EP0958324A1 - High melt strength polyethylene compositions - Google Patents
High melt strength polyethylene compositionsInfo
- Publication number
- EP0958324A1 EP0958324A1 EP98907409A EP98907409A EP0958324A1 EP 0958324 A1 EP0958324 A1 EP 0958324A1 EP 98907409 A EP98907409 A EP 98907409A EP 98907409 A EP98907409 A EP 98907409A EP 0958324 A1 EP0958324 A1 EP 0958324A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ethylene
- polyethylene composition
- composition according
- olefins
- copolymers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 46
- -1 polyethylene Polymers 0.000 title claims abstract description 40
- 239000004698 Polyethylene Substances 0.000 title claims abstract description 34
- 229920000573 polyethylene Polymers 0.000 title claims abstract description 34
- 229920001038 ethylene copolymer Polymers 0.000 claims abstract description 17
- 238000003780 insertion Methods 0.000 claims abstract description 17
- 230000037431 insertion Effects 0.000 claims abstract description 17
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 15
- 239000000155 melt Substances 0.000 claims abstract description 10
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 37
- 239000005977 Ethylene Substances 0.000 claims description 37
- 150000001336 alkenes Chemical class 0.000 claims description 10
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims description 6
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 claims description 6
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 claims description 6
- 238000007334 copolymerization reaction Methods 0.000 claims description 6
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 claims description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 3
- 239000000178 monomer Substances 0.000 abstract description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 30
- 229920001577 copolymer Polymers 0.000 description 29
- 229920000642 polymer Polymers 0.000 description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 26
- 239000003054 catalyst Substances 0.000 description 20
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 229920001684 low density polyethylene Polymers 0.000 description 11
- 239000004702 low-density polyethylene Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 9
- AQZWEFBJYQSQEH-UHFFFAOYSA-N 2-methyloxaluminane Chemical compound C[Al]1CCCCO1 AQZWEFBJYQSQEH-UHFFFAOYSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 238000005227 gel permeation chromatography Methods 0.000 description 8
- 238000010348 incorporation Methods 0.000 description 8
- 229920005605 branched copolymer Polymers 0.000 description 7
- 229910052723 transition metal Inorganic materials 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 4
- 238000010128 melt processing Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 239000012968 metallocene catalyst Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000002685 polymerization catalyst Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 150000005673 monoalkenes Chemical class 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000009566 Mao-to Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910010068 TiCl2 Inorganic materials 0.000 description 1
- 229910007928 ZrCl2 Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- ALSOCDGAZNNNME-UHFFFAOYSA-N ethene;hex-1-ene Chemical compound C=C.CCCCC=C ALSOCDGAZNNNME-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229920005684 linear copolymer Polymers 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 150000002848 norbornenes Chemical class 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920005638 polyethylene monopolymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- ZWYDDDAMNQQZHD-UHFFFAOYSA-L titanium(ii) chloride Chemical compound [Cl-].[Cl-].[Ti+2] ZWYDDDAMNQQZHD-UHFFFAOYSA-L 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QMBQEXOLIRBNPN-UHFFFAOYSA-L zirconocene dichloride Chemical compound [Cl-].[Cl-].[Zr+4].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 QMBQEXOLIRBNPN-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/04—Polymerisation in solution
- C08F2/06—Organic solvent
- C08F2/08—Organic solvent with the aid of dispersing agents for the polymer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
- C08F255/02—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F257/00—Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
- C08F257/02—Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F279/00—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
- C08F279/02—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/04—Polymers provided for in subclasses C08C or C08F
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/04—Polymers provided for in subclasses C08C or C08F
- C08F290/042—Polymers of hydrocarbons as defined in group C08F10/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/04—Polymers provided for in subclasses C08C or C08F
- C08F290/044—Polymers of aromatic monomers as defined in group C08F12/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
- C08F297/06—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
- C08F297/08—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
- C08F297/06—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
- C08F297/08—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
- C08F297/083—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms
- C08L23/0815—Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms with aliphatic 1-olefins containing one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/06—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L55/00—Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
- C08L55/005—Homopolymers or copolymers obtained by polymerisation of macromolecular compounds terminated by a carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
- C08F210/18—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2314/00—Polymer mixtures characterised by way of preparation
- C08L2314/06—Metallocene or single site catalysts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L55/00—Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Definitions
- the invention relates to polyethylene blend compositions comprising branched ethylene copolymers incorporated for improved physical properties.
