EP0937133B1 - Reinigung von rohrleitungen und behältern in der lebensmittelindustrie - Google Patents

Reinigung von rohrleitungen und behältern in der lebensmittelindustrie Download PDF

Info

Publication number
EP0937133B1
EP0937133B1 EP97945841A EP97945841A EP0937133B1 EP 0937133 B1 EP0937133 B1 EP 0937133B1 EP 97945841 A EP97945841 A EP 97945841A EP 97945841 A EP97945841 A EP 97945841A EP 0937133 B1 EP0937133 B1 EP 0937133B1
Authority
EP
European Patent Office
Prior art keywords
cleaning
water
ether
containers
cleaned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97945841A
Other languages
English (en)
French (fr)
Other versions
EP0937133A2 (de
Inventor
Dietmar Rossner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecolab Inc
Original Assignee
Ecolab GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecolab GmbH and Co OHG filed Critical Ecolab GmbH and Co OHG
Publication of EP0937133A2 publication Critical patent/EP0937133A2/de
Application granted granted Critical
Publication of EP0937133B1 publication Critical patent/EP0937133B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/825Mixtures of compounds all of which are non-ionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/835Mixtures of non-ionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D10/00Compositions of detergents, not provided for by one single preceding group
    • C11D10/04Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap
    • C11D10/045Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap based on non-ionic surface-active compounds and soap
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/003Colloidal solutions, e.g. gels; Thixotropic solutions or pastes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/523Carboxylic alkylolamides, or dialkylolamides, or hydroxycarboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain one hydroxy group per alkyl group
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/75Amino oxides
    • C11D2111/20

