EP0948262A1 - Produit laitier fermente - Google Patents

Produit laitier fermente

Info

Publication number
EP0948262A1
EP0948262A1 EP97951127A EP97951127A EP0948262A1 EP 0948262 A1 EP0948262 A1 EP 0948262A1 EP 97951127 A EP97951127 A EP 97951127A EP 97951127 A EP97951127 A EP 97951127A EP 0948262 A1 EP0948262 A1 EP 0948262A1
Authority
EP
European Patent Office
Prior art keywords
milk
redox potential
lactic acid
fermented
acid bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97951127A
Other languages
German (de)
English (en)
Inventor
Rodney Stuart Moreton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe des Produits Nestle SA
Nestle SA
Original Assignee
Societe des Produits Nestle SA
Nestle SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe des Produits Nestle SA, Nestle SA filed Critical Societe des Produits Nestle SA
Priority to EP97951127A priority Critical patent/EP0948262A1/fr
Publication of EP0948262A1 publication Critical patent/EP0948262A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/13Fermented milk preparations; Treatment using microorganisms or enzymes using additives
    • A23C9/1322Inorganic compounds; Minerals, including organic salts thereof, oligo-elements; Amino-acids, peptides, protein-hydrolysates or derivatives; Nucleic acids or derivatives; Yeast extract or autolysate; Vitamins; Antibiotics; Bacteriocins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C19/00Cheese; Cheese preparations; Making thereof
    • A23C19/02Making cheese curd
    • A23C19/05Treating milk before coagulation; Separating whey from curd
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • A23C9/1234Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt characterised by using a Lactobacillus sp. other than Lactobacillus Bulgaricus, including Bificlobacterium sp.

