EP0931854A1 - Inhibition de la corrosion des aciers inoxydables en milieu acide organosulfonique - Google Patents

Inhibition de la corrosion des aciers inoxydables en milieu acide organosulfonique Download PDF

Info

Publication number
EP0931854A1
EP0931854A1 EP98403065A EP98403065A EP0931854A1 EP 0931854 A1 EP0931854 A1 EP 0931854A1 EP 98403065 A EP98403065 A EP 98403065A EP 98403065 A EP98403065 A EP 98403065A EP 0931854 A1 EP0931854 A1 EP 0931854A1
Authority
EP
European Patent Office
Prior art keywords
cerium
mole
acid
salt
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98403065A
Other languages
German (de)
English (en)
Inventor
Jean Goudiakas
Guy Rousseau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Elf Atochem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem SA filed Critical Elf Atochem SA
Publication of EP0931854A1 publication Critical patent/EP0931854A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/04Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly acid liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors

Definitions

  • the present invention relates to the field of stainless steels and that organosulfonic acids. It has more particularly the object of protection stainless steels against corrosion by organosulfonic acids such as methanesulfonic acid.
  • Methanesulfonic acid is a strong acid which has found many applications, in particular in catalysis and in surface treatment (electroplating, pickling, descaling, ).
  • AMS aqueous solutions attack stainless steels; corrosion rates depend on the AMS concentration, the temperature and the nature of the stainless steel.
  • type 304L stainless steel is corrodable at concentrations of AMS greater than 10 -2 mole / liter. It is obvious that this drastically limits the fields of use of AMS.
  • the subject of the invention is therefore a process for protecting stainless steels against corrosion by an organosulfonic acid, characterized in that one adds at least one selected oxidant to the aqueous organosulfonic acid solution among the salts or oxides of cerium (IV), iron (III), molybdenum (VI) or vanadium (V), nitrites and persulfates.
  • the subject of the invention is also an aqueous solution of organosulfonic acid containing at least one oxidant chosen from the salts or oxides of cerium (IV), iron (III), molybdenum (VI) or vanadium (V), nitrites and persulfates in an amount sufficient for its spontaneous potential, measured by means of a stainless steel electrode, lies in the passivity zone determined in the same conditions in the absence of the oxidant.
  • oxidant chosen from the salts or oxides of cerium (IV), iron (III), molybdenum (VI) or vanadium (V), nitrites and persulfates in an amount sufficient for its spontaneous potential, measured by means of a stainless steel electrode, lies in the passivity zone determined in the same conditions in the absence of the oxidant.
  • Stainless steels are passivable materials. Physically, the passivity is due to the formation of a layer of oxides on the surface of the metal. The passivity is ultimately imparted to the alloy by the development of a layer adherent and relatively thin, but of very low ionic permeability. The transfer of cations from metal to solution can be considered very slow and, in some cases, practically negligible. In fact, the phenomenon of passivity must be considered as a state of dynamic equilibrium.
  • organosulfonic acid or in the solution aqueous organosulfonic acid, the nature of the oxidant chosen is not critical and it is therefore possible to use any soluble salt or oxide of cerium (IV), iron (III), molybdenum (VI) or vanadium (V), as well as any soluble nitrite or persulfate.
  • iron (III) sulfate ferric chloride, ferric nitrate, ferric perchlorate, ferric oxide, sodium molybdate, ammonium molybdate tetrahydrate, molybdenum oxide, sodium metavanadate, oxytrichloride vanadium, vanadium pentoxide, sodium persulfate and ammonium persulfate.
  • the amount of oxidant according to the invention to be used can vary within wide limits; it depends, among other things, on the nature of the oxidant and the concentration of organosulfonic acid.
  • concentration of Ce 4+ ions is generally between 1.10 -5 and 1.10 -1 mole / liter; it is preferably between 1.10 -4 and 5.10 -2 mole / liter.
  • the amount used is generally between 1.10 -4 and 1 mole / liter; it is preferably between 0.001 and 0.5 mole / liter.
  • a particularly advantageous embodiment of the process according to the invention consists in combining a molybdenum (VI) salt, preferably sodium molybdate, and a cerium (IV) salt, preferably a double ammonium salt and of cerium (IV).
  • the amount of each salt to be used can vary within wide limits, but it is preferably between 1.10 -3 and 2.10 -2 mole / liter and, more particularly, between 5.10 -3 and 1.10 -2 mole / liter.
  • the invention relates more particularly to methanesulfonic acid (AMS).
  • AMS methanesulfonic acid
  • the protection method according to the invention can nevertheless be applied to other alkanesulfonic acids, for example ethanesulfonic acid, or to acids aromatic sulfonics such as p-toluenesulfonic acid (APTS).
  • alkanesulfonic acids for example ethanesulfonic acid
  • APTS p-toluenesulfonic acid
  • the test involves immersing an electrode made from the material studied in the solution to be tested and to verify that its spontaneous potential, in regime stabilized, is effectively in the area of passivation. Before the test, we polarizes in the cathode domain for 30 seconds.
  • the electrolysis cell consists of a container that can contain 80 ml of the solution to be tested and allows mounting of three electrodes: one electrode reference (Ag / Ag Cl of the Thermag-Tacussel type), an auxiliary electrode (platinum) and a working electrode (studied stainless steel).
  • the coupons are degreased with acetone, pickled in a 15% aqueous solution of nitric acid and 4.2% of sodium fluoride, rinsed with demineralized water, then with acetone, dried with de-oiled compressed air and weighed.
  • the coupons After immersion for 8 or 30 days in the AMS solution to be tested, the coupons are washed with demineralized water and then with acetone, weighed, cleared possible deposits (corrosion products) by mechanical cleaning and weighed at new.
  • the loss of mass expressed in g / m 2 .j, makes it possible to calculate the corrosion rate expressed in mm / year.
  • electrochemical tests were carried out at 45 and 90 ° C for an AMS concentration of 2.08 M and for two grades of steel stainless (AISI 304L and 316L) previously subjected to a heat treatment of hyper quenching according to standard NF A35-574.
  • Corrosive baths consisted of AMS 2.08 moles / liter aqueous solutions containing varying amounts of sodium nitrite or double nitrate of ammonium and cerium (IV).
  • the spontaneous potential is always located between the passivation potentials and transpassivation. The risks of generalized corrosion are therefore negligible.
  • aqueous solutions S 1 , S 2 and S 3 having the following mass composition were prepared from a 70% aqueous solution of AMS and a 65% aqueous solution of APTS.
  • SOLUTION CONTENT (% by mass) in: AMS APTS Water S 1 24.5 9.75 65.75 S 2 49 19.5 31.5 S 3 0.5 0.2 99.3
  • Static corrosion tests were carried out at 45 ° C (duration: 8 days) in more or less diluted aqueous solutions of AMS.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Lubricants (AREA)
  • Contacts (AREA)