Definitions

  • the invention is in the field of cleaning pipelines and containers in the food industry, such as pipe and / or container cleaning in in the beverage industry, in breweries, dairy farms etc. It relates to the use of cleaning agents known per se for hard surfaces in one Process that cleans the inside of pipes and / or containers.
  • CIP cleaning-in-place
  • COP cleaning-on-place
  • the inner surfaces of pipes and containers are cleaned using the CIP process.
  • detergent solutions and rinsing water are provided in tanks with a volume of 2 - 20,000 liters in so-called CIP tanks.
  • the cleaning and rinsing liquids are fed to the tank or piping system to be cleaned by means of a pump via valves and pipelines and applied as static film or rotating spray systems as a trickle film or by flooding on their inner walls.
  • the cleaning effect results from the chemical / physical cleaning effect of the applied cleaning solution, the cleaning temperature, the treatment time and the mechanical cleaning effect.
  • the cleaning liquids run under the tank or out of the pipelines and are returned to the CIP tanks by means of a second pump via a return line with appropriate valves.
  • the pre-rinse water is usually directed to the sewage system, and fresh water used as rinse water is collected in the pre-rinse tank for the next pre-rinse. More complex cleaning processes consist of several cleaning steps and one disinfection step.
  • the individual cleaning steps and disinfection are separated by an intermediate rinse with fresh water.
  • the intermediate rinses serve to return the cleaning solutions and remove the residues from the tank and pipe walls.
  • the solutions from the intermediate rinses are usually also fed to the pre-rinse tank.
  • CIP systems for this more complex process have correspondingly more CIP tanks, e.g. pre-rinse tank, tank for alkaline cleaning, tank for acid cleaning, disinfectant tank and fresh water tank. If necessary, the detergent tanks are designed to be heated so that hot cleaning can be carried out.
  • the process described above is referred to as "stacked" CIP cleaning or "stack cleaning", since here the solutions are "stacked" in the CIP tanks for reuse, if necessary after cleaning by membrane filtration. In contrast to this, with the "lost" cleaning variant, the solutions are fed into the sewerage at the end of the cleaning step and not "stacked".
  • Losses of water and detergents are retained during batch cleaning Limits, with a well-set CIP procedure one expects a loss of 5 - 10%.
  • This Losses refer to the volume that is in the supply lines from the CIP tank to the spray head on the tank to be cleaned, in the tank itself and in the return line the so-called circulation volume. The losses arise through partial Mixing of the individual phases (pre-rinse water, cleaning agent solutions, Rinsing water) in the pipes and especially in the tank as well as switching delays when switching valves.
  • foam-free cleaning solutions are used. This is because e.g. one only half-full pipe, the other half with foam on the cleaning solution floats, is wetted, and is completely cleaned, since the mechanical and chemical cleaning power of the foam does not match that of the cleaning solution. Foaming is also undesirable in containers because the foam is rinsed out considerable time and water losses as there are in the tanks Only respond to the level indicator after the foam has been completely removed.
  • WO-A-94/18 301 (Laporte E.S.D.) the use of a strong alkaline, aqueous, highly viscous cleaning agent for cleaning Metal kettles that are used in the food industry are described.
  • These cleaning agents contain at least 40% by weight of solids and consist of sodium hydroxide, a polyacrylic acid salt and others Auxiliaries, builders, surfactants and complexing agents.
  • DE-A-36 35 357 (Wellhoener) relates to a method for cleaning and Germ reduction in the beverage industry, especially in the brewery, consisting of the following process steps: 1) pre-rinsing with water, 2) Cleaning rinsing, 3) intermediate rinsing with water, 4) disinfection rinsing, 5) Final rinse with fresh water.
  • the cleaning rinse and the Disinfection rinsing with an alkali, preferably sodium hydroxide solution an additive is added to the lye, which is a surfactant and optionally Contains complexing agents and solubilizers. This is the process a "lost" CIP process.
  • US-A-4,935,065 (Ecolab Inc.) relates to a "stacked" CIP cleaning process for use in the food industry. It will Cleaner concentrates used, the alkali metal hydroxide, active chlorine compounds, Contain acrylic polymers and organic phosphonic acids.
  • the invention has for its object an improved method for cleaning of pipelines and containers in the food industry.
  • the disadvantages of the "lost" CIP cleaning are to be avoided and thus a same or better cleaning success with less water and Use of detergents, lower energy costs and reduced cleaning and Downtime can be achieved.
  • a method for Cleaning of pipes and containers in the food industry thereby characterized in that a water-thickenable cleaner concentrate, containing surfactant components and / or diluents and / or Complexing agent and other components of cleaning agents, with water to an application concentration of 0.2 to 10 wt .-%, that is by one Diluted factor between 10 and 500, the aqueous cleaning solution thus obtained then applied to the inner surfaces to be cleaned and after one Rinse with water for 1 to 60 minutes, taking this Detergent as part of a "lost" cleaning-in-place (CIP) cleaning be used.
  • a water-thickenable cleaner concentrate containing surfactant components and / or diluents and / or Complexing agent and other components of cleaning agents
  • the water with the Application dilution solution understood while using Detergent or cleaner concentrate is the undiluted, thin solution of Ingredients is meant.
  • Such water-thickenable cleaner concentrates are harder for cleaning Surfaces (COP cleaning) in the food industry are known in the prior art and broadly described. Because of their adhesive properties and / or their foaming power So far, however, these cleaners have only been used for COP cleaning or Cleaning of open sanitary objects such as toilet bowls or bathtubs restricted been because when cleaning closed systems disadvantages in terms of Cleaning performance and / or the rinsability of the foam were feared.
  • these water-thickenable cleaner concentrates can also be used for CIP cleaning can be used, the use of film-forming cleaners, Gel cleaners and rheopexic cleaners are preferred.
  • EP-B-265 979 (Akzo) describes thickening premixes for the production of thickened aqueous single-phase detergents known from 0.1 to 10 wt .-% a surfactant, which can be, for example, a tertiary amine oxide, and 0.01 to 3% by weight an organic anionic sulfonate exist.
  • a surfactant which can be, for example, a tertiary amine oxide, and 0.01 to 3% by weight an organic anionic sulfonate exist.
  • This thickened watery Cleaning agents show thixotropic behavior, which means that they have a high viscosity at low shear forces.
  • EP-A-276 501 (Akzo) are thickened, aqueous Known detergent with thixotropic behavior, which is a primary, secondary or tertiary amine or diamine with at least one of at least 10 carbon atoms existing hydrocarbon residue as well as an organic sulfonate and a weak one Contain acid with a pK value less than 2.0.
  • Other documents dealing with deal with thickening detergent concentrates for example WO96 / 21721 (Jeyes Group PLC), EP-A-0 724 013 (Colgate-Palmolive) and US-5,078,896 (Akzo).
  • German published patent application DE 195 ⁇ 04 ⁇ 192 (Henkel KGaA) describes thickening aqueous cleaning agents for hard surfaces which contain a combination of at least one tertiary amine oxide, at least one alkyl polyglycoside and at least one water-soluble organic solvent selected from the group of mono- or polyvalent ones Alcohols, the glycol ether and the alkanolamines contain. This document does not disclose the use for inner surfaces of pipelines or containers.
  • WO95 / 02664 also describes thickenable substances by adding water Cleaners that are either ether sulfates, optionally in combination with other surfactants, or cationic surfactants, optionally together with Nonionic surfactants. Again, only use on hard ones external surfaces such as toilet bowls, walls or floors.
  • U.S. Patent 4,842,771 (Akzo N.V.) describes cleaning solutions which are described in Shear stress reduce their viscosity (thioxotropic behavior) and quaternary Ammonium salts or amine oxides and cumene sulfonate, xylene sulfonate, toluenesulfonate or mixtures of the sulfonates. These funds are for use on non-horizontal hard surfaces can be used.
  • EP-A-0 595 590 discloses a chlorine free, low alkaline Detergent concentrate, the amine oxides, anionic surfactants, a hydrophobically modified Contains polymer, a thinner and alkalis and a gel film on hard surfaces formed.
  • EP-A-0 314 232 discloses water thickeners Detergent concentrates described that a surfactant from the group of amines, Amine oxides and quaternary ammonium salts, a cosurfactant, ionizable compounds as well as water. These cleaners are also used for hard surfaces used.
  • Cleaner concentrates that can be thickened with water therefore contain surfactants Components, both anionic surfactants, cationic surfactants and nonionic surfactants as well possibly amphoteric surfactants are used, diluents, acidic or alkaline Components, builders and cobuilders, for example polymers and other active ingredients Excipients.
  • the cleaner concentrate contain further components, for example additional alkalis, Chelating agents, further anionic and / or nonionic surfactants, enzymes, Preservatives, sequestering agents, oxidizing (bleaching) agents, dyes and / or perfumes.
  • the main anionic surfactants used in thickening cleaners are alkyl sulfates and sulfonates, alkylbenzenesulfonates (ABS), ⁇ -sulfofatty acid esters (ester sulfonates), in short and long-chain glycerol esters, fatty alcohol sulfates (FAS), alkyl sulfosuccinic acid (ASB) as well as soaps.
  • anionic surfactants from the above groups are the commercially available Eltesol® SX30 (sodium xylene sulfonate, commercial product from Albright & Wilson), Triton® H55 (potassium phosphate ester, Hendels product from Union Carbide), Marlinat® DF8 (sodium sulfosuccinate, commercial product of the company Hüls), Hostapur® SAS 30X (sodium alkane sulfonate, commercial product from Hoechst), Hostapur® 0S (sodium olefin sulfonate, commercial product from Hoechst), Petronat® S (Sodium petroleum sulfonate, commercial product from Witco), Hamposyl® L 30 (Sodium lauroyl sarcosinate, commercial product from Hampshire); Fenopon® T33 (Sodium-N-methyl-N-oleyl taurate, commercial product from GAS) and Fenopon® AC 78 (sodium coconut isoth
  • Cationic surfactants used in thickening cleaner concentrates come from the group of quaternary ammonium salts, the primary, secondary and tertiary amines and their salts and the polyamines.
  • Examples of such Cationic surfactants are Empigen® BAC (alkyldimethylbenzalkonium chloride, commercial product from Albright & Wilson), Armac® 1 (tallow amine acetate amine salts, commercial product from Akzo), Synprolan® 35N3 (N-alkyl propanediamine, commercial product from the company ICI) and Symprolan® 35 X10 (ethoxylated primary amine with 10 EO, commercial product from the company ICI).
  • Nonionic surfactants used in water-thickening cleaner concentrates come from the group of amine oxides, glucosides and alkyl polyglucosides (APG), the alkoxylated fatty alcohols and their esters, the alkoxylated fatty acids and Alkylphenols, the alkanolamides and their alkoxylation products, sucrose and Sugar esters, fatty acid esters and alkyl amines.
  • APG alkyl polyglucosides
  • Examples include Synperonic® A (alcohol ethoxylates, commercial product from ICI), Crodet® L24 (polyoxyethylene-24-lauric acid, Commercial product from Croda), Synperonic® NP nonylphenol ethoxylates, Commercial product from ICI), Empilan® CME (coconut monoethynolamide, Commercial product from Albright & Wilson), Triton® CG110 (Alkyl glucoside, commercial product from Union Carbide), Glucam® E10 (Methylglucoside with 10 EO, commercial product from Amerchol), Crodesta® SL 40 (Sucrose cocoate, commercial product from Croda), Empilan® MAA (ethoxylated Coconut monoethanolamide, commercial product from Albright & Wilson), Ethomeen® C12 (ethoxylated coconut amine, commercial product from Akzo) and Tegosoft® 16 B (cetyl isooctanoate, commercial product from Goldschmidt).
  • amphoteric surfactants mostly only in combination with Anionic surfactants are selected from the group of alkyl betaines, Alkylaminopropionates, alkyliminodipropionates, alkylglycinates, carboxyglycinates, Alkylimidazolines sulfobetaines, alkyl polyaminocarboxylates and Polyamphocarboxyglycinate.
  • Tegobetain® A4080 Alkyldimethylbetaine, commercial product from Goldschmidt
  • Ampholak® XCU Coconut amphoglycolate, commercial product from Bero Nobel
  • Amphotensid CT® Alkylimidazoline based amphoteric surfactant, commercial product from Zschimmer and Black
  • Ampholak® XCO 30 coconut amphocarboxyglycinate, commercial product of Bero Nobel
  • Sandobet® SC coconut amide sulfobetaine, commercial product of Sandoz.
  • the Solubilizers selected from ethanol, n- or i-propanol, butanols, glycol, Propane or butanediol, glycerol, diglycol, propyl or butyl diglycol, Ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether, Ethylene glycol mono-n-butyl ether, diethylene glycol methyl ether, Diethylene glycol ethyl ether, propylene glycol methyl, ethyl or propyl ether, Dipropylene glycol methyl or ethyl ether, methoxy, ethoxy or butoxytriglycol, 1-butoxyethoxy-2-propanol
  • Known builders that can be used in water-thickenable cleaner concentrates are monomeric or oligomeric phosphates such as, for example, monophosphates, pyrophosphates, triphosphates and cyclic or polymeric metaphosphates.
  • Organic builder substances can preferably be selected from the polymers and copolymers of acrylic acid, hydroxyacrylic acid, maleic acid and allyl alcohol.
  • Poly (tetramethylene-1,2-dicarboxylates) and poly (4-methoxytetramethylene-1,2-dicarboxylates) can also be used.
  • the inorganic and organic builders mentioned are used in the form of their water-soluble salts, in particular their sodium or potassium salts.
  • alkali metal hydroxides sodium or, for example, are additional alkalis Potassium carbonate and sodium or potassium silicates into consideration.
  • suitable Chelating agents are, for example, the alkali salts of Ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid (NTA) as well Alkali metal salts of anionic polyelectrolytes such as polyacrylates, polymaleates and Polysulfones.
  • EDTA Ethylenediaminetetraacetic acid
  • NTA nitrilotriacetic acid
  • anionic polyelectrolytes such as polyacrylates, polymaleates and Polysulfones.
  • low molecular weight hydroxycarboxylic acids such as citric acid, Suitable tartaric acid, malic acid or gluconic acid.
  • Suitable complexing agents be further selected from organophosphonates such as 1-hydroxyethane-1,1-diphosphonic acid (HEDP), Aminotri (methylenephosphonic acid) (ATMP), Diethylenetriaminepenta (methylenephosphonic acid) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBS-AM).
  • organophosphonates such as 1-hydroxyethane-1,1-diphosphonic acid (HEDP), Aminotri (methylenephosphonic acid) (ATMP), Diethylenetriaminepenta (methylenephosphonic acid) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBS-AM).
  • Oxidizing agents can also be added to the thickenable agents in order to be able to better remove oxidatively bleachable dirt and / or to simultaneously remove germs from the surfaces to be cleaned.
  • the oxidizing agent is preferably not used in the cleaning agent concentrate, but rather is introduced via the water used for the dilution, which may contain H 2 O 2 , for example.
  • the method according to the invention has now compared to the conventional "lost" CIP process has the advantage that pipes and containers are not permanently rinsed must, but a "pulsating" cleaning from wetting and exposure time can.
  • a "pulsating" cleaning from wetting and exposure time can be sticking to the inner walls or slowly running down Detergents also appear in the pipes, vertical currents, which the Improve cleaning success.
  • the cleaning agent film or foam runs in containers slower from the surface than the solution in the conventional CIP process, see above that different shear loads occur in the wetting and action phases act on the dirty wall, which also improves cleaning success.
  • rheopexes that is to say, are particularly advantageous Viscosity-increasing cleaning agents are used under shear stress.
  • the Advantages of this method according to the invention are that the application of the rheopex cleaning solution due to the action of shear forces during application leads to a stable foam or film that slowly liquefies as a result on the one hand the exposure time to the surfaces to be cleaned compared to a large-pored one Foam increases, on the other hand there is an additional mechanical one Cleaning effect that the known film-forming cleaners do not have.
  • a rinsing of the surfaces required in prior art methods with hot water can be done but is not necessary as the Cleaning solution light and residue-free with little use of cold water can be removed.
  • the pre-cleaning of the surfaces can also be completely eliminated.
  • cleaning agents for hard surfaces in the state of the art food industry Technology can be used in the inventive method.
  • cleaning agent with regard to its physical Properties considering the desired cleaning temperature select. In dairies, for example, cleaning temperatures are between 50 and 70 ° C preferred, while in breweries between 0 and 10 ° C, especially at Fermentation cellar temperature (5 ° C) is cleaned and in the beverage industry in general Cleaning temperatures between 10 to 90 ° C, preferably between 20 and 70 ° C. be applied.
  • compositions mentioned below illustrate the different possibilities, cleaner concentrates for use in the invention Manufacturing process.
  • the viscosity values are dependent on the dilution also specified.
  • Table 1 contains a selection of formulations of rheopexic, water-thickening cleaner concentrates.
  • Table 2 shows the viscosities of the compositions in their original composition and after dilution with water by a factor of 5, a factor of 10 and a factor of 20, that is to say as 20%, 10% and 5% aqueous preparations.
  • the viscosity measurements were carried out at a sample temperature of 20 ° C using a Brookfield digital viscometer, model LVTDV-II using spindle No. 1 (LV series code number 61) with a spindle rotation of 30 revolutions / minute, the value after 10 seconds Measuring time was read.
  • Table 3 contains a selection of formulations of low-foaming, water-thickening cleaner concentrates.
  • Table 4 shows the viscosities of the compositions in their original composition and after dilution with water by a factor of 10 and a factor of 20, that is to say as 10% and 5% aqueous preparations. The viscosity measurements were carried out at a sample temperature of 20 ° C. using a Brookfield digital viscometer, model LVTDV-II, using spindle No. 1 (LV series code number 61) with a spindle rotation of 30 revolutions / minute.
  • compositions in% by weight S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 A 6.0 6.0 6.0 6.0 6.0 20.0 20.0 1.0 20.0 B 3.0 4.0 4.0 4.0 4.0 13.0 13.0 0.6 1.0 C - - - - - 4.0 - - - - diglycol - - 2.0 2.0 - - - - - - i-propanol 8.0 2.0 2.0 2.0 - - 10.0 - 0.5 10.0 ethanol - - - - 8.0 - - - - - triethanolamine - - - - - - - - - 10.0 - - NaOH 50% - - - 15.0 - - - - - - - - - water 83.0 88.0 86.0 71.0 82.0 86.0 57.0 57.0 87.9 69.0 A: Bis (2-hydroxyethyl) tallow fatty amine N
  • Table 5 contains a selection of formulations of film- and gel-forming, water-thickenable cleaner concentrates.
  • the viscosities of the agents in their diluted form are so high that stable gel films form on the surfaces to be cleaned.