Definitions

  • the subject of the present invention is a new process for preparing a fermented milk composition, said process making it possible to obtain food compositions having a particularly high load of lactic acid bacteria, even after packaging and preservation for prolonged periods.
  • lactic acid bacteria are generally known to have beneficial effects on human health, only certain categories of lactic acid bacteria are actually able to adhere to human intestinal cells, to exclude pathogenic bacteria on human intestinal cells, and / or act on the human immune system by allowing it to react more strongly to external aggressions. Lactic acid bacteria are said to be "probiotic" when they have at least one of these characteristics.
  • lactic acid bacteria are truly probiotic bacteria.
  • the strains Lactobacillus casei ATCC53103, Lactobacillus acidophilus CNCM 1-1225, Bifidobacterium breve CNCM 1-1226, Bifidobacterium infantis CNCM 1-1227 and Bifidobacteriun longum CNCM 1-1228 have thus been scientifically recognized as probiotic bacteria in the measurement where they are able to adhere to human intestinal cells, to exclude pathogenic bacteria on human intestinal cells, and to act on the human immune system (EP577904; EP577903; EPI 99535; Gut, 3_5_, 483-489, 1994 ; J. of Dairy Science, 7_8_, 491-197, 1995; Applied Env. Microb., £ 9_, 4121-4128, 1993).
  • Probiotic lactic acid bacteria are often also extremely sensitive to oxygen, due to their adaptation to the anaerobic living conditions found in the intestinal tract. In addition, these bacteria grow poorly in milk, which poses problems in achieving a sufficient level of lactic acid bacteria in a fermented milk product.
  • EPI 54614 suggests increasing the charge of the starter culture when sowing milk, and also adding growth stimulants, such as extracts, to this milk. yeast or whey protein, for example.
  • the present invention aims to overcome the drawbacks of the prior art, by providing a process which promotes the survival of lactic acid bacteria.
  • the present invention relates to a process for manufacturing a fermented milk composition in which milk is heat treated at a temperature and for a time such that its redox potential at 25 ° C is lowered to a value less than 450 mvolt, and the milk is inoculated with lactic acid bacteria.
  • the present invention also covers all dairy compositions packaged in an impermeable or semi-permeable oxygen material, said compositions comprising at least 10 6 cfii / ml of probiotic lactic acid bacteria and a redox potential of less than 450 mvolt (cfu comes from l 'English expression "colony forming unit").
  • the invention also relates to the use of a milk having a redox potential at 25 ° C. which is less than 450 mvolt, for the preparation of a dairy product comprising lactic acid bacteria.
  • the invention also relates to the use of a fermented milk composition resulting from the present process in the preparation of a dairy product comprising lactic acid bacteria.
  • lactic acid bacteria which are known to be sensitive to the conditions of fermentation and storage of a milk, for example sensitive to the presence of air, in fact become more resistant to these conditions, and in particular become tolerant to presence of air, as soon as the redox potential of the milk in which they live is less than about 450 mvolt. This resistance results in better bacterial development during the fermentation of milk, and better survival of bacteria during the conservation of fermented milk.
  • this redox potential can be adjusted by various means, it has been found that prolonged pasteurization of milk is sufficient to achieve a required redox potential. Indeed, a prolonged heat treatment makes it possible to break certain proteins in milk and thus to release reducing groups. In addition, this treatment makes it possible to react the proteins and sugars of the milk so that it forms reducing compounds resulting from Maillard reactions.
  • This pasteurization has other advantages. Firstly, prolonged treatment of milk at high temperatures promotes degassing of the milk, and therefore a low oxygen content in the milk. Second, this treatment converts part of the lactose in milk to lactulose, which is known to stimulate the growth of certain lactic acid bacteria.
  • - Figure 1 shows, after fermentation, the number of cells of the strain CNCM 1-1225 (cfu / ml) having grown in different milks, said milks having undergone different heat treatments before fermentation, said fermented milks having been kept for 1 or 28 days at refrigeration temperatures, and said fermented milks having also been packaged in glass or polystyrene packaging.
  • - Figure 2 shows, after fermentation, the number of cells of the strain CNCM 1-1225 (cfu / ml) having grown in different milks, said milks having a redox potential of the order of 500 mvolt or -50 mvolt before fermentation , and said fermentation being carried out under aerobic or anaerobic conditions.
  • Figure 3 represents the number of cells of the strain CNCM 1-1225 (cfu / ml) having grown in different milks, as well as the redox potential at 25 ° C of these fermented milks, as a function of the storage time of these milks ferments at refrigeration temperatures.
  • rennet is given to the coagulating extract coming from abomasum of young ruminants slaughtered before weaning. It will be recognized that rennet also includes veal rennet substitutes, such as animal pepsins; coagulating preparations from the plant kingdom extracted from artichoke, thistle, ficin, latex, fig, papain, for example; coagulating preparations from the microbial kingdom extracted from bacteria of the genus Bacillus and Pseudomonas, and molds belonging to the species Endothia parasitica, Mucor pusillus and Mucor miehei, for example.
  • veal rennet substitutes such as animal pepsins
  • milk is meant, on the one hand, a milk of animal origin, such as milk from cows, goats, sheep, buflesse, zebu, mare, donkey, camel, etc.
  • This milk may be a milk in the native state, a reconstituted milk, a skimmed milk, or a milk supplemented with compounds necessary for the growth of bacteria or for the treatment of milk such as fats, yeast extract, peptone, ascorbic acid and / or a surfactant, for example.
  • these milks have a pH of the order of 6.4-7, in particular pH 6.6-6.8.
  • milk also applies to what is commonly called vegetable milk, that is to say an extract of plant materials treated or not, such as legumes (soy, chickpea, lentil, ect ...) or oilseeds (rapeseed, soya, sesame, cotton, ect %), extract which contains proteins in solution or in colloidal suspension, coagulable by chemical action, by acid fermentation and / or by heat.
  • vegetable milks could undergo heat treatments analogous to those of animal milks. They may also have had their own treatments, such as discoloration, deodorization, and treatments for removing unwanted taste.
  • the word milk also designates mixtures of animal milks and vegetable milks.
  • these milks Preferably, these milks have a pH of the order of 6.4-7, in particular pH 6.6-6.8.
  • the growth and survival of certain lactic acid bacteria are also influenced by the milk water activity (Aw), that is to say by the ratio between the partial vapor pressure of the water on the surface of the powder and the vapor pressure of pure water at the same temperature.
  • Aw milk water activity
  • the Aw can be determined by measuring the relative equilibrium humidity reached in a closed enclosure at constant temperature. For this, a sample of a few g of milk is enclosed in a sealed container placed in a room thermostatically controlled at 20 ° C. The empty space around this sample reaches equilibrium, after 30-60 min, the same Aw value as the sample.
  • An electronic sensor mounted in the closure lid of the container, then measures the humidity of this empty space by means of an electrolytic resistance.
  • the addition of at least one agent which promotes bacterial growth in milk makes it possible to significantly enhance the growth and survival of certain lactic acid bacteria.