Abstract

Pour éviter la corrosion des aciers inoxydables en milieu acide organosulfonique, on ajoute au milieu au moins un oxydant choisi parmi les sels ou oxydes de cérium (IV), fer (III), molybdène (VI) ou vanadium (V), les nitrites et les persulfates, en une quantité suffisante pour placer le potentiel spontané entre les potentiels de passivité et de transpassivation.

Description

La présente invention concerne le domaine des aciers inoxydables et celui des acides organosulfoniques. Elle a plus particulièrement pour objet la protection des aciers inoxydables contre la corrosion par les acides organosulfoniques tels que l'acide méthanesulfonique.
L'acide méthanesulfonique (AMS) est un acide fort qui a trouvé de nombreuses applications, notamment en catalyse et en traitement de surfaces (galvanoplastie, décapage, détartrage, ...). Cependant, les solutions aqueuse d'AMS attaquent les aciers inoxydables; les vitesses de corrosion dépendent à la fois de la concentration en AMS, de la température et de la nature de l'acier inoxydable. Ainsi, à température ambiante, l'acier inoxydable du type 304L est corrodable à des concentrations d'AMS supérieures à 10-2 mole/litre. Il est évident que cela limite de manière drastique les domaines d'utilisation de l'AMS.
Pour protéger les aciers inoxydables contre la corrosion par des acides sulfoniques (en particulier l'acide p-toluènesulfonique et l'acide polystyrènesulfonique), il a été proposé dans la demande de brevet JP 07-278854 d'ajouter à ces acides un sel de cuivre. Ce document vise plus particulièrement la protection des appareils en acier inoxydable (types 304 et 316) utilisés dans les ateliers de synthèse d'alcools à partir d'oléfines et d'eau en présence d'un acide organosulfonique comme catalyseur. Le domaine de température exemplifié dans ce document va de la température ambiante jusqu'à environ 100°C.
Dans l'article intitulé "Corrosion of stainless steel during acetate production" paru en juillet 1996 dans la revue Corrosion Engineering vol.2, n°7, page 558, J.S. Qi et J.C. Lester indiquent que l'utilisation de sulfate de cuivre lors de l'estérification en présence d'acide sulfurique ou d'acide p-toluénesulfonique permet de réduire considérablement la corrosion des aciers inox 304L et 316L.
Cependant, les tests statiques effectués sur des compositions d'AMS et de sels de cuivre (II) à des températures comprises entre 100 et 150°C montrent qu'à la surface des matériaux testés (AISI 304L et 316L) il se forme une fine couche de cuivre métallique peu adhérente. Lors de la mise en oeuvre industrielle de cette méthode, il a en effet été constaté une sédimentation, en fond de réacteur, de particules de cuivre métal susceptibles d'endommager gravement les pompes de recyclage ou de nuire à la qualité du produit fabriqué. Une étape supplémentaire de filtration est alors nécessaire pour éliminer ces particules de cuivre provenant de la pellicule déposée sur les parois du réacteur. En fait, lors de changements de conditions opératoires (par exemple, température, pression, vitesse d'agitation), cette pellicule protectrice se détache très facilement.
Il a maintenant été trouvé que l'on peut efficacement protéger, dans une large gamme de température, les aciers inoxydables contre la corrosion par les acides organosulfoniques et, en particulier, par l'AMS en ajoutant au milieu un oxydant choisi parmi les sels ou oxydes de cérium (IV), de fer (III), de molybdène (VI) ou de vanadium (V), les nitrites et les persulfates.
L'invention a donc pour objet un procédé pour protéger les aciers inoxydables contre la corrosion par un acide organosulfonique, caractérisé en ce que l'on ajoute à la solution aqueuse d'acide organosulfonique au moins un oxydant choisi parmi les sels ou oxydes de cérium (IV), de fer (III), de molybdène (VI) ou de vanadium (V), les nitrites et les persulfates.
L'invention a également pour objet une solution aqueuse d'acide organosulfonique contenant au moins un oxydant choisi parmi les sels ou oxydes de cérium (IV), de fer (III), de molybdène (VI) ou de vanadium (V), les nitrites et les persulfates en une quantité suffisante pour que son potentiel spontané, mesuré au moyen d'une électrode en acier inoxydable, se situe dans la zone de passivité déterminée dans les mêmes conditions en l'absence de l'oxydant.
Les aciers inoxydables sont des matériaux passivables. Physiquement, la passivité est due à la formation d'une couche d'oxydes à la surface du métal. La passivité est finalement conférée à l'alliage par le développement d'une couche adhérente et relativement peu épaisse, mais de très faible perméabilité ionique. Le transfert des cations du métal vers la solution peut être considéré comme très ralenti et, dans certains cas, pratiquement négligeable. En fait, le phénomène de passivité doit être considéré comme un état d'équilibre dynamique.
La vitesse de dissolution (v) d'un acier inoxydable immergé dans un milieu tel qu'une solution aqueuse d'AMS 1M dépend du potentiel électrochimique imposé E. La courbe v = f(E) présente une allure typique qui, comme montré sur la figure unique annexée, comprend essentiellement trois parties, à savoir :
