EP0957325A1 - Dampfkondensator - Google Patents

Dampfkondensator Download PDF

Info

Publication number
EP0957325A1
EP0957325A1 EP98810440A EP98810440A EP0957325A1 EP 0957325 A1 EP0957325 A1 EP 0957325A1 EP 98810440 A EP98810440 A EP 98810440A EP 98810440 A EP98810440 A EP 98810440A EP 0957325 A1 EP0957325 A1 EP 0957325A1
Authority
EP
European Patent Office
Prior art keywords
condenser
tube
steam
tie rods
bundles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98810440A
Other languages
English (en)
French (fr)
Inventor
Peter Dr. Baumann
Vaclav Svoboda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to EP98810440A priority Critical patent/EP0957325A1/de
Publication of EP0957325A1 publication Critical patent/EP0957325A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/20Fastening; Joining with threaded elements
    • F28F2275/205Fastening; Joining with threaded elements with of tie-rods

Definitions

  • the invention relates to a steam condenser, such as for a power plant, with a steam jacket that has a plurality of condenser tubes encloses, which are combined in tube bundles and anchored in tube sheets, and with water chambers connected to the tube sheets and from which Cooling water flows through the pipes so that steam is deposited on the pipes becomes.
  • the invention relates to a support for tube sheets, which are not are completely filled with anchored pipes because the pipe bundle the steam room only partially fill and free flow channels between the tube bundles consist.
  • Such a steam condenser is known for example from CH 423 819.
  • Capacitors that are suitable for placement under the turbine are the Condenser tubes combined in elongated bundles, these vertically standing next to each other and surrounded by a steam jacket.
  • the Pipes are anchored at both ends in tube sheets. Parallel to these Tube sheets are each arranged a water chamber, one wall through which Tube plates is formed and from which the cooling water flows into the tubes.
  • Of the Steam flows from the turbine through an exhaust pipe and over it Capacitor neck on the upper side of the capacitor in the capacitor housing and is distributed in the steam room via flow channels.
  • the tube bundle have "church window-like" cross-sections, the cross-section of Flow channels, or the middle streets, each of the same order of magnitude like that is the bundle itself. Due to the loose arrangement of the bundles and only partially filling the steam room with cooling pipes has the advantage that the flow to the outside tubes of the bundle without significant pressure loss become.
  • the condensate that forms on the pipes flows between the pipes directly into a condensate collector.
  • Enclose the tubes of each bundle each also like a jacket in the middle of the bundle, in which a Air cooler is not installed for the purpose of accumulation and extraction condensable gases.
  • EP 0 384 200 describes a capacitor in which the above described bundle concept is retained, but the tube bundle in their Longitudinal extension horizontally and one above the other.
  • the bundle concept again has the advantage that it is Capacitor type, like the one described above, for various power plants Size is suitable by adding an appropriate number of bundles in a modular manner be put together.
  • tube bundle has the further advantage of having a smaller floor area needed and is arranged at ground level with the turbine, creating a basement the turbine is spared.
  • the condenser tubes are in turn on both Anchored ends in tube sheets, each of which one wall of the adjoining Form water chambers.
  • the steam flows through an exhaust pipe Condenser neck on the side of the condenser housing into the vapor space and is distributed through flow channels, or middle streets, between the bundles.
  • the resulting condensate runs over metal sheets into a collecting pipe and becomes the Water-steam cycle fed.
  • an asymmetrically designed air cooler installed in a cavity in the middle of each bundle.
  • the through the flow channels induced flow conditions in the bundle and the resulting resulting pressure field conditioning are horizontal as well as vertical Arrangement of the bundles similar. This allows a similar for both arrangements Structure of the air cooler in the cavity of the bundle.
  • Concept of the described bundle shape with built-in air cooler for both vertical as well as horizontal modular arrangement of the bundles is suitable.
  • the tube sheets serve to anchor the condenser tubes, and the tubes support the tube sheets, the pressure load of the water in the water chambers are exposed.
  • the steam room is not completely filled with pipes, and in the tube sheets result in places where no tubes are anchored.
  • the Pipe trays without the support of the pipes the water pressure from the water chambers exposed.
  • the tubes on the periphery of the bundle are also very large heavily burdened.
  • the above mentioned Condenser models with vertical and horizontal bundle arrangement Water chambers relieve the tube plates from the pressure of the water and the Side walls of the water chambers support those places where no pipes are anchored are.
  • this is done by a capacitor according to the preamble of Claim 1 solved, one or more rigid between the tube sheets Has connections that support the tube sheets. Are in an execution these rigid connections are realized by tie rods between the tube sheets, which the pressurized points in the tube sheets and the tubes on the Relieve the periphery of the tube bundle.
  • the water chambers of such steam condensers have, for example domed shape, of which those half-cylindrical water chambers have the advantage that they are angular compared to others Chambers, are cheaper.
  • semi-cylindrical water chambers there are pressure forces of the water, which the edge pipes Load the bundle and the tube sheets in those places where there are no tubes and none Steam jacket walls are present, such as in the area of the flow channels, the condenser neck and the condensate collector in the Version with integral hotwell.