  • these agents there may in particular be a sugar such as glucose and sucrose, an amino acid such as cysteine and glutathione, a yeast extract in particular an extract comprising large amounts of purine and pyrimidine bases as well as their phosphate derivatives (adenosine , thymine, guanine, cytosine and uracil) and / or hydrolysates of animal or vegetable protein materials (soy), for example.
  • the milk can comprise approximately 0.1-1% of yeast extract and / or approximately 0.25-1% of peptones.
  • All the devices intended for pasteurizing milk can be used by a person skilled in the art. It is thus possible to heat treat milk at least 90 ° C for at least 30 min, preferably at 95-130 ° C for 30-120 min, so as to obtain a redox potential of less than 450 mvolt, in particular less than 400 mvolt, or even less than 350 mvolt if one wants to obtain maximum growth and survival of lactic acid bacteria, for example.
  • the pasteurized milk is inoculated with at least one strain of lactic acid bacteria so as to obtain directly in the milk from 10 3 to 10 8 cfu / ml.
  • the milk can be inoculated with a culture of fresh lactic acid bacteria, with a concentrated and frozen culture, or even with a culture dried by lyophilization or by spraying under a flow of hot air (see US389730), for example.
  • the strain of lactic acid bacteria can be chosen from the Lactococcus lactis species, in particular L. lactis subsp. cremoris, L. lactis subsp. lactic biovar diacetylactis, and L. lactis; Streptococcus thermophilus; acidophilic bacteria including L. acidophilus, L. crispatus, L. amylovorous, L. gallinarum, L. gasseri, L. johnsonii; Lactobacillus fermentum; Lactobacillus casei including L. casei subsp. casei; Lactobacillus delbruckii, in particular L. delbruckii subsp lactis; L. delbruckii subsp.
  • lactic acid bacteria which are sensitive to oxygen are used, in particular all bifidobacteria, Lactobacillus acidophilus, Lactobacillus johnsonii, Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus casei, Lactobacillus bulgaricus and Lactobacillus helveticus.
  • Probiotic bacteria are of particular interest in the context of the present invention. These bacteria are in fact capable of adhering to human intestinal cells, of excluding pathogenic bacteria on human intestinal cells, and of acting on the human immune system by allowing it to react more strongly to external aggressions (ability to immunomodulation), for example by increasing the phagocytosis capacities of granulocytes derived from human blood (J. of Dairy Science, 7 £, 491-197, 1995: immunomodulation capacity of the strain La-1 which has been deposited at the Institut Pasteur under the number CNCM 1-1225).
  • Lactobacillus acidophilus CNCM I-1225 strain described in EP577904 can be used.
  • This strain was recently reclassified among Lactobacillus johnsonii, following the new taxonomy, proposed by Fujisawa et al, which is now an authority on the taxonomy of acidophilic lactobacilli (Int. J. Syst. Bact., 42, 487-791, 1992).
  • Other probiotic bacteria are also available, such as those described in EPI 99535 (Gorbach et al.) Or in US5296221 (Mitsuoka et al.), For example.
  • the dairy composition obtained by the process according to the invention can also be traditionally fermented until at least 10 6 cfu / ml, in particular 10? -10 9 cfu / ml, for example, are obtained.
  • these milk compositions comprise probiotic lactic acid bacteria, in particular the strain L. johnsonii CNCM 1-1225, it is preferable to carry out the fermentation in the absence of oxygen, for example under an atmosphere of carbon dioxide.
  • the milk composition obtained by the process according to the invention can also be transformed into unripened fresh cheeses which are commonly called in Anglo-Saxon countries “quarg” or “cottage-cheese” and in Germany “quark”, by example.
  • the milk inoculated with lactic acid bacteria can be fermented, but not necessarily. Rennet is generally added to it, of the order of 0.01 to 0.15% by volume / volume, so as to pass the casein from one phase colloidal to a precipitated phase, this passage being accompanied by the formation of a whey. Then, the whey is separated by centrifugation or ultrafiltration.
  • the invention also covers all dairy compositions packaged in an impermeable or semi-permeable oxygen material, said compositions comprising at least 10 6 cfu / ml of probiotic lactic acid bacteria and a redox potential of less than 450 mvolt, preferably less than 400-350 mvolt if one wants compositions in which the viability of lactic acid bacteria is stabilized at an acceptable level
  • the dairy compositions according to the invention are packaged in a material which allows less than 0.01 cm 3 of air to pass per day and per cm 2 under an external pressure of 0.21 bar, for example a material impermeable to air like glass or ethyl vinyl alcohol (EVOH), or a semi-permeable material like polystyrene (PS), polypropylene (PP), polyethylene terepthalate (PET), ethyl vinyl alcohol (EVOH), high density polyethylene (HDPE), or a mixture of these materials, for example.
  • a material impermeable to air like glass or ethyl vinyl alcohol (EVOH), or a semi-permeable material like polystyrene (PS), polypropylene (PP), polyethylene terepthalate (PET), ethyl vinyl alcohol (EVOH), high density polyethylene (HDPE), or a mixture of these materials, for example.
  • a material impermeable to air like glass or ethyl vinyl alcohol (EVOH), or a semi
  • the milk composition obtained by the present process can also be used to prepare other fermented milk products, in particular as starter for large-scale milk fermentation, for example.
  • the measurement of the redox potential is carried out in accordance with the publication by Buhler H. et al. (Ingold AG, Germany). For this, a pH / mvolt meter is used combined with a redox electrode (Ingold n ° 105053288). The pH / mvolt meter is calibrated using a standard redox buffer. The milk samples at pH 6.4-7 are previously incubated in a 25 ° C bath. The redox potential is measured after 3 min of stability, and the redox potential is calculated by adding 244.4 mvolt to the displayed redox value.
  • milk samples consisting of 10% of a skimmed milk powder, 1% of yeast extracts and 0.5% of glucose.
  • these milks are heat treated, respectively, for 30 min at 63 ° C. in a hot water bath, for 30 min at 95 ° C. in a hot water bath, for 15 min at 121 ° C in an autoclave, or for 60 min at 121 ° C in an autoclave.
  • These milks are inoculated with the probiotic strain Lactobacillus johnsonii CNCM 1-1225 which was deposited at the Institut Pasteur, 25 rue du do Sheffield Roux, Paris, June 30, 1992.
  • the redox potentials are adjusted at 25 ° C of two MRS artificial media, respectively to about 500 mvolt and -50 mvolt, by adding an appropriate amount of potassium ferricynide or DTT. These two media are inoculated with an inoculum of the strain Lactobacillus johnsonii CNCM 1-1225, they are ferments at aerobic. For aerobic conditions, sterile air bubbles are introduced into the fermentation media. Finally, the number of colonies of bacteria that have grown in these milks is listed.
  • Skimmed pasteurized milk is conventionally inoculated at 115 ° C. for 20 min with 5% of the starter of the strain Lactobacillus johnsonii CNCM 1-1225 and 0.5% of the starter of the strain Streptococcus thermophilus CNCM 1-1421.
  • pH of fermented milks reaches pH 4.5, 0.1% w / v of vitamin C is added, the milks are packed in semi-permeable jars and kept at refrigeration temperatures for 1 , 14 or 28 days, after which the redox potential of the fermented milks is measured and the number of Lactobacillus johnsonii CNCM 1-1225 bacteria which have survived in these fermented milks is listed.
  • Two milks made of 10% of a skimmed milk powder and different, yeast extract concentrations are prepared, these media are heat treated at 11 ° C for 15 min, they are inoculated with 5% of a fresh culture of the Lactobacillus johnsonii CNCM 1-1225 strain, they are incubated at 40 ° C for 1 to 28 days, and the number of lactic acid bacteria having survived these storage conditions is determined.
  • fermented milks stored for 1 to 28 days are analyzed, said milks not comprising yeast extracts.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Nutrition Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dairy Products (AREA)