  • une zone "d'activité" 1 correspondant à la dissolution anodique du métal (oxydation),
  • une zone de "passivité" 2 située entre un potentiel de passivation (Ep) et un potentiel de transpassivation (Etp),
  • une zone de "transpassivité" 3 où le métal redevient actif par oxydation du film passif en une substance soluble (dissolution du Cr2O3 en CrO4 2-).
Au potentiel de passivité Ep, la vitesse de corrosion est tombée brusquement à une valeur très faible. Dans la zone 2, la vitesse de dissolution très faible correspond alors à un domaine de résistance à la corrosion. La mesure du potentiel spontané et sa comparaison avec Ep et Etp permet de déterminer instantanément si l'acier inoxydable se corrode ou non.
Pourvu qu'il soit soluble dans l'acide organosulfonique ou dans la solution aqueuse d'acide organosulfonique, la nature de l'oxydant choisi n'est pas critique et on peut donc utiliser tout sel ou oxyde soluble de cérium (IV), de fer (III), de molybdène (VI) ou de vanadium (V), ainsi que tout nitrite ou persulfate soluble.
Sont plus particulièrement préférés :
  • les nitrites alcalins, d'ammonium ou de cuivre et, plus spécialement, le nitrite de sodium,
  • les sels doubles d'ammonium et de cérium (IV) tels que le nitrate ou le sulfate d'ammonium et de cérium.
Comme exemples non limitatifs d'autres oxydants selon l'invention, on peut également mentionner le sulfate de fer (III), le chlorure ferrique, le nitrate ferrique, le perchlorate ferrique, l'oxyde ferrique, le molybdate de sodium, le molybdate d'ammonium tétrahydraté, l'oxyde de molybdène, le métavanadate de sodium, l'oxytrichlorure de vanadium, le pentoxyde de vanadium, le persulfate de sodium et le persulfate d'ammonium.
La quantité d'oxydant selon l'invention à utiliser peut varier dans de larges limites; elle dépend, entre autres, de la nature de l'oxydant et de la concentration en acide organosulfonique. Lorsqu'on utilise un sel cérique, la concentration en ions Ce4+ est généralement comprise entre 1.10-5 et 1.10-1 mole/litre; elle est, de préférence, comprise entre 1.10-4 et 5.10-2 mole/litre.
Lorsqu'on utilise un nitrite ou un autre oxydant, la quantité utilisée est généralement comprise entre 1.10-4 et 1 mole/litre ; elle est de préférence comprise entre 0,001 et 0,5 mole/litre.
Un mode particulièrement avantageux de mise en oeuvre du procédé selon l'invention consiste à associer un sel de molybdène (VI), de préférence le molybdate de sodium, et un sel de cérium (IV), de préférence un sel double d'ammonium et de cérium (IV). La quantité de chaque sel à utiliser peut varier dans de larges limites, mais elle est de préférence comprise entre 1.10-3 et 2.10-2 mole/litre et, plus particulièrement, entre 5.10-3 et 1.10-2 mole/litre.
Bien que le procédé selon l'invention vise plus spécialement la protection des aciers inoxydables courants (types AISI 304L et 316L), il peut s'appliquer généralement à tout acier inoxydable tel que défini dans la norme NF EN 10088-1.
L'invention concerne plus particulièrement l'acide méthanesulfonique (AMS). Le procédé de protection selon l'invention peut néanmoins s'appliquer à d'autres acides alcanesulfoniques, par exemple l'acide éthanesulfonique, ou à des acides sulfoniques aromatiques tels que l'acide p-toluénesulfonique (APTS).
Dans les exemples suivants qui illustrent l'invention sans la limiter, les essais électrochimiques et statiques ont été réalisés en opérant comme suit.
1. Essais électrochimiques
L'essai consiste à plonger une électrode fabriquée à partir du matériau étudié dans la solution à tester et à vérifier que son potentiel spontané, en régime stabilisé, se trouve effectivement dans le domaine de la passivation. Avant le test, on réalise une polarisation dans le domaine cathodique pendant 30 secondes.
La cellule d'électrolyse est constituée d'un récipient pouvant contenir 80 ml de la solution à tester et permet un montage de trois électrodes : une électrode de référence (Ag/Ag Cl du type Thermag-Tacussel), une électrode auxiliaire (platine) et une électrode de travail (acier inoxydable étudié).
2. Essais statiques
Ces essais permettent, d'une part, de vérifier la passivité des matériaux et, d'autre part, de calculer la vitesse de corrosion.
L'étude de la corrosion par perte de masse est réalisée à partir de plaquettes métalliques découpées à l'aide d'une tronçonneuse à disque lubrifié. La surface de ces coupons de dimensions approximatives : 25x50x2 mm est calculée avec précision. Ces coupons métalliques sont percés d'un trou de 6,5 mm de diamètre permettant de les fixer sur un porte-échantillon en Téflon.
Avant leur immersion dans la solution d'AMS à tester, les coupons sont dégraissés à l'acétone, décapés dans une solution aqueuse à 15 % d'acide nitrique et 4,2 % de fluorure de sodium, rincés à l'eau déminéralisée, puis à l'acétone, séchés à l'air comprimé déshuilé et pesés.
Après immersion pendant 8 ou 30 jours dans la solution d'AMS à tester, les coupons sont lavés à l'eau déminéralisée puis à l'acétone, pesés, débarrassés des éventuels dépôts (produits de corrosion) par nettoyage mécanique et pesés à nouveau.