- Ethylene copolymers are a well-known class of olefm copolymers from which various plastic products are produced. Such products include films, fibers, coatings and thermomolded articles such as containers and consumer goods.
- the polymers used to prepare these articles are prepared from ethylene, optionally with one or more additional copolymerizable monomers.
- Low density polyethylene low density polyethylene
- LDPE LDPE as produced by free radical polymerization
- LDPE consists of highly branched polymers where the branches occur randomly throughout the polymer, that is on any number of formed segments or branches.
- This structure exhibits easy processing, that is polymers with it can be melt processed in high volumes at low energy input.
- Machinery for conducting this melt processing for example extruders and film dies of various configurations, was designed into product finishing manufacturing processes with optimal design features based on the processing characteristics of the LDPE.
- U.S. patents 5,272,236 and 5,278,272 describe "substantially linear" ethylene polymers which are said to have up to about 3 long chain branches per 1000 carbon atoms. These polymers are described as being prepared with monocyclopentadienyl transition metal olefin polymerization catalysts, such as those described in U.S. patent 5,026,798. The copolymer is said to be useful for a variety of fabricated articles and as a component in blends with other polymers.
- EP-A-0 659 773 Al describes a gas phase process using metallocene catalysts said to be suitable for producing polyethylene with up to 3 long chain branches per 1000 carbon atoms in the main chain, the branches having greater than 18 carbon atoms.
- Reduced melt viscosity polymers are addressed in U.S. patents 5,206,303 and 5,294,678.
- "Brush" polymer architecture is described where the branched copolymers have side chains that are of molecular weights that inhibit entanglement of the backbone chain. These branch weight-average molecular weights are described to be from 0.02-2.0 M e where M e is the entanglement molecular weight of the side branches.
- the polymers illustrated are isobutylene-styrene copolymers, calculated entanglement molecular weights for ethylene polymers and ethylene-propylene copolymers of 1,250 and 1,660 are provided.
- a limitation with the polyethylene compositions of the prior art is that though the processability, ease of melt processing or increase in shear-ti ⁇ nning properties, can be improved with the introduction of branching in the polymers, the molecular weight distribution as measured by the polydispersity index (PDI) tends to increase with increased branching even though the melt strength remains well below that exhibited by traditional LDPE.
- PDI polydispersity index
- the improved processing was achieved by blending different molecular weight polyethylene copolymer components or introducing various levels of branching into polyethylene copolymers. Accordingly, it has been generally thought that the advantages of the narrow PDI made possible by metallocene catalysis needed to be sacrificed, at least in part, if improved melt strength polyethylene copolymer compositions were sought.
- the invention is a polyethylene composition having a polydispersity index of less than or equal to 3, an average branching index (g') as measured by
- these polyethylene compositions comprise A) branched polyethylene copolymers prepared by insertion polymerization of ethylene, ethylene-containing macromers, and optionally, additional copolymerizable monomers, and B) essentially linear ethylene copolymers having density of 0.900- 0.935 g/cm 3 , CDBI of 50-95%, PDI of 1.8-3.5 and an Melt Index (2.16kg/190 °C) of 0.3-7.5. Improved melt strength without sacrificing the benefits of narrow polydispersity index are exhibited by the invention compositions.
- a preferred polyethylene composition according to the invention comprises 30 to 0.9 wt% of the A) branched polyethylene copolymers and 70 to 99.1 wt% of the B) essentially linear ethylene copolymers.
- Figure 1 illustrates the melt strength (cN) values plotted against melt index (g/lOm; 190/2.1) for blend compositions according to the invention, linear metallocene copolymers and traditional low density polyethylene (LDPE) prepared by high pressure, free radical polymerization.
- cN melt strength
- g/lOm melt index
- LDPE low density polyethylene
- polyethylene compositions of this invention comprise branched polyethylene copolymers wherein both the copolymer backbone and polymeric sidechains are derived from monoolefins polymerized under coordination or insertion conditions with activated transition metal organometallic catalyst compounds.
- the polymeric sidechains comprise ethylene, either alone or with other insertion polymerizable monomers.