Abstract

Procédé de fabrication d'une composition laitière fermentée dans lequel, on pasteurise un lait à une température et pendant un temps tels que son potentiel rédox à 25 DEG C est abaissé à une valeur inférieure à 450 mvolt, on ajoute des agents stabilisant le potentiel rédox du lait, on inocule le lait avec des bactéries lactiques, on fermente le lait jusqu'à l'obtention d'au moins 10<6> cfu/ml et une Aw supérieure à 0,97. Utilisation d'un lait ayant un potentiel rédox à 25 DEG C inférieur à 450 mvolt et contenant des agents stabilisant ce potentiel rédox du lait, pour la préparation d'un produit laitier fermenté par des bactéries lactiques. Compositions laitières conditionnées dans un matériau imperméable ou semi-perméable à l'oxygène, lesdites compositions ayant un potentiel rédox inférieur à 450 mvolt et une Aw supérieure à 0,97, et au moins 10<6> cfu/ml de bactéries lactiques probiotiques.

Description

Produit laitier fermenté
La présente invention a pour objet un nouveau procédé de préparation d'une composition laitière fermentée, ledit procédé permettant d'obtenir des compositions alimentaires ayant une charge en bactéries lactiques particulièrement élevée, même après conditionnement et conservation pendant des périodes prolongées.
Etat de la technique
Bien que les bactéries lactiques sont généralement connues pour avoir des effets bénéfiques sur la santé humaine, seulement certaines catégories de bactéries lactiques sont réellement capables d'adhérer aux cellules intestinales humaines, d'exclure des bactéries pathogènes sur des cellules intestinales humaines, et/ou d'agir sur le système immunitaire humain en lui permettant de réagir plus fortement à des agressions externes. Les bactéries lactiques sont dites "probiotiques" dès lors qu'elles possèdent au moins une de ces caractéristiques.
A ce jour, relativement peu de bactéries lactiques sont vraiment des bactéries probiotiques. Par exemple, les souches Lactobacillus casei ATCC53103, Lactobacillus acidophilus CNCM 1-1225, Bifidobacterium brève CNCM 1-1226, Bifidobacterium infantis CNCM 1-1227 et Bifidobacteriun longum CNCM 1-1228, ont ainsi été scientifiquement reconnues comme étant des bactéries probiotiques dans la mesure où elles sont capables d'adhérer aux cellules intestinales humaines, d'exclure des bactéries pathogènes sur des cellules intestinales humaines, et d'agir sur le système immunitaire humain (EP577904; EP577903; EPI 99535; Gut, 3_5_, 483-489, 1994; J. of Dairy Science, 7_8_, 491-197, 1995; Applied Env. Microb., £9_, 4121-4128, 1993).
Les bactéries lactiques probiotiques sont souvent aussi extrêmement sensibles à l'oxygène, du fait de leur adaptation aux conditions de vie anaérobies retrouvées dans le tractus intestinal. De plus, ces bactéries poussent mal dans du lait, ce qui pose des problèmes pour atteindre un taux suffisant de bactéries lactiques dans un produit laitier fermenté. Pour améliorer la pousse des bactéries lactiques à croissance lente, EPI 54614 suggère d'augmenter la charge de la culture starter lors de l'ensemencement d'un lait, et également d'ajouter dans ce lait des stimulants de la croissance, comme des extraits de levure ou des protéines du petit-lait, par exemple.
Bien que l'on puisse régler par ce moyen les problèmes de croissance dans du lait, les bactéries lactiques probiotiques demeurent malheureusement encore très sensibles aux conditions de transformation et de conservation d'un lait fermenté. En effet, la plupart des emballages plastiques utilisés pour conditionner les produits laitiers sont perméables à l'oxygène. De plus, la transformation ultérieur d'un lait fermenté, par exemple en fromages blancs ou en laits acidifiés liquides, nécessite un brassage du lait en présence d'air, ce qui augmente le taux d'oxygène dans le produit final.
La présente invention vise à pallier les inconvénients de l'art antérieur, en fournissant un procédé qui favorise la survie des bactéries lactiques.
Résumé de l'invention
A cet effet, la présente invention concerne un procédé de fabrication d'une composition laitière fermentée dans lequel, on traite thermiquement un lait à une température et pendant un temps tels que son potentiel rédox à 25°C est abaissé à une valeur inférieure à 450 mvolt, et on inocule le lait avec des bactéries lactiques.
La présente invention couvre également toutes les compositions laitières conditionnées dans un matériau imperméable ou semi-perméable à l'oxygène, lesdites compositions comprenant au moins 106 cfii/ml de bactéries lactiques probiotiques et un potentiel rédox inférieur à 450 mvolt (cfu provient de l'expression anglaise "colony forming unit").
De même, l'invention concerne aussi l'utilisation d'un lait ayant un potentiel rédox à 25°C qui est inférieure à 450 mvolt, pour la préparation d'un produit laitier comprenant des bactéries lactiques. Enfin, l'invention concerne aussi l'utilisation d'une composition laitière fermentée issue du présent procédé dans la préparation d'un produit laitier comprenant des bactéries lactiques.
Contre toutes attentes, les bactéries lactiques qui sont connus pour être sensibles aux conditions de fermentation et de conservation d'un lait, par exemple sensibles à la présence d'air, deviennent en fait plus résistantes à ces conditions, et notamment deviennent tolérantes à la présence d'air, dès lors que le potentiel rédox du lait dans lequel elles vivent est inférieur à environ 450 mvolt. Cette résistance se traduit par un meilleur développement bactérien lors de la fermentation d'un lait, et une meilleure survie des bactéries lors de la conservation du lait fermenté.
Bien que ce potentiel rédox puisse être ajusté par différents moyens, on a trouvé qu'une pasteurisation prolongée du lait est suffisante pour atteindre un potentiel rédox requis. En effet, un traitement prolongé à la chaleur permet de casser certaines protéines du lait et ainsi de libérer des groupes réducteurs. De plus, ce traitement permet de faire réagir les protéines et les sucres du lait de sorte qu'il se forme des composés réducteurs issus de réactions de Maillard.
Cette pasteurisation présente d'autres avantages. Premièrement, un traitement prolongé du lait à des températures élevées favorise le dégazage du lait, et donc une teneur basse en oxygène dans le lait. Deuxièmement, ce traitement permet de convertir une partie du lactose du lait en lactulose qui est connu pour stimuler la croissance de certaines bactéries lactiques.
Brèves description des figures
- La figure 1 représente, après fermentation, le nombre de cellules de la souche CNCM 1-1225 (cfu/ml) ayant poussées dans différents laits, lesdits laits ayant subi différents traitements thermiques avant fermentation, lesdits laits fermentes ayant été conservés pendant 1 ou 28 jours à des températures de réfrigération, et lesdits laits fermentes ayant été aussi conditionnés dans des emballages de verre ou de polystyrène. - La figure 2 représente, après fermentation, le nombre de cellules de la souche CNCM 1-1225 (cfu/ml) ayant poussées dans différents laits, lesdits laits ayant un potentiel rédox de l'ordre de 500 mvolt ou -50 mvolt avant fermentation, et ladite fermentation étant réalisée dans des conditions aérobies ou anaérobies.
- La figure 3 représente le nombre de cellules de la souche CNCM 1-1225 (cfu/ml) ayant poussées dans différents laits, ainsi que le potentiel rédox à 25°C de ces laits fermentes, en fonction du temps de conservation de ces laits fermentes à des températures de réfrigération.
Description détaillée de l'invention
Dans le cadre de la présente invention, la dénomination "présure" est donnée à l'extrait coagulant provenant de caillettes de jeunes ruminants abattus avant sevrage. On admettra que la présure englobe également les succédanés de présure de veau, comme les pepsines animales; les préparations coagulantes provenant du règne végétal extraites de l'artichaut, du chardon, de la ficine, du latex, du figuier, de la papaïne, par exemple; les préparations coagulantes provenant du règne microbien extraites des bactéries du genre Bacillus et Pseudomonas, et des moisissures appartenant aux espèces Endothia parasitica, Mucor pusillus et Mucor miehei, par exemple.