La perte de masse, exprimée en g/m2.j, permet de calculer la vitesse de corrosion exprimée en mm/an.
EXEMPLE 1
L'outil électrochimique étant particulièrement bien adapté à la vérification des états passifs des aciers inoxydables, des tests électrochimiques ont été effectués à 45 et 90°C pour une concentration en AMS de 2,08 M et pour deux nuances d'acier inoxydable (AISI 304L et 316L) préalablement soumises à un traitement thermique d'hypertrempe selon la norme NF A35-574. Les bains corrosifs étaient constitués de solutions aqueuses d'AMS à 2,08 moles/litre contenant des quantités variables de nitrite de sodium ou de nitrate double d'ammonium et de cérium (IV).
Les résultats obtenus sont rassemblés dans les tableaux I et II suivants qui indiquent en mV les potentiels (E) de passivation, spontané et de transpassivation..
Essais électrochimiques dans AMS 2,08 M pour l'acier inox 316L
Température 45°C 90°C 45°C 90°C
Additif et sa concentration (mole/litre) NaNO2 (NH4)2 Ce(NO3)6
0,05 0,08 0,005 0,01
E passivation -100 255 25 0
E spontané 540 615 1000 420
E transpassivation 1100 690 1100 750
Essais électrochimiques dans AMS 2,08 M pour l'acier inox 304L
Température 45°C 90°C 45°C 90°C
Additif et sa concentration (mole/litre) NaNO2 (NH4)2 Ce(NO3)6
0,05 0,3 0,01 0,0175
E passivation -100 -45 0 20
E spontané 600 400 1000 470
E transpassivation 1100 950 1150 950
Le potentiel spontané est toujours situé entre les potentiels de passivation et de transpassivation. Les risques de corrosion généralisée sont donc négligeables.
EXEMPLE 2
Pour étendre les résultats de l'exemple 1, des essais statiques ont été effectués à 150°C. Les résultats sont regroupés dans le tableau III suivant.
Essais statiques à 150°C dans AMS 2,08 M
Acier inoxydable Additif et sa concentration (mole/litre) Perte de masse (g/m2.j) Vitesse de corrosion (mm/an)
316 L Néant - > 500 > 23
NaNO2 0,16 0,29 0,013
(NH4)2 Ce(NO3)6 0,01 3,15 0,14
304 L Néant - > 500 > 23
NaNO2 0,3 0,27 0,013
(NH4)2 Ce(NO3)6 0,0175 0,49 0,022
EXEMPLE 3
En opérant comme à l'exemple 1, on a étudié l'effet protecteur d'autres espèces pour l'acier inoxydable 316L. Ces essais et leurs résultats sont rassemblés dans le tableau IV suivant.
Additif et concentration (mole/litre) Fe2(SO4)3 0,1 Na2MoO4 0,15 NaVO3 0,1 (NH4)2S2O8 0,1
Température (°C) 45 90 90 90
E passivation 0 373 0 331
E spontané 678 400 905 610
E transpassivation 1000 985 990 995
EXEMPLE 4
A partir d'une solution aqueuse à 70 % d'AMS et d'une solution aqueuse à 65 % d'APTS, on a préparé trois solutions aqueuses S1, S2 et S3 ayant la composition massique suivante :
SOLUTION TENEUR (% massique) en :
AMS APTS Eau
S1 24,5 9,75 65,75
S2 49 19,5 31,5
S3 0,5 0,2 99,3
Deux oxydants :
  • Ox. 1 = nitrate double d'ammonium et de cérium (IV)
  • Ox. 2 = molybdate de sodium
ont été conjointement utilisés en proportions variables (5 à 10 millimoles/litres) pour passiver à différentes températures (45, 90 et 150°C) les aciers inoxydables 304L et 316L dans les solutions S1, S2 et S3.
En opérant comme dans les exemples précédents, on a mesuré les potentiels de passivation, le potentiel spontané et le potentiel de transpassivation. Les résultats obtenus sont résumés dans les tableaux V et VI suivants ; ils montrent que le potentiel spontané est toujours situé entre les potentiels de passivation et de transpassivation. Les risques de corrosion généralisée sont donc négligeables.
Acier Inox 304L
Temp. (°C) Solution Teneur (mmol/l) Potentiels (mV) de :
Ox.1 Ox.2 passivation spontané transpassivation
45 S1 10 5 -50 200 1020
" " 5 10 -50 220 1020
" S2 5 5 300 470 1100
" S3 5 5 0 900 1400
90 S1 5 5 -470 -50 1020
" " 10 10 300 380 1020
" S3 10 5 -100 848 900
" " 5 10 0 300 800
" S2 10 5 500 860 1100
" " 5 10 300 760 1120
150 S1 10 5 80 185 1020
" " 5 10 80 325 1020
" S3 5 5 80 740 1020
Acier Inox 316L
Temp. (°C) Solution Teneur (mmol/l) Potentiels (mV) de :
Ox.1 Ox.2 passivation spontané transpassivation
45 S1 10 5 -60 720 1100
" " 5 10 -80 450 1020
" S2 5 5 300 410 1100
" S3 5 5 100 325 1200
90 S1 5 5 80 515 1020
" " 10 10 300 494 1020
" S2 10 5 100 500 1200
" " 5 10 60 710 1200
" S3 10 5 -100 750 1080
" " 5 10 80 130 1020
EXEMPLE 5
On a effectué des essais statiques de corrosion à 45°C (durée : 8 jours) dans des solutions aqueuses d'AMS plus ou moins diluées.
Ces solutions ont été préparées par addition d'eau à une solution initiale à 70 % en poids d'AMS contenant 5 mmoles/litre de nitrate double d'ammonium et de cérium (IV) et 5 mmoles/litre de molybdate de sodium.
A titre comparatif, des essais statiques ont été effectuées en parallèle sur des solutions aqueuses d'AMS non additivées.
Dans les tableaux VII et VIII suivants qui résument les résultats obtenus, le chiffre de la colonne "dilution" indique la proportion (% en volume) d'AMS 70 % dans la solution aqueuse testée.
Acier Inox 304L
DILUTION VITESSE DE CORROSION (µm/an)
AMS non additivé AMS additivé
1 < 5 < 5
5 465 <5
10 331 <5
25 541 <5
50 398 <5
100 - 45
Acier Inox 316L
DILUTION VITESSE DE CORROSION (µm/an)
AMS non additivé AMS additivé
1 < 5 < 5
5 75 <5
10 157 <5
25 190 <5
50 160 <5
100 - 45

