EP0939140B1 - Eisenbasislegierung zur Verwendung bei erhöhten Temperaturen - Google Patents

Eisenbasislegierung zur Verwendung bei erhöhten Temperaturen Download PDF

Info

Publication number
EP0939140B1
EP0939140B1 EP98890052A EP98890052A EP0939140B1 EP 0939140 B1 EP0939140 B1 EP 0939140B1 EP 98890052 A EP98890052 A EP 98890052A EP 98890052 A EP98890052 A EP 98890052A EP 0939140 B1 EP0939140 B1 EP 0939140B1
Authority
EP
European Patent Office
Prior art keywords
max
elements
steel
alloy
notgreater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98890052A
Other languages
English (en)
French (fr)
Other versions
EP0939140A1 (de
Inventor
Hubert Dipl.-Ing. Lenger
Herbert Schweiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH and Co KG
Original Assignee
Boehler Edelstahl GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler Edelstahl GmbH and Co KG filed Critical Boehler Edelstahl GmbH and Co KG
Priority to ES98890052T priority Critical patent/ES2176944T3/es
Priority to DE59804046T priority patent/DE59804046D1/de
Priority to AT98890052T priority patent/ATE217360T1/de
Priority to EP98890052A priority patent/EP0939140B1/de
Publication of EP0939140A1 publication Critical patent/EP0939140A1/de
Priority to HK00101331A priority patent/HK1024512A1/xx
Application granted granted Critical
Publication of EP0939140B1 publication Critical patent/EP0939140B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Definitions

  • Hot work tool steels mainly carbon, - chrome, - vanadium, molybdenum- and / or tungsten alloyed steels. After hardening and if necessary, repeated tempering of such materials are included Temperatures of 500 to 550 ° C hardness values of 51 to 55 HRC achievable, so that from this advantageously highly stressed hot work tools such as block sensors, Matrices and press domes for extrusion presses, die casting tools, Warm shear blades and the like can be produced.
  • Such a steel is used in Breitler R., "Recent developments in the steels for pressure die casting ", North American Die Casting Association, Illinois, USA, 1991, pages 231 ⁇ 235.
  • Hot work tools are usually one in addition to a thermal one exposed to effective high mechanical stress at the same time, resulting in results in a particularly critical form of material stress. That often through elaborate machining tools should therefore be high Heat resistance and the like toughness and tempering resistance low Hot wear behavior and low sensitivity to hot cracks, high Resistance to temperature changes and the like thermal shock resistance have a high level of economy in its use or in the To achieve product manufacturing. Because of the mostly triaxial Stress is also an isotropy of the properties of the deformed Required.
  • the invention is based on the object for an alloy of the beginning mentioned type the border areas of the pollution and accompanying elements specify within which a largely at elevated temperatures deformed material with isotropic and improved property profile can be created.
  • the advantages achieved by the invention essentially result from that even with possibly increased levels of individual impurities or Accompanying elements reduce them within a total concentration the content of other elements can be restricted by kinetics and therefore the material properties at high temperature are not disadvantageous influence, but improve overall, the range of the Material properties and their deformation-related differences in longitudinal and Transverse direction are significantly reduced.
  • the alloy achieved economic advantages and in particular the Usage properties of the tool can be improved such that a Many times the service life is achieved even under rough operating conditions.
  • Manganese is an element that can be stored in the mixed crystal and increases in this function the strength of the matrix or the material. Manganese also binds with others Elements to the sulfur of the steel for its mechanical properties less harmful sulfides. However, it was recognized that only in the area from 0.098 to 0.29% by weight of manganese in the material is advantageously effective. lower Levels of 0.098 do not ensure sulfur binding and soften if necessary, the mixed crystal of the alloy suddenly, but cause Manganese levels above 0.29% also increased signs of septicemia on the Grain boundaries and thus a loss in toughness of the material.
  • Ni and in particular Co solidify the mixed crystal and effect how the person skilled in the art is aware of an increased heat resistance of the material.
  • Cu and W in low contents act in the presence of stronger and / or more concentrated carbide formers. The However, studies have shown that the maximum total value of Ni + Co + Cu + W 0.28% by weight should not be exceeded because despite higher contents improved material strength markedly loss of toughness of the material Temperatures above 480 ° C and longer dwell times or with frequent heating enter.
  • the impurity elements P and S should naturally be low and one Do not exceed a total limit of 0.007% by weight in order to be high to achieve mechanical material properties. It was surprising that the Investigations of an interchangeability of these elements with regard to the Characteristics of the alloy showed, although only sulfur Manganese and, where appropriate, elements involved in inclusion such as Ca in particular are bound or participate in the sulfide formation.
  • Ca and Mg are extremely strong oxide and oxysulfide formers, but should not be used essential dimensions as intercalation elements in the mixed crystal due to their different atomic radii and reaction affinities exist, whereby as Total maximum content 0.0009% by weight was determined.
  • Total maximum content 0.0009% by weight was determined.
  • the lower limit of 0.00014 wt .-% is set according to the invention because lower values mean a steep drop in some Material properties.
  • strong carbide formers in particular the monocarbide-forming elements Ti, Nb, Zr, Hf, Ta in concentrations up to 0.1% with carbon contents up to 0.5% extremely effective grain refining agents, which, due to their finely dispersed carbide deposits, the isotropy of Promote materials in tempered condition.
  • the monocarbide formers a refining effect that sharp-edged excretions, however, lead to tensile loads and elevated temperatures lead to crack initiation, which is striking at levels greater than than 0.008 wt% of Ti + Nb + Zr + Hf + Ta, making this value the represents the maximum limit according to the invention.
  • W which can also form monocarbide in high concentrations, works however, also in small proportions in the mixed crystal should, as mentioned earlier, with the other storage elements Do not exceed the total limit of 0.35% by weight.
  • the alloy is using ladle metallurgical Process and is made using the VAR process because of it an efficient control and limitation of the total maximum values as well as a Setting in total ranges of contamination and accompanying elements can be done.
  • Table 1 shows the chemical composition of steels A to N with the contents of the basic elements as well as the individual and total values for the respective concentration of the contamination and accompanying elements.
  • Table 2 to Table 4 show the individual contents of impurities and accompanying elements found for steels A to N.
  • Table 5 shows the measured mechanical values of the material at 5.43 times its deformation with absolute values and those in relation to steel A.
  • a high-strength steel was used as comparative alloy A in the tables according to DIN material number 1.2343 (property specifications in DIN 17350) selected and its determined material values for the heat toughness, the Heat wear resistance and machinability set at 100%.
  • test melts were carried out using ladle metallurgical methods produced, deoxidized with different agents and cast into electrodes, after which by melting them, partly in a vacuum - Arc furnace, block production took place. These blocks were replaced by one Hot forging with a degree of deformation of 5.43 times to bar steel formed on which after hardening followed by two temperings chemical and mechanical material testing was carried out, the Results are summarized in the tables.
  • Alloys A to G, J to L and N were produced using a special technology, whereby a slag treatment with high Ca activity was carried out in the pan. Grain refining agents were also used for steels A to G and K to N. Impure scrap was, as it turned out disadvantageously in the following, used especially for alloys A, B and M. Steels H and I were manufactured with particular care with regard to the ingredients and alloys as well as the block melting. These materials according to the invention, according to H and I in Tables 1 to 4, listed in Table 5, provide significantly improved mechanical characteristics and thus an outstanding creep behavior of a tool made from them.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Soft Magnetic Materials (AREA)