  • These compressive forces are proportional to the radius of the Chamber and can bend the tube sheets, so that the joints between Pipes and tube sheets can leak.
  • the tie rods according to the invention relieve these points by stiffening and supporting the tube sheets there.
  • the Invention is for condensers with tube bundles in both horizontal and vertical arrangement applicable, i.e. for capacitors that are at ground level to or are located under the turbine.
  • the condenser 1 with the turbine 2 via an exhaust pipe 3 and Condenser neck 4 arranged at ground level.
  • the steam room contains condenser tubes 6, which are combined in tube bundles 7, and is of a steam jacket 5 enclosed.
  • the tube bundles 7 are arranged horizontally and one above the other.
  • the steam flows through the evaporation nozzle 3 via the condenser neck 4 into the Steam room, where it via the flow channels 9 between the tube bundles 7 to Tubes 6 arrives and is deposited there.
  • the condensate runs into Manifold and into a condensate collection vessel 11, from where it is not in the water-steam cycle shown is returned.
  • the Tube bundle 7 arranged horizontally, being supported by bundle supports 12 and in Tube plates 13 are anchored.
  • the cooling water flows in this embodiment via water connector 14 and semi-cylindrical water chambers 15 through the pipes 6, wherein the water in the water chambers 15 presses on the tube sheets 13.
  • the Water chambers 15 are through a partition in two parts for the through Arrows indicated water inlet or outlet divided.
  • semi-cylindrical Water chambers are also further versions of the water chambers here conceivable, such as square water chambers, such with Hemispherical shape or those that are similar to a dome vault of several curved surfaces of any outline are joined together.
  • the tube bundle 7 can be seen here as a pair of tube bundles, with the water in one tube Bundles of the pair in one direction, in the other bundle in the other Flows through.
  • tie rods 16a are provided. These are in this area the condenser neck 4, where there is no support of the tube sheets 13 by the steam jacket is available.
  • FIG 3 are in a capacitor 1 for an arrangement under the turbine Pipe bundle 7 arranged vertically next to each other.
  • tie rods 16a in Area of the condenser neck 4
  • tie rod 16b between the tube bundles 7
  • tie rods 16c under the tube bundles 7 at the opening to one integral condensate collection vessel 11, which extends over the entire floor area of the capacitor extends attached.
  • the tube sheets would be below the Deflect the water pressure, the greatest deformation being at the height of the largest bulge of the water chamber 15 would result.
  • the pipes in the The center of the bundle would be under pressure, the tensile load at the edge of the bundle. To one This load is taken up by the walls of the steam jacket 5. Where such are not available, the tubes 6 and the tube sheets 13 are through relieved the tie rods.
  • FIG 4 shows an arrangement of the tie rods in a vertical condenser Pipe bundles 7.
  • the tie rods take on the pressure forces where there is no relief through a steam jacket wall or a condenser bottom.
  • the anchors 16a are located at the top of the condenser neck 4, the anchors 16b in one Mittelgasse 9 between the tube bundles 7.
  • the anchors 16c support the tube sheets below at the opening to the condensate collector 11.
  • capacitors with vertically arranged bundles as in Figures 3 and 4 are the water chambers, as shown in Figure 3, arranged horizontally. But you can too be arranged vertically and next to each other. In this case there are tie rods 16b and c necessarily arranged at the level where the water chambers on most booked out and the water pressure on the tube sheets is increased.
  • the steam flows in from above the capacitor into it.
  • the tie rods are therefore narrow and vertical drawn out.
  • the Steam from the side into the condenser, and the tie rods 16a and 16b are aligned with this steam flow direction so that its longer dimension runs parallel to the steam flow from the condenser neck into the steam chamber and it put up minimal resistance.
  • the tie rods 16c in the area of the capacitor bottom 18 affect the steam flow only slightly and can have any shape have such as one with a U-profile.
  • the tie rods provided have insignificant effects in the event of thermal expansion Tensions. On the one hand, this is due to the relatively small temperature difference guaranteed between tie rods and steam jacket. On the other hand, they are Tie rods sufficiently spaced from the steam jacket.
  • the embodiment is in Figure 2 on a capacitor in a side arrangement shown to the turbine.
  • the invention is also in capacitors in Other arrangements applicable, such as those in an axial arrangement to the turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Ein Dampfkondensator (1), bei dem ein Dampfmantel (5) mehrere Kondensatorrohre (6) umschliesst, die in Rohrbündeln (7) zusammengefasst und an ihren Enden in Rohrböden verankert sind, wobei die Rohrbündel (7) den Dampfraum des Kondensators nicht vollständig ausfüllen, indem zwischen den Rohrbündeln (7) freie Strömungskanäle (9) bestehen, weist zwecks Stützung der Rohrböden und Entlastung vom Wasserdruck aus den Wasserkammern eine oder mehrere starre Verbindungen zwischen den Rohrböden auf, welche die Rohrböden versteifen. Diese Verbindungen sind durch einen oder mehrere Zuganker (16a,16b,16c) realisiert, die dort angeordnet sind, wo kein Dampfmantel (5) vorhanden ist, wie z. B. im Bereich des Kondensatorhalses, zwischen den Rohrbündeln (7) oder im Bereich eines integralen Kondensatsammelgefässes (11). Die Zuganker (16a, 16b) im Bereich des Kondensatorhalses und der Strömungskanäle (9) sind schmal und langgestreckt ausgebildet und so ausgerichtet, dass sie dem Dampfstrom minimalen Widerstand leisten. Durch die Verwendung der Zuganker (16a, 16b, 16c) sind kostengünstigere Wasserkammern gewölbter Form anwendbar. <IMAGE>