Claims (12)

  1. Procédé pour protéger un acier inoxydable contre la corrosion par un acide organosulfonique, caractérisé en ce que l'on ajoute à la solution aqueuse dudit acide une quantité suffisante d'au moins un oxydant choisi parmi les sels ou oxydes de cérium (IV), de fer (III), de molybdène (VI) ou de vanadium (V), les nitrites et les persulfates.
  2. Procédé selon la revendication 1 dans lequel on utilise un nitrite alcalin, de préférence le nitrite de sodium.
  3. Procédé selon la revendication 2, dans lequel la quantité de nitrite est comprise entre 1.10-4 et 1 mole/litre, de préférence entre 0,001 et 0,5 mole/litre.
  4. Procédé selon la revendication 1 dans lequel on utilise le cérium (IV) sous forme de sel double d'ammonium et de cérium (IV), de préférence le nitrate ou le sulfate d'ammonium et de cérium.
  5. Procédé selon la revendication 4 dans lequel la concentration en ions Ce4+ est comprise entre 1.10-5 et 1.10-1 mole/litre, de préférence entre 1.10-4 et 5.10-2 mole/litre.
  6. Procédé selon la revendication 1 dans lequel on associe un sel de molybdène (VI), de préférence le molybdate de sodium, et un sel de cérium (IV), de préférence un sel double d'ammonium et de cérium (IV).
  7. Procédé selon la revendication 6 dans lequel chaque sel est utilisé en une quantité comprise entre 1.10-3 et 2.10-2 mole/litre, plus particulièrement entre 5.10-3 et 1.10-2 mole/litre.
  8. Procédé selon l'une des revendications 1 à 7, dans lequel l'acide organosulfonique est l'acide méthanesulfonique.
  9. Solution aqueuse d'acide organosulfonique contenant au moins un oxydant choisi parmi les sels ou oxydes de cérium (IV), de fer (III), de molybdène (VI) ou de vanadium (V), les nitrites et les persulfates en une quantité suffisante pour que son potentiel spontané, mesuré au moyen d'une électrode en acier inoxydable, se situe dans la zone de passivité déterminée dans les mêmes conditions en l'absence dudit oxydant.
  10. Solution aqueuse selon la revendication 9 dans laquelle l'oxydant est un nitrite alcalin, de préférence le nitrite de sodium, ou un sel double d'ammonium et de cérium (IV), de préférence le nitrate ou le sulfate d'ammonium et de cérium.
  11. Solution aqueuse selon la revendication 9 contenant un sel de molybdène (VI), de préférence le molybdate de sodium, et un sel de cérium (IV), de préférence un sel double d'ammonium et de cérium (IV).
  12. Solution aqueuse selon l'une des revendications 9 à 11 dans laquelle l'acide organosulfonique est l'acide méthanesulfonique.
EP98403065A 1998-01-26 1998-12-07 Inhibition de la corrosion des aciers inoxydables en milieu acide organosulfonique Withdrawn EP0931854A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9800791 1998-01-26
FR9800791 1998-01-26