Description

Die Erfindung bezieht sich auf einen Stahl zur Verwendung bei erhöhten Temperaturen, zum Beispiel Warmarbeitsstahl, enthaltend im in Gew.-%
Kohlenstoff
0,25 bis 0,79
Chrom
1.10 bis 7,95
Molybdän
0,56 bis 3,49
Vanadin
0,26 bis 1,48
Rest Eisen sowie die Verunreinigungs- und Begleitelemente unter anderen Mangan, Nickel, Kupfer, Wolfram, Schwefel, Phosphor, Sauerstoff, Silizium, Aluminium, Kalzium, Magnesium, Zinn, Antimon, Arsen sowie Stickstoff und Wasserstoff.
Eisenbasislegierungen, die im thermisch vergüteten Zustand bis zu einer Temperatur im Bereich von 550°C und höher verwendbar sind, die sogenannten Warmarbeitsstähle, stellen im wesentlichen Kohlenstoff,- chrom,- vanadin,molybdän- und/oder wolframlegierte Stähle dar. Nach dem Härten und gegebenenfalls mehrmaligem Anlassen derartiger Werkstoffe sind bei Temperaturen von 500 bis 550°C Härtewerte von 51 bis 55 HRC erreichbar, so daß daraus vorteilhaft hochbeanspruchte Warmarbeitswerkzeuge wie Blockaufnehmer, Matrizen und Preßdome für Strangpressen, Druckgießwerkzeuge, Warmscherenmesser und dergleichen hergestellt werden können. So ein Stahl wird in Breitler R., "Recent developments in die steels for pressure die casting", North American Die Casting Association, Illinois, USA, 1991, Seiten 231 → 235, offenbart.
Warmarbeitswerkzeuge sind neben einer thermischen zumeist auch einer gleichzeitig wirksamen hohen mechanischen Belastung ausgesetzt, woraus sich eine besonders kritische Materialbeanspruchungsform ergibt. Das oft durch aufwendige Bearbeitungen erstellte Werkzeug soll daher neben hoher Warmfestigkeit und dergleichen Zähigkeit sowie Anlaßbeständigkeit geringes Warmverschleißverhalten und geringe Warmrißempfindlichkeit, hohe Temperaturwechselbeständigkeit und dergleichen Thermoschockbeständigkeit besitzen, um eine hohe Wirtschaftlichkeit bei dessen Einsatz bzw. bei der Produktherstellung zu erreichen. Auf Grund der zumeist dreiaxigen Beanspruchungen ist auch eine Isotropie der Eigenschaften des verformten Materials gefordert.
Es ist bekannt, zur Verbesserung der Isotropie der mechanischen Eigenschaften das Ausgangsmaterial, insbesondere die Gußblöcke der Legierung, einer Diffusionsglühung zu unterwerfen, um die Mikroseigerungen in deren Intensität zu verkleinern. Verbreitet werden auch dafür Umschmelzverfahren verwendet, die erstarrungsbedingt besonders gute Voraussetzungen für eine möglichst mikroseigerungsarme Blockstruktur erbringen.
Um die Werkstoffeigenschaften weiter zu verbessern, wurde auch schon versucht, Legierungen mit weit niedrigeren als technisch relevanten Verunreinigungs- und Begleitelementen herzustellen. Diese durchaus zielführende Maßnahme ist jedoch aufwendig, weil dafür der Stahl aus reinsten Einsatzstoffen in besonders zugestellten metallurgischen Gefäßen erschmolzen werden muß. Zum Beispiel offenbart Bodnar, R., "Effects of manganese, silicon and purity on the design of 3.5 NiCrMoV, ICrMoV, and 2.25 Cr-IMo Baintic alloy steels", Met. Trans. A (1989), 20A (8), Seiten 1445 - 1460, einen Cr-Mo-V Stahl mit geringen Gehalten von Verunreinigungen.
Der Erfindung liegt nun die Aufgabe zugrunde, für eine Legierung der eingangs genannten Art die Grenzbereiche der Verunreinigungs- und Begleitelemente anzugeben, innerhalb welcher ein bei erhöhten Temperaturen ein weitgehend isotropes und verbessertes Eigenschaftsprofil aufweisendes, verformtes Material erstellt werden kann.
Diese Aufgabe wird durch einen Stahl nach Anspruch 1 gelöst.