Par lait, on entend désigner, d'une part, un lait d'origine animal, tel que les laits de vache, de chèvre, de brebis, de buflesse, de zébue, de jument, d'ânesse, de chamelle, etc. Ce lait peut être un lait à l'état natif, un lait reconstitué, un lait écrémé, ou un lait additionné de composés nécessaires à la croissance des bactéries ou au traitement du lait comme des matières grasses, de l'extrait de levure, de la peptone, de l'acide ascorbique et/ou un surfactant, par exemple. De préférence, ces laits présentent un pH de l'ordre de 6,4-7, notamment pH 6,6-6,8.
Le terme lait s'applique également à ce que l'on appelle communément un lait végétal, c'est à dire un extrait de matières végétales traités ou non, telles que les légumineuses (soja, pois chiche, lentille, ect...) ou des oléagineuses (colza, soja, sésame, coton, ect...), extrait qui contient des protéines en solution ou en suspension colloïdale, coagulables par action chimique, par fermentation acide et/ou par la chaleur. Ces laits végétaux ont pu subir des traitements thermiques analogues à ceux des laits animaux. Ils ont pu subir également des traitements qui leur sont propres, tels que la décoloration, la désodorisation, et des traitements pour la suppression de goût indésirables. Enfin, le mot lait désigne aussi des mélanges de laits animaux et de laits végétaux. De préférence, ces laits présentent un pH de l'ordre de 6,4-7, notamment pH 6,6-6,8.
Contre toute attente, on a trouvé que la croissance et la survie de certaines bactéries lactiques sont également influencées par l'activité d'eau du lait (Aw), c'est à dire par le rapport entre la pression de vapeur partielle de l'eau à la surface de la poudre et la pression de vapeur de l'eau pure à la même température. Les meilleures survies peuvent être obtenues lorsque l'Aw du lait à 20°C est supérieure à 0,97, de préférence comprise entre 0,988-0,983, par exemple. A titre d'indications, on peut déterminer l'Aw par la mesure de l'humidité relative d'équilibre atteinte dans une enceinte fermée à température constante. Pour cela, un échantillon de quelques g de lait est enfermé dans un récipient étanche placé dans une chambre thermostatée à 20°C. L'espace vide autour de cet échantillon atteint à l'équilibre, au bout de 30-60 min, la même valeur Aw que l'échantillon. Un capteur électronique, monté dans le couvercle de fermeture du récipient, mesure alors l'humidité de cet espace vide par l'intermédiaire d'une résistance électrolytique.
De même, on a trouvé que l'ajout dans le lait d'au moins un agent favorisant la croissance bactérienne permettait de renforcer sensiblement la croissance et la survie de certaines bactéries lactiques. Parmi ces agents, on peut compter notamment un sucre comme le glucose et le saccharose, un acide aminé comme la cystéine et le glutathion, un extrait de levure notamment un extrait comprenant de grandes quantités de bases purine et pyrimidine ainsi que leurs dérivés phosphate (adénosine, thymine, guanine, cytosine et uracile) et/ou des hydrolysats de matières protéiques animales ou végétales (soja), par exemple. En particulier, le lait peut comprendre environ 0.1-1% d'extrait de levure et/ou environ 0,25-1% de peptones.
Du fait que l'on a réalisé que le potentiel rédox d'un produit laitier comprenant des bactéries lactiques est susceptible d'augmenter sensiblement pendant le stockage du produit laitier à des températures de réfrigération, il est également préférable d'ajouter au lait des composés qui sont susceptibles de stabiliser son potentiel rédox. Parmi ces composés, on peut compter tous les agents réducteurs alimentaires comme l'acide ascorbique, la vitamine E et/ou leurs dérivés, utilisables à raison de 0,01-1% en poids, par exemple.
Les composés qui stabilisent le potentiel rédox et les agents qui favorisent la croissance bactérienne peuvent être ajoutés au lait avant pasteurisation. Cependant, du fait que certains de ces composés sont susceptibles d'être détruits, voire modifiés, suite à un traitement thermique prolongé, on peut aussi envisager de les ajouter au lait après pasteurisation et/ou après fermentation, sous la forme d'une solution stérile, par exemple.
Tous les dispositifs destinés à pasteuriser un lait peuvent être utilisés par l'homme du métier. On peut ainsi traiter thermiquement le lait au moins 90°C pendant au moins 30 min, de préférence à 95-130°C pendant 30-120 min, de façon à obtenir un potentiel rédox inférieur à 450 mvolt, notamment inférieur à 400 mvolt, voire même inférieur à 350 mvolt si l'on veut obtenir une croissance et une survie maximale des bactéries lactiques, par exemple.
Ensuite, on inocule le lait pasteurisé avec au moins une souche de bactéries lactiques de façon à obtenir directement dans le lait de 103 à 108 cfu/ml. On peut inoculer le lait avec une culture de bactéries lactiques fraîche, avec une culture concentrée et congelée, ou même avec une culture séchée par lyophilisation ou par pulvérisation sous un flux d'air chaud (voir US389730), par exemple.
La souche de bactéries lactiques peut être choisie parmi les espèces Lactococcus lactis notamment L. lactis subsp. cremoris, L. lactis subsp. lactic biovar diacetylactis, et L. lactis; Streptococcus thermophilus; les bactéries acidophiles comprenant L. acidophilus, L. crispatus, L. amylovorous, L. gallinarum, L. gasseri, L. johnsonii; Lactobacillus fermentum; Lactobacillus casei notamment L. casei subsp. casei; Lactobacillus delbruckii notamment L. delbruckii subsp lactis; L. delbruckii subsp. helveticus; L. delbruckii subsp. bulgaricus; les bifidobacteries notamment Bifidobacterium infantis, Bifidobacterium brève; Bifidobacterium longum; et enfin Leuconostoc mesenteroides notamment L. mesenteroides subsp cremoris, par exemple (Bergey's Manual of Systematic Bacteriology, vol 2, 1986; Fujisawa et al., Int. Syst. Bact, 42, 487-491 , 1992). De préférence, on utilise des bactéries lactiques qui sont sensibles à l'oxygène, notamment toutes les bifidobacteries, Lactobacillus acidophilus, Lactobacillus johnsonii, Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus casei, Lactobacillus bulgaricus et Lactobacillus helveticus.
Les bactéries probiotiques présentent un intérêt particulier dans le cadre de la présente invention. Ces bactéries sont en fait capables d'adhérer aux cellules intestinales humaines, d'exclure des bactéries pathogènes sur des cellules intestinales humaines, et d'agir sur le système immunitaire humain en lui permettant de réagir plus fortement à des agressions externes (capacité d'immunomodulation), par exemple en augmentant les capacités de phagocytose des granulocytes issus du sang humain (J. of Dairy Science, 7 £, 491-197, 1995: capacité d'immunomodulation de la souche La-1 qui a été déposée à l'Institut Pasteur sous le numéro CNCM 1-1225).
A titre d'exemple, on peut utiliser la souche Lactobacillus acidophilus CNCM I- 1225 décrite dans EP577904. Cette souche a été récemment reclassifié parmi les Lactobacillus johnsonii, suite à la nouvelle taxonomie, proposée par Fujisawa et al, qui fait maintenant autorité en matière de taxonomie des lactobacilles acidophiles (Int. J. Syst. Bact., 42, 487-791, 1992). D'autres bactéries probiotiques sont également disponibles, comme celles décrites dans EPI 99535 (Gorbach et al.) ou dans US5296221 (Mitsuoka et al.), par exemple.
La composition laitière obtenue par le procédé selon l'invention peut être aussi fermentée traditionnellement jusqu'à l'obtention d'au moins 106 cfu/ml, notamment 10?-109 cfu/ml, par exemple. Lorsque ces compositions laitières comprennent des bactéries lactiques probiotiques, notamment la souche L. johnsonii CNCM 1-1225, il est préférable de réaliser la fermentation en absence d'oxygène, par exemple sous une atmosphère de dioxyde de carbone.
La composition laitière obtenue par le procédé selon l'invention peut être aussi transformée en fromages frais non-affmés que l'on appelle communément dans les pays anglo-saxons "quarg" ou "cottage-cheese" et en Allemagne "quark", par exemple. Pour cela, on peut fermenter le lait inoculé par des bactéries lactiques, mais pas nécessairement. On lui ajoute généralement de la présure, de l'ordre de 0,01 à 0,15% en volume/volume, de façon à faire passer la caséine d'une phase colloïdale à une phase précipitée, ce passage s 'accompagnant de la formation d'un lactosérum. Ensuite, on sépare le lactosérum par centrifugation ou ultrafiltration.