Publications (1)

Publication Number Publication Date
EP0931854A1 true EP0931854A1 (fr) 1999-07-28

Family

ID=9522153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98403065A Withdrawn EP0931854A1 (fr) 1998-01-26 1998-12-07 Inhibition de la corrosion des aciers inoxydables en milieu acide organosulfonique

Country Status (10)

Country Link
US (1) US6120619A (fr)
EP (1) EP0931854A1 (fr)
JP (1) JPH11241191A (fr)
KR (1) KR19990066898A (fr)
AR (1) AR017916A1 (fr)
AU (1) AU9824998A (fr)
BR (1) BR9900020A (fr)
CA (1) CA2253679A1 (fr)
IL (1) IL127403A (fr)
TW (1) TW457304B (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029285A2 (fr) * 1999-10-19 2001-04-26 Advanced Mechanical Technology, Inc. Protection contre la corrosion d'acier de pompes a chaleur fonctionnant a l'ammoniac et a l'eau
EP1191073A2 (fr) * 2000-09-20 2002-03-27 United Technologies Corporation Additif anti-corrosion non carcinogène
WO2019043338A1 (fr) 2017-09-01 2019-03-07 Arkema France Acide sulfonique faiblement colore
WO2019043339A1 (fr) 2017-09-01 2019-03-07 Arkema France Procede de preparation d'acide sulfonique
WO2019043340A1 (fr) * 2017-09-01 2019-03-07 Arkema France Inhibiteurs de corrosion métallique