Die durch die Erfindung erreichten Vorteile ergeben sich im wesentlichen daraus, daß auch bei gegebenenfalls erhöhten Gehalten an einzelnen Verunreinigungsoder Begleitelementen diese innerhalb einer Summenkonzentration durch Absenken der Gehalte anderer Elemente wirkungskinetisch eingeschränkt werden können und dadurch die Materialeigenschaften bei hoher Temperatur nicht nachteilig beeinflussen , sondern insgesamt verbessern, wobei der Streubereich der Werkstoffkennwerte sowie deren verformungsbedingte Unterschiede in Längs- und Querrichtung wesentlich verringert sind. Somit können bei Verwendung der erfindungsgemäßen Legierung wirtschaftliche Vorteile erzielt und insbesondere die Gebrauchseigenschaften des Werkzeges derart verbessert werden, daß ein Vielfaches der Standzeit auch bei rauhen Betriebsbedingungen erreicht wird.
Umfangreiche Untersuchungen haben ergeben, daß die Werkstoffkenngrößen und deren ungewollte Unterschiede im Werkstück bzw. in den Beanspruchungsrichtungen desselben nicht ausschließlich vom Gehalt der jeweiligen Verunreinigungs- und Begleitelemente abhängig sind, sondern daß Einzelwerte und Summenwerte der gleichartig wirksamen Elementegruppen den entscheidenden Einfluß auf die Stoffeigenschaften besitzen. Innerhalb eines Summenbereiches oder unterhalb einer als maximal hinsichtlich eines Erreichens von gewünschten Werkstoffeigenschaften erkannten Summengrenze für mehrere Elemente kann vorteilhaft die jeweilige Konzentration der Einzelbestandteile in der Elementengruppe eingestellt werden. Es brauchen somit nicht mehr, wie gemäß der Fachmeinung erforderlich war, alle ungewollten bzw. nachteilig wirkenden Elemente niedrigste Gehalte im Stahl aufzuweisen, sondern es ist vielmehr möglich, was wirtschaftlich vorteilhaft ist, Summenwerte und/oder Summenhöchstwerte für diese einzuhalten, um höchste Materialgüte zu erreichen.
Die erfindungsgemäße Legierung betreffend ist festzustellen: Mangan ist ein im Mischkristall einlagerbares Element und erhöht in dieser Funktion die Festigkeit der Matrix bzw. des Werkstoffes. Weiters bindet Mangan mit anderen Elementen den Schwefel des Stahles zu für dessen mechanische Eigenschaften weniger schädlichen Sulfiden ab. Es wurde jedoch erkannt, daß lediglich im Bereich von 0,098 bis 0,29 Gew.-% Mangan im Werkstoff vorteilhaft wirksam ist. Geringere Gehalte als 0,098 sichern nicht eine Schwefelabbindung und entfestigen gegebenenfalls den Mischkristall der Legierung sprunghaft, hingegen bewirken Mangangehalte über 0,29 % verstärkte Seigererscheinungen auch an den Korngrenzen und somit Zähigkeitseinbußen des Materials.
Ni und insbesondere Co verfestigen wie Mn den Mischkristall und bewirken, wie dem Fachmann bekannt ist, eine erhöhte Warmfestigkeit des Werkstoffes. Desgleichen wirken Cu und in geringen Gehalten W bei Anwesenheit von stärkeren und/oder höher konzentriert vorliegenden Karbidbildnern. Die Untersuchungen ergaben jedoch, daß der Summenhöchstwert von Ni+Co+Cu+W 0,28 Gew.-% nicht überschritten werden soll, weil bei höheren Gehalten trotz verbesserter Materialfestigkeit markant Zähigkeitsverluste des Werkstoffes bei Temperaturen über 480°C und längerer Verweildauer bzw. bei öfterem Anwärmen eintreten.
Die Verunreinigungselemente P sowie S sollten naturgemäß niedrig sein und eine Höchstgrenze von insgesamt 0,007 Gew.-% nicht überschreiten, um hohe mechanische Werkstoffeigenschaften zu erreichen. Es war überraschend, daß die Untersuchungen eine Austauschbarkeit dieser Elemente hinsichtlich der Eigenschaftsmerkmale der Legierung zeigten, obwohl lediglich Schwefel durch Mangan und gegebenenfalls einschlußbildend beteiligte Elemente wie insbesondere Ca abgebunden werden bzw. an der Sulfidbildung teilnehmen.
Sauerstoff vermindert markant die mechanischen Kennwerte des Werkstoffes bei erhöhter Temperatur, wenn dessen Einzelgehalt höher als 0,0014 Gew.-% ist. Es wurde ermittelt, daß offensichtlich hinsichtlich der Standardbildungsenthalpien von Oxiden in Verbindung mit der in den erfindungsgemäßen Grenzen festgelegten Stoffzusammensetzung eine Höchstgrenze für eine vorteilhaft feindisperse und koagulierte Ausscheidungsform der nichtmetallischen Einschlüsse vorliegt und daß bei höheren Sauerstoffwerten Komgrenzenanreicherungen sowie Konfigurationserscheinungen auftreten, die nachteilig wirken.
