EP0958335B1 - Process for preventing high temperature corrosion - Google Patents

Process for preventing high temperature corrosion Download PDF

Info

Publication number
EP0958335B1
EP0958335B1 EP97929019A EP97929019A EP0958335B1 EP 0958335 B1 EP0958335 B1 EP 0958335B1 EP 97929019 A EP97929019 A EP 97929019A EP 97929019 A EP97929019 A EP 97929019A EP 0958335 B1 EP0958335 B1 EP 0958335B1
Authority
EP
European Patent Office
Prior art keywords
activated bentonite
glass
combustion
gas
nozzled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97929019A
Other languages
German (de)
French (fr)
Other versions
EP0958335A1 (en
Inventor
Friedrich Birkner
Maria-Katharina Birkner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ICA Chemie AG
Original Assignee
ICA Innoconsult AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AT129496A external-priority patent/AT405741B/en
Priority claimed from AT19497A external-priority patent/AT404136B/en
Application filed by ICA Innoconsult AG filed Critical ICA Innoconsult AG
Publication of EP0958335A1 publication Critical patent/EP0958335A1/en
Application granted granted Critical
Publication of EP0958335B1 publication Critical patent/EP0958335B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/48Preventing corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/30Halogen; Compounds thereof
    • F23J2215/301Dioxins; Furans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/60Heavy metals; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/60Sorption with dry devices, e.g. beds

Definitions

  • the invention relates to a method for preventing High temperature chlorine corrosion in combustion chambers of furnace and waste incineration plants and to reduce the Particulate matter in the combustion exhaust gases.
  • MgO Compared to corrosion damage caused by sulfation If chlorine is formed from chorides, MgO has no effect.
  • Cerium compounds such as iron cerium, cerium oxides and / or cerium oxide hydrates to spray in powder form.
  • cerium compounds could use this older proposal together with magnesium oxide be injected and aimed primarily at the Cleaning effort for the removal of deposits on the inside of plant parts significantly, and in this way to allow a longer travel time than with known methods.
  • passivating layers which already superficially for the protection of plant upper parts have been trained, their effectiveness is maintained and are no longer affected.
  • Cerium compounds such as Iron cerium, cerium oxides or cerium oxide hydrates should here in the Ensure near the walls reducing zones to this Way to reduce corrosion.
  • the mode of action of the cerium compounds in the manner of oxidation catalysts leads to afterburning in reducing areas of the flue gas, whereby a reduction of one already trained for passivation Oxide layer of scale or rust is definitely avoided becomes.
  • the cerium compounds should also protect against chloride ion corrosion take effect, and in this way oxidation to principally less dangerous chlorine gas in molecular Ensure shape.
  • filter aids and especially inorganic Filter aids based on silanol groups to mix active silica with the feed to be burned have also proven to be relatively complex, because of the inhomogeneous distribution in the garbage additives Only show effect in the percentage range.
  • GB-A-1 307 127 discloses the use of 85% by weight calcium bentonite, 10% by weight sodium phosphate and 5% by weight sodium borate in oil, gas and coal furnaces as known.
  • US Pat. No. 3,249,075 proposes the introduction of antimony compounds and silicates with a large specific surface area in the superheater area of coal-fired boilers to reduce SO 3 corrosion.
  • GB-A-800 445 proposes burned bentonite and other refractory materials for better Use distribution of oil drops in gas turbines.
  • the invention now aims at a method of the beginning to create the type mentioned, in which even the smallest quantities of an additive can be used, alkali and The content of metal chlorides in the flue gas reduced as quickly as possible can be.
  • the reaction should be as quick as possible use and also take place at high temperatures without elemental chlorine is released.
  • the method according to the invention for reducing high-temperature chlorine corrosion in firing and combustion plants in which additives are injected into the gas space, essentially consists in the fact that acid-activated bentonite in the gas space at gas temperatures above 750 ° C., preferably 800 ° C. is injected. Due to the high reactivity of acidically activated bentonite, the desired reaction for setting alkalis can be carried out even at relatively high temperatures, the desired reactions already taking place quickly and quantitatively even at temperatures of over 900 ° C.
  • Alkali can be set very early if the additive is injected together with secondary air just above the burner level or the grate, for example in the level of the secondary air supply, so that the distance over which a corrosive attack is at all possible can be significantly reduced.
  • this can optionally be injected together with silicon dioxide, with SiO 2 acting primarily as a diluent. In any case, more than 50% by weight, based on the mixture, of acid-activated bentonite should be used in mixtures with SiO 2 in order to ensure the desired reaction quickly.
  • Boiler walls By injecting glass dust it can be ensured that the glass dust or glass powder quickly melts completely, being an effective protection of those to be protected against corrosion Boiler walls can be improved in that the glass dust or the glass powder over directed nozzles or spray plates in Direction of the walls of the gas space is introduced. To this A flushing flow of the glass melt along the Walls of the gas room ensured.
  • glass dust or glass powder is advantageously used in Quantities of 0.3 kg / t to 30 kg / t of waste are injected into the gas space, where ground waste glass, e.g. Window glass or bottle glass, can be used.
  • ground waste glass e.g. Window glass or bottle glass
  • the process is advantageously based on grain sizes about 50 microns of ground glass used.
  • Pollutant emissions can be reduced by that acid-activated bentonite for adsorbing pollutants, such as mercury or dioxin in the cooled exhaust gases from combustion plants, used in particular in an entrained current flow is then sprayed into the combustion chamber becomes.
  • pollutants such as mercury or dioxin
  • An inexpensive and simple additive that can also be used for showering in the combustion rooms of combustion and waste incineration plants, with which the travel time of Kessein can be increased significantly and which at the same time still aims relative to the known additives to drastically reduce the high level of dust in the exhaust gas according to the invention from oxide melts, in particular glass powder or Glass dust obtained with a melting point below 1000 ° C. Glass powder or glass dust, which preferably in counterflow to the When flue gases are injected, it melts at the temperatures in the combustion chambers, taking flight dust too water-soluble glass is bound. At the same time surprisingly in such melting glass flour or Glass dust particles also set alkali quickly, surprisingly also a rapid decrease in the chlorine content in the exhaust gases was detected.
  • glass powder or glass dust with one Melting point below 800 ° C used a complete Melting and safe removal of the in the Melt dissolved pollutants can be ensured can that the glass powder or the glass dust a medium grain size from 30 to 60 ⁇ m, preferably from 40 ⁇ m.
  • Curve 2 shows the amount of sodium chloride in mg / m 3 over the temperature.
  • Curve 1 shows the reduction that can be achieved by injecting 1 kg of acid-activated bentonite per t of waste.
  • Curve 2 shows the effect which could be achieved by injecting 2 kg of sulfur, so that the superiority of injecting acid-activated bentonite for the purpose of reducing the sodium chloride content at high temperatures is clearly evident.
  • Curve 3 illustrates the effect when only 1 kg of sulfur is injected, and curve 4 the effect with pure flue gas.
  • the additive is powdery and can easily be added in one Grinding fineness can be produced, which allows the additive to be injected directly into the combustion chamber via the secondary air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Fertilizers (AREA)