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2413888A1 (fr) 2000-06-22 2001-12-27 United States Filter Corporation Protection contre la corrosion utilisant un donneur de peroxyde d'hydrogene
US6716359B1 (en) 2000-08-29 2004-04-06 United States Filter Corporation Enhanced time-based proportional control
AU2001296958A1 (en) * 2000-10-04 2002-04-15 The Johns Hopkins University Method for inhibiting corrosion of alloys employing electrochemistry
US6620315B2 (en) 2001-02-09 2003-09-16 United States Filter Corporation System for optimized control of multiple oxidizer feedstreams
US6776926B2 (en) * 2001-08-09 2004-08-17 United States Filter Corporation Calcium hypochlorite of reduced reactivity
US6991735B2 (en) * 2002-02-26 2006-01-31 Usfilter Corporation Free radical generator and method
US7108781B2 (en) * 2002-02-26 2006-09-19 Usfilter Corporation Enhanced air and water purification using continuous breakpoint halogenation with free oxygen radicals
US20040094236A1 (en) * 2002-11-14 2004-05-20 Crown Technology, Inc. Methods for passivating stainless steel
US10343939B2 (en) 2006-06-06 2019-07-09 Evoqua Water Technologies Llc Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
US12103874B2 (en) 2006-06-06 2024-10-01 Evoqua Water Technologies Llc Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
WO2007146671A2 (fr) 2006-06-06 2007-12-21 Fluid Lines Procédé d'oxydation activé par la lumière ultaviolette destiné à la réduction de carbone organique dans l'eau de traitement de semiconducteurs
DE102007010538A1 (de) * 2007-03-05 2008-09-11 Poligrat Gmbh Verfahren zum thermochemischen Passivieren von Edelstahl
US9365435B2 (en) 2007-04-03 2016-06-14 Evoqua Water Technologies Llc Actinic radiation reactor
US8753522B2 (en) 2007-04-03 2014-06-17 Evoqua Water Technologies Llc System for controlling introduction of a reducing agent to a liquid stream
US8961798B2 (en) 2007-04-03 2015-02-24 Evoqua Water Technologies Llc Method for measuring a concentration of a compound in a liquid stream
US9365436B2 (en) 2007-04-03 2016-06-14 Evoqua Water Technologies Llc Method of irradiating a liquid
US8741155B2 (en) 2007-04-03 2014-06-03 Evoqua Water Technologies Llc Method and system for providing ultrapure water
US9725343B2 (en) 2007-04-03 2017-08-08 Evoqua Water Technologies Llc System and method for measuring and treating a liquid stream
EP2182095A1 (fr) 2008-10-29 2010-05-05 Poligrat Gmbh Procédé destiné au traitement de surfaces en acier inoxydable
US8591730B2 (en) 2009-07-30 2013-11-26 Siemens Pte. Ltd. Baffle plates for an ultraviolet reactor
CA2779546C (fr) * 2009-11-03 2018-11-06 Basf Se Procede pour manipuler des solutions aqueuses d'acide methane sulfonique
EP2527301B1 (fr) 2011-05-26 2016-04-27 Evoqua Water Technologies GmbH Procédé et dispositif pour le traîtement de l'eau
DE102012107807A1 (de) * 2012-08-24 2014-02-27 Paul Hettich Gmbh & Co. Kg Verfahren zur Herstellung eines metallischen Bauteils eines Beschlages, Ofenbeschlag und Ofen mit Pyrolysereinigungsfunktion
JP6225473B2 (ja) * 2013-05-10 2017-11-08 東京電力ホールディングス株式会社 ステンレス鋼の局部腐食抑制方法
US11161762B2 (en) 2015-01-21 2021-11-02 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
CA2918564C (fr) 2015-01-21 2023-09-19 Evoqua Water Technologies Llc Procede d'oxydation avance pour retablissement d'eaux souterraines hors site
CN114323885B (zh) * 2021-12-06 2024-08-20 万华化学集团股份有限公司 一种双相不锈钢浸蚀剂以及浸蚀方法
TW202413339A (zh) * 2022-06-03 2024-04-01 日商三菱瓦斯化學股份有限公司 組成物、及使用其之三噁烷的製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1012474A (fr) * 1949-10-04 1952-07-10 Electro Chimie Soc D Procédé pour empêcher les aciers inoxydables d'être corrodés par l'acide sulfurique
US2793191A (en) * 1954-04-15 1957-05-21 Du Pont Corrosion inhibition of monobasic acids
US4339617A (en) * 1980-03-31 1982-07-13 Uop Inc. Hydration of olefins in the presence of a corrosion inhibitor
JPS57185989A (en) * 1981-05-07 1982-11-16 Tokuyama Soda Co Ltd Protecting method for stainless steel
US4957653A (en) * 1989-04-07 1990-09-18 Macdermid, Incorporated Composition containing alkane sulfonic acid and ferric nitrate for stripping tin or tin-lead alloy from copper surfaces, and method for stripping tin or tin-lead alloy
JPH02302491A (ja) * 1989-05-16 1990-12-14 Dai Ichi Kogyo Seiyaku Co Ltd エッチング促進添加剤
JPH07278854A (ja) * 1994-04-06 1995-10-24 Tosoh Corp 金属材料の腐蝕防止方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2077450A (en) * 1935-01-08 1937-04-20 Alrose Chemical Company Method and composition for coating iron and steel articles
US4588519A (en) * 1982-01-29 1986-05-13 Dearborn Chemical Company Method of inhibiting corrosion of iron base metals
DE3602524A1 (de) * 1986-01-29 1987-07-30 Bayer Ag Verfahren zur herstellung konzentrierter loesungen von anionischen farbstoffen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1012474A (fr) * 1949-10-04 1952-07-10 Electro Chimie Soc D Procédé pour empêcher les aciers inoxydables d'être corrodés par l'acide sulfurique
US2793191A (en) * 1954-04-15 1957-05-21 Du Pont Corrosion inhibition of monobasic acids
US4339617A (en) * 1980-03-31 1982-07-13 Uop Inc. Hydration of olefins in the presence of a corrosion inhibitor
JPS57185989A (en) * 1981-05-07 1982-11-16 Tokuyama Soda Co Ltd Protecting method for stainless steel
US4957653A (en) * 1989-04-07 1990-09-18 Macdermid, Incorporated Composition containing alkane sulfonic acid and ferric nitrate for stripping tin or tin-lead alloy from copper surfaces, and method for stripping tin or tin-lead alloy
JPH02302491A (ja) * 1989-05-16 1990-12-14 Dai Ichi Kogyo Seiyaku Co Ltd エッチング促進添加剤
JPH07278854A (ja) * 1994-04-06 1995-10-24 Tosoh Corp 金属材料の腐蝕防止方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 034 (C - 150) 10 February 1983 (1983-02-10) *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 080 (C - 0810) 25 February 1991 (1991-02-25) *
PATENT ABSTRACTS OF JAPAN vol. 096, no. 002 29 February 1996 (1996-02-29) *
STERN M.: "The mechanism of passivating-type inhibitors", JOURNAL OF THE ELECTROCHEMICAL SOCIETY., vol. 105, no. 11, 1 November 1958 (1958-11-01), MANCHESTER, NEW HAMPSHIRE US, pages 638 - 647, XP002078786 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029285A2 (fr) * 1999-10-19 2001-04-26 Advanced Mechanical Technology, Inc. Protection contre la corrosion d'acier de pompes a chaleur fonctionnant a l'ammoniac et a l'eau
WO2001029285A3 (fr) * 1999-10-19 2002-09-26 Advanced Mechanical Tech Protection contre la corrosion d'acier de pompes a chaleur fonctionnant a l'ammoniac et a l'eau
EP1191073A2 (fr) * 2000-09-20 2002-03-27 United Technologies Corporation Additif anti-corrosion non carcinogène
EP1191073A3 (fr) * 2000-09-20 2003-05-14 United Technologies Corporation Additif anti-corrosion non carcinogène
WO2019043340A1 (fr) * 2017-09-01 2019-03-07 Arkema France Inhibiteurs de corrosion métallique
WO2019043339A1 (fr) 2017-09-01 2019-03-07 Arkema France Procede de preparation d'acide sulfonique
WO2019043338A1 (fr) 2017-09-01 2019-03-07 Arkema France Acide sulfonique faiblement colore
FR3070694A1 (fr) * 2017-09-01 2019-03-08 Arkema France Inhibiteurs de corrosion metallique
FR3070687A1 (fr) * 2017-09-01 2019-03-08 Arkema France Procede de preparation d'acide sulfonique
CN111051279A (zh) * 2017-09-01 2020-04-21 阿科玛法国公司 磺酸的制备方法
US11040940B2 (en) 2017-09-01 2021-06-22 Arkema France Weakly coloured sulfonic acid
US11447450B2 (en) 2017-09-01 2022-09-20 Arkema France Process for producing sulfonic acid
CN111051279B (zh) * 2017-09-01 2023-05-12 阿科玛法国公司 磺酸的制备方法
US11788192B2 (en) 2017-09-01 2023-10-17 Arkema France Inhibitors of metal corrosion