Description

Technisches Gebiet
Die Erfindung betrifft einen Dampfkondensator, wie zum Beispiel für eine Kraftwerksanlage, mit einem Dampfmantel, der eine Mehrzahl von Kondensatorrohren umschliesst, die in Rohrbündeln zusammengefasst und in Rohrböden verankert sind, und mit Wasserkammern, die den Rohrböden angeschlossen sind und von denen Kühlwasser durch die Rohre fliesst, sodass Dampf an den Rohren niedergeschlagen wird. Insbesondere betrifft die Erfindung eine Abstützung für Rohrböden, die nicht vollständig mit verankerten Rohren ausgefüllt sind, weil die Rohrbündel den Dampfraum nur teilweise ausfüllen und zwischen den Rohrbündeln freie Strömungskanäle bestehen.
Stand der Technik
Ein solcher Dampfkondensator ist zum Beispiel aus CH 423 819 bekannt. In diesem Kondensator, der sich für eine Anordnung unter der Turbine eignet, sind die Kondensatorrohre in langgestreckte Bündel zusammengefasst, wobei diese vertikal stehend neben einander gereiht und von einem Dampfmantel umschlossen sind. Die Rohre sind jeweils an beiden Enden in Rohrböden verankert. Parallel zu diesen Rohrböden ist jeweils eine Wasserkammer angeordnet, deren eine Wand durch die Rohrböden gebildet ist und von denen das Kühlwasser in die Rohre fliesst. Der Dampf strömt von der Turbine durch einen Abdampfstutzen und über den Kondensatorhals an der oberen Kondensatorseite in das Kondensatorgehäuse hinein und verteilt sich im Dampfraum über Strömungskanäle. Die Rohrbündel besitzen "Kirchenfenster-ähnliche" Querschnitte, wobei das Schnittbild der Strömungskanäle, oder der Mittelgassen, jeweils von der gleichen Grössenordnung wie das der Bündel selbst ist. Durch die lockere Anordnung der Bündel und das nur teilweise Ausfüllen des Dampfraumes mit Kühlrohren wird der Vorteil erzielt, dass die aussenliegenden Rohre der Bündel ohne bedeutenden Druckverlust angeströmt werden. Das an den Rohren sich bildende Kondensat fliesst zwischen den Rohren direkt in ein Kondensatsammelgefäss ab. Die Rohre jedes Bündels umschliessen ferner jeweils mantelartig einen Hohlraum in der Mitte des Bündels, in dem ein Luftkühler eingebaut ist zwecks Ansammlung und Absaugung von nicht kondensierbaren Gasen.
In der EP 0 384 200 ist ein Kondensator beschrieben, in welchem das oben beschriebene Bündelkonzept beibehalten wird, die Rohrbündel aber in ihrer Längserstreckung horizontal und übereinander angeordnet sind. Durch Anwendung des Bündelkonzeptes ergibt sich wiederum der Vorteil, dass sich dieser Kondensatortyp, wie der oben beschriebene, für Kraftwerksanlagen verschiedener Grösse eignet, indem eine entsprechende Anzahl von Bündeln modulartig zusammengestellt werden. Ein Kondensator mit horizontaler Anordnung der Rohrbündel besitzt jedoch den weiteren Vorteil, indem er eine kleinere Bodenfläche benötigt und mit der Turbine ebenerdig angeordnet wird, wodurch eine Unterkellerung der Turbine erspart bleibt. Die Kondensatorrohre sind wiederum an beiden Enden in Rohrböden verankert, wobei diese jeweils eine Wand der anschliessenden Wasserkammern bilden. Der Dampf strömt durch einen Abdampfstutzen über den Kondensatorhals an der Seite des Kondensatorgehäuses in den Dampfraum hinein und verteilt sich durch Strömungskanäle, oder Mittelgassen, zwischen den Bündeln. Das resultierende Kondensat rinnt über Bleche in ein Sammelrohr und wird dem Wasser-Dampf-Kreislauf zugeführt. In einem Hohlraum in der Mitte jedes Bündels ist ein asymmetrisch ausgebildeter Luftkühler eingebaut. Die durch die Strömungskanäle herbeigeführten Strömungsbedingungen im Bündel und die daraus resultierende Druckfeldkonditionerung sind in der horizontalen sowie in der vertikalen Anordnung der Bündel ähnlich. Dies erlaubt für beide Anordnungen einen ähnlichen Aufbau des Luftkühlers im Hohlraum der Bündel. Es ergibt sich der Vorteil, dass das Konzept der beschriebenen Bündelform mit eingebautem Luftkühler sich sowohl für vertikale als auch horizontale modulare Anordnung der Bündel eignet.