- Known monomers meeting this criteria are the
- C 3 -C 20 ⁇ -olefins C 5 -C 25 cyclic olefins, C 5 -C 25 styrenic olefins, lower carbon number (C 3 -C 8 ) alkyl-substituted analogs of the cyclic and styrenic olefins, and C 3 -C 15 geminally disubstituted olefins, e.g., isobutylene.
- Ethylene homopolymer or copolymer sidechains are both suitable.
- the sidechains can comprise from 85-100 mol% ethylene, and from 0-15 mol% comonomer, preferably 90-99 mol% ethylene and 1-10 mol% comonomer, most preferably 94 - 98 mol% ethylene and 2-6 mol% comonomer.
- the selection of comonomer can vary, for instance, a longer olefin comonomer, such as 1 -octene, may be preferred over a shorter olefin such as 1-butene for improved polyethylene film tear.
- mixtures of sidechains with different molecular weights and/or compositions may be used.
- the M n of the sidechains are within the range of from greater than or equal to 1500 and less than or equal to 45,000.
- the M n of the sidechains is from 1500 to 30,000, and more preferably the M n is from 1500 to 25,000.
- the number of sidechains is related to the M ⁇ of the sidechains such that the total weight ratio of the weight of the sidechains to the total weight of the polymeric backbone segments between and outside the incorporated sidechains is less than 30%, preferably 4-20%. Weight here is determined by gel permeation chromatography (GPC) and differential refractive index (DRI) measurements.
- the backbone, or backbone polymeric segments are typically of an ethylene-containing polymeric structure, either homopolymer or copolymer.
- Other copolymerizable monomers may selected from those suitable for the branches, above, and include ⁇ -olefins, geminally disubstituted olefins such as isobutylene, cyclic olefins such as cyclopentene, norbornene and alkyl-substituted norbornenes, and styrenic monomers such as styrene and alkyl substituted styrenes.
- the macromer and backbone may be of the same composition or may be constituted of differing monomer selection.
- the branches and the backbone may independently exhibit ethylene crystallinity or may be essentially amorphous.
- the branched copolymer comprising the ethylene-containing branches and backbone, are prepared by the copolymerization of ethylene, terminally unsaturated macromers, and optionally other copolymerizable monomers, the term copolymer here means derived by insertion polymerization from ethylene and one or more ethylenically unsaturated monomer such as listed above.
- the mass of the backbone will typically comprise at least 40 wt% of the total polymer mass, that of the backbone and the sidechains together.
- the backbone typically will have a nominal weight-average molecular weight (M w ) weight of at least equal to or greater than about 50,000.
- M w weight-average molecular weight
- the term nominal is used to indicate that direct measurement of M w of the backbone is largely impossible but that characterization of the copolymer product will exhibit measurements of M w that correlate to a close approximate weight of the polymeric backbone inclusive only of the monoolefin mer derivatives and the insertion moieties of the sidebranches.
- the branched ethylene copolymers comprising the above sidechains and backbones will typically have an M w greater than 50,000 as measured by GPC/DRI as defined for the examples.
- the M w typically can exceed 200,000, preferably 300,000, up to 500,000 or higher.
- the branched ethylene copolymers of the invention can be prepared by a process comprising: A) copolymerizing ethylene, preferably with one or more copolymerizable monomers, in a polymerization reaction under conditions sufficient to form a copolymer having greater than 40% chain end-group unsaturation, preferably greater than 60%, and most preferably the unsaturation being vinyl groups; B) copolymerizing the product of A) with ethylene and one or more copolymerizable monomers so as to prepare the branched ethylene copolymer.
- the process step A) can be usefully practiced in a solution process in which said ethylene and, optionally, one or more copolymerizable monomers, is contacted with a transition metal olefin polymerization catalyst activated by an alkylalumoxane cocatalyst, the mole ratio of aluminum to transition metal being less than about 220:1.
- the terminally unsaturated copolymer population so formed, with or without separation from copolymer product having only saturated ends, can then be copolymerized with ethylene and copolymerizable monomers in a separate reaction by solution, slurry or gas phase ethylene polymerization with an activated transition metal insertion polymerization catalyst, particularly a catalyst capable of incorporating the unsaturation-containing ethylene copolymers into said branched olefin copolymer.