Description

Die Erfindung liegt auf dem Gebiet der Reinigung von Rohrleitungen und Behältern in der Lebensmittelindustrie, wie beispielsweise der Rohrleitungs- und/oder Behälterreinigung in der Getränkeindustrie, in Brauereien, Milchwirtschaftsbetrieben usw. Sie betrifft den Einsatz an sich bekannter Reinigungsmittel für harte Oberflächen in einem Verfahren, das die Innenflächen von Rohren und/oder Behältern reinigt.
In der Lebensmittelindustrie werden Anlagen und Gebäude nach zwei grundlegenden Verfahren gereinigt: Dem "cleaning-in-place" (CIP)- und dem "cleaning-on-place" (COP)-Verfahren. Während das COP-Verfahren die Reinigung von offenliegenden Flächen wie Fußböden, Regalflächen usw. durch manuellen oder maschinellen Auftrag, Einwirkung und/oder Einarbeitung sowie Abspülen umfaßt, werden nach dem CIP-Verfahren Innenflächen von Rohrleitungen und Behältern gereinigt. Bei diesem Verfahren werden Reinigungsmittellösungen und Spülwasser in Tanks mit einem Volumen von 2 - 20.000 Litern in sogenannten CIP-Tanks bereitgestellt. Aus diesen Tanks werden die Reinigungs- und Spülflüssigkeiten mittels einer Pumpe über Ventile und Rohrleitungen dem zu reinigenden Tank oder Rohrleitungssystem zugeführt und über statische oder rotierende Spritzsysteme als Rieselfilm oder durch Flutung auf deren innere Wandungen aufgebracht. Der Reinigungseffekt resultiert aus der chemisch/physikalischen Reinigungswirkung der aufgebrachten Reinigungslösung, der Reinigungstemperatur, der Behandlungszeit und dem mechanischen Reinigungseffekt. Die Reinigungsflüssigkeiten laufen unter dem Tank oder aus den Rohrleitungen ab und werden mittels einer zweiten Pumpe über eine Rückführleitung mit entsprechenden Ventilen wieder den CIP-Tanks zugeführt. Das Vorspülwasser wird in der Regel zur Kanalisation geleitet, als Nachspülwasser verwendetes Frischwasser wird im Vorspültank für die nächste Vorspülung aufgefangen. Komplexere Reinigungsverfahren bestehen aus mehreren Reinigungsschritten und einem Desinfektionsschritt. Die einzelnen Reinigungsschritte sowie die Desinfektion werden durch eine Zwischenspülung mit Frischwasser getrennt. Die Zwischenspülungen dienen zur Rückführung der Reinigungslösungen und der Entfernung der Reste von den Tank- und Rohrwandungen. Die Lösungen aus den Zwischenspülungen werden meist auch dem Vorspültank zugeführt. CIP-Anlagen für dieses komplexere Verfahren verfügen über entsprechend mehr CIP-Tanks, z.B. Vorspültank, Tank für eine alkalische Reinigung, Tank für eine saure Reinigung, Desinfektionsmitteltank und Frischwassertank. Bei Bedarf sind die Reinigungsmitteltanks beheizbar ausgelegt, um eine heiße Reinigung durchführen zu können.
Das vorgehend beschriebene Verfahren wird als "gestapelte" CIP-Reinigung oder "Stapelreinigung" bezeichnet, da hier die Lösungen -gegebenenfalls nach Reinigung durch Membranfiltration- zur Wiederverwendung in den CIP-Tanks "gestapelt" werden. Im Gegensatz dazu werden bei der Variante der "verlorenen" Reinigung die Lösungen am Ende des Reinigungsschrittes in die Kanalisation geleitet und nicht "gestapelt".
Bei der Stapelreinigung halten sich die Verluste an Wasser und Reinigungsmitteln in Grenzen, bei gut eingestellten CIP-Verfharen rechnet man mit 5 - 10% Verlust. Diese Verluste beziehen sich auf das Volumen, das sich in den Zufuhrleitungen vom CIP-Tank bis zum Spritzkopf am zu reinigenden Tank, im Tank selbst und in der Rückführleitung befindet, das sogenannte Umlaufvolumen. Die Verluste entstehen durch teilweise Vermischungen der einzelnen Phasen (Vorspülwassr, Reinigungsmittellösungen, Spülwasser) in den Leitungen und vor allem im Tank sowie durch Schaltverzögerungen bei der Umschaltung von Ventilen.
Den relativ geringen Verlusten bei solchen gut eingestellten Anlagen für die "gestapelte" CIP-Reinigung stehen aber auch Nachteile gegenüber:
  • Mit den Reinigungslösungen wird auch der enthaltene Schmutz aus der Reinigung "gestapelt". Bis zu einem gewissen Grad findet eine zunehmende Verschmutzung der Lösungen statt. Nach einer empirisch ermittelten Anzahl von Reinigungen wird daher der Reinigungsmitteltank entleert und neu angsetzt.
  • Bei der Stapelreinigung ist die Reinigungsmittelkonzentration im CIP-Tank konstant zu halten. Verluste durch Verdünnung bzw. Verbrauch durch chemische Reaktionen während der Reinigung sind auszugleichen. Hierbei wird im Stand der Technik die Konzentrationsüberwachung im CIP-Tank durch Leitfähigkeitsmessung angewandt. Dies setzt den Einsatz von Reinigungsmitteln mit einer gut ausgeprägten Leitfähigkeit bzw. einer deutlichen Abhängigkeit ihrer Leitfähigkeit von ihrer Konzentration voraus. Dadurch verbietet sich vielfach der Einsatz neutraler Reinigungsmittel.
  • Bei der Leitfähigkeitsmessung wird im wesentlichen nur die Basiskomponente des eingesetzten Reinigungsmittels (meist Natriumhydroxid oder bei sauren Reinigern eine Mineralsäure wie Phosphor-, Schwefel- oder Salpetersäure) bestimmt. Man schließt aus deren, über die Leitfähigkeit meßbaren, Konzentration auf die Gesamtkonzentration des Produkts. Dies ist in der Regel auch praktikabel, schließt aber nicht mit Sicherheit aus, daß einzelne Inhaltsstoffe moderner, komplex aufgebauter Reinigungsmittel mehr oder weniger stark verbraucht werden als die Basiskomponente. In einigen Fällen kann diese Unsicherheit nicht toleriert werden und es muß eine aufwendige separate Bestimmung gewisser Einzelkomponenten durchgeführt werden (z.B. Hypochlorit, Peroxide).
  • Die oben aufgeführten Nachteile werden ausgeglichen, indem häufig mit höheren Konzentrationen als theoretisch notwendig gearbeitet wird. Außerdem findet ein gewisser Ausgleich durch die im Verhältnis zum Schmutz sehr großen Reinigungsmittelmengen in den CIP-Tanks statt. Dies wirkt sich aber negativ auf die Verfahrensökonomie aus.
  • Eine "gestapelte" CIP-Reinigung erfordert eine hohen apparatetechnischen Aufwand für Stapeltanks, Zuleitungen, Ableitungen, Pumpen, Ventile usw.
  • Bei einer Reinigung, die bei höherer Temperatur erfolgen soll, muß das gesamte Reinigungsmittel erhitzt werden, das sich in den Rohrleitungen und Tanks wieder abkühlt und nach dem Umlauf wieder auf die gewünschte Betriebstemperatur gebracht werden muß. Auf diese Weise wird unter hohem Energieaufwand das gesamte zu reinigende System mit den Zu- und Ableitungen auf die gewünschte Reinigungstemperatur gebracht.
Bei der verlorenen Reinigung werden diese Nachteile zum Teil vermieden. Es steht immer eine frische, unverschmutzte Reinigungslösung mit garantiertem Gehalt aller Inhaltsstoffe zur Verfügung. Hier können auch Reinigungsmittel ohne nennenswerte Leitfähigkeit oder Produkte mit in Lösung weniger stabilen oder stark mit Schmutzbestandteilen reagierenden Einzelkomponenten problemlos zum Einsatz kommen. Auch die Apparatetechnik ist wegen des Fehlens von Rückführleitungen und Stapeltanks einfacher und kostengünstiger. Problematisch bei der verlorenen Reinigung ist ein höherer Verbrauch von Wasser, Reinigungsmitteln und -bei heißer Reinigungthermischer Energie gegenbüber dem Stapelverfahren. Dieser Mehrverbrauch kann nur zu einem Teil durch kleine, optimierte Reinigungsvolumina und Reinigungsmittelkonzentrationen kompensiert werden.
Zusätzlich besteht bei der verlorenen Reinigung der wirtschaftliche Nachteil, daß zu reinigende Rohrleitungen über einen längeren Reinigungszeitraum (in der Regel 15 bis 30 Minuten) hinweg komplett durchspült werden. Auch die Reinigung von Behältern und Tanks erfolgt durch längeres Verspritzen einer großen Menge an Reinigungsmittel. Selbst wenn der Reinigungsmittel- und Wassereinsatz durch zirkulierende Prozeßführung (die wiederum Rückführleitungen erforderlich macht) minimiert wird, treten wieder thermische Verluste auf. Zusätzlich erfordert diese Art der Reinigung auch deshalb längere Reinigungs- und damit Produktionsausfallzeiten, weil eine mechanische Reinigungswirkung nur durch die laminare Strömung in den Rohren und Behältern ermöglicht wird.