Die Rohrböden dienen der Verankerung der Kondensatorrohre, und die Rohre stützen die Rohrböden, die der Druckbelastung des Wassers in den Wasserkammern ausgesetzt sind. Bei der erwähnten "Kirchenfenster-ähnlichen" Rohrbündelform ist der Dampfraum jedoch nicht vollständig mit Rohren ausgefüllt, und in den Rohrböden ergeben sich Stellen, wo keine Rohre verankert sind. Hier sind die Rohrböden ohne die Stützung der Rohre dem Wasserdruck aus den Wasserkammern ausgesetzt. Ferner sind auch die Rohre an der Peripherie der Bündel sehr stark belastet. Um dieser Belastung entgegen zu kommen, weisen die erwähnten Kondensatormodelle mit vertikaler und horizontaler Bündelanordnung Wasserkammern auf, die in ihrem Querschnitt eckig sind. Die Struktur dieser Wasserkammern entlasten die Rohrböden vom Druck des Wassers und die Seitenwände der Wasserkammern stützen jene Stellen, wo keine Rohre verankert sind.
Darstellung der Erfindung
Es ist die Aufgabe der Erfindung, einen Dampfkondensator der eingangs genannten Art unter Beibehaltung der erwähnten Vorteile so zu verbessern, dass die Rohrböden vom Wasserdruck aus den Wasserkammern und die Rohre an der Peripherie der Rohrbündel entlastet sind und die Herstellungskosten des Kondensators gesenkt werden, indem kostengünstigere Wasserkammern verwendet werden.
Erfindungsgemäss wird dies durch einen Kondensator gemäss dem Oberbegriff des Patentanspruchs 1 gelöst, der zwischen den Rohrböden eine oder mehrere starre Verbindungen aufweist, welche die Rohrböden stützen. In einer Ausführung sind diese starren Verbindungen durch Zuganker zwischen den Rohrböden realisiert, welche die unter Druck stehenden Stellen in den Rohrböden und die Rohre an der Peripherie der Rohrbündel entlasten.
Die Wasserkammern solcher Dampfkondensatoren weisen zum Beispiel eine gewölbte Form auf, wovon jene Wasserkammern in halbzylindrischer Ausführung den Vorteil haben, dass sie im Vergleich zu anderen, beispielsweise eckigen Kammern, kostengünstiger sind. Bei der Verwendung halbzylindrischer Wasserkammern ergeben sich jedoch Druckkräfte des Wassers, welche die Randrohre der Bündel und die Rohrböden an jenen Stellen belasten, wo keine Rohre und keine Dampfmantelwände vorhanden sind wie zum Beispiel im Bereich der Strömungskanäle, des Kondensatorhalses und des Kondensatsammelgefässes in der Ausführung mit Integralhotwell. Diese Druckkräfte sind proportional zum Radius der Kammer und können die Rohrböden durchbiegen, sodass die Fügestellen zwischen Rohren und Rohrboden undicht werden können. Die erfindungsgemässen Zuganker entlasten diese Stellen, indem sie die Rohrböden dort versteifen und stützen. Die Erfindung ist für Kondensatoren mit Rohrbündeln sowohl in horizontaler als auch vertikaler Anordnung anwendbar, also für Kondensatoren, die ebenerdig zur bzw. unter derTurbine angeordnet sind.
Kurze Beschreibung der Zeichnungen
Es zeigen:
  • Figur 1 einen Querschnitt eines Kondensators mit Rohrbündeln in horizontaler Anordung,