Im Zusammenhang mit der Abbindung des Sauerstoffes, aber auch mit der Einschlußmorphologie, die einen wesentlichen Einfluß auf die mechanischen Materialwerte besitzt, sind die Gehalte an oxidbildenden Elementen zu sehen, wobei die Erschmelzungs- und Erstarrungsart des Werkstoffes bzw. Blockes zu berücksichtigen sind. Um auch bei Verwendung einer Vakuumschmelztechnologie dichte, seigerungsarme Blöcke als Ausgangsmaterial für eine Werkzeugherstellung zu erhalten, ist es notwendig, Mindestgehalte von Si+Al gleich 0,081 Gew.-% einzuhalten, weil geringere Konzentrationen eine Kohlenstoff-Sauerstoff-Reaktion oder eine ungünstige Komgrenzenoxidbildung bewirken können. Obwohl die Legierungsmetalle Si und Al in höheren Anteilen, wie der Fachmann weiß, die Oxidationsbeständigkeit sowie die Warmrißbeständigkeit positiv beeinflußen und hohe 0,2 Dehngrenzenwerte bewirken, wurde überraschend gefunden, daß über einer Summengrenze von 0,25 Gew.-% die Warmzähigkeit insbesondere bei Al-Gehalten über 0,015 Gew.-% verschlechtert wird, wobei höhere Mn-Gehalte dabei verstärkend wirksam sind.
Ca und Mg sind äußerst starke Oxid-und Oxisulfidbildner, sollten jedoch nicht im wesentlichen Maße als Einlagerungselemente im Mischkristall auf Grund ihrer unterschiedlichen Atomradien und Reaktionsaffinitäten vorliegen, wobei als Summen-Maximalgehalt 0,0009 Gew.-% ermittelt wurde. Andererseits ist jedoch ein Vorhandensein dieser Elemente im Werkstoff für eine Sauerstoff- und Schwefelabbindung wichtig, so daß deren Untergrenze von 0,00014 Gew.-% erfindungsgemäß festgesetzt ist, weil geringere Werte einen Steilabfall einiger Materialeigenschaften nach sich zöge.
Nach allgemeiner Ansicht des Fachmannes sind starke Karbidbildner, insbesondere die monokarbidbildenden Elemente Ti, Nb, Zr, Hf, Ta in Konzentrationen bis 0,1 % bei Kohlenstoffgehalten bis 0,5 % äußerst vorteilhaft wirksame Kornfeinungsmittel, die auf Grund ihrer feindispersen Karbidausscheidungen die Isotropie der Werkstoffe im vergüteten Zustand fördern. Bei der gattungsgemäßen Legierung wird zwar durch die Monokarbidbildner eine komfeinende Wirkung erreicht, die scharfkantigen Ausscheidungen führen jedoch bei Zugbeanspruchungen und bei erhöhten Temperaturen zu einer Rißinitiation, die markant bei Gehalten von größer als 0,008 Gew.-% von Ti+Nb+Zr+Hf+Ta ansteigt, wodurch dieser Wert die erfindungsgemäße Höchstgrenze darstellt.
W, welches in hohen Konzentrationen ebenfalls Monokarbid bilden kann, wirkt jedoch auch in geringen Anteilen im Mischkristall warmversprödungsbildend und sollte , wie vorhin erwähnt, mit den weiteren Einlagerungselementen den Summengrenzwert von 0,35 Gew.-% nicht überschreiten.
Die Ursache der Eigenschaftsverschlechterung der korngrenzenwirksamen Verunreinigungsmetalle ist bei Warmarbeitsstahl wissenschaftlich noch nicht ausreichend geklärt. Es wurde jedoch gefunden, daß ein Summengehalt an As+Bi+Sb+Sn+Zn+B von größer als 0,009 Gew.-% einen überproportionalen Abfall der mechanischen Werte, insbesondere quer zur Verformungsrichtung, mit steigender Temperatur über 400°C bewirkt, so daß dieser Summenhöchstwert insbesondere im Hinblick auf die Isotropie des Werkstoffes erfindungsgemäß nicht überschritten werden soll.
Obwohl durch Vakuumbehandlungen des flüssigen Stahles dessen Gasgehalt absenkbar ist, muß, wie gefunden wurde, eine Entgasungstechnologie angewendet werden, die die Konzentration von N+H auf Werte von unter 0,008 Gew.-% erniedrigt, um einen ungünstigen Einfluß dieser Gasanteile auf die Materialeigenschaften, insbesondere bei erhöhter Temperatur, sowie eine verschlechterte Warmverformbarkeit des Werkstoffes zu vermeiden.