L'invention couvre également toutes les compositions laitières conditionnées dans un matériau imperméable ou semi-perméable à l'oxygène, lesdites compositions comprenant au moins 106 cfu/ml de bactéries lactiques probiotiques et un potentiel rédox inférieur à 450 mvolt, de préférence inférieur à 400-350 mvolt si l'on veut des compositions dans lesquelles la viabilité des bactéries lactiques est stabilisée à un niveau acceptable
De préférence, les compositions laitières selon l'invention sont conditionnées dans un matériau qui laisse passer moins de 0,01 cm3 d'air par jour et par cm2 sous une pression extérieure de 0,21 bar, par exemple un matériau imperméable à l'air comme le verre ou l'éthyl vinyl alcohol (EVOH), ou un matériau semi-perméable à l'air comme le polystyrène (PS), le polypropylène (PP), le polyethylene terepthalate (PET), l'éthyl vinyl alcohol (EVOH), le polyethylene haute densité (HDPE), ou un mélange de ces matériaux, par exemple.
Du fait que les bactéries lactiques qui se trouvent dans un lait traité selon le présent procédé deviennent particulièrement résistantes à des situations de stress, la composition laitière obtenue par le présent procédé est également utilisable pour préparer d'autres produits laitier fermentes, notamment en tant que starter pour une fermentation d'un lait à grande échelle, par exemple.
La présente invention est décrite plus en détail ci-après à l'aide du complément de description qui va suivre, qui se réfère à des exemples de préparation de produits laitiers fermentes, ainsi qu'à la description d'un test de mesure du potentiel rédox. Les pourcentages et les parties sont donnés en poids sauf indication contraire. Il va de soi, toutefois, que ces exemples sont donnés à titre d'illustration de l'objet de l'invention dont ils ne constituent en aucune manière une limitation.
Mesure du potentiel rédox
La mesure du potentiel rédox est effectué conformément à la publication de Buhler H. et al. (Ingold A.G., Allemagne). Pour cela, on utilise un pH/mvolt-mètre combiné à une électrode rédox (Ingold n° 105053288). Le pH/mvolt-mètre est calibré en utilisant un tampon rédox standard. Les échantillons de lait à pH 6,4-7 sont préalablement incubés dans un bain à 25°C. La mesure du potentiel rédox s'effectue après 3 min de stabilité, et le potentiel rédox est calculée en ajoutant 244,4 mvolt à la valeur rédox affichée.
Exemple 1
On prépare plusieurs échantillons de lait constitués de 10% d'une poudre de lait écrémé, 1% d'extraits de levure et 0,5% de glucose. De façon à obtenir des potentiels rédox inférieurs à 450 mvolt, on traite thermiquement ces laits, respectivement, pendant 30 min à 63 °C dans un bain d'eau chaude, pendant 30 min à 95°C dans un bain d'eau chaude, pendant 15 min à 121°C dans une autoclave, ou pendant 60 min à 121°C dans une autoclave. On inocule ces laits avec la souche probiotique Lactobacillus johnsonii CNCM 1-1225 qui a été déposé à l'Institut Pasteur, 25 rue du docteur Roux, Paris, le 30 juin 1992. On fermente ces laits sans brassage jusqu'à l'obtention d'un pH de l'ordre de 4,6, on les conditionne chacun dans deux emballages imperméable (verre) ou semi- perméable, on stocke chaque lait emballé 1 jour ou 28 jours à des températures de réfrigération, puis après stockage on détermine le nombre de bactéries lactiques qui survivent.
Les résultats présentés à la figure 1 montrent clairement que le traitement thermique prolongé du lait améliore sensiblement la survie des bactéries lactiques, et cela même en présence d'oxygène. Par ailleurs, on observe aussi que les potentiels rédox des laits traités thermiquement sont inversement corrélés au temps et au degré de température appliqué au lait. En d'autres termes, plus le traitement thermique du lait est poussé, plus le potentiel rédox du lait est abaissé. A cet égard, il faut ainsi remarquer que plus le potentiel de rédox des laits est abaissé, plus la résistance des bactéries lactiques est manifeste.
Exemple 2
On ajuste les potentiels rédox à 25°C de deux milieux artificiels MRS, respectivement à environ 500 mvolt et -50 mvolt, en y ajoutant une quantité appropriée de ferricynide de potassium ou de DTT. On inocule ces deux milieux avec un inoculum de la souche Lactobacillus johnsonii CNCM 1-1225, on les fermente à aérobies. Pour les conditions aérobies on introduit dans les milieux de fermentation des bulles d'air stériles. Enfin, on énumère le nombre de colonies de bactéries ayant poussé dans ces laits.
Les résultats présentés à la figure 2 montrent que les laits ayant un potentiel rédox à 25°C de l'ordre de -50 mvolt donnent les meilleures scores de croissance, que ce soit en absence ou en présence de l'air. Par conséquent, lorsqu'on abaisse le potentiel rédox d'un lait, on favorise alors la croissance de certaines bactéries lactiques.
Exemple 3
On prépare deux starters de la souche Lactobacillus johnsonii CNCM 1-1225 et de la souche Streptococcus thermophilus CNCM 1-1421 qui a été déposée à l'Institut Pasteur, 25 rue du docteur Roux, Paris, le 18 mai 1994, dans un lait constitué de 10% d'une poudre de lait écrémé, 1% d'extrait de levure et 0,5% de glucose, ledit lait ayant au préalable été traité thermiquement à 95°C pendant 30 min.
On inocule un lait écrémé pasteurisé classiquement à 115°C pendant 20 min avec 5% du starter de la souche Lactobacillus johnsonii CNCM 1-1225 et 0,5% du starter de la souche Streptococcus thermophilus CNCM 1-1421. Lorsque le pH des laits fermentes atteint pH 4,5, on ajoute 0,1% poids/volume de vitamine C, on emballe les laits dans des pots semi-perméables à l'air et on les conserve à des températures de réfrigération pendant 1, 14 ou 28 jours, après quoi on mesure le potentiel rédox des laits fermentes et on énumère le nombre de bactéries Lactobacillus johnsonii CNCM 1-1225 ayant survécues dans ces laits fermentes.
Pour la comparaison, on fermente un lait dans les mêmes conditions à la différence près que l'on ajoute pas de vitamine C.
Les résultats présentés à la figure 3 montrent que si l'on abaisse et l'on stabilise le potentiel rédox d'un lait fermenté à mois de 450 mvolt, on obtient au moins 50% de survie des bactéries lactiques après 28 jours de conservation; tandis que si le potentiel rédox du lait fermenté est supérieur à 450 mvolt, on obtient moins de 1% de survie après 28 jours de conservation. Exemple 4
On prépare deux laits constitués de 10% d'une poudre de lait écrémé et différentes, concentrations d'extraits de levure, on traite thermiquement ces milieux à 11 °C pendant 15 min, on les inocule avec 5% d'une culture fraîche de la souche Lactobacillus johnsonii CNCM 1-1225, on les incube à 40°C pendant 1 à 28 jours, et on détermine le nombre de bactéries lactiques ayant survécues à ces conditions de conservations.
Pour comparaison, dans les mêmes conditions on analyse des laits fermentes et conservés de 1 à 28 jours, lesdits laits ne comprenant pas d'extraits de levure.
Les résultats montrent que l'utilisateur de 0,1 à 1 % d'extraits de levure dans le milieu de culture favorise la survie des bactéries lactiques lors de la conservation prolongée de ce milieu. On obtient les meilleurs résultats pour des laits ayant de l'ordre de 1% d'extraits de levure.
Exemple 5
On prépare plusieurs laits contenant 10% d'une poudre de lait écrémé et différentes concentrations d'additifs, on traite thermiquement ces milieux à 115°C pendant 15 min, on les inocules avec 5% d'une culture fraîche de la souche Lactobacillus johnsonii CNCM 1-1225, on les incube à 40°C jusqu'à pH4,5, on les refroidit à 4°C pendant 28 jours dans des pots perméables à l'air ou semi- perméable à l'air, et on détermine le nombre de bactéries lactiques ayant survécues à ces conditions de conservation. Les conditions expérimentales sont données dans le tableau 1 ci-après. Il faut toutefois remarquer que la vitamine C est ajoutée après fermentation et avant conservation, sous forme d'une solution stérile.
Les résultats présentés dans le tableau 1 ci-dessous montrent que les extraits de peptones, les extraits de levure et/ou la vitamine C, permettent d'améliorer la survie des bactéries lactiques probiotiques après 28 jours de conservation à des températures de réfrigération, et cela même en présence d'air.