  • Figur 2 eine Perspektive eines Kondensators mit horizontal angeordneten Rohrbündeln mit halbzylindrischen Wasserkammern,
  • Figur 3 eine Perspektive eines Kondensators mit vertikal angeordneten Rohrbündeln,
  • Figur 4 einen Querschnitt eines vertikalen Rohrbündels mit Zugankern zur Abstützung der Rohrböden,
  • Figur 5 einen Querschnitt eines horizontalen Rohrbündels mit Zugankern zur Abstützung der Rohrböden.
  • Weg der Ausführung der Erfindung
    In Figur 1 ist der Kondensator 1 mit der Turbine 2 über einen Abdampfstutzen 3 und Kondensatorhals 4 ebenerdig angeordnet. Der Dampfraum enthält Kondensatorrohre 6, die in Rohrbündeln 7 zusammengefasst sind, und ist von einem Dampfmantel 5 umschlossen. Die Rohrbündel 7 sind hier horizontal und übereinander angeordnet. Der Dampf strömt durch den Abdampfstutzen 3 über den Kondensatorhals 4 in den Dampfraum, wo er über die Strömungskanäle 9 zwischen den Rohrbündeln 7 zu den Rohren 6 gelangt und dort niedergeschlagen wird. Das Kondensat rinnt in ein Sammelrohr und in ein Kondensatsammelgefäss 11, von wo es in den nicht dargestellten Wasser-Dampf-Kreislauf zurückgeführt wird. In Figur 2 sind die Rohrbündel 7 horizontal angeordnet, wobei sie von Bündelträgern 12 gestützt und in Rohrböden 13 verankert sind. Das Kühlwasser fliesst in diesem Ausführungsbeispiel über Wasserstutzen 14 und halbzylindrische Wasserkammern 15 durch die Rohre 6, wobei das Wasser in den Wasserkammern 15 auf die Rohrböden 13 drückt. Die Wasserkammern 15 sind dabei durch eine Trennwand in zwei Teile für den durch Pfeile angedeuteten Wassereintritt bzw. -austritt unterteilt. Anstelle der halbzylindrischen Wasserkammern sind hier auch weitere Ausführungen der Wasserkammern denkbar, wie zum Beispiel eckige Wasserkammern, solche mit Halbkugelform oder solche, die ähnlich einem Domgewölbe aus mehreren gekrümmten Flächen von beliebigem Umriss zusammengefügt sind. Die Rohrbündel 7 sind hier als Rohrbündelpaare anzusehen, wobei das Wasser die Rohre im einen Bündel des Paares in der einen Richtung, im anderen Bündel in der anderen Richtung durchfliesst. Erfindungsgemäss sind im Dampfraum zwischen den Rohrböden 13 Zuganker 16a vorgesehen. Diese befinden sich in diesem im Bereich des Kondensatorhalses 4, wo keine Stützung der Rohrböden 13 durch den Dampfmantel vorhanden ist.
    In Figur 3 sind in einem Kondensator 1 für eine Anordnung unter der Turbine die Rohrbündel 7 vertikal stehend neben einander gereiht. Hier sind Zuganker 16a im Bereich des Kondensatorhalses 4, Zuganker 16b zwischen den Rohrbündeln 7 sowie weitere Zuganker 16c unter den Rohrbündeln 7 bei der Öffnung zu einem integralen Kondensatsammelgefäss 11, welches sich über die ganze Bodenfläche des Kondensators erstreckt, angebracht.
    Ohne die erfindungsgemässen Massnahmen würden sich die Rohrböden unter dem Wasserdruck durchbiegen, wobei die grösste Deformierung sich auf der Höhe der grössten Ausbuchtung der Wasserkammer 15 ergeben würde. Die Rohre in der Bündelmitte wären auf Druck, die am Bündelrand auf Zug belastet. An den einen Stellen wird diese Belastung durch die Wände des Dampfmantels 5 übernommen. Wo solche nicht vorhanden sind, werden die Rohre 6 und die Rohrböden 13 durch die Zuganker entlastet.