Die Werkstoffeigenschaften, insbesondere deren Isotropie im Werkzeug, können weiter gesteigert werden, wenn die Legierung Werte bzw. Summenwerte für folgende Elemente bzw. Elementegruppen in Gew.-%
Ni+Co+Cu+W
= MAX 0,24
S+P
= MAX 0,004
O
= MAX 0,0008
Si+Al
= MAX 0,19
Ca+Mg
= MAX 0,0006
Ti+Nb+Zr+HF+Ta
= MAX 0,006
As+Bi+Sb+Sn+Zn+B
= MAX 0,005
N+H
= MAX 0,006
aufweist.
Wenn weiters, wie vorteilhaft vorgesehen werden kann, die Legierung Summenmindestwerte für folgende Elementegruppen in Gew.-%
Mn
= 0,125
Ni+Co+Cu+W
= 0,0029
S+P
= 0,00011
O
= 0,00004
Si+Al
= 0,019
Ca+Mg
= 0,000021
N+H
= 0,00011
aufweist, sind optimale mechanische Eigenschaftsmerkmale des Werkstoffes mit hoher Treffsicherheit erreichbar.
Besonders vorteilhaft ist dabei, wenn die Legierung mittels pfannenmetallurgischer Verfahren und unter Verwendung des VAR-Prozesses hergestellt ist, weil damit eine effiziente Kontrolle und Limitierung der Summenhöchstwerte sowie eine Einstellung in Summenbereichen von Verunreinigungs-und Begleitelementen erfolgen können.
Im folgenden wird die Erfindung vergleichend anhand von jeweils lediglich einen Ausführungsweg darstellenden Beispielen von Warmarbeitsstahllegierungen näher dargelegt.
Um den Einfluß der Verunreinigungs- und Begleitelemente auf die mechanischen Werte des Warmarbeitsstahles bei erhöhter Temperatur deutlich herauszuschälen, sind nur diejenigen Werkstoffe der umfassenden Versuche in den Tabellen 1 bis 5 angeführt, die annähernd gleiche Gehalte an Grundelementen und zwar an C, Cr, V und mit Erweiterung Mo aufweisen. Dies soll jedoch keine Einschränkung hinsichtlich der chemischen Zusammensetzung der gattungsgemäßen Eisenbasislegierung darstellen.
Aus Tabelle 1 ist die chemische Zusammensetzung der Stähle A bis N mit den Gehalten der Grundelemente sowie den Einzel- und Summenwerten für die jeweilige Konzentration der Verunreinigungs- und Begleitelemente ersichtlich.
In Tabelle 2 bis Tabelle 4 sind für die Stähle A bis N die festgestellten Einzelgehalte an Verunreinigungs- und Begleitelementen angeführt. Tabelle 5 zeigt die gemessenen mechanischen Werte des Werkstoffes bei 5,43-facher Verformung desselben mit absoluten Werten und solchen in Relation zu Stahl A.
Als Vergleichslegierung A in den Tabellen wurde ein hochbeanspruchbarer Stahl gemäß DIN-Werkstoffnummer 1.2343 ( Eigenschaftsangaben in DIN 17350) ausgewählt und dessen ermittelte Materialwerte für die Warmzähigkeit, den Warmverschleißwiderstand und die Bearbeitbarkeit mit 100% festgelegt.
Die Versuchschmelzen wurden mittels pfannenmetallurgischer Verfahren hergestellt, mit unterschiedlichen Mitteln desoxidiert und zu Elektroden gegossen, wonach durch Umschmelzen derselben, teilweise in einem Vakuum - Lichtbogenofen, eine Blockherstellung erfolgte. Diese Blöcke wurden durch eine Warmschmiedung mit einem Verformungsgrad von 5,43-fach zu Stabstahl umgeformt, an welchem nach einem Härten mit nachfolgend zweimaligem Anlassen eine chemische sowie eine mechanische Materialerprobung erfolgte, deren Ergebnisse in den Tabellen zusammengefaßt sind.
Die Legierungen A bis G, J bis L und N wurden mit einer Sondertechnologie hergestellt, wobei eine Schlackenbehandlung mit hoher Ca-Aktivität in der Pfanne erfolgte. Weiters kamen bei den Stählen A bis G und K bis N Kornfeinungsmittel zum Einsatz. Unreiner Schrott wurde, wie sich in der Folge nachteilig herausstellte, insbesonders für die Legierungen A,B und M eingesetzt. Eine Herstellung der Stähle H und I erfolgte mit besonderer Sorgfalt hinsichtlich der Einsatz- und Legierungsstoffe sowie der Blockerschmelzung. Diese erfindungsgemäß zusammengesetzten Werkstoffe gemäß H und I in den Tabelllen 1 bis 4 erbringen, aufgelistet in Tabelle 5, wesentlich verbesserte mechanische Kennwerte und somit ein überragendes Zeitstandsverhalten eines daraus gefertigten Werkzeuges.
Figure 00100001
Figure 00110001
Figure 00120001
Figure 00130001
Figure 00140001