Um bei herkömmlichen CIP-Verfahren eine vollständige Benetzung der Oberfläche der zu reinigenden Innenflächen zu erreichen und die Ausspülbarkeit der Reinigungslösung zu ermöglichen, werden nach dem Stand der Technik möglichst schaumarme bzw. schaumfreie Reinigungslösungen eingesetzt. Dies ist dadurch begründet, daß z.B. ein nur halbvoll gefülltes Rohr, dessen andere Hälfte mit Schaum, der auf der Reinigungslösung aufschwimmt, benetzt wird, undvollständig gereinigt wird, da die mechanische und chemische Reinigungskraft des Schaums nicht an die der Reinigungslösung heranreicht. Auch in Behältern ist eine Schaumbildung unerwünscht, da das Ausspülen des Schaums erhebliche Zeit- und Wasserverluste mit sich bringt, da in den Tanks befindliche Füllstandsanzeiger erst nach einer restlosen Beseitigung des Schaums ansprechen.
Allgemeine Ausführungen zu CIP-Verfahren finden sich beispielsweise in der nachstehend angeführten Literatur: A. Graßhoff, "Methoden der Reinigung in milchwirtschaftlichen Betrieben", Seifen-Öle-Fette-Wachse, Vol 124 (1998) Nr. 14, Seiten 1037 bis 1043, C. Hielscher, "Reinigung und Sterilisation von Anlagen und Geräten", Seifen-Öle-Fette-Wachse, Vol 116 (1990), Nr. 15, Seiten 611 bis 616, und J. M. Hyde, "New Developments in CIP Practices", Chem. Eng. Prog., Vol 81 (1985), Nr. 1, Seiten 39 bis 41.
Ferner wird in WO-A-94/18 301 (Laporte E.S.D.) die Verwendung eines stark alkalischen, wäßrigen, hoch-viskosen Reinigungsmittels zur Reinigung von Metallkesseln, die in der Lebensmittelindustrie Verwendung finden, beschrieben. Diese Reinigungsmittel enthalten mindestens 40 Gew.-% an Feststoffen und bestehen aus Natriumhydroxid, einem Polyacrylsäuresalz sowie weiteren Hilfsstoffen, Buildem, Tensiden und Komplexbildnern.
Die DE-A-36 35 357 (Wellhoener) betrifft ein Verfahren zur Reinigung und Keimreduzierung in der Getränkeindustrie, insbesondere im Brauereibetrieb, bestehend aus den folgenden Verfahrensschritten: 1) Vorspülung mit Wasser, 2) Reinigungsspülung, 3) Zwischenspülung mit Wasser, 4) Entkeimungsspülung, 5) Schlußspülung mit Frischwasser. Hierbei wird die Reinigungsspülung und die Entkeimungsspülung mit einer Lauge, vorzugsweise Natronlauge, durchgeführt, wobei der Lauge ein Additiv beigefügt wird, das ein Tensid sowie gegebenenfalls Komplexbildner und Lösungsvermittler enthält. Bei diesem Verfahren handelt es sich um ein "verlorenes" CIP-Verfahren.
Gegenstand der US-A-4,935,065 (Ecolab Inc.) ist ein "gestapeltes" CIP-Reinigungsverfahren zur Anwendung in der Lebensmittelindustrie. Es werden Reinigerkonzentrate eingesetzt, die Alkalimetallhydroxid, Aktivchlorverbindungen, Acrylpolymere und organische Phosphonsäuren enthalten.
Der Erfindung liegt die Aufgabe zugrunde, ein verbessertes Verfahren zur Reinigung von Rohrleitungen und Behältern in der Lebensmittelindustrie bereitzustellen. Hierbei sollen die Nachteile der "verlorenen" CIP-Reinigung vermieden werden und somit ein gleicher oder besserer Reinigungserfolg mit geringerem Wasser- und Reinigungsmitteleinsatz, geringeren Energiekosten und verkürzter Reinigungs- und Ausfallzeit erzielt werden.
Die Lösung dieser Aufgabe gelingt erfindungsgemäß durch ein Verfahren zur Reinigung von Rohrleitungen und Behältern in der Lebensmittelindustrie, dadurch gekennzeichnet, daß man ein mit Wasser verdickbares Reinigerkonzentrat, enthaltend tensidische Komponenten und/oder Verdünnungsmittel und/oder Komplexierungsmittel sowie weitere Bestandteile von Reinigungsmitteln, mit Wasser auf eine Anwendungskonzentration von 0,2 bis 10 Gew.-%, das heißt um einen Faktor zwischen 10 und 500 verdünnt, die so erhaltene wäßrige Reinigungslösung anschließend auf die zu reinigenden Innenflächen aufbringt und nach einer Einwirkungszeit von 1 bis 60 Minuten mit Wasser abspült, wobei diese Reinigungsmittel im Rahmen einer "verlorenen" cleaning-in-place-(CIP-) Reinigung eingesetzt werden.
Unter Reinigungsmittel oder Reinigungslösung wird hierbei die mit Wasser auf die Anwendungskonzentration verdünnte Lösung verstanden, während mit Reinigungsmittel- oder Reinigerkonzentrat die unverdünnte, dünnflüssige Lösung der Inhaltsstoffe gemeint ist.
Diese Konzentrate werden vor dem Auftragen auf die Innenflächen mit Wasser auf eine Anwendungskonzentration von vorzugsweise 0,5 bis 2 Gew.-%, das heißt, um einen Faktor zwischen 50 und 200, verdünnt.
Solche mit Wasser verdickbaren Reinigerkonzentrate sind für die Reinigung harter Oberflächen (COP-Reinigung) in der Lebensmittelindustrie im Stand der Technik bekannt und breit beschrieben. Wegen ihrer Hafteigenschaften und/oder ihres Schaumvermögens ist der Einsatz dieser Reiniger bislang jedoch allein auf die COP-Reinigung oder die Reinigung von offenen Sanitärobjekten wie Toilettenbecken oder Badewannen beschränkt gewesen, da bei einer Reinigung von geschlossenen Systemen Nachteile hinsichtlich der Reinigungsleistung und/oder der Ausspülbarkeit des Schaums befürchtet wurden.
Diese mit Wasser verdickbaren Reinigerkonzentrate können erfindungsgemäß auch zur CIP-Reinigung eingesetzt werden, wobei die Verwendung von filmbildenden Reinigern, Gelreinigern und rheopexen Reinigern bevorzugt ist.
Aus der EP-B-265 979 (Akzo) sind Verdickungsvormischungen zur Herstellung von verdickten wäßrigen einphasigen Reinigungsmitteln bekannt, die aus 0,1 bis 10 Gew.-% eines Tensids, das beispielsweise ein tertiäres Aminoxid sein kann, und 0,01 bis 3 Gew.-% eines organischen anionischen Sulfonats bestehen. Diese verdickten wäßrigen Reinigungsmittel zeigen thixotropes Verhalten, das heißt, sie haben eine hohe Viskosität bei niedrigen Scherkräften. Auch aus der EP-A-276 501 (Akzo) sind verdickte, wäßrige Reinigungsmittel mit thixotropem Verhalten bekannt, die ein primäres, sekundäres oder tertiäres Amin oder Diamin mit mindestens einem aus mindestens 10 C-Atomen bestehenden Kohlenwasserstoffrest sowie ein organisches Sulfonat und eine schwache Säure mit einem pK-Wert kleiner 2,0 enthalten. Weitere Dokumente, die sich mit verdickenden Reinigungsmittelkonzentraten beschäftigen, sind zum Beispiel WO96/21721 (Jeyes Group PLC), EP-A-0 724 013 (Colgate-Palmolive) sowie US-5,078,896 (Akzo).
So beschreibt auch die deutsche Offenlegungsschrift DE 195·04·192 (Henkel KGaA) verdickende wäßrige Reinigungsmittel für harte Oberflächen, die eine Kombination aus mindestens einem tertiären Aminoxid, mindestens einem Alkylpolyglycosid und mindestens einem wasserlöslichen organischen Lösungsmittel ausgewählt aus der Gruppe der ein- oder mehrwertigen Alkohole, der Glycolether und der Alkanolamine, enthalten. Diese Schrift offenbart nicht den Einsatz für Innenflächen von Rohrleitungen oder Behältern.
Auch die WO95/02664 (Jeyes Group PLC) beschreibt durch Wasserzugabe verdickbare Reiniger, die entweder Ethersulfate, gegebenenfalls in Verbindung mit weiteren oberflächenaktiven Stoffen, oder Kationtenside, gegebenenfalls zusammen mit Niotensiden, beanspruchen. Auch hier wird nur die Verwendung auf harten außenliegenden Oberflächen wie Toilettenbecken, Wänden oder Fußböden beschrieben.
Die US-Patentschrift 4,842,771 (Akzo N.V.) beschreibt Reinigungslösungen, die unter Scherbelastung ihre Viskosität verringern (thioxotropes Verhalten) und quartäre Ammoniumsalze oder Aminoxide sowie Cumolsulfonat, Xylolsulfonat, Toluolsulfonat oder Mischungen der Sulfonate enthalten. Diese Mittel sind für die Verwendung an nichthorizontalen harten Oberflächen einsetzbar.
Die EP-A-0 595 590 (Diversey Corp.) offenbart ein chlorfreies, niedrigalkalisches Reinigungsmittelkonzentrat, das Aminoxide, Aniontenside, ein hydrophob modifiziertes Polymer, einen Verdünner und Alkalien enthält und auf harten Oberflächen einen Gelfilm ausbildet.
In der EP-A-0 314 232 (Unilever) werden wasserverdickbare Reinigungsmittelkonzentrate beschrieben, die ein Tensid aus der Gruppe der Amine, Aminoxide und quartären Ammoniumsalze, ein Cotensid, ionisierbare Verbindungen sowie Wasser enthalten. Diese Reiniger werden ebenfalls für harte Oberflächen eingesetzt.
Mit Wasser verdickbare Reinigerkonzentrate enthalten demnach tensidische Komponenten, wobei sowohl Aniontenside, Kationtenside als auch Niotenside sowie eventuell Amphotenside zum Einsatz kommen, Verdünnungsmittel, saure oder alkalische Bestandteile, Builder und Cobuilder, beispielsweise Polymere sowie weitere Wirk- und Hilfsstoffe. Je nach beabsichtigtem Anwendungszweck kann das Reinigerkonzentrat weitere Komponenten enthalten, beispielswiese zusätzliche Alkalien, Chelatkomplexbildner, weitere anionische und/oder nichtionische Tenside, Enzyme, Konservierungsmittel, Sequestrierungsmittel, Oxidations-(Bleich)mittel, Farbstoffe und/oder Parfüme.