Abstract

An additive is sprayed into the combustion chambers of heating and waste incineration plants to prevent high temperature corrosion and to reduce the fly ash proportion in the exhaust gas. Also disclosed is a process for preventing high temperature corrosion and for reducing the fly ash proportion in the exhaust gas from heating and waste incineration plants. The disclosed additive consists of acid activated bentonite and/or oxide melts, in particular glass powder or glass dust with a melting point below 1000 DEG C, and is sprayed into the gas chamber in areas in which the gas temperature exceeds 700 DEG C.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Verhindern von Hochtemperaturchlorkorrosion in Verbrennungsräumen von Feuerungs- und Müllverbrennungsanlagen und zur Verringerung des Flugstaubanteiles in den Verbrennungsabgasen.The invention relates to a method for preventing High temperature chlorine corrosion in combustion chambers of furnace and waste incineration plants and to reduce the Particulate matter in the combustion exhaust gases.

Bekannte Korrosionsschutzverfahren versuchten die Korrosion in Verbrennungsanlagen und insbesondere an den Wärmetauscherflächen der Kessel dadurch herabzusetzen, daß in der Gasphase Umsetzungen zur Deaktivierung korrosiver Substanzen vorgenommen werden. Zu diesem Zweck wird in der Regel Magnesiumoxid eingedüst, wodurch vor allen Dingen eine Hochtemperatursulfatkorrosion bei Temperaturen von über 480° C wesentlich herabgesetzt werden kann. Dies wird dadurch erreicht, daß sich bei einem Überschuß von MgO in den Belägen, die sich zum Beispiel auf den Überhitzerrohren bilden, mit dem SO2 des Rauchgases MgSO4 bildet und nicht Alkalipyrosulfate. Alkalipyrosulfate lösen nämlich bei Temperaturen von über 480° C die Zunderschicht auf und führen zu katastrophalen Korrosionsschäden.Known corrosion protection methods attempted to reduce the corrosion in combustion plants and in particular on the heat exchanger surfaces of the boilers by carrying out reactions to deactivate corrosive substances in the gas phase. For this purpose, magnesium oxide is generally injected, which means that high-temperature sulphate corrosion can be significantly reduced at temperatures above 480 ° C. This is achieved in that if there is an excess of MgO in the deposits which form, for example, on the superheater tubes, MgSO 4 forms with the SO 2 of the flue gas and not alkali metal pyrosulfates. Alkali pyrosulfates dissolve the scale layer at temperatures above 480 ° C and lead to catastrophic corrosion damage.

Gegenüber Korrosionsschäden, die durch aus der Sulfatisierung von Choriden entstehendes Chlor entstehen, ist MgO wirkungslos.Compared to corrosion damage caused by sulfation If chlorine is formed from chorides, MgO has no effect.

Diese Art von Korrosion tritt in den letzten Jahren vermehrt im Feuerraumbereich von Müllverbrennungsanlagen auf, da sich durch die Mülltrennung einerseits die Müllzusammensetzung geändert hat und andererseits durch gesetzliche Bestimmungen (mind. 2 sec 800° C im Feuerraum) eine höhere Rauchgastemperatur eingehalten werden muß.This type of corrosion has occurred increasingly in recent years The combustion chamber area of waste incineration plants as a result of the separation of waste has changed the waste composition on the one hand and on the other hand by legal regulations (at least 2 sec 800 ° C in the combustion chamber) a higher flue gas temperature is maintained must become.