Claims (4)

  1. Stahl insbesondere Warmarbeitsstahl, mit einem Verformungsgrad von größer als 3,5-fach zur Herstellung von Werkzeugen mit weitgehend isotropen Eigenschaften, insbesondere weitgehend isotropen mechanischen Materialeigenschaften bei Temperaturen bis 550°C und verbessertem Eigenschaftsprofil enthaltend in Gew.-%
    Kohlenstoff
    0,25 bis 0,79
    Chrom
    1,10 bis 7,95
    Molybdän
    0,56 bis 3,49
    Vanadin
    0,26 bis 1,48
    und
    im Mischkristall einlagerbare Elemente:
    Mn
    = MIN 0,098   MAX 0,29
    sowie
    Ni+Co+Cu+W
    = MAX 0,35
    Verunreinigungselemente:
    S+P
    = MAX 0,007
    Sauerstoff:
    O
    = MAX 0,0014
    oxidbildende Elemente:
    Si+Al
    = MIN 0,081   MAX 0,25
    sowie
    Ca+Mg
    = MIN 0,00014   MAX 0,0009
    monokarbidbildende Elemente:
    Ti+Nb+Zr+Hf+Ta
    = MAX 0,008
    komgrenzenwirksame Verunreinigungselemente:
    As+Bi+Sb+Sn+Zn+B
    = MAX 0,009
    Gase:
    N+H
    = MAX 0,008
    Rest Eisen.
  2. Stahl nach Anspruch 1, dadurch gekennzeichnet, daß die Legierung Summenwerte für folgende Elementegruppen in Gew.-%
    Mn
    = MAX 0,21
    Ni+Co+Cu+W
    = MAX 0,24
    S+P
    = MAX 0,004
    O
    = MAX 0,0008
    Si+AL
    = MAX 0,19
    Ca+Mg
    = MAX 0,0006
    Ti+Nb+Zr+Hf+Ta
    = MAX 0.006
    As+Bi+Sb+Sn+Zn+B
    = MAX 0.005
    N+H
    = MAX 0,006
    aufweist.
  3. Stahl nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in der Legierung Summenmindestwerte für folgende Elementegruppen in Gew.-%
    Mn
    = 0,125
    Ni+Co+Cu+W
    = 0,0029
    S+P
    = 0,00011
    O
    = 0.00004
    Si+Al
    = 0,019
    Ca+ Mg
    = 0,000021
    N+H
    = 0,00011
    vorliegen.
  4. Stahl nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Legierung mittels pfannenmetallurgischer Verfahren und unter Verwendung des VAR-Prozesses hergestellt ist.
EP98890052A 1998-02-27 1998-02-27 Eisenbasislegierung zur Verwendung bei erhöhten Temperaturen Expired - Lifetime EP0939140B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES98890052T ES2176944T3 (es) 1998-02-27 1998-02-27 Aleacion basica de hierro para utilizarse a elevadas temperaturas.
DE59804046T DE59804046D1 (de) 1998-02-27 1998-02-27 Eisenbasislegierung zur Verwendung bei erhöhten Temperaturen
AT98890052T ATE217360T1 (de) 1998-02-27 1998-02-27 Eisenbasislegierung zur verwendung bei erhöhten temperaturen
EP98890052A EP0939140B1 (de) 1998-02-27 1998-02-27 Eisenbasislegierung zur Verwendung bei erhöhten Temperaturen
HK00101331A HK1024512A1 (en) 1998-02-27 2000-03-01 Steel for use at high temperatures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98890052A EP0939140B1 (de) 1998-02-27 1998-02-27 Eisenbasislegierung zur Verwendung bei erhöhten Temperaturen