- an activated transition metal insertion polymerization catalyst particularly a catalyst capable of incorporating the unsaturation-containing ethylene copolymers into said branched olefin copolymer.
- Conditions sufficient to form the sidechain copolymer include using suitable ethvlene and comonomer reactant ratios to assure the described sidechain olefin-derived unit constitution, plus catalyst and process conditions conducive to forming the unsaturated chain ends.
- the teachings of copending provisional application U.S. Ser. No. 60/037323 filed 02/07/97 are specific to suitable catalyst selection and use to prepare macromeric copolymer chains with a high yield of vinyl unsaturation.
- the metallocene catalyst used in the step A) preparation of the unsaturation-containing macromer can be essentially any catalyst capable of insertion polymerization of ethylene, it can be one capable of high comonomer incorporation capability (see below) or of low comonomer incorporation capability.
- chain-end or “terminal” when referring to unsaturation means olefin unsaturation suitable for insertion polymerization whether or not located precisely at the terminus of a chain. All documents of this paragraph are incorporated by reference for purposes of U.S. patent practice.
- polymeric vinyl-containing macromer product suitable as branches for a subsequent copolymerization reaction can be prepared under solution polymerization conditions with preferred molar ratios of aluminum in the alkyl alumoxane activator, e.g., methyl alumoxane (MAO), to transition metal.
- alkyl alumoxane activator e.g., methyl alumoxane (MAO)
- MEO methyl alumoxane
- level is 20 and ⁇ 175; more preferably > 20 and ⁇ 140; and. most preferably > 20 and ⁇ 100.
- the temperature, pressure and time of reaction depend upon the selected process but are generally within the normal ranges for a solution process.
- temperatures can range from 20°C to 200°C, preferably from 30°C to 150°C, more preferably from 50°C to 140°C, and most preferably between 55°C and 135°C.
- the pressures of the reaction generally can vary from atmospheric to 345 MPa, preferably to 182 MPa.
- temperatures will typically range from ambient to 250°C with pressures from ambient to 3.45 MPa.
- the reactions can be run batchwise. Conditions for suitable slurry-type reactions are similar to solution conditions except reaction temperatures are limited to those below the melt temperature of the polymer.
- a supercritical fluid medium can be used with temperatures up to 250°C and pressures up to 345 MPa.
- Macromer incorporation for branched polymer preparation can be accomplished by adding the macromer product into an insertion polymerization environment with a catalyst compound capable of bulky monomer incorporation.
- Suitable catalyst compounds are those that are capable of good comonomer incorporation without significant depression in M n for the polymeric backbone under the temperature and pressure conditions used.
- the teachings of copending provisional applications U.S. Ser. No. 60/037323, above, and application U.S. Ser. No. 60/046812, filed May 2, 1997, are specific to suitable catalyst selection and use to prepare branched olefin copolymers and addresses catalyst compounds suitable for high comonomer and macromonomer incorporation.
- preferred catalyst compounds for assembling the branch olefin copolymers from vinyl- or vinylidene containing macromers, ethylene and copolymerizable comonomers include the bridged biscyclopentadienyl and monocyclopentadienyl Group 4 metal compounds of U.S. patents 5,198,401, 5,270,393, 5,324,801, 5,444,145, 5,475,075, 5,635,573, and International applications WO92/00333 and WO 96/00244. Also, WO 94/07930 describes terminally unsaturated macromer preparation and incorporation of those macromers in branched polyolefins.
- the transition metal catalyst compounds are typically used with activating co-catalyst components as described, e.g., alkyl alumoxanes and ionizing compounds capable of providing stabilizing noncoordinating anions.
- the teachings of each of the documents of this paragraph are also incorporated by reference for purposes of U.S. patent practice.
- the resulting copolymer product will contain the branched copolymer of the invention, essentially linear backbone copolymer, without significant branching, and residual unreacted macromer.
- the linear copolymer and residual macromer are generally of small amounts, which can lead to a minor amount of cross-linking. But this is of such a minor effect that it does not substantially alter the overall properties of the final blend composition. Polymer fractionation could be effected to separate the majority branched copolymer fraction from the others, but generally will not be necessary for most applications.