    Figur 4 zeigt eine Anordnung der Zuganker in einem Kondensator mit vertikalen Rohrbündeln 7. Die Zuganker übernehmen die Druckkräfte dort, wo keine Entlastung durch eine Dampfmantelwand oder einen Kondensatorboden vorhanden ist. Hierzu befinden sich die Anker 16a oben beim Kondensatorhals 4, die Anker 16b in einer Mittelgasse 9 zwischen den Rohrbündeln 7. Die Anker 16c stützen die Rohrböden unten bei der Öffnung zum Kondensatsammelgefäss 11. Auf der einen Seitenwand 17 des Dampfmantels 5 sind keine Zuganker notwendig, da die Belastung vom Wasserdruck durch den Dampfmantel 5 übernommen wird. Bei Kondensatoren mit vertikal angeordneten Bündeln, wie in den Figuren 3 und 4, sind die Wasserkammern, wie in Figur 3 gezeigt, horizontal angeordnet. Sie können aber auch vertikal und neben einander stehend angeordnet sein. In diesem Fall sind Zuganker 16b und c notwendigerweise auf der Höhe angeordnet, wo die Wasserkammern am meisten ausbuchten und der Wasserdruck auf die Rohrböden erhöht ist.
    Im Fall von horizontal angeordneten Rohrbündeln, wie in den Figuren 2 und 5, werden die Rohrböden durch die Zuganker 16a bei den schmalen Enden der Rohrbündel beim Kondensatorhals 4 gestützt. Der Kondensatorboden 18 und die Seitenwand 19 bewirken eine genügende Entlastung, sodass dort keine Zuganker notwendig sind. In der Mittelgasse 9 zwischen den Rohrbündeln 7 sind Zuganker auch nicht unbedingt notwendig, da einerseits die Rohrböden 13 durch Trennwände im Innern der Wasserkammern 15 bereits entlastet sind und andererseits zwischen den Rohrbündelpaaren kein Wasserdruck auf die Rohrböden wirkt.
    Da die Zuganker sich im Dampfstrom befinden, sind diese jeweils so ausgerichtet, dass sie den Dampfstrom möglichst geringfügig beeinflussen. Hierzu sind die Zuganker 16a im Bereich des Kondensatorhalses 4 und die Zuganker 16b in den Strömungskanälen 9 so ausgebildet, dass ihre Querschnitte schmal und parallel zur Dampfstromrichtung lang gezogen sind. In Figur 4 strömt der Dampf von oben her in den Kondensator hinein. Die Zuganker sind daher in der Senkrechten schmal und langgezogen. Dasselbe gilt für die Zuganker 16a und 16b in Figur 5. Hier strömt der Dampf von der Seite her in den Kondensator, und die Zuganker 16a und 16 b sind bezüglich dieser Dampfstromrichtung so ausgerichtet, dass ihre längere Dimension parallel zum Dampfstrom vom Kondensatorhals in den Dampfraum verläuft und sie minimalen Widerstand leisten. Die Zuganker 16c im Bereich des Kondensatorbodens 18 beeinflussen die Dampfströmung nur geringfügig und können eine beliebige Form aufweisen wie zum Beispiel eine mit U-Profil.
    Die vorgesehenen Zuganker bewirken im Fall von Wärmedehnung unbedeutende Spannungen. Dies ist einerseits durch den relativ kleinen Temperaturunterschied zwischen Zugankern und Dampfmantel gewährleistet. Andererseits sind die Zuganker vom Dampfmantel genügend beabstandet.
    Das Ausführungsbeispiel ist in Figur 2 an einem Kondensator in seitlicher Anordnung zur Turbine gezeigt. Selbstverständlich ist die Erfindung auch in Kondensatoren in weiteren Anordnungen anwendbar, wie zum Beispiel in solchen in axialer Anordnung zur Turbine.
    Bezugszeichenliste
    1
    Kondensator
    2
    Turbine
    3
    Abdampfstutzen
    4
    Kondensatorhals
    5
    Dampfmantel
    6
    Kondensatorrohre
    7
    Rohrbündel
    9
    Strömungskanal, Mittelgasse
    8
    Dampfraum
    10
    Bleche
    11
    Kondensatsammelgefäss
    12
    Bündelträger
    13
    Rohrboden
    14
    Wasserstutzen
    15
    Wasserkammer
    16a
    Zuganker
    16b
    Zuganker
    16c
    Zuganker
    17
    Seitenwand
    18
    Kondensatorboden
    19
    Seitenwand