Publications (2)

Publication Number Publication Date
EP0939140A1 EP0939140A1 (de) 1999-09-01
EP0939140B1 true EP0939140B1 (de) 2002-05-08

Family

ID=8237148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98890052A Expired - Lifetime EP0939140B1 (de) 1998-02-27 1998-02-27 Eisenbasislegierung zur Verwendung bei erhöhten Temperaturen

Country Status (5)

Country Link
EP (1) EP0939140B1 (de)
AT (1) ATE217360T1 (de)
DE (1) DE59804046D1 (de)
ES (1) ES2176944T3 (de)
HK (1) HK1024512A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667941A (zh) * 2013-11-08 2014-03-26 张超 一种凸轮转子泵转子合金钢材料及其制备方法
CN106834931A (zh) * 2017-03-28 2017-06-13 宁波禾顺新材料有限公司 一种抗热疲劳的热作模具钢及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE511758C2 (sv) 1998-03-27 1999-11-22 Uddeholm Tooling Ab Stålmaterial för varmarbetsverktyg
AT410447B (de) 2001-10-03 2003-04-25 Boehler Edelstahl Warmarbeitsstahlgegenstand
AT506790B1 (de) * 2008-11-20 2009-12-15 Boehler Edelstahl Gmbh & Co Kg Warmarbeitsstahl-legierung
AT508777B1 (de) * 2010-04-06 2011-04-15 Boehler Edelstahl Gmbh & Co Kg Geschosslauf von feuerwaffen
CN104046915B (zh) * 2014-04-28 2016-05-11 如皋市宏茂重型锻压有限公司 大截面压铸用高性能热作模具钢及其制备工艺
SE539646C2 (en) * 2015-12-22 2017-10-24 Uddeholms Ab Hot work tool steel
CN106435390A (zh) * 2016-08-31 2017-02-22 芜湖市和蓄机械股份有限公司 一种高强度连接座铸件原料配方及其制备工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667941A (zh) * 2013-11-08 2014-03-26 张超 一种凸轮转子泵转子合金钢材料及其制备方法
CN106834931A (zh) * 2017-03-28 2017-06-13 宁波禾顺新材料有限公司 一种抗热疲劳的热作模具钢及其制备方法