Aus der WO 95/11287 ist bereits bekannt geworden, in den Brennraum Cerverbindungen wie Eisencer, Ceroxide und/oder Ceroxidhydrate in Pulverform einzudüsen. Derartige Cerverbindungen konnten gemäß diesem älteren Vorschlag gemeinsam mit Magnesiumoxid eingedüst werden und zielten in erster Linie darauf ab, den Reinigungsaufwand für das Ablösen von Belägen an der Innenseite von Anlagenteilen wesentlich herabzusetzen, und auf diese Weise eine längere Reisezeit als bei bekannten Verfahren zu ermöglichen. Insbesondere sollten hierbei passivierende Schichten, welche zum Schutz von Anlagenoberteilen oberflächlich bereits ausgebildet wurden, in ihrer Wirksamkeit erhalten werden und nicht mehr beeinträchtigt werden. Derartige Cerverbindungen wie Eisencer, Ceroxide oder Ceroxidhydrate sollten hierbei in der Nähe der Wände reduzierende Zonen sicherstellen, um auf diese Weise die Korrosion herabzusetzen. Die Wirkungsweise der Cerverbindungen nach Art von Oxidationskatalysatoren führt hierbei zu einer Nachverbrennung in reduzierenden Bereichen des Rauchgases, wodurch eine Reduktion einer zur Passivierung bereits ausgebildeten Oxidschicht von Zunder bzw. Rost mit Sicherheit vermieden wird. Die Cerverbindungen sollten hierbei auch gegen Chloridionenkorrosion wirksam werden, und auf diese Weise eine Oxidation zu prinzipiell ungefährlicherem Chlorgas in molekularer Form sicherstellen.From WO 95/11287 has already become known in the combustion chamber Cerium compounds such as iron cerium, cerium oxides and / or cerium oxide hydrates to spray in powder form. Such cerium compounds could use this older proposal together with magnesium oxide be injected and aimed primarily at the Cleaning effort for the removal of deposits on the inside of plant parts significantly, and in this way to allow a longer travel time than with known methods. In particular, passivating layers, which already superficially for the protection of plant upper parts have been trained, their effectiveness is maintained and are no longer affected. Cerium compounds such as Iron cerium, cerium oxides or cerium oxide hydrates should here in the Ensure near the walls reducing zones to this Way to reduce corrosion. The mode of action of the cerium compounds in the manner of oxidation catalysts leads to afterburning in reducing areas of the flue gas, whereby a reduction of one already trained for passivation Oxide layer of scale or rust is definitely avoided becomes. The cerium compounds should also protect against chloride ion corrosion take effect, and in this way oxidation to principally less dangerous chlorine gas in molecular Ensure shape.

Der Einsatz derartiger Additive ist aber mit relativ hohen Kosten verbunden und hat sich insbesondere im Zusammenhang mit der Hochtemperaturchlorkorrosion, bei welcher Chlorgase wiederum dissoziieren, als nicht hinreichend wirksam erwiesen.However, the use of such additives is relatively high Related costs and has been particularly related to the high temperature chlorine corrosion, in which chlorine gases in turn dissociate, not proven to be sufficiently effective.

Versuche, Filterhilfsmittel und insbesondere anorganische Filterhilfsmittel auf der Basis von Silanolgruppen enthaltender aktiver Kieselsäure dem zu verbrennenden Einsatzmaterial zuzumischen, haben sich gleichfalls als relativ aufwendig herausgestellt, da wegen der inhomogenen Verteilung im Müll Zusätze erst im Prozentbereich Wirkung zeigen.Experiments, filter aids and especially inorganic Filter aids based on silanol groups to mix active silica with the feed to be burned, have also proven to be relatively complex, because of the inhomogeneous distribution in the garbage additives Only show effect in the percentage range.

Für die Rückführung von schadstoffbeladenen Rückständen wie beispielsweise Filteraschen, Adsorbentien od.dgl. in den Kreislauf einer Schmelzkammerfeuerung mit Zusatz von Altglas und/oder Kalksplitt wurde bereits in der DE-A-4 021 362, vorgeschlagen, den Absorber in den Kreislauf einer Schmelzkammerfeuerung mit vollständiger Ascheruckfuhrung einzubringen. Der Absorber kann dabei in den Rauchgasweg und/oder in die Ascherückführung und oder in den Schlackeabzug und/oder mit der Kohle eingespeist werden, wobei Altglasscherben und/oder Kalksplitt zudosiert werden können.For the return of contaminated residues such as for example filter ash, adsorbents or the like. in the cycle a furnace with the addition of waste glass and / or Lime chippings have already been proposed in DE-A-4 021 362. the absorber in the circuit of a melting furnace full ash return. The absorber can thereby in the flue gas path and / or in the ash return and or fed into the slag discharge and / or with the coal be used, with used glass and / or lime chippings being metered in can be.

Der GB-A-1 307 127 ist der Einsatz von 85 Gew.% Kalziumbentonit, 10 Gew.% Natriumphosphat und 5 Gew.% Natriumborat in Öl-, Gas- und Kohlefeuerungen als bekannt zu entnehmen. In der US-A-3 249 075 wird zur Reduktion der SO3-Korrosion das Einbringen von Antimonverbindungen und Silikaten mit großer spezifischer Oberfläche im Überhitzerbereich von kohlegefeuerten Kesseln vorgeschlagen.GB-A-1 307 127 discloses the use of 85% by weight calcium bentonite, 10% by weight sodium phosphate and 5% by weight sodium borate in oil, gas and coal furnaces as known. US Pat. No. 3,249,075 proposes the introduction of antimony compounds and silicates with a large specific surface area in the superheater area of coal-fired boilers to reduce SO 3 corrosion.