Als anionische Tenside kommen in verdickenden Reinigern hauptsächlich Alkylsulfate und -sulfonate, Alkylbenzolsulfonate (ABS), α-Sulfofettsäureester (Estersulfonate), kurz- und langkettige Glycerinester, Fettalkoholsulfate (FAS), Alkylsulfobernsteinsäure (ASB) sowie Seifen in Betracht. Beispiele für Aniontenside aus den oben genannten Gruppen sind die im Handel erhältlichen Eltesol® SX30 (Natriumxylolsulfonat, Handelsprodukt der Firma Albright & Wilson), Triton® H55 (Kaliumphosphatester, Hendelsprodukt der Firma Union Carbide), Marlinat® DF8 (Natriumsulfosuccinat, Handelsprodukt der Firma Hüls), Hostapur® SAS 30X (Natriumalkansulfonat, Handelsprodukt der Firma Hoechst), Hostapur® 0S (Natriumolefinsulfonat, Handelsprodukt der Firma Hoechst), Petronat® S (Natriumpetroleumsulfonat, Handelsprodukt der Firma Witco), Hamposyl® L 30 (Natriumlauroylsarkosinat, Handelsprodukt der Firma Hampshire); Fenopon® T33 (Natrium-N-Methyl-N-oleyl taurat, Handelsprodukt der Firma GAS) und Fenopon® AC 78 (Natrium-Kokosnuß-isothionat, Handelsprodukt der Firma GAS).
Kationische Tenside, die in verdickenden Reinigerkonzentraten eingesetzt werden, stammen aus der Gruppe der quartären Ammoniumsalze, der primären, sekundären und tertiären Amine und deren Salzen sowie der Polyamine. Beispiele für solche Kationtenside sind Empigen® BAC (Alkyldimethylbenzalkoniumchlorid, Handelsprodukt der Firma Albright & Wilson), Armac® 1 (Talgaminacetat Aminsalze, Handelsprodukt der Firma Akzo), Synprolan® 35N3 (N-Alkyl Propandiamin, Handelsprodukt der Firma ICI) sowie Symprolan® 35 X10 (ethoxyliertes primäres Amin mit 10 EO, Handelsprodukt der Firma ICI).
In mit Wasser verdickenden Reinigerkonzentraten eingesetzte Niotenside stammen aus der Gruppe der Aminoxide, der Glucoside und Alkylpolyglucoside (APG), der alkoxylierten Fettalkohole und deren estern, der alkoxylierten Fettsäuren und Alkylphenole, der Alkanolamide und deren Alkoxylierungsprodukten, der Sucrose und Zuckerester, der Fettsäureester und der Alkylamine. Beispielhaft seien hier Synperonic® A (Alkoholethoxylate, Handelsprodukt der Firma ICI), Crodet® L24 (Polyoxyethylen-24-Laurinsäure, Handelsprodukt der Firma Croda), Synperonic® NP Nonylphenol-Ethoxylate, Handelprodukt der Firma ICI), Empilan® CME (Kokosnußmonoethynolamid, Handelsprodukt der Firma Albright & Wilson), Triton® CG110 (Alkylglucoside, Handelprodukt der Firma Union Carbide), Glucam® E10 (Methylglucosid mit 10 EO, Handelsprodukt der Firma Amerchol), Crodesta® SL 40 (Sucrosekokoat, Handelsprodukt der Firma Croda), Empilan® MAA (ethoxyliertes Kokosnuß-Monoethanolamid, Handelsprodukt der Firma Albright & Wilson), Ethomeen® C12 (ethoxyliertes Kokosnußamin, Handelsprodukt der Firma Akzo) sowie Tegosoft® 16 B (Cetylisooctanoat, Handelsprodukt der Firma Goldschmidt) genannt.
Eventuell eingesetzte Amphotenside, die zumeist lediglich in Kombination mit Aniontensiden eingesetzt werden, sind ausgewählt aus der Gruppe der Alkylbetaine, Alkylaminopropionate, Alkyliminodipropionate, Alkylglycinate, Carboxyglycinate, Alkylimidazoline Sulfobetaine, Alkylpolyaminocarboxylate und Polyamphocarboxyglycinate. Beispiele für diese Tensidtypen sind Tegobetain® A4080 (Alkyldimethylbetain, Handelsprodukt der Firma Goldschmidt), Ampholak® XCU (Kokos-Amphoglykolat, Handelsprodukt der Firma Bero Nobel), Amphotensid CT® (Alkylimidazolin basiertes Amphotensid, Handelsprodukt der Firma Zschimmer und Schwarz), Ampholak® XCO 30 (Kokos-Amphocarboxyglycinat, Handelsprodukt der Firma Bero Nobel) sowie Sandobet® SC (Kokosamid-Sulfobetain, Handelsprodukt der Firma Sandoz).
Als Verdünnungsmittel kommen allgemein ein- oder mehrwertige Alkohole, Alkanolamine oder Glycolether in Betracht, sofern sie im angegebenen Konzentrationsbereich mit Wasser mischbar sind. Vorzugsweise werden der oder die Lösungsvermittler ausgewählt aus Ethanol, n- oder i-Propanol, Butanolen, Glykol, Propan- oder Butandiol, Glycerin, Diglykol, Propyl- oder Butyldiglykol, Ethylenglykolmethylether, Ethylenglykolethylether, Ethylenglykolpropylether, Ethylenglykolmono-n-butylether, Diethylenglykol-methylether, Diethylenglykolethylether, Propylenglykolmethyl-, ethyl- oder -propyl-ether, Dipropylenglykolmethyl-, oder -ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, 1-Butoxyethoxy-2-propanol, 3-Methyl-3-methoxybutanol, Propylenglykol-t-butylether und Mono-, Di- und Triethanolamin sowie Mischungen dieser Lösungsmittel.
Bekannte und in mit Wasser verdickbaren Reinigerkonzentraten verwendbare Builder sind monomere oder oligomere Phosphate wie beispielsweise Monophosphate, Pyrophosphate, Triphosphate und cyclische oder polymere Metaphosphate. Weitere Gruppen anorganischer Buildersubstanzen umfassen Carbonate, Hydrogencarbonate, Borate und Silicate, vorzugsweise solche mit einem Molverhältnis SiO2 : M2O (M = Alkalimetall) im Bereich von 0,5 bis etwa 4, insbesondere von etwa 1,0 bis etwa 2,4. Organische Buildersubstanzen können vorzugsweise ausgewählt werden aus den Polymeren und Copolymeren von Acrylsäure, Hydroxyacrylsäure, Maleinsäure und Allylalkohol. Weiterhin sind Poly(tetramethylen-1,2-dicarboxylate) und Poly(4-methoxytetramethylen-1,2-dicarboxylate) einsetzbar. Die genannten anorganischen und organischen Builder werden in Form ihrer wasserlöslichen Salze, insbesondere ihrer Natrium- oder Kaliumsalze, eingesetzt.
Als zusätzliche Alkalien kommen neben den Alkalihydroxiden beispielsweise Natriumoder Kaliumcarbonat sowie Natrium- oder Kaliumsilikate in Betracht. Geeignete Chelatkomplexbildner sind beispielsweise die Alkalisalze der Ethylendiamintetraessigsäure (EDTA) oder der Nitrilotriessigsäure (NTA) sowie Alkalimetallsalze von anionischen Polyelektrolyten wie Polyacrylate, Polymaleate und Polysulfonate. Weiterhin sind niedermolekulare Hydroxycarbonsäuren wie Citronensäure, Weinsäure, Äpfelsäure oder Gluconsäure geeignet Geeignete Komplexbildner können weiterhin ausgewählt sein aus Organophosphonaten wie beispielsweise 1-Hydroxyethan-1,1-diphosphonsäure (HEDP), Aminotri(methylenphosphonsäure) (ATMP), Diethylentriaminpenta(methylenphosphon-säure) sowie 2-Phosphonobutan-1,2,4-tricarbonsäure (PBS-AM).
Auch Oxidationsmittel können den verdickbaren Mitteln zugesetzt werden, um oxidativ bleichbaren Schmutz besser entfernen zu können und/oder die zu reinigenden Flächen gleichzeitig von Keimen zu befreien. Vorzugsweise wird das Oxidationsmittel aber nicht im Reinigungsmittelkonzentrat eingesetzt, sondern über das zur Verdünnung verwendete Wasser eingebracht, das beispielsweise H2O2 enthalten kann.
Das erfindungsgemäße Verfahren hat nun gegenüber den herkömmlichen "verlorenen" CIP-Verfahren den Vorteil, daß Rohre und Behälter nicht permanent gespült werden müssen, sondern eine "pulsierende" Reinigung aus Benetzung und Einwirkzeit erfolgen kann. Durch das an den Innenwänden haftende oder langsam herunterlaufende Reinigungsmittel treten zusätzlich in den Rohren vertikale Strömungen auf, die den Reinigungserfolg verbessern. In Behältern läuft der Reingungsmittelfilm oder -schaum langsamer von der Oberfläche ab als die Lösung beim herkömmlichen CIP-Verfahren, so daß hier in den Benetzungs- und Einwirkphasen unterschiedliche Scherbelastungen auf die verschmutzte Wand einwirken, was den Reinigungserfolg ebenfalls verbessert.