- polyethylene compositions according to the invention will have use in a variety of applications for which polyethylene homopolymer and copolymer compositions are known to be useful. Such include a variety of uses such as film compositions, and molded or extruded articles.
- Useful blends preferably contain at least 0.5 wt% branched copolymer, preferably 2 0 wt% or greater, and preferably not more than about 20 wt%, more preferably 10 wt% or less, with the majority component comprising essentially linear chains.
- Branched copolymers were synthesized in ethylene/hexene/macromer
- Liquids were measured into the reactor using calibrated sight glasses. High purity (>99.5%) hexane, toluene and butene feeds were purified by passing first through basic alumina activated at high temperature in nitrogen, followed by 5A molecular sieve activated at high temperature in nitrogen. Polymerization grade ethylene was supplied directly in a nitrogen-jacketed line and used without further purification. Clear, 10% methylalumoxane (MAO) in toluene was received from Albemarle Inc. in stainless steel cylinders, divided into 1 -liter glass containers, and stored in a laboratory glove-box at ambient temperature. Ethylene was added to the reactor as needed to maintain total system pressure at the reported levels (semi-batch operation). Ethylene flow rate was monitored using a
- Matheson mass flow meter (model number 8272-0424). To ensure the reaction medium was well-mixed, a flat-paddle stirrer rotating at > 1000 rpm was used.
- catalyst preparations were performed in an inert atmosphere with ⁇ 1.5 ppm H 2 O content.
- freshly prepared catalyst stock solution/dilution methods were used in catalyst preparation.
- toluene was used as a solvent.
- Stainless steel transfer tubes were washed with MAO to remove impurities, drained, and activator and catalyst were added by pipette.
- a stainless steel catalyst addition tube was prepared as outlined above. An aliquot of 2.0 milliliters of 10% methylalumoxane (MAO) solution in toluene was added, followed by 32 milliliters of a toluene solution containing 1 milligram of Cp 2 ZrCl 2 (biscyclopentadienyl zirconium dichloride) per milliliter. The sealed tube was removed from the glovebox and connected to a 2-liter Zipperclave reactor port under a continuous flow of nitrogen. A flexible, stainless steel line from the reactor supply manifold was connected to the other end of the addition tube under a continuous flow of nitrogen. The reactor was purged and pressure tested as outlined above. Then, 1200 ml of toluene was charged to the reactor and heated to
- the branched ethylene polymers thus synthesized had the three systematically varied macromer or branch contents illustrated. These products were blended by melt-processing with a commercial, metallocene-derived linear PE, 0.9 MI, and density 0.918, at 3.5 weight percent and 7 weight percent loadings. Blending was conducted in a nitrogen-purged Banbury mixer, the blending temperature was 177 to 204 °C See Table 2.
- ECD 103 (Exxon Chemical Co.), ethylene-hexene LLDPE copolymer having MI of 0.9 and density 0.918, with 0.1 wt% Irganox ® and 0.1 wt%
- Irgaphos (Ciba-Geigy Co.) stabilizers.
- the melt index (MI) was measured in accordance with ASTM D 1238 (190 °C, 2.1kg), the melt index ratio (MIR) was determined from the ratio of the MI measurements at (190 °C, 21.0kg) to that at
- the blend product samples were analyzed for M w , M n , and PDI (M w / M n ) by gel permeation chromatography (GPC) using a Waters 150°C high temperature system equipped with a DRI Detector, Shodex AT-806MS column and operating at a system temperature of 145°C.
- the solvent used was 1,2,4 trichlorobenzene, from which polymer sample solutions of 0.1 mg/ml concentration were prepared for injection.
- the total solvent flow rate was 1.0 ml minute and the injection size was 300 microliters.
- GPC columns were calibrated using a series of narrow polystyrenes (obtained from Tosoh Corporation, Tokyo, 1989).
- composition distribution Another characteristic of the polymer of the invention is its composition distribution (CD).
- CDBI Composition Distribution Breadth Index
- CDBI is defined as the weight percent of the copolymer molecules having a comonomer content within 50% (that is, 25% on each side) of the median total molar comonomer content.