Schließlich wird in der GB-A-800 445 der Vorschlag gemacht, gebrannten Bentonit und andere Feuerfestmaterialien zur besseren Verteilung von Öltropfen in Gasturbinen einzusetzen.Finally, GB-A-800 445 proposes burned bentonite and other refractory materials for better Use distribution of oil drops in gas turbines.

Die Erfindung zielt nun darauf ab, ein Verfahren der eingangs genannten Art zu schaffen, bei welchem auch geringste Mengen eines Additivs zum Einsatz gelangen können, wobei Alkali und der Gehalt an Metallchloriden im Rauchgas so rasch wie möglich reduziert werden kann. Die Reaktion soll hierbei möglichst rasch einsetzen und auch bei hohen Temperaturen stattfinden, ohne daß elementares Chlor freigesetzt wird.The invention now aims at a method of the beginning to create the type mentioned, in which even the smallest quantities of an additive can be used, alkali and The content of metal chlorides in the flue gas reduced as quickly as possible can be. The reaction should be as quick as possible use and also take place at high temperatures without elemental chlorine is released.

Zur Lösung dieser Aufgabe besteht das erfindungsgemäße Verfahren zum Verringern der Hochtemperaturchlorkorrosion in Feuerungs- und Verbrennungsanlagen, bei welchem Additive in den Gasraum eingedüst werden, im wesentlichen darin, daß sauer aktivierter Bentonit in den Gasraum bei Gastemperaturen über 750° C, vorzugsweise 800°C, eingedüst wird. Aufgrund der hohen Reaktivität von sauer aktiviertem Bentonit gelingt es auch bei relativ hohen Temperaturen bereits, die gewünschte Umsetzung zur Abbindung von Alkalien vorzunehmen, wobei die gewünschten Reaktionen auch bei Temperaturen von über 900° C bereits rasch und quantitativ ablaufen. Eine sehr frühzeitige Abbindung von Alkalien gelingt daher, wenn das Additiv knapp über der Brennerebene oder dem Rost, beispielsweise in der Ebene der Sekundarluftzufuhrung gemeinsam mit Sekundärluft eingedüst wird, sodaß die Wegstrecke, über welche ein korrosiver Angriff uberhaupt möglich ist, wesentlich herabgesetzt werden kann. Zur besseren Verteilung des sauer aktivierten Bentonits kann dieser ggf. gemeinsam mit Siliziumdioxid eingedüst werden, wobei SiO2 hier in erster Linie als Verdünnungsmittel wirksam wird. In jedem Fall soll in Gemischen mit SiO2 sauer aktivierter Bentonit in einer Menge von mehr als 50 Gew% bezogen auf die Mischung eingesetzt werden, um die gewünschte Reaktion rasch sicherzustellen.To achieve this object, the method according to the invention for reducing high-temperature chlorine corrosion in firing and combustion plants, in which additives are injected into the gas space, essentially consists in the fact that acid-activated bentonite in the gas space at gas temperatures above 750 ° C., preferably 800 ° C. is injected. Due to the high reactivity of acidically activated bentonite, the desired reaction for setting alkalis can be carried out even at relatively high temperatures, the desired reactions already taking place quickly and quantitatively even at temperatures of over 900 ° C. Alkali can be set very early if the additive is injected together with secondary air just above the burner level or the grate, for example in the level of the secondary air supply, so that the distance over which a corrosive attack is at all possible can be significantly reduced. For better distribution of the acid-activated bentonite, this can optionally be injected together with silicon dioxide, with SiO 2 acting primarily as a diluent. In any case, more than 50% by weight, based on the mixture, of acid-activated bentonite should be used in mixtures with SiO 2 in order to ensure the desired reaction quickly.

Durch das Eindüsen von Glasstaub kann sichergestellt werden, daß der Glasstaub bzw. das Glasmehl rasch vollständig aufschmilzt, wobei ein effektiver Schutz der gegen Korrosion zu schützenden Kesselwände dadurch verbessert werden kann, daß der Glasstaub bzw. das Glasmehl über gerichtete Düsen oder Sprühteller in Richtung der Wände des Gasraumes eingebracht wird. Auf diese Weise wird eine spülende Strömung der Glasschmelze längs der Wände des Gasraumes sichergestellt.By injecting glass dust it can be ensured that the glass dust or glass powder quickly melts completely, being an effective protection of those to be protected against corrosion Boiler walls can be improved in that the glass dust or the glass powder over directed nozzles or spray plates in Direction of the walls of the gas space is introduced. To this A flushing flow of the glass melt along the Walls of the gas room ensured.

Erfindungsgemäß wird mit Vorteil Glasstaub bzw. Glasmehl in Mengen von 0,3 kg/t bis 30 kg/t Müll in den Gasraum eingedüst, wobei in einfacher Weise gemahlenes Altglas, wie z.B. Fensterglas bzw. Flaschenglas, eingesetzt werden kann. Für das erfindungsgemäße Verfahren wird mit Vorteil ein auf Korngrößen etwa 50 µm vermahlenes Glas eingesetzt.According to the invention, glass dust or glass powder is advantageously used in Quantities of 0.3 kg / t to 30 kg / t of waste are injected into the gas space, where ground waste glass, e.g. Window glass or bottle glass, can be used. For the invention The process is advantageously based on grain sizes about 50 microns of ground glass used.