Mit besonderem Vorteil werden im erfindungsgemäßen Verfahren rheopexe, das heißt unter Scherbelastung in ihrer Viskosität steigende Reinigungsmittel eingesetzt. Die Vorteile dieses erfindungsgemäßen Verfahrens bestehen darin, daß das Aufbringen der rheopexen Reinigungslösung durch die Einwirkung von Scherkräften bei der Applikation zu einem stabilen Schaum oder Film führt, der sich langsam verflüssigt Hierdurch wird einerseits die Einwirkzeit auf die zu reinigenden Flächen gegenüber einem grobporigen Schaum erhöht, andererseits tritt beim Ablaufen zusätzlich eine mechanische Reinigungswirkung auf, die die bekannten filmbildenden Reiniger nicht aufweisen. Durch die hohe Viskosität, die bei der mechanischen Applikation der verdickten wäßrigen Lösung unter der Einwirkung der Scherkräfte noch steigt, bildet sich ein feinporiger Schaum, der nicht so schnell zusammenläuft wie herkömmliche gröbere Schäume. Durch das langsame Abfließen des Schaumes von der Fläche werden verschmutzte Stellen mit nachlaufender frischer Reinigungslösung benetzt, wobei zusätzlich zu der mechanischen Einwirkung die hohe Reinigungskraft der frischen Reinigungslösung auf den Schmutz einwirkt. Nach einer Einwirkzeit, die je nach Konzentration der verdickten wäßrigen Lösung zwischen 1 bis 60, vorzugsweise zwischen 5 und 30 Minuten beträgt, kann die gereinigte Fläche abgespült werden. Das Abspülen der Reinigungslösung kann dann mit kaltem Wasser erfolgen, wobei der äußerst feinporige Schaum mit dem Spülwasser leicht abläuft. Ein bei Verfahren des Standes der Technik erforderliches Abspülen der Flächen mit heißem Wasser kann durchgeführt werden, ist aber nicht notwendig, da sich die Reinigungslösung leicht und rückstandsfrei bei geringem Einsatz von Kaltwasser entfernen läßt. Durch die Kombination von Verweilzeit an der Fläche und mechanischer Einwirkung auf den Schmutz kann auch eine Vorreinigung der Flächen gänzlich entfallen.
Grundsätzlich können alle gel- oder filmbildenden sowie rheopexen bekannten Reinigungsmittel für harte Oberflächen in der Lebensmittelindustrei des Standes der Technik im erfindungsgemäßen Verfahren eingesetzt werden. Je nach Verwendungszweck ist dabei das Reinigungsmittel hinsichtlich seiner physikalischen Eigenschaften unter Berücksichtigung der gewünschten Reinigungstemperatur auszuwählen. So werden in Molkereien zum Beispiel Reinigungstemperaturen zwischen 50 und 70°C bevorzugt, während in Brauereien zwischen 0 und 10°C, insbesondere bei Gärkellertemperatur (5°C) gereinigt wird und in der Getränkeindustrie allgemein Reinigungstemperaturen zwischen 10 bis 90°C, vorzugsweise zwischen 20 und 70°C angewandt werden.
Neben dem deutlich verringerten Einsatz von wäßrigen Reinigungsmittellösungen und der damit verbundenen Energieersparnis bei heißer Reinigung tritt bei dem erfindungsgemäßen Einsatz der an sich bekannten Reinigungsmittel ein weiterer Vorteil auf: Trotz Gel- oder Schaumbildung in den Rohrleitungen und an den Innenwänden der Behälter lassen sich die Mittel schon durch kurzes Spülen mit verringertem Wassereinsatz rückstandsfrei aus den zu reinigenden Systemen ausspülen. Hierbei kann es vorteilhaft sein, die Fließrichtung des Spülwassers im Verlaufe der Reinigung zu ändern, dies ist aber zum Beispiel beim Fehlen der apparatetechnischen Voraussetzungen nicht erforderlich.
Auf diese Weise ist es möglich, die verlorene CIP-Reinigung mit einem geringeren Einsatz an Reinigungslösung, Spülwasser, thermischer Energie und Reinigungszeit durchzuführen, was die Verfahrensökonomie stark verbessert.
Die nachfolgend genannten beispielhaften Zusammensetzungen verdeutlichen die unterschiedlichen Möglichkeiten, Reinigerkonzentrate zum Einsatz im erfindüngsgemäßen Verfahren herzustellen. Die Viskositätswerte in Abhängigkeit von der Verdünnung sind ebenfalls angegeben.
Die Tabelle 1 enthält eine Auswahl von Formulierungen rheopexen, mit Wasser verdickender Reinigerkonzentrate. Tabelle 2 zeigt die Viskositäten der Mittel in ihrer ursprünglichen Zusammensetzung und nach Verdünnung mit Wasser um einen Faktor 5, einen Faktor 10 und einen Faktor 20, das heißt als 20%ige, 10%ige und 5%ige wäßrige Zubereitungen. Dabei erfolgten die Viskositätsmessungen bei einer Probentemperatur von 20°C mit einem Brookfield-Digitalviskosimeter, Modell LVTDV-II unter Verwendung der Spindel Nr. 1 (LV-Serie Codierzahl 61) mit einer Spindeldrehung von 30 Umdrehungen/Minute, wobei der Wert nach 10 Sekunden Meßzeit abgelesen wurde.
(Zusammensetzungen in Gew.-%)
Einsatzstoff B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
Triton BG 10 0,5 1,0 3,0 5,0 - 1,0 2,5 5,0 5,0 5,0
AG 6202 - - - - 1,0 - - - - -
EdenorTi05 3,0 3,0 3,0 3,0 3,0 3,0 3,0 2,0 3,0 3,0
Ethanol 10,0 10,0 10,0 10,0 10,0 15,0 10,0 5,0 5,0 5,0
NaOH 50% 20,0 20,0 20,0 20,0 20,0 20,0 20,0 10,0 10,0 10,0
NaXS 40% - - - - - - - - 10 -
NaTS 40% - - - - - - - - - 10
Wasser 66,5 66,0 64,0 62,0 66,0 61,0 64,5 78,0 67,0 67,0
Triton BG 10:   Alkylpolyglycosid (70%) Warenzeichen der Firma Union Carbide
AG 6202:   2-Ethylhexylglycosid (65%) Warenzeichen der Firma Akzo
Edenor Ti05:   C16-18-Fettsäuregemisch, Warenzeichen der Firma Henkel
NaXS:   Natriumxylolsulfonat
NaTS   Natriumtoluolsulfonat
dynamische Viskosität nach Brookfield in mPas
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
Konzentrat 10 11 8 6 10 6,8 7,2 9 3,6 3,8
20 %ig in Wasser 30 78 70 13 60 401 150 10 10 12
10 %ig in Wasser 10 35 30 65 25 10 70 26 24 21
5 %ig in Wasser 5 5 5 20 5 5 5 32 8 9
Tabelle 3 enthält eine Auswahl von Formulierungen schwachschäuemender, mit Wasser verdickender Reinigerkonzentrate. Tabelle 4 zeigt die Viskositäten der Mittel in ihrer ursprünglichen Zusammensetzung und nach Verdünnung mit Wasser um einen Faktor 10 und einen Faktor 20, das heißt als 10%ige und 5%ige wäßrige Zubereitungen. Dabei erfolgten die Viskositätsmessungen bei einer Probentemperatur von 20°C mit einem Brookfield-Digitalviskosimeter, Modell LVTDV-II unter Verwendung der Spindel Nr. 1 (LV-Serie Codierzahl 61) mit einer Spindeldrehung von 30 Umdrehungen/Minute.
Zusammensetzungen in Gew.-%
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
A 6,0 6,0 6,0 6,0 6,0 6,0 20,0 20,0 1,0 20,0
B 3,0 4,0 4,0 4,0 4,0 4,0 13,0 13,0 0,6 1,0
C - - - - - 4,0 - - - -
Butyldiglykol - - 2,0 2,0 - - - - - -
i-Propanol 8,0 2,0 2,0 2,0 - - 10,0 - 0,5 10,0
Ethanol - - - - 8,0 - - - - -
Triethanolamin - - - - - - - 10,0 - -
NaOH 50% - - - 15,0 - - - - - -
Wasser 83,0 88,0 86,0 71,0 82,0 86,0 57,0 57,0 87,9 69,0
A:   Bis(2-hydroxyethyl)talgfettamin-N-oxid (50%ige Lösung)
B:   C8/C10-Alkylglucosid (70%ige Lösung)
C:   Dipropylenglycolmonomethylether
dynamische Viskosität nach Brookfield in mPas
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Konzentrat 5 5 5 3 9 3 11,8 86 78 25
10 %ig in Wasser 42 64 71 39 63 35 22,5 110 130 154
5 %ig in Wasser 13 12 51 4 14 9 76,8 130 12 83
Die Tabelle 5 enthält eine Auswahl von Formulierungen film- und gelbildender, mit Wasser verdickbarer Reinigerkonzentrate. Die Viskositäten der Mittel in ihrer verdünnten Form (Anwendungskonzentrationen von 5 bis 15 Gew.-%) sind dabei so hoch, daß sich an den zu reinigenden Flächen stabile Gelfilme ausbilden.
Ethomeen® S12 N,N-dihydroxyethyl(oleylamid) Warenzeichen der Firma Akzo
Dobanol® 45/7 C14-15 Fettalkoholethoxylat mit 7 EO, Warenzeichen der Firma Shell
Dobanol® 25-3S/27 Analogsubstanz zu KSN 27, Warenzeichen der Firma Shell
Aromox® T12 Aminoxid-Tensid, Warenzeichen der Firma Akzo
Empigen® OH C14-tertiäres Aminoxid, Warenzeichen der Firma Albright &
Wilson
KSN® 27 Dodecylsulfat mit 3 EO, Warenzeichen der Firma Albright &
Wilson
Dequest® 2000 Phosphonat-Sequestrierungsmittel, Warenzeichen der Firma Monsanto
Wardol® X Polyethylenglycolester/Oleylsäure, Warenzeichen der Firma ICI
Trilon® A Trinatriumnitrilitriacetat, Warenzeichen der Firma BASF
Nansa® 1042 Dodecylbenzolsulfonsäure, Warenzeichen der Firma Albright &
Wilson
IMS® 99 industrieller vergällter Alkohol der Firma Hardings
Zusammensetzungen in Gew.-%
G1 G2 G3 G4 G5 G6 G7 G8
Ethomeen S 12 7,5 - - - - - - -
Phosphorsäure 70 % 30,0 20,0 - - - - - -
Salpetersäure 60 % 6,0 1,5 - - - - - -
Na-Xylolsulfonat 30 % 9,0 5,0 5,1 - 4,3 - - -
Dobanol 45/7 2,5 3,0 1,0 0,7 - - - -
Dobanol 25-3S/27 - - - 6,2 - 10,0 - 14,5
Aromox T 12, 49 % - 5,0 3,7 10,5 8,9 10,0 5,5 6,0
Empigen OH 25 % - 5,0 12,4 - 2,0 - 2,4 -
Isopropanol - 2,0 - 7,6 3,0 2,6 - -
Ethanol - - 5,0 - - - - -
Natriumcarbonat - - 5,7 - - - - -
Natriumgluconat - - - 0,5 - 0,5 - 1,0
Natriummetasilikat - - 2,0 - - - - -
KSN 27 27 % - - 3,8 - 6,0 - 6,0 -
Dodecylbenzolsulfonat - - 2,3 - - - - -
NaOH, fest - - 1,0 - 12,5 - 22,5 -
NaOH 50% - - - 6,0 - - - -
NaOH 49% - - - - - - - 6,0
NaOH 47% - - - - - 25 - -
EDTA 39% - - 0,8 - 2,0 - - -
Dequest 2000 - - 0,5 0,5 0,5 0,5 - -
Trilon A 40% - - - 9,0 - 3,0 - -
Wardol-X - - - 4,0 6,0 6,0 - -
Nansa 1042 - - - - - - - 1,0
IMS 99 - - - - - - - 7,5
Wasser Rest Rest Rest Rest Rest Rest Rest Rest

