 1987-02-03 Compressor Controls Corp. Method for controlling a multicompressor station
US4560319A (en) * 1983-08-01 1985-12-24 MAN Maschinenfabrik Unternehmensbereich GHH Sterkrade Method and apparatus for controlling at least two parallel-connected turbocompressors
DE3540284A1 (de) * 1985-11-13 1987-05-14 Gutehoffnungshuette Man Einrichtung zum regeln eines turbokompressors zur verhinderung des pumpens
DE3809881A1 (de) * 1988-03-24 1989-10-12 Gutehoffnungshuette Man Regelverfahren zur vermeidung des pumpens eines turbokompressors
DE3810717A1 (de) * 1988-03-30 1989-10-19 Gutehoffnungshuette Man Verfahren zur vermeidung des pumpens eines turboverdichters mittels abblaseregelung
SE469042B (sv) * 1991-09-13 1993-05-03 Abb Carbon Ab Foerfarande och anordning foer att reglera och begraensa luftens temperatur paa en i en pfbc-anlaeggning ingaaende hoegtryckskompressors in- och utlopp
US5347467A (en) * 1992-06-22 1994-09-13 Compressor Controls Corporation Load sharing method and apparatus for controlling a main gas parameter of a compressor station with multiple dynamic compressors
US5726891A (en) * 1994-01-26 1998-03-10 Sisson; Patterson B. Surge detection system using engine signature
US5508943A (en) * 1994-04-07 1996-04-16 Compressor Controls Corporation Method and apparatus for measuring the distance of a turbocompressor's operating point to the surge limit interface
JP3679858B2 (ja) * 1996-05-09 2005-08-03 三菱重工業株式会社 圧縮機の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110529420A (zh) * 2019-09-16 2019-12-03 浙江中控技术股份有限公司 一种压缩机的解耦控制方法、系统及存储介质

Also Published As

Publication number Publication date
DE19828368A1 (de) 2000-01-13
EP0967396A3 (fr) 2001-07-25
DE19828368C2 (de) 2001-10-18
US6164901A (en) 2000-12-26
EP0967396A2 (fr) 1999-12-29
DE59905412D1 (de) 2003-06-12

Similar Documents

Publication Publication Date Title
EP0967396B1 (fr) Procédé d' opération des turbo-compresseurs
EP1134422B1 (fr) Procédé pour le contrôle de pompage d' un turbo-compresseur
EP2033057B1 (fr) Dispositif et procédé pour réaliser un essai de fonction d'organe de réglage sur une turbomachine
DE3133504C2 (de) Regelanordnung für eine Dampfturbine mit Umleitstationen
DE68910467T2 (de) Modus und Gerät zur Vermeidung des Pumpens in einem dynamischen Verdichter.
DE69728254T2 (de) Regelsystem für dynamische kompressoren zur verhinderung des wiederauftretens des pumpens
EP0132487A2 (fr) Procédé de régulation d'au moins deux turbo-compresseurs branchés en parallèle
EP1069314A1 (fr) Commande d'une unité-compresseur
EP0335105B1 (fr) Procédé pour éviter le pompage d'un compresseur centrifuge par le contrôle d'échappement
DE2605025A1 (de) Verfahren und apparatur zur steuerung eines dynamischen kompressors
EP0223208B1 (fr) Procédé et dispositif de réglage de turbocompresseurs
EP1016787A2 (fr) Procédé d' opération d' un compresseur et système fonctionnant selon ce procédé
EP0332888B1 (fr) Procédé pour faire fonctionner des compresseurs centrifuges
EP0334034B1 (fr) Procédé de commande pour éviter le pompage d'un compresseur centrifuge
EP0223207B1 (fr) Procédé et dispositif de réglage d'un turbocompresseur pour empêcher le pompage
EP1116885B1 (fr) Procédé et appareil de contrôle d'un turbo-compresseur pour éviter le pompage
EP0222382B1 (fr) Procédé de réglage de turbocompresseurs
EP0757180B1 (fr) Procédé et dispositif d'opération des turbomachines avec régulateurs à gain proportionnel élevé
EP0771950B1 (fr) Procédé de protection d'un turbo compresseur contre l'opération dans un domaine instable au moyen de vannes ayant deux vitesses de réglage
EP0358139B1 (fr) Système et méthode de régulation
DE2358926C3 (de) Regelung von verstellbaren Überschallufteinläufen, insbesondere zweidimensionalen SchrägstoBdiffusoren für Gasturbinenstrahltriebwerke zum Antrieb von Hochleistungsflugzeugen
DE2545019C3 (de) Regelung von verstellbaren Überschallufteinläufen, insbesondere zweidimensionalen Schragstoßdiffusoren für Gasturbinenstrahltriebwerke zum Antrieb von Hochleistungsflugzeugen
DE4122631A1 (de) Verfahren zum geregelten betreiben von verdichtern
AT507513A1 (de) Stationäre brennkraftmaschine
DE19621824A1 (de) Verfahren zum Regeln von Gasdrücken bei Einsatz von Gasentspannungsturbinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE GB IT LI NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG GHH BORSIG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 04D 27/00 A, 7F 04D 27/02 B

17P Request for examination filed

Effective date: 20010710

AKX Designation fees paid

Free format text: CH DE GB IT LI NL

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59905412

Country of ref document: DE

Date of ref document: 20030612

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030724

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040210

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DR. WILFRIED BLOTENBERG

Free format text: MAN TURBO AG#STEINBRINKSTRASSE 1#46145 OBERHAUSEN (DE) -TRANSFER TO- DR. WILFRIED BLOTENBERG#IRKENSBUSCH 28#46535 DINSLAKEN (DE)

Ref country code: CH

Ref legal event code: PFA

Owner name: MAN TURBO AG

Free format text: MAN TURBOMASCHINEN AG#STEINBRINKSTRASSE 1#46145 OBERHAUSEN (DE) -TRANSFER TO- MAN TURBO AG#STEINBRINKSTRASSE 1#46145 OBERHAUSEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090325

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100326

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59905412

Country of ref document: DE

Owner name: MAN DIESEL & TURBO SE, DE

Free format text: FORMER OWNER: MAN TURBO AG, 46145 OBERHAUSEN, DE

Effective date: 20110325

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160321

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160324

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170322

Year of fee payment: 19

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180322

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59905412

Country of ref document: DE

Owner name: MAN ENERGY SOLUTIONS SE, DE

Free format text: FORMER OWNER: MAN DIESEL & TURBO SE, 86153 AUGSBURG, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59905412

Country of ref document: DE