Mit Vorteil wird so vorgegangen, daß sauer aktivierter Bentonit ggf. mit SiO2 vermengt in Mengen von 0,5 bis 3,0 kg/t Müll in Müllverbrennungsanlagen eingedüst wird.It is advantageously carried out in such a way that acid-activated bentonite, if appropriate mixed with SiO 2, is injected into waste incineration plants in quantities of 0.5 to 3.0 kg / t of waste.

Eine besonders wirtschaftliche Verfahrensführung unter weiterer Verringerung von Schadstoffemissionen läßt sich dadurch erzielen, daß sauer aktivierter Bentonit zum Adsorbieren von Schadstoffen, wie Hg oder Dioxin in den gekühlten Abgasen von Verbrennungsanlagen, insbesondere in einem Flugstromverrahren eingesetzt wird und nachfolgend in den Verbrennungsraum eingedust wird.A particularly economical process management among others Pollutant emissions can be reduced by that acid-activated bentonite for adsorbing pollutants, such as mercury or dioxin in the cooled exhaust gases from combustion plants, used in particular in an entrained current flow is then sprayed into the combustion chamber becomes.

Aufgrund der im Feuerraum vorherrschenden Bedingungen wird bei dem heute üblicherweise in Müll vorherrschenden hohen Chlorgehalt in nicht unerheblicher Menge Alkalichlorid gebildet. Das Verhältnis zwischen Chlor und Schwefel hat sich bei Müll in den letzten Jahren im Rauchgas zugunsten von Chlor verschoben, wobei vermehrte Mengen an Metallchloriden unzersetzt ins Rauchgas gelangen und erst dort oder in den Belägen in Sulfate umgewandelt werden. Unter den gegebenen thermodynamischen Bedingungen führt diese Umsetzung, welche auch Sulfatisierungsreaktion genannt wird, zu Natriumsulfat und elementarem Chlor, und damit zu einem starken korrosiven Angriff. Das Chlor gelangt bis an die Rohroberfläche und kann dort Stahl unter Bildung von Eisenchlorid zerstören. Diese Sulfatisierungsreaktion ist in erster Linie im Feuerraum hinter und knapp über der Ausmauerung zu beobachten, und durch die erfindungsgemäße Eindüsung von sauer aktiviertem Bentonit gelingt es, den Gehalt an Metallchloriden überaus rasch zu reduzieren. Vorschläge, zu diesem Zweck Schwefel ins Rauchgas einzudüsen, führen zwar zu einer Beschleunigung der Sulfatisierung der Chloride, wobei die Sulfatisierung allerdings erst bei tieferen Temperaturen stattfindet, und die Menge an freigesetztem Chlor gleichbleibt. Das sauer aktivierte Bentonit ist aufgrund seiner chemischen und physikalischen Eigenschaften in der Lage, mit Alkaliverbindungen im Rauchgas überaus rasch auch bei höheren Temperaturen, insbesondere bei Temperaturen von über 900° C bereits zu reagieren, wobei Alkali abgebunden werden kann und HCl gebildet wird. Es wird somit kein elementares Chlor freigesetzt, wodurch die Gefahr der Hochtemperaturchlorkorrosion wesentlich herabgesetzt wird.Due to the prevailing conditions in the combustion chamber, a not inconsiderable amount of alkali metal chloride is formed at the high chlorine content that is usually present in waste today. The ratio of chlorine to sulfur in waste has shifted in flue gas in favor of chlorine in recent years, with increased amounts of metal chlorides entering the flue gas without decomposition and only being converted into sulfates there or in the deposits. Under the given thermodynamic conditions, this reaction, which is also called the sulfation reaction, leads to sodium sulfate and elemental chlorine, and thus to a strong corrosive attack. The chlorine reaches the pipe surface and can destroy steel with the formation of iron chloride. This sulfation reaction can be observed primarily in the combustion chamber behind and just above the brick lining, and the injection of acid-activated bentonite according to the invention enables the content of metal chlorides to be reduced extremely rapidly. Proposals to inject sulfur into the flue gas for this purpose lead to an acceleration of the sulfation of the chlorides, but the sulfation only takes place at lower temperatures and the amount of chlorine released remains the same. Due to its chemical and physical properties, the acid-activated bentonite is able to react very quickly with alkali compounds in the flue gas even at higher temperatures, especially at temperatures above 900 ° C, whereby alkali can be set and HCl is formed. No elemental chlorine is released, which significantly reduces the risk of high-temperature chlorine corrosion.