Claims (11)

  1. Verfahren zur Reinigung von Rohrleitungen und Behältern in der Lebensmittelindustrie, dadurch gekennzeichnet, daß man ein mit Wasser verdickbares Reinigerkonzentrat, enthaltend tensidische Komponenten undloder Verdünnungsmittel und/oder Komplexierungsmittel sowie weitere Bestandteile von Reinigungsmitteln, mit Wasser auf eine Anwendungskonzentration von 0,2 bis 10 Gew.-%, das heißt um einen Faktor zwischen 10 und 500 verdünnt, die so erhaltene wäßrige Reinigungslösung anschließend auf die zu reinigenden Innenflächen aufbringt und nach einer Einwirkungszeit von 1 bis 60 Minuten mit Wasser abspült, wobei diese Reinigungsmittel im Rahmen einer "verlorenen" cleaning-in-place (CIP-) Reinigung eingesetzt werden.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Reinigerkonzentrat vor dem Auftragen auf die Innenflächen mit Wasser auf eine Anwendungskonzentration von 0,5 bis 2 Gew.-%, das heißt um einen Faktor zwischen 50 und 200, verdünnt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß man mit Wasser verdickbare Gelreiniger einsetzt.
  4. Vefahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß man mit Wasser verdickbare rheopexe Reiniger einsetzt.
  5. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß man mit Wasser verdickbare Gemische aus Gel- und oder rheopexen Reinigern einsetzt.
  6. Vefahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß Rohre und/oder Behälter in der Brauindustrie bei Temperaturen von 0 bis 10 °C gereinigt werden.
  7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß Rohre und/oder Behälter in der Getränkeindustrie bei Temperaturen von 10 bis 90 °C, vorzugsweise von 20 bis 70 °C, gereinigt werden.
  8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß Rohre und/oder Behälter in der Molkereiindustrie bei Temperaturen von 50 bis 70 °C gereinigt werden.
  9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß als tensidische Komponente Aminoxide, gegebenenfalls in Kombination mit weiteren nichtionischen und/oder anionischen Tensiden, eingesetzt werden.
  10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Verdünnungsmittel ausgewählt sind aus der Gruppe Ethanol, n- oder i-Propanol, Butanolen, Glykol, Propan- oder Butandiol, Glycerin, Diglykol, Propyl- oder Butyldiglykol, Ethylenglykolmethyleter, Ethylenglykolethylether, Ethylenglykolpropylether, Ethylenglykolmono-n-butylether, Diethylenglykolmethylether, Diethylenglykolethylether, Propylenglykolmethyl-, ethyl- oder -propylether, Dipropylenglykolmethyl- oder -ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, 1-Butoxyethoxy-2-propanol, 3-Methyl-3-methoxybutanol, Propylenglykol-t-butylether und Mono-, Di- und Triethanolamin sowie Mischungen dieser Lösungsmittel.
  11. Verfahren nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Reinigerkonzentrate als weitere Hilfs- oder Wirkstoffe weitere Alkalien, Chelatkomplexbildner, Buildersubstanzen, weitere anionische und/oder nichtionische Tenside, Enzyme, Konservierungsmittel, Sequestrierungsmitel, Oxidationsmittel, Farbstoffe und/oder Parfüme enthalten.
EP97945841A 1996-10-24 1997-10-15 Reinigung von rohrleitungen und behältern in der lebensmittelindustrie Expired - Lifetime EP0937133B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19643552A DE19643552A1 (de) 1996-10-24 1996-10-24 Reinigung von Rohrleitungen und Behältern in der Lebensmittelindustrie
DE19643552 1996-10-24
PCT/EP1997/005691 WO1998017776A2 (de) 1996-10-24 1997-10-15 Reinigung von rohrleitungen und behältern in der lebensmittelindustrie