    Claims (6)

    1. Dampfkondensator (1) mit einem Dampfmantel (5), der eine Mehrzahl von Kondensatorrohren (6) umschliesst, die in mindestens zwei Rohrbündeln (7) zusammengefasst und an beiden ihrer Enden in Rohrböden (13) verankert sind, wobei die Kondensatorrohre (6) die Rohrböden (13) nur teilweise ausfüllen und die Rohrbündel (7) so angeordnet sind, dass zwischen ihnen Strömungskanäle (9) bestehen, und mit Wasserkammern (15), die an den Rohrböden (13) angeschlossen sind und von denen Kühlwasser in die Kondensatorrohre (6) fliesst,
      dadurch gekennzeichnet, dass
      der Dampfkondensator (1) zwischen den Rohrböden (13) mindestens eine starre Verbindung aufweist.
    2. Dampfkondensator (1) nach Anspruch 1,
      dadurch gekennzeichnet, dass
      mindestens eine starre Verbindung zwischen den Rohrböden (13) als Zuganker (16a,16b,16c) ausgebildet ist.
    3. Dampfkondensator (1) nach Anspruch 2,
      dadurch gekennzeichnet, dass
      die Rohrbündel (7) horizontal und übereinander angeordnet sind und die Zuganker (16a) im Bereich des Kondensatorhalses (4) angeordnet sind.
    4. Dampfkondensator (1) nach Anspruch 2,
      dadurch gekennzeichnet, dass
      die Rohrbündel (7) vertikal und neben einander angeordnet sind und die Zuganker (16a) im Bereich des Kondensatorhalses (4), die Zuganker (16c) im Bereich des Kondensatorbodens (18) und die Zuganker (16b) im Bereich der Strömungskanäle (9) zwischen den Rohrbündeln (7) angeordnet sind.
    5. Dampfkondensator (1) nach einem der Ansprüche 2-4,
      dadurch gekennzeichnet, dass
      die Zuganker (16a) im Bereich des Kondensatorhalses (4) und die Zuganker (16b) in den Strömungskanälen (9) in ihrem Querschnitt schmal und langgezogen sind, wobei die längere Seite des Querschnitts parallel zur Richtung des Dampfstroms vom Kondensatorhals (4) in den Dampfraum (8) verläuft.
    6. Dampfkondensator (1) nach einem der Ansprüche 1-5,
      dadurch gekennzeichnet, dass
      die Wasserkammern (15) eine gewölbte oder eine eckige Form aufweisen.
    EP98810440A 1998-05-14 1998-05-14 Dampfkondensator Withdrawn EP0957325A1 (de)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    EP98810440A EP0957325A1 (de) 1998-05-14 1998-05-14 Dampfkondensator

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP98810440A EP0957325A1 (de) 1998-05-14 1998-05-14 Dampfkondensator

    Publications (1)

    Publication Number Publication Date
    EP0957325A1 true EP0957325A1 (de) 1999-11-17

    Family

    ID=8236084

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98810440A Withdrawn EP0957325A1 (de) 1998-05-14 1998-05-14 Dampfkondensator

    Country Status (1)

    Country Link
    EP (1) EP0957325A1 (de)

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1126227A1 (de) * 2000-02-09 2001-08-22 ALSTOM POWER (Schweiz) AG Dampfkondensator
    EP1189005A1 (de) * 2000-07-11 2002-03-20 Alstom (Switzerland) Ltd Kondensatorhals zwischen einer Dampfturbine und einem Kondensator
    EP1260782A1 (de) * 2001-05-21 2002-11-27 ALSTOM (Switzerland) Ltd Dampfkondensator
    DE102008050741A1 (de) 2008-10-08 2010-04-15 Blumenfeld, Nikolai Mehrschichtiges Bausystem

    Citations (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB121510A (en) * 1917-12-15 1918-12-16 Arthur Edwin Leigh Scanes Improvements in or relating to Surface Condensers.
    GB130591A (en) * 1918-07-27 1919-12-18 Maurice Delaporte Improvements in Surface Condensers.
    FR529304A (fr) * 1920-12-31 1921-11-26 Ange Francois Meffre Condenseur à surface pour machines marines
    US2111240A (en) * 1936-02-19 1938-03-15 Worthington Pump & Mach Corp Surface condenser
    CH423819A (de) 1965-01-15 1966-11-15 Bbc Brown Boveri & Cie Kondensationsanlage für Dampfturbinen-Abdampf
    GB1326866A (en) * 1971-04-05 1973-08-15 Tokyo Shibaura Electric Co Surface condenser
    FR2241218A7 (en) * 1973-08-14 1975-03-14 Bbc Brown Boveri & Cie Tube-type surface condenser - has tube bundle support plates and sleeve portion forming self-supporting unit
    EP0384200A1 (de) 1989-02-23 1990-08-29 Asea Brown Boveri Ag Dampfkondensator
    US5060600A (en) * 1990-08-09 1991-10-29 Texas Utilities Electric Company Condenser operation with isolated on-line test loop