Ein kostengünstiges und einfaches zusätzlich verwendbares Additiv zum Eindusen in Verbrennungsraume von Feuerungs- und Müllverbrennungsanlagen, mit welchen die Reisezeit von Kessein wesentlich erhöht werden kann und welches gleichzeitig darauf abzielt, den bei den bekannten Additiven immer noch relativ hohen Flugstaubanteil im Abgas drastisch zu verringern, wurde erfindungsgemaß aus Oxidschmelzen, insbesondere Glasmehl bzw. Glasstaub mit einem Schmelzpunkt von unter 1000° C gewonnen. Glasmehl bzw. Glasstaub, welches bevorzugt im Gegenstrom zu den Rauchgasen eingedüst wird, schmilzt hiebei bei den Temperaturen in den Verbrennungsräumen auf, wobei Flugstaub zu nicht wasserlöslichen Glasen gebunden wird. Gleichzeitig wird überraschenderweise in derartige aufschmelzende Glasmehl- bzw. Glasstaubpartikel auch Alkali rasch abgebunden, wobei überraschenderweise auch ein rasches Absinken des Chlorgehaltes in den Abgasen festgestellt wurde. Alle diese korrosiven Bestandteile der Verbrennungsabgase werden somit von den schmelzenden Glasmehl- bzw. Glasstaubpartikeln effektiv abgebunden, wobei zu allem Überfluß der Vorteil erzielt wird, daß die Schmelze an der Wand der Kesseln einen dichten und einen korrosiven Angriff verhindernden Belag bildet, welcher als flüssiger Schmelzfilm längst der Wände in Richtung zur Schlacke abfließt. Eine derartige Spülung der Kesselwände durch die schmelzflüssige Glasschmelze hat somit neben der korrosionsvermindernden Wirkung auf die zu schützenden Kesselwände den Vorteil, daß eine Reihe von Schadstoffen mit der abwärts fließenden Schmelze effektiv ausgetragen werden können. Dieses zusätzliche Additiv kann gemeinsam mit sauer aktiviertem Bentonit eingedüst werden, wodurch sich die Effekte sogar über die Summe der Einzeleffekte verbessern lassen.An inexpensive and simple additive that can also be used for showering in the combustion rooms of combustion and waste incineration plants, with which the travel time of Kessein can be increased significantly and which at the same time still aims relative to the known additives to drastically reduce the high level of dust in the exhaust gas according to the invention from oxide melts, in particular glass powder or Glass dust obtained with a melting point below 1000 ° C. Glass powder or glass dust, which preferably in counterflow to the When flue gases are injected, it melts at the temperatures in the combustion chambers, taking flight dust too water-soluble glass is bound. At the same time surprisingly in such melting glass flour or Glass dust particles also set alkali quickly, surprisingly also a rapid decrease in the chlorine content in the exhaust gases was detected. All of these corrosive components the combustion gases are thus from the melting ones Glass powder or glass dust particles set effectively, whereby to all abundance the advantage is achieved that the melt at the Wall of the boilers a dense and a corrosive attack preventive coating which forms as a liquid melt film long ago the walls flow towards the slag. Such Flushing the boiler walls through the molten glass melt thus has in addition to the corrosion-reducing effect the boiler walls to be protected have the advantage that a number of Effective discharge of pollutants with the downward flowing melt can be. This additional additive can be common be injected with acid activated bentonite, whereby the effects even improve over the sum of the individual effects to let.

Mit Vorteil wird hiebei Glasmehl bzw. Glasstaub mit einem Schmelzpunkt von unter 800° C eingesetzt, wobei ein vollständiges Aufschmelzen und ein sicherer Abtransport der in der Schmelze gelösten Schadstoffe dadurch sichergestellt werden kann, daß das Glasmehl bzw. der Glasstaub eine mittlere Korngroße von 30 bis 60 µm, vorzugsweise von 40 µm, aufweist.Advantageously, glass powder or glass dust with one Melting point below 800 ° C used, a complete Melting and safe removal of the in the Melt dissolved pollutants can be ensured can that the glass powder or the glass dust a medium grain size from 30 to 60 µm, preferably from 40 µm.

Die Erfindung wird nachfolgend anhand von zwei Diagrammen näher erläutert. In Fig. 1 der Zeichnung ist die Menge an Natriumchlorid sowie der SO2-Gleichgewichtspartialdruck über die Temperatur für die nachfolgenden Feuerraumbedingungen dargestellt. pCO2 = 0,2 bar, pH2O = 0,2 bar, pO2 = 0,05 bar, pHCl = 10-5 bar und pCl = 10-5 bar. Aus dieser Darstellung nach Fig. 1 ist ersichtlich, daß insbesondere im Hochtemperaturbereich die Bildung von Natriumchlorid im Feuerraum vorherrscht, und es wird daher darauf abgezielt, Natriumchlorid bereits bei hohen Temperaturen aus dem Rauchgas zu eliminieren.The invention is explained in more detail below with the aid of two diagrams. 1 of the drawing shows the amount of sodium chloride and the SO 2 equilibrium partial pressure over the temperature for the subsequent furnace conditions. pCO2 = 0.2 bar, pH 2 O = 0.2 bar, pO2 = 0.05 bar, pHCl = 10 -5 bar and pCl = 10 -5 bar. 1 that the formation of sodium chloride prevails in the combustion chamber, particularly in the high temperature range, and the aim is therefore to eliminate sodium chloride from the flue gas even at high temperatures.