Also Published As

Publication number Publication date
KR19990066898A (ko) 1999-08-16
IL127403A (en) 2001-05-20
US6120619A (en) 2000-09-19
AR017916A1 (es) 2001-10-24
AU9824998A (en) 1999-08-12
CA2253679A1 (fr) 1999-07-26
IL127403A0 (en) 1999-10-28
JPH11241191A (ja) 1999-09-07
BR9900020A (pt) 1999-12-14
TW457304B (en) 2001-10-01

Similar Documents

Publication Publication Date Title
EP0931854A1 (fr) Inhibition de la corrosion des aciers inoxydables en milieu acide organosulfonique
FR2507198A1 (fr) Procede et composition pour eliminer un revetement d&#39;aluminium des substrats en superalliages de nickel
TWI718527B (zh) 用於多種金屬上的近中性pH浸洗液及浸洗一表面以移除其上之金屬氧化物的方法
EP3676423A1 (fr) Inhibiteurs de corrosion métallique
FR2672058A1 (fr) Composition d&#39;inhibiteur de la corrosion des metaux ferreux, procede pour sa preparation, et son utilisation.
EP0414820B1 (fr) Procede de traitement d&#39;une structure en titane
CN115746943B (zh) 一种通用的环保型长效水基防锈剂及其制备方法
Loto et al. Synergistic effect of sage and jojoba oil extracts on the corrosion inhibition of mild steel in dilute acid solution
Önal et al. Corrosion inhibition of aluminium alloys by tolyltriazole in chloride solutions
EP0257671B1 (fr) Procédé pour éliminer un revêtement comprenant du niobium sur un substrat
Chieb et al. The Inhibitive Effect of 3-Methyl 4-Amino 1, 2, 4 Triazole on the Corrosion of Copper-Nickel 70-30 in NaCl 3% Solution
Igual Muñoz et al. Effect of aqueous lithium bromide solutions on the corrosion resistance and galvanic behavior of copper-nickel alloys
FR2578261A1 (fr) Composition contenant un peroxyde et un oxacide phosphore et procede pour le decapage selectif
JP2003519290A (ja) 窒素酸化物放出の危険が無い金属表面の光沢/不動態化
Ojo et al. Adsorption and inhibiting mild steel corrosion in natural lemon and lime citrus fruit juices by alanine
JP2824174B2 (ja) 耐水素吸収性に優れたチタン材
FR2601379A1 (fr) Produit decapant pour pieces en acier et procede de decapage utilisant ce produit
Gaur et al. Corrosion of metals and alloys in methane sulphonic acid
EP4177317B1 (fr) Utilisation d&#39;une composition d&#39;inhibition de la corrosion et procédé d&#39;inhibition de la corrosion de métaux ou d&#39;alliages métalliques
MXPA98010683A (en) Passivation of stainless steels in an acid medium organosulfon
Achary et al. Surface treatment of zinc by Schiff’s bases and its corrosion study
EP0025624A1 (fr) Procédé pour inhiber la corrosion d&#39;une installation métallique au contact d&#39;un bain acide
Haralanova et al. Reducing the aggressiveness of sulfuric acid corrosion medium on steel by adding organic substances
Salah et al. EFFECT OF SN ADDITION ON MECHANICAL PROPERTIES AND CORROSION RESISTANCE OF Al-Cu IN THE PRESENCE OF H2O2
Viera et al. Comparative study of the effect of oxygen and oxygen/ozone mixtures on the electrochemical behaviour of different metals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FR GB IE IT LI LU NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATOFINA

17Q First examination report despatched

Effective date: 20010625

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20011106