Also Published As

Publication number Publication date
ES2176944T3 (es) 2002-12-01
HK1024512A1 (en) 2000-10-13
DE59804046D1 (de) 2002-06-13
ATE217360T1 (de) 2002-05-15
EP0939140A1 (de) 1999-09-01

Similar Documents

Publication Publication Date Title
AT394056B (de) Verfahren zur herstellung von stahl
DE69824419T2 (de) Hochfester, ausscheidungshärtbarer, rostfreier stahl mit guter zähigkeit
DE60115232T2 (de) Stahllegierung, werkzeug zum plastiggiessen und zähgehärteter rohling für plastikgiesswerkzeuge
EP1249511B1 (de) PM-Schnellarbeitsstahl mit hoher Warmfestigkeit
AT410447B (de) Warmarbeitsstahlgegenstand
EP0348380B2 (de) Verwendung einer Eisenbasislegierung zur pulvermetallurgischen Herstellung von Teilen mit hoher Korrosionsbeständigkeit, hoher Verschleissfestigkeit sowie hoher Zähigkeit und Druckfestigkeit, insbesondere für die Kunststoffverarbeitung
EP0939140B1 (de) Eisenbasislegierung zur Verwendung bei erhöhten Temperaturen
AT409636B (de) Stahl für kunststoffformen und verfahren zur wärmebehandlung desselben
EP3850114A1 (de) Korrosionsbeständiger und ausscheidungshärtender stahl, verfahren zur herstellung eines stahlbauteils und stahlbauteil
AT410550B (de) Reaktionsträger werkstoff mit erhöhter härte für thermisch beanspruchte bauteile
DE10019042A1 (de) Stickstofflegierter, sprühkompaktierter Stahl, Verfahren zu seiner Herstellung und Verbundwerkstoff hergestellt aus dem Stahl
EP3412790A1 (de) Ausscheidungshärtender stahl und verwendung eines solchen stahls für warmumformwerkzeuge
DE2800444A1 (de) Legierter stahl
DE10244972B4 (de) Wärmefester Stahl und Verfahren zur Herstellung desselben
DE60201984T2 (de) Werkzeugstahl von hoher zähigkeit, verfahren zum herstellen von teilen aus diesem stahl und so hergestellte teile
DE69818117T2 (de) Hochchromhaltiger, hitzebeständiger Gussstahl und daraus hergestellter Druckbehälter
DE60126646T2 (de) Stahllegierung, halter und haltereinzelteile für kunststoff-formwerkzeuge und vergütete rohlinge für halter und haltereinzelteile
DE4321433C1 (de) Verwendung eines Warmarbeitsstahls
AT403058B (de) Eisenbasislegierung zur verwendung bei erhöhter temperatur und werkzeug aus dieser legierung
DE2937908A1 (de) Te-s-automatenstahl mit niedriger anisotropie und verfahren zu seiner herstellung
DE3720605C2 (de)
EP0897018A1 (de) Duplexstahl mit hoher Festigkeit und Korrosionsbeständigkeit
AT412000B (de) Kaltarbeitsstahl-gegenstand
DE2007057A1 (de) Härtbarer Legierungsstahl
AT414341B (de) Stahl für chemie - anlagen - komponenten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990920

AKX Designation fees paid

Free format text: AT BE CH DE ES FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOEHLER EDELSTAHL GMBH & CO KG.

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010530

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 217360

Country of ref document: AT

Date of ref document: 20020515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT

REF Corresponds to:

Ref document number: 59804046

Country of ref document: DE

Date of ref document: 20020613

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020812

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2176944

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050211

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050309

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060901

BERE Be: lapsed

Owner name: *BOHLER EDELSTAHL G.M.B.H. & CO. K.G.

Effective date: 20060228

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GACHNANG AG PATENTANWAELTE, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160217

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170221

Year of fee payment: 20

Ref country code: FR

Payment date: 20170220

Year of fee payment: 20

Ref country code: DE

Payment date: 20170222

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170221

Year of fee payment: 20

Ref country code: AT

Payment date: 20170217

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170220

Year of fee payment: 20

Ref country code: IT

Payment date: 20170217

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59804046

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180226

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 217360

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180226

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180228