In Fig.2 ist die Menge Natriumchlorid im mg/m3 über die Temperatur dargestellt. Die Kurve 1 zeigt hierbei die erzielbare Absenkung durch Eindüsen von 1 kg sauer aktiviertem Bentonit je t Müll. Die Kurve 2 zeigt den Effekt, welcher mit dem Eindüsen von 2 kg Schwefel erzielbar wäre, sodaß klar die Überlegenheit des Eindüsens von sauer aktiviertem Bentonit zum Zwecke der Herabsetzung des Natriumchloridanteiles bei hohen Temperaturen ersichtlich ist. Kurve 3 verdeutlicht die Wirkung, wenn hingegen lediglich 1 kg Schwefel eingedüst wird, und Kurve 4 die Wirkung bei reinem Rauchgas.2 shows the amount of sodium chloride in mg / m 3 over the temperature. Curve 1 shows the reduction that can be achieved by injecting 1 kg of acid-activated bentonite per t of waste. Curve 2 shows the effect which could be achieved by injecting 2 kg of sulfur, so that the superiority of injecting acid-activated bentonite for the purpose of reducing the sodium chloride content at high temperatures is clearly evident. Curve 3 illustrates the effect when only 1 kg of sulfur is injected, and curve 4 the effect with pure flue gas.

Das Additiv ist pulverförmig und kann ohne weiteres in einer Mahlfeinheit hergestellt werden, die es erlaubt, das Additiv direkt über die Sekundärluft in den Feuerraum einzudüsen.The additive is powdery and can easily be added in one Grinding fineness can be produced, which allows the additive to be injected directly into the combustion chamber via the secondary air.

Bei gleichzeitigem Eindüsen von Glas wurde eine korrosionsbeständige Auskleidung der Kessel gebildet und der Schadstoffausstoß verringert, wobei die Lebensdauer auch der dem Feuerungsraum nachgeschalteten Einrichtung, wie Überhitzer od.dgl, verbessert wurde.When glass was injected at the same time, it became corrosion-resistant Lining of the boiler is formed and the pollutant emissions reduced, the service life of that of the combustion chamber downstream device, such as superheater or the like, improved has been.

Claims (5)

  1. A method for preventing high-temperature corrosion and reducing the portion of flue dust contained in the combustion flue gases of furnace arrangements and waste incineration plants, characterized in that acidically activated bentonite is nozzled into the gas space at gas temperatures of above 750°C, preferably 800°C.
  2. A method according to claim 1, characterized in that acidically activated bentonite is nozzled in in a mixture with SiO2, the portion of said acidically activated bentonite being larger than 50 wt.-%, based on said mixture.
  3. A method according to claim 1 or 2, characterized in that acidically activated bentonite optionally mixed with SiO2 is nozzled into waste incineration plants in amounts of from 0.5 to 3.0 kg/ton waste.
  4. A method according to claim 1, 2 or 3, characterized in that ground glass wastes such as, e.g., window glass or bottle glass wastes are used as said SiO2 component.
  5. A method according to any one of claims 1 to 4, characterized in that acidically activated bentonite is used for adsorbing noxious substances such as Hg or dioxin contained in the cooled flue gases of combustion plants, in particular by way of a flue flow process, and subsequently is nozzled into the combustion space.
EP97929019A 1996-07-18 1997-07-09 Process for preventing high temperature corrosion Expired - Lifetime EP0958335B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AT129496 1996-07-18
AT129496A AT405741B (en) 1996-07-18 1996-07-18 Additive for preventing high temperature chlorine corrosion, its production and the reduction of high temperature chlorine corrosion in firing and combustion plant
AT19497A AT404136B (en) 1997-02-07 1997-02-07 Additive for spraying into combustion chambers of furnaces and waste incineration plants and also a method of preventing high-temperature corrosion
AT19497 1997-02-07
PCT/AT1997/000158 WO1998003616A1 (en) 1996-07-18 1997-07-09 Additive to be sprayed into the combustion chambers of heating plants and process for preventing high temperature corrosion

Publications (2)

Publication Number Publication Date
EP0958335A1 EP0958335A1 (en) 1999-11-24
EP0958335B1 true EP0958335B1 (en) 2001-05-16

Family

ID=25591809

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97929019A Expired - Lifetime EP0958335B1 (en) 1996-07-18 1997-07-09 Process for preventing high temperature corrosion

Country Status (7)

Country Link
EP (1) EP0958335B1 (en)
AT (1) ATE201226T1 (en)
AU (1) AU3328597A (en)
CA (1) CA2261037A1 (en)
DE (1) DE59703573D1 (en)
DK (1) DK0958335T3 (en)
WO (1) WO1998003616A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8408148B2 (en) 2006-03-31 2013-04-02 Atlantic Combustion Technologies Inc. Increasing the efficiency of combustion processes
EP2891843B1 (en) 2014-01-07 2018-07-18 Imerys Ceramics France Method for combusting waste with a mineral additive

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT502619B1 (en) * 2004-10-04 2010-01-15 Ica Chemie Ag PROCESS FOR PREVENTING HIGH-TEMPERATURE CHLORINE CORROSION IN COMBUSTION PLANT
FI117631B (en) * 2005-06-16 2006-12-29 Valtion Teknillinen A method of preventing the deposition of chlorine on the heating surfaces of a boiler
FI20075891L (en) * 2007-12-10 2009-06-11 Metso Power Oy Method for preventing corrosion of heat transfer surfaces in a boiler, and means for introducing an additive
CA2658469C (en) 2008-10-03 2012-08-14 Rajender P. Gupta Bromination process
CN102786998B (en) * 2012-07-24 2014-04-02 周丽琴 Boiler coke preventing and eliminating agent
CN103127806B (en) * 2013-02-07 2016-02-24 中国恩菲工程技术有限公司 For the treatment of the equipment of flying ash
AT516407B1 (en) 2014-11-20 2016-05-15 Andritz Ag Maschf Process for the use of hydrated sorbents in thermal process plants