    Patent Citations (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB121510A (en) * 1917-12-15 1918-12-16 Arthur Edwin Leigh Scanes Improvements in or relating to Surface Condensers.
    GB130591A (en) * 1918-07-27 1919-12-18 Maurice Delaporte Improvements in Surface Condensers.
    FR529304A (fr) * 1920-12-31 1921-11-26 Ange Francois Meffre Condenseur à surface pour machines marines
    US2111240A (en) * 1936-02-19 1938-03-15 Worthington Pump & Mach Corp Surface condenser
    CH423819A (de) 1965-01-15 1966-11-15 Bbc Brown Boveri & Cie Kondensationsanlage für Dampfturbinen-Abdampf
    GB1326866A (en) * 1971-04-05 1973-08-15 Tokyo Shibaura Electric Co Surface condenser
    FR2241218A7 (en) * 1973-08-14 1975-03-14 Bbc Brown Boveri & Cie Tube-type surface condenser - has tube bundle support plates and sleeve portion forming self-supporting unit
    EP0384200A1 (de) 1989-02-23 1990-08-29 Asea Brown Boveri Ag Dampfkondensator
    US5060600A (en) * 1990-08-09 1991-10-29 Texas Utilities Electric Company Condenser operation with isolated on-line test loop

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    F. H. S. BROWN ET AL.: "Reheat Practice in British Power Stations", PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS, vol. 172, no. 16, 1958, pages 585 - 600, XP002081046 *

    Cited By (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1126227A1 (de) * 2000-02-09 2001-08-22 ALSTOM POWER (Schweiz) AG Dampfkondensator
    US6360543B2 (en) 2000-02-09 2002-03-26 Alstom (Schweiz) Ag Steam condenser
    EP1189005A1 (de) * 2000-07-11 2002-03-20 Alstom (Switzerland) Ltd Kondensatorhals zwischen einer Dampfturbine und einem Kondensator
    US6550249B2 (en) 2000-07-11 2003-04-22 Alstom (Switzerland) Ltd Condenser neck between a steam turbine and a condenser
    EP1260782A1 (de) * 2001-05-21 2002-11-27 ALSTOM (Switzerland) Ltd Dampfkondensator
    WO2002095313A1 (de) * 2001-05-21 2002-11-28 Alstom (Switzerland) Ltd Dampfkondensator
    DE102008050741A1 (de) 2008-10-08 2010-04-15 Blumenfeld, Nikolai Mehrschichtiges Bausystem

    Similar Documents

    Publication Publication Date Title
    EP0384200B1 (de) Dampfkondensator
    EP1287303A2 (de) Mehrstöckiger badkondensator
    EP0325758B1 (de) Dampfkondensator
    EP0619466B1 (de) Dampfkondensator
    EP0957325A1 (de) Dampfkondensator
    DE2459472C2 (de) Gasbeheizter dampferzeuger, insbesondere fuer kernreaktoranlagen
    DE19642100B4 (de) Dampfkondensator
    EP1126227A1 (de) Dampfkondensator
    DD140910A5 (de) Dampfstrahl-kuehlanlage
    DE3016981A1 (de) Waermetauscher
    DE69110676T2 (de) Kraftanlage mit einer druckwirbelschichtverbrennung.
    DE2417163C3 (de) Kondensator für eine Dampfan-Wasser-Kondensation
    EP0795729B1 (de) Dampfkondensator
    DE2941825A1 (de) Senkrecht stehender dampfabscheider- ueberhitzer
    EP0097989B1 (de) Stehender Hochdruckspeisewasservorwärmer in Sammlerbauweise mit Erhitzer und einer Einrichtung zum Trennen von Dampf- und Wasserphase
    DE1813939C3 (de) Liegender Speisewasservorwärmer
    DE2345478C3 (de) Oberflächenkondensator
    EP0509298B1 (de) Hochdruck-Speisewasservorwärmer
    DE763235C (de) Trommelloser mit natuerlichem Umlauf arbeitender Hochdruckkessel fuer grosse Leistung
    DE2540024B2 (de) Selbsttragender wasserrohr-dampferzeuger
    CH638606A5 (en) Vertical heat exchanger with a circular cross-section
    DE2848041C2 (de) Rektifizierkolonne
    DE1514501B2 (de) Kernreaktoranlage mit Dampferzeuger
    WO2002095313A1 (de) Dampfkondensator
    EP0085131B1 (de) Warmeübertrager zum Kühlen von mit festen Teilchen verunreinigten Gasen

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AKX Designation fees paid
    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: 8566

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20000518