Claims

Revendications
1 Procédé de fabrication d'une composition laitière fermentée dans lequel, on pasteurise un lait à une température et pendant un temps tels que son potentiel rédox à 25°C est abaissé à une valeur inférieure à 450mvolt, on ajoute des agents stabilisant le potentiel rédox du lait, on inocule le lait avec des bactéries lactiques, on fermente le lait jusqu'à l'obtention d'au moins 106 cfu/ml et une Aw supérieure à 0,97.
2. Procédé selon la revendication 1 dans lequel, le lait comprend en outre des agents favorisant la croissance bactérienne.
3. Procédé selon l'une des revendications 1 ou 2, dans lequel on fermente le lait par des bactéries lactiques capables d'adhérer aux cellules intestinales humaines, d'exclure des bactéries pathogènes sur des cellules intestinales humaines, et d'agir sur le système immunitaire humain en lui permettant de réagir plus fortement à des agressions externes.
4. Utilisation d'un lait ayant un potentiel rédox à 25°C inférieur à 450mvolt et contenant des agents stabilisant ce potentiel rédox du lait, pour la préparation d'un produit laitier fermenté par des bactéries lactiques.
5. Utilisation selon la revendication 4, pour la préparation d'un produit laitier conditionné dans un matériau imperméable ou semi-perméable à l'oxygène.
6. Compositions laitières conditionnées dans un matériau imperméable ou semi- perméable à l'oxygène, lesdites compositions ayant un potentiel rédox inférieur à 450 mvolt et une Aw supérieure à 0,97, et au moins 106 cfu/ml de bactéries lactiques probiotiques.
EP97951127A 1996-12-24 1997-11-26 Produit laitier fermente Withdrawn EP0948262A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97951127A EP0948262A1 (fr) 1996-12-24 1997-11-26 Produit laitier fermente