- the CDBI of a copolymer is readily determined utilizing well known techniques for isolating individual fractions of a sample of the copolymer. One such technique is Temperature Rising Elution Fraction (TREF), as described in Wild, et al., J. Poly. SfiL, Polv. Phvs. Ed., vol. 20, p. 441 (1982) and U.S. Patent No. 5,008,204, which are both incorporated herein by reference.
- TREF Temperature Rising Elution Fraction
- Melt strength was measured using a Goettfert Rheotens attached to an Instron capillary rheometer.
- the polymer melt is extruded through a capillary with a radius of 0.007633 cm and an aspect ratio (capillary length/capillary radius) of 33.531 at a constant plunger velocity. Therefore, the polymer melt is subjected to a constant apparent wall shear rate.
- the extruded melt is subsequently stretched by a pair of serrated wheels having radii of 1.91 cm at a distance (H) from the capillary exit.
- the rotational speed of the wheels is increased linearly with time while the draw down force (F) is monitored.
- Melt strength is reported as the draw down force (cN) when the strand breaks.
- the figure graphically illustrates that the melt strength of the invention blends can significantly exceed the values typical of traditional highly branched LDPE while retaining the narrow PDI and MIR characteristics of linear ethylene homopolymers or copolymers from single-sited catalysts such as metallocenes.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Graft Or Block Polymers (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Applications Claiming Priority (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US3732397P | 1997-02-07 | 1997-02-07 | |
| US37323P | 1997-02-07 | ||
| US3714997P | 1997-02-14 | 1997-02-14 | |
| US37149P | 1997-02-14 | ||
| US6573997P | 1997-11-17 | 1997-11-17 | |
| US65739P | 1997-11-17 | ||
| PCT/US1998/002500 WO1998034985A1 (en) | 1997-02-07 | 1998-02-06 | High melt strength polyethylene compositions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0958324A1 true EP0958324A1 (en) | 1999-11-24 |
Family
ID=27365154
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP98907409A Ceased EP0958324A1 (en) | 1997-02-07 | 1998-02-06 | High melt strength polyethylene compositions |
| EP98906326A Expired - Lifetime EP0958323B1 (en) | 1997-02-07 | 1998-02-06 | Improved processing olefin copolymers |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP98906326A Expired - Lifetime EP0958323B1 (en) | 1997-02-07 | 1998-02-06 | Improved processing olefin copolymers |
Country Status (9)
| Country | Link |
|---|---|
| EP (2) | EP0958324A1 (enExample) |
| JP (2) | JP2002513433A (enExample) |
| KR (2) | KR20000070854A (enExample) |
| CN (2) | CN1243528A (enExample) |
| BR (2) | BR9807468A (enExample) |
| CA (2) | CA2279851A1 (enExample) |
| DE (1) | DE69816037T2 (enExample) |
| ES (1) | ES2200314T3 (enExample) |
| WO (2) | WO1998034985A1 (enExample) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7223822B2 (en) | 2002-10-15 | 2007-05-29 | Exxonmobil Chemical Patents Inc. | Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom |
| US7294681B2 (en) | 2002-10-15 | 2007-11-13 | Exxonmobil Chemical Patents Inc. | Mutliple catalyst system for olefin polymerization and polymers produced therefrom |
| US7541402B2 (en) | 2002-10-15 | 2009-06-02 | Exxonmobil Chemical Patents Inc. | Blend functionalized polyolefin adhesive |
| US7550528B2 (en) | 2002-10-15 | 2009-06-23 | Exxonmobil Chemical Patents Inc. | Functionalized olefin polymers |