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB800445A (en) * 1956-08-17 1958-08-27 Exxon Research Engineering Co Improved fuel for use in gas turbine plants
GB939938A (en) * 1960-02-29 1963-10-16 Fullers Earth Union Ltd Improvements in or relating to activated earths
NL292134A (en) * 1963-02-16 1900-01-01
US3249075A (en) * 1963-03-08 1966-05-03 Combustion Eng Additive mixtures to combat high temperature corrosion and ash bonding during the operation of furnaces
SE372555B (en) * 1968-10-01 1974-12-23 Mizusawa Industrial Chem
GB1307127A (en) * 1970-09-25 1973-02-14 Milner M R Combustion adjuvant
DE2944989A1 (en) * 1979-11-07 1981-05-21 Deutsche Kommunal-Anlagen Miete GmbH, 8000 München Purificn. of gases from pyrolysis of wastes - with reduced pollution from disposal of used absorbents
EP0655273A3 (en) * 1987-05-18 1995-07-26 Ftu Gmbh Process for purification of gases and exhaust gases.
DE4012982A1 (en) * 1990-04-24 1991-10-31 Ftu Gmbh Removing harmful (in)organic substance from gases - by addn. of finely divided substance with active surface and filtration
DE4021362A1 (en) * 1990-07-05 1992-01-09 Siemens Ag Disposal of solids loaded with pollutants - in slagging furnace with total ash recycle
DE4034498A1 (en) * 1990-09-06 1992-03-12 Metallgesellschaft Ag METHOD FOR SEPARATING HEAVY METALS AND DIOXINES FROM COMBUSTION EXHAUST GASES

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8408148B2 (en) 2006-03-31 2013-04-02 Atlantic Combustion Technologies Inc. Increasing the efficiency of combustion processes
EP2891843B1 (en) 2014-01-07 2018-07-18 Imerys Ceramics France Method for combusting waste with a mineral additive

Also Published As

Publication number Publication date
EP0958335A1 (en) 1999-11-24
WO1998003616A1 (en) 1998-01-29
ATE201226T1 (en) 2001-06-15
CA2261037A1 (en) 1998-01-29
DE59703573D1 (en) 2001-06-21
DK0958335T3 (en) 2001-08-20
AU3328597A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
DE102006028963B4 (en) High temperature stable layers or coatings and composition for their preparation
EP0958335B1 (en) Process for preventing high temperature corrosion
EP0293982B1 (en) Process for the treatment of contaminated mineral materials
EP0435848A1 (en) Method of hindering the production of dioxins and furans
DE4308388A1 (en) Reducing pollutant content of crude gas from combustion plant
EP0340644B1 (en) Process for the removal and recycling of waste materials
EP0324454B2 (en) Process and apparatus for cleaning smoke
EP0520533A2 (en) Combustion method for waste
AT404136B (en) Additive for spraying into combustion chambers of furnaces and waste incineration plants and also a method of preventing high-temperature corrosion
WO2009129762A1 (en) Method and device for reducing the fine dust in the exhaust gas during thermal gasification of stalky or lumpy biomass
DE3733831C2 (en)
DE4100645A1 (en) Waste gas purificn. with nitrogen basic cpds. removing acid cpds. - by adding ammonia and alkali and/or alkaline earth cpds., for foundry, alkali chloride electrolysis, blast furnace, power station, refuse and glass industry
EP1068475A1 (en) Method of combustion or gasification in a circulating fluidized bed
EP1244511A1 (en) Method and device for catalytically treating exhaust gas containing dust and oxygen
EP0858495B1 (en) Use of a process operating a combustion plant of a coal-fired power station for the accelerated coal combustion in a smelt chamber
EP0717260A2 (en) Process for treating pyrotechnic material
DE2722635C3 (en) Process for the production of cement clinker from a raw mixture containing chlorine
DE3841221A1 (en) Process for purifying the flue gases of combustion plants
EP0693306B1 (en) Method for fabrication of secondary row materials from waste
DE3329342A1 (en) Treatment process for flue gases from a steam generation plant having a plurality of boiler units and a slag tap fired furnace assigned to each boiler unit
EP0089075B1 (en) Method of burning the combustible constituents in the waste gases of rotary furnaces
WO1993019141A1 (en) Process for reducing the pollutant content of crude gas from combustion plants
DE10119003B4 (en) Process for the energy recovery of waste tires and other rubber waste
AT405741B (en) Additive for preventing high temperature chlorine corrosion, its production and the reduction of high temperature chlorine corrosion in firing and combustion plant
CH694172A5 (en) A method for preventing corrosion and contamination of incinerators and fuel mixture for use as a corrosion inhibitor or an adsorbent for implementation of this Verfa

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FR GB LI NL

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ICA CHEMIE AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: PROCESS FOR PREVENTING HIGH TEMPERATURE CORROSION

17Q First examination report despatched

Effective date: 20000919

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FR GB LI NL

REF Corresponds to:

Ref document number: 201226

Country of ref document: AT

Date of ref document: 20010615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59703573

Country of ref document: DE

Date of ref document: 20010621

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OK PAT AG

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010802

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040617

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040622

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040706

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070724

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070727

Year of fee payment: 11

BERE Be: lapsed

Owner name: *ICA CHEMIE A.G.

Effective date: 20050731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070731

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130627

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140729

Year of fee payment: 18

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 201226

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59703573

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202