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP96203708 1996-12-24
EP96203708 1996-12-24
PCT/EP1997/005577 WO1998027824A1 (fr) 1996-12-24 1997-11-26 Produit laitier fermente
EP97951127A EP0948262A1 (fr) 1996-12-24 1997-11-26 Produit laitier fermente

Publications (1)

Publication Number Publication Date
EP0948262A1 true EP0948262A1 (fr) 1999-10-13

Family

ID=8224765

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97951127A Withdrawn EP0948262A1 (fr) 1996-12-24 1997-11-26 Produit laitier fermente

Country Status (5)

Country Link
EP (1) EP0948262A1 (fr)
AU (1) AU723405B2 (fr)
CA (1) CA2274535A1 (fr)
IL (1) IL130285A0 (fr)
WO (1) WO1998027824A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2424607C (fr) * 2000-10-06 2013-01-15 Societe Des Produits Nestle S.A. Utilisation de bacteries lactiques probiotiques afin d'equilibrer le systeme immunitaire de la peau
NL1020301C2 (nl) * 2002-04-04 2003-04-11 Winclove Bio Ind B V Werkwijze voor het bereiden van een probiotisch preparaat.
CN1305384C (zh) 2002-04-12 2007-03-21 明治乳业株式会社 能够抵抗幽门螺旋杆菌的乳酪
FR2884113B1 (fr) * 2005-04-06 2007-05-25 Air Liquide Procede par lequel on modifie les qualites hygieniques, physico-chimiques et sensorielles d'un fromage par controle du potentiel redox
FR2891634B1 (fr) * 2005-09-30 2013-12-06 Air Liquide Procede de fabrication d'un produit alimentaire ou biotechnologique mettant en oeuvre une regulation du potentiel redox
EP2248908A1 (fr) 2009-05-05 2010-11-10 Eurolactis Group S.A. Micro-organismes probiotiques isolés du lait d'ânesse
ITTO20130265A1 (it) * 2013-03-29 2014-09-30 Consiglio Per La Ricerca E La Speri Mentazione In Prodotto caseario e metodo per la produzione di detto prodotto caseario.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1799303A (en) * 1929-04-12 1931-04-07 Walter L Kulp Method of making milk product
US1899817A (en) * 1931-05-23 1933-02-28 Abbotts Dairies Inc Therapeutic milk product and process of making same
GB460972A (en) * 1934-08-04 1937-02-08 Lewis Kempton Mobley Improvements in and relating to bacterial milk products
GB1110978A (en) * 1965-07-06 1968-04-24 Dairy Technics Inc Mixed bacterial concentrates for the fermentation of milk
IT974515B (it) * 1966-07-28 1974-07-10 Kyowa Hakko Kogyo Kk Procedimento per la preparazione di prodotti di latte particolar mente di latte acido ad elevato valore nutritivo
NL9000422A (nl) * 1990-02-21 1991-09-16 Nl Zuivelonderzoek Inst Werkwijze voor de bereiding van een gefermenteerd melkprodukt.
JP2571734B2 (ja) * 1991-08-23 1997-01-16 株式会社ヤクルト本社 乳酸菌飲料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9827824A1 *

Also Published As

Publication number Publication date
IL130285A0 (en) 2000-06-01
AU723405B2 (en) 2000-08-24
CA2274535A1 (fr) 1998-07-02
AU5478998A (en) 1998-07-17
WO1998027824A1 (fr) 1998-07-02

Similar Documents

Publication Publication Date Title
Champagne et al. Challenges in the addition of probiotic cultures to foods
FR2895877A1 (fr) Poudre de lait fermente ou yaourt a haute densite en ferments lactiques
EP1903881B1 (fr) PROCÉDÉ de PRÉPARATION DE PRODUITS ALIMENTAIRES FERMENTES CONTENANT DES SOUCHES PROBIOTIQUES
Bennani et al. Characterization and identification of lactic acid bacteria isolated from Moroccan raw cow’s milk
US11981890B2 (en) Method for preparing cultures of lactic acid bacteria
EP2040560B1 (fr) Granules de cysteine et leurs utilisations a titre d&#39;activateurs de croissance de bifidobacterium animalis lactis
CA2664895C (fr) Utilisation de la gomme arabique pour ameliorer la croissance et la survie des bifidobacteries.
EP1474002B1 (fr) Procede de fabrication de produits laitiers fermentes avec des enzymes d&#39;origine bacterienne
EP0948262A1 (fr) Produit laitier fermente
Madureira et al. Incorporation and survival of probiotic bacteria in whey cheese matrices
EP1624761B1 (fr) Procede et inoculum pour fermentation lactique acidifiante
EP1320580B1 (fr) Activateur pour ferment à base de bactéries lactiques et procédé de préparation d&#39;un produit lacté mettant en oeuvre ledit activateur.
EP1986502B1 (fr) Composition et procede d&#39;aromatisation de produits laitiers, souche de bacterie lactique, utilisation desdites composition ou souche
Nofiani et al. Characteristics of Lactic Acid Bacteria isolated from traditional fermented fish
EP0949870B1 (fr) Fromage frais
Kilara et al. Lactic fermentations of dairy foods and their biological significance
FR2656799A1 (fr) Procede d&#39;obtention d&#39;un levain bacterien pour la fabrication d&#39;un produit dietetique a effet curatif.
RU2132615C1 (ru) Способ получения биологически активной пищевой добавки
WO2023166156A1 (fr) Procédé de préparation de cultures de bactéries d&#39;acide lactique, produits et milieux de culture associés
BE780586Q (fr) Fabrication de produit a saveur de fromage
FR2705015A1 (fr) Produits du type fromages frais et leur procédé d&#39;obtention.
FR2814469A1 (fr) Activateur pour ferment a base de bacteries lactiques
FR2992524A1 (fr) Concentre de jus de carotte fermente avec un gout fruite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990726

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20021009

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20030217