| US7700707B2 (en) | 2002-10-15 | 2010-04-20 | Exxonmobil Chemical Patents Inc. | Polyolefin adhesive compositions and articles made therefrom |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6727331B2 (en) * | 2001-12-28 | 2004-04-27 | Equistar Chemicals, Lp | Preparation of polyethylene |
| SE0201173L (sv) * | 2002-04-18 | 2003-10-19 | Borealis Tech Oy | Förfarande för strålningsbehandling av etylenpolymerer |
| JP5123460B2 (ja) * | 2003-04-28 | 2013-01-23 | 東ソー株式会社 | ポリエチレンおよびその製造方法 |
| US6870010B1 (en) * | 2003-12-01 | 2005-03-22 | Univation Technologies, Llc | Low haze high strength polyethylene compositions |
| DE102007032120A1 (de) * | 2007-07-09 | 2009-01-15 | Evonik Rohmax Additives Gmbh | Verwendung von Kammpolymeren zur Verringerung des Kraftstoffverbrauchs |
| WO2012112259A2 (en) * | 2011-02-15 | 2012-08-23 | Exxonmobil Chemical Patents Inc. | Thermoplastic polyolefin blends |
| JP6325566B2 (ja) * | 2012-11-20 | 2018-05-16 | ダウ グローバル テクノロジーズ エルエルシー | 高い溶融強度を有する低密度エチレン系ポリマー |
| WO2016093549A2 (ko) * | 2014-12-08 | 2016-06-16 | 주식회사 엘지화학 | 우수한 용융 강도를 갖는 올레핀계 중합체 및 이를 포함하는 필름 |
| KR101792171B1 (ko) | 2014-12-08 | 2017-10-31 | 주식회사 엘지화학 | 우수한 용융 강도를 갖는 올레핀계 중합체 및 이를 포함하는 필름 |
| CN104628913B (zh) * | 2015-02-15 | 2017-08-04 | 青岛科技大学 | 一种聚丁烯合金的制备方法 |
| US10766988B2 (en) | 2016-11-15 | 2020-09-08 | Lg Chem, Ltd. | Ethylene/alpha-olefin copolymer having excellent processibility |
| KR102065715B1 (ko) * | 2016-12-05 | 2020-01-13 | 주식회사 엘지화학 | 혼성 담지 촉매 |
| KR102247232B1 (ko) * | 2017-12-18 | 2021-05-03 | 주식회사 엘지화학 | 에틸렌 비닐아세테이트 공중합체 및 그 제조방법 |
| WO2021051103A1 (en) * | 2019-09-13 | 2021-03-18 | Cornell University | Graft copolymers for compatibilization of polyethylene and polypropylene |
| CN115894759B (zh) * | 2021-09-30 | 2024-07-02 | 中国石油化工股份有限公司 | 乙烯-α-烯烃共聚物及其制备方法和应用以及组合物 |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4500648A (en) * | 1983-04-25 | 1985-02-19 | Exxon Research & Engineering Co. | Long chain branching in polyolefins from ziegler-natta catalysts |
| EP0662980A1 (en) * | 1992-09-29 | 1995-07-19 | Exxon Chemical Patents Inc. | Long chain branched polymers and a process to make long chain branched polymers |
| WO1996039451A1 (en) * | 1995-06-06 | 1996-12-12 | The Dow Chemical Company | Segmented multicomponent interpolymers of monovinylidene aromatic monomers |
-
1998
- 1998-02-06 CN CN98801784A patent/CN1243528A/zh active Pending
- 1998-02-06 BR BR9807468-7A patent/BR9807468A/pt unknown
- 1998-02-06 BR BR9807827-5A patent/BR9807827A/pt not_active IP Right Cessation
- 1998-02-06 JP JP53504598A patent/JP2002513433A/ja active Pending
- 1998-02-06 WO PCT/US1998/002500 patent/WO1998034985A1/en not_active Ceased
- 1998-02-06 CA CA002279851A patent/CA2279851A1/en not_active Abandoned
- 1998-02-06 ES ES98906326T patent/ES2200314T3/es not_active Expired - Lifetime
- 1998-02-06 EP EP98907409A patent/EP0958324A1/en not_active Ceased
- 1998-02-06 EP EP98906326A patent/EP0958323B1/en not_active Expired - Lifetime
- 1998-02-06 KR KR1019997007119A patent/KR20000070854A/ko not_active Withdrawn
- 1998-02-06 WO PCT/US1998/002648 patent/WO1998034986A1/en not_active Ceased
- 1998-02-06 CN CN98802363A patent/CN1128840C/zh not_active Expired - Fee Related
- 1998-02-06 KR KR10-1999-7006921A patent/KR100530405B1/ko not_active Expired - Fee Related
- 1998-02-06 JP JP53499198A patent/JP2001511212A/ja active Pending
- 1998-02-06 CA CA002274062A patent/CA2274062A1/en not_active Abandoned
- 1998-02-06 DE DE69816037T patent/DE69816037T2/de not_active Expired - Lifetime