Publications (2)

Publication Number Publication Date
EP0937133A2 EP0937133A2 (de) 1999-08-25
EP0937133B1 true EP0937133B1 (de) 2003-03-05

Family

ID=7809437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97945841A Expired - Lifetime EP0937133B1 (de) 1996-10-24 1997-10-15 Reinigung von rohrleitungen und behältern in der lebensmittelindustrie

Country Status (4)

Country Link
EP (1) EP0937133B1 (de)
AU (1) AU5119698A (de)
DE (2) DE19643552A1 (de)
WO (1) WO1998017776A2 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731398A1 (de) 1997-07-22 1999-01-28 Henkel Ecolab Gmbh & Co Ohg Verwendung enzymhaltiger Lösungen zum Reinigen von Gär- und Lagertanks
DE10222127C1 (de) * 2002-05-17 2003-12-18 Dienst Sondermaschinen Gmbh Rohrreinigungssystem
EP1707619B1 (de) 2003-07-14 2009-11-18 Kao Corporation Cip-reinigungsmittel
US7838485B2 (en) * 2007-03-08 2010-11-23 American Sterilizer Company Biodegradable alkaline disinfectant cleaner with analyzable surfactant
DE102007022798A1 (de) 2007-05-11 2008-11-13 Sig Technology Ag Verfahren und Vorrichtung zum gleichzeitigen Reinigen mehrerer Rohrleitungen oder Rohrleitungssysteme
DE102015209354A1 (de) * 2015-05-21 2016-05-19 Jürgen Löhrke GmbH Cleaning-in-place-Verfahren
CN114854506B (zh) * 2021-01-20 2024-03-15 内蒙古大学 一种绿色复合cip清洗剂及其制备方法和使用方法
CN113637529B (zh) * 2021-07-05 2023-09-01 安徽海顺化工有限公司 一种洗涤装置及使用方法
WO2023197233A1 (en) * 2022-04-14 2023-10-19 Ecolab Usa Inc. Chemo-mechanical solution for cleaning fluidic tanks and piping
CN115710535A (zh) * 2022-11-28 2023-02-24 广东红日星实业有限公司 一种清洁剂及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1151501A (en) * 1981-03-24 1983-08-09 Gilles M. Tastayre Cleaning gel, and process for its manufacture and use
US4935065A (en) * 1986-08-22 1990-06-19 Ecolab Inc. Phosphate-free alkaline detergent for cleaning-in-place of food processing equipment
DE3635357A1 (de) * 1986-10-17 1988-04-21 Veit Wellhoener Verfahren zur reinigung und keimreduzierung in der getraenkeindustrie
EP0314232A3 (de) * 1987-10-27 1990-07-04 Unilever N.V. Verdickende Gele
GB9302855D0 (en) * 1993-02-12 1993-03-31 Laporte Esd Ltd Cleaning composition
DE19504192A1 (de) * 1995-02-09 1996-08-14 Henkel Ecolab Gmbh & Co Ohg Verdickende wäßrige Reinigungsmittel für harte Oberflächen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GRASSHOFF, A.: "METHODEN DER REINIGUNG IN MILCHWIRTSCHAFTLICHEN BETRIEBEN", SÖWF, vol. 124, 1998, pages 1037 - 1043 *
HIELSCHER,C: "REINIGUNG UND STERILISATION VON ANLAGEN UND GERÄTEN", SÖFW, vol. 116, September 1990 (1990-09-01), pages 611 - 616 *
HYDE,J.: "NEW DEVELOPMENTS IN CIP PRACTICES", CHEM. ENG. PROG., vol. 81, 1985, pages 39 - 41 *

Also Published As

Publication number Publication date
DE59709454D1 (de) 2003-04-10
AU5119698A (en) 1998-05-15
EP0937133A2 (de) 1999-08-25
WO1998017776A3 (de) 1999-01-21
DE19643552A1 (de) 1998-04-30
WO1998017776A2 (de) 1998-04-30

Similar Documents

Publication Publication Date Title
US11834624B2 (en) Alkyl amides for enhanced food soil removal and asphalt dissolution
EP0808354B1 (de) Verdickende wässrige reinigungsmittel für harte oberflächen
US4608189A (en) Detergents and liquid cleaners free of inorganic builders
AU675833B2 (en) Concentrated all-purpose light duty liquid cleaning composition and method of use
DE69734427T2 (de) Hydrotrop enthaltende reiniger für harte oberflächen mit verminderter rückstandsbildung
DE60211552T2 (de) Flüssiges geschirrspülmittel enthaltend wasserstoffperoxid
DE19936727A1 (de) Niotensidbasiertes wäßriges mehrphasiges Reinigungsmittel
EP0937133B1 (de) Reinigung von rohrleitungen und behältern in der lebensmittelindustrie
EP0966514A1 (de) Wässrige bleichmittel
EP0928829B1 (de) Reinigung harter Oberflächen mit rheopexen wässrigen Reinigungsmitteln
EP0998549B1 (de) Verwendung enzymhaltiger lösungen zum reinigen von gär- oder lagertanks
DE19945506A1 (de) Antimikrobielles wäßriges mehrphasiges Reinigungsmittel
US20170369817A1 (en) Hard surface cleaning compositions
DE3512535A1 (de) Verfahren zum manuellen reinigen von gegenstaenden mit harten oberflaechen
EP0944712B1 (de) Reinigungsmittel
WO1998017774A1 (de) Reinigung harter oberflächen mit rheopexen wässrigen reinigungsmitteln
CH635614A5 (en) Liquid detergent and process for its preparation
EP1483361B1 (de) Verdickte peroxidlösungen
DE60210336T2 (de) Schonende reinigungsflüssigkeiten mit konservierungssystem
DE10063427A1 (de) Antibakterielles Reinigungsmittel
DE2711434A1 (de) Fluessiges wasch- und reinigungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990415

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE DK ES FI FR GB IE IT LI NL SE

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ECOLAB GMBH & CO. OHG

17Q First examination report despatched

Effective date: 20020506

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): BE CH DE DK ES FR GB IT LI NL

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59709454

Country of ref document: DE

Date of ref document: 20030410

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 0937133E

Country of ref document: IE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ECOLAB INC.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ECOLAB INC.

26N No opposition filed

Effective date: 20031208

NLS Nl: assignments of ep-patents

Owner name: ECOLAB INC.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050914

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050916

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051006

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061031

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061015

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071015