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9834985A1 * |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7223822B2 (en) | 2002-10-15 | 2007-05-29 | Exxonmobil Chemical Patents Inc. | Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom |
| US7294681B2 (en) | 2002-10-15 | 2007-11-13 | Exxonmobil Chemical Patents Inc. | Mutliple catalyst system for olefin polymerization and polymers produced therefrom |
| US7524910B2 (en) | 2002-10-15 | 2009-04-28 | Exxonmobil Chemical Patents Inc. | Polyolefin adhesive compositions and articles made therefrom |
| US7541402B2 (en) | 2002-10-15 | 2009-06-02 | Exxonmobil Chemical Patents Inc. | Blend functionalized polyolefin adhesive |
| US7550528B2 (en) | 2002-10-15 | 2009-06-23 | Exxonmobil Chemical Patents Inc. | Functionalized olefin polymers |
| US7700707B2 (en) | 2002-10-15 | 2010-04-20 | Exxonmobil Chemical Patents Inc. | Polyolefin adhesive compositions and articles made therefrom |
| US8071687B2 (en) | 2002-10-15 | 2011-12-06 | Exxonmobil Chemical Patents Inc. | Multiple catalyst system for olefin polymerization and polymers produced therefrom |
| US8088867B2 (en) | 2002-10-15 | 2012-01-03 | Exxonmobil Chemical Patents Inc. | Multiple catalyst system for olefin polymerization and polymers produced therefrom |
| US8957159B2 (en) | 2002-10-15 | 2015-02-17 | Exxonmobil Chemical Patents Inc. | Multiple catalyst system for olefin polymerization and polymers produced therefrom |
Also Published As
| Publication number | Publication date |
|---|---|
| DE69816037T2 (de) | 2004-04-22 |
| CN1246882A (zh) | 2000-03-08 |
| WO1998034986A1 (en) | 1998-08-13 |
| KR100530405B1 (ko) | 2005-11-22 |
| CA2279851A1 (en) | 1998-08-13 |
| BR9807468A (pt) | 2000-05-02 |
| WO1998034985A1 (en) | 1998-08-13 |
| EP0958323B1 (en) | 2003-07-02 |
| JP2001511212A (ja) | 2001-08-07 |
| JP2002513433A (ja) | 2002-05-08 |
| DE69816037D1 (de) | 2003-08-07 |
| BR9807827A (pt) | 2000-03-08 |
| CN1243528A (zh) | 2000-02-02 |
| KR20000070854A (ko) | 2000-11-25 |
| KR20000070672A (ko) | 2000-11-25 |
| CA2274062A1 (en) | 1998-08-13 |
| ES2200314T3 (es) | 2004-03-01 |
| CN1128840C (zh) | 2003-11-26 |
| EP0958323A1 (en) | 1999-11-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6114457A (en) | High melt strength polyethylene compositions | |
| US6444773B1 (en) | Preparation of vinyl-containing macromers | |
| EP0958313B1 (en) | Thermoplastic elastomer compositions from branched olefin copolymers | |
| EP0958324A1 (en) | High melt strength polyethylene compositions | |
| WO1998034965A9 (en) | Preparation of vinyl-containing macromers | |
| CA2304287C (en) | Elastomeric propylene polymers | |
| AU4928993A (en) | Long chain branched polymers and a process to make long chain branched polymers | |
| JP2003516451A (ja) | 非晶質ポリマーと結晶質ポリマーとの架橋型ブレンド物及びその利用方法 | |
| EP1776397A1 (en) | Polymer resins with improved environmental stress crack resistance | |
| US6495646B1 (en) | Polyolefins with new structures | |
| MXPA99007264A (es) | Composiciones de polietileno con alta resistenciaa la fusion | |
| MXPA99007265A (en) | Thermoplastic elastomer compositions from branched olefin copolymers | |
| JPWO2003000793A1 (ja) | ポリオレフィン樹脂用顔料マスターバッチ組成物 | |
| MXPA99007267A (en) | Preparation of vinyl-containing macromers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19990616 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT NL SE |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EXXONMOBIL CHEMICAL PATENTS INC. |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| 17Q | First examination report despatched |
Effective date: 20011218 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
| 18R | Application refused |
Effective date: 20020613 |