EP0930668A1 - GSM base station antenna - Google Patents

GSM base station antenna Download PDF

Info

Publication number
EP0930668A1
EP0930668A1 EP98403246A EP98403246A EP0930668A1 EP 0930668 A1 EP0930668 A1 EP 0930668A1 EP 98403246 A EP98403246 A EP 98403246A EP 98403246 A EP98403246 A EP 98403246A EP 0930668 A1 EP0930668 A1 EP 0930668A1
Authority
EP
European Patent Office
Prior art keywords
printed circuit
antenna according
antenna
plates
tracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98403246A
Other languages
German (de)
French (fr)
Inventor
Frédéric Thomson-CSF Prop. Int. Diximus
Philippe Thomson-CSF Prop. Int. Gantois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0930668A1 publication Critical patent/EP0930668A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave

Definitions

  • the present invention relates to a fixed G.S.M. antenna.
  • G.S.M. is the abbreviation of the Anglo-Saxon expression "Global System for Mobil communication ”ie: Global communication system mobile. It is a mobile phone network. This network includes fixed antennas capable of transmitting and receiving electromagnetic waves to nearby portable handsets.
  • the invention aims to improve the quality of operation known antennas while reducing their production cost.
  • the G.S.M. fixed antenna shown in figure 1 is likely to emit and receive an electromagnetic wave in a frequency band substantially between 890 MHz and 960 MHz. This band of frequency is used by the G.S.M. in data transfer between the fixed antenna and mobile telephone handsets located proximity, but it is understood that the invention is not limited to this frequency band; it can be used in other tapes for a fee adaptation of its dimensions.
  • the antenna has plates radiant 1 (“patch” in Anglo-Saxon literature). These pads 1 have substantially the shape of a disc made of a conductive material such as brass.
  • the antenna comprises eight pads 1, which improves its gain and directivity, but, to simplify the representation of FIG. 1, only two plates 1 have been represented.
  • These plates are electrically connected to a circuit printed 2 by means of probes 3.
  • these probes 3 serve also for mechanical holding of the wafers 1.
  • the printed circuit 2 has conductive tracks on one of its faces 4 contributing to ensure the propagation of an electrical signal between plates 1 and antenna input / output means, via the probes 3.
  • the means input / output include for example one (or more) connector 5 coaxial whose inner conductor 6 is connected to a track of the circuit printed.
  • the outer conductor 7 generally forming the outer casing of the coaxial connector 5 is connected to a conductive plane 8 of the antenna.
  • This plane 8 forms with the tracks of the printed circuit 2 of the micro-ribbon lines completely ensuring the propagation of the electrical signal.
  • the plane 8 is printed on the other face of the printed circuit 2.
  • the printed circuit 2 in dual technology face; one side 4 has the conductive tracks and the other side has the plan 8.
  • the dielectric substrate of the printed circuit can be made of fiber glass coated with epoxy resin. This achievement is commonly called : glass-epoxy.
  • a glass-epoxy circuit board made using dual technology face has the advantage of being inexpensive; other more materials expensive such as for example glass-teflon can be considered for the printed circuit in order to reduce the power losses of the antenna.
  • the plates 1 are arranged substantially parallel to the printed circuit 2 and the plane 8 is located relative to the printed circuit 2, on the side opposite the plates 1.
  • the plane 8 serves as a reflector for electromagnetic waves radiated by plates 1 and also serves as a screen to avoid coupling by radiation between the tracks of the printed circuit 2 and the boards 1.
  • the antenna further comprises an electrical shielding 9.
  • This shielding ensures the stopping of electromagnetic waves likely to be emitted or received by the antenna on the side of the printed circuit 2 opposite the plates 1.
  • This shield 9 is connected to an electrical ground.
  • the shield 9 it is possible to make the shield 9 by molding a network of conductive wires inside a plastic cover 10.
  • the conductive wires are for example made of metal or carbon.
  • the network can consist of woven or non-woven yarns.
  • the plastic cover 10 serves also mechanical support to the printed circuit 2 and to the connector 5.
  • an intermediate piece 11 for support the connector 5. This part 11 being assembled on the cover plastic 10.
  • the antenna may also include a radome 12 transparent to electromagnetic waves and forming with the plastic cover 10 a envelope protecting the printed circuit 2 and the plates 1 from all external aggressions such as: rain, wind and sun.
  • a radome 12 transparent to electromagnetic waves and forming with the plastic cover 10 a envelope protecting the printed circuit 2 and the plates 1 from all external aggressions such as: rain, wind and sun.
  • Figure 2 represents two plates 1 located one above the other in a plane substantially parallel to the printed circuit 2.
  • the plates 1 have the shape of a disc whose radius is chosen substantially equal to ⁇ / 4, ⁇ being the central wavelength of the frequency band chosen for the antenna.
  • this form brings a rate of ellipticity of the circular polarization closer to 1 than other forms such as polygonal for example.
  • the ellipticity rate is defined as the ratio between the maximum amplitude and the minimum amplitude, measured radially, from the electromagnetic wave.
  • the brochure upper is marked 21; the lower plate bears the mark 22.
  • a axis 23 passes through the center of the two plates 21 and 22.
  • An axis 24 passes through the center of the plate 21 and is perpendicular to the axis 23.
  • An axis 25 passes through the center of the plate 22 and is perpendicular to the axis 23.
  • the plate 21 is electrically connected to the tracks of the circuit printed 2 shown in Figure 1 by two probes 3.
  • a first probe 31 is positioned substantially on the axis 23 above the center of the wafer 21. This probe 31 conducts an electrical signal.
  • a second probe 32 is positioned substantially on the axis 24, to the right of the center of the wafer 21. This probe 32 conducts the electrical signal 90 ° out of phase. This configuration of the probes ensures that the electromagnetic waves radiated by the plate 21 are substantially circularly polarized.
  • the plate 22 is electrically connected to the tracks of the circuit printed 2 shown in Figure 1 by two probes 3.
  • a first probe 33 is positioned substantially on the axis 25 to the right of the center of the plate 22. This probe 33 conducts the electrical signal.
  • a second probe 34 is positioned substantially on axis 23, below the center of the insert 22. This probe 34 conducts the electrical signal 90 ° out of phase.
  • This configuration of probes 33 and 34 ensures that electromagnetic waves radiated by the plate 22 are substantially circularly polarized. At a given instant, the polarization of these two neighboring plates 21 and 22 is offset by about 90 ° which improves the quality of the propagation.
  • the distance between the center of the plates 21 and 22 and the probes 31, 32, 33 and 34 is mainly defined to adapt the impedance of platelets 21 and 22 to that of printed circuit 2. Indeed, in the frequency band of the antenna, the impedance in the center of a plate 21 or 22 is practically zero and the impedance on a point of its circumference is substantially infinite. We therefore choose the distance of the probes to the center of the plate by function of the impedance of the printed circuit 2 at the connection point of this one with the probes. The printed circuit must also adapt its impedance to that of the antenna input / output means.
  • the distance between the plates 1 and the plane 8 in other words: the height of probes 31 to 34, is mainly defined by the strip bandwidth that you want for the antenna.
  • the bandwidth is substantially proportional to the distance between plates 1 and plane 8.
  • a height is chosen of probe of the order of ⁇ / 20, which corresponds to a height of approximately 16 mm.
  • the potential of the center of platelets 21 and 22 is practically zero but it may fluctuate slightly.
  • this potential is fixed at by means of a short circuit 35, one per plate, connecting the center of each plate 21 and 22 in plane 8 shown in FIG. 1.
  • the short circuit 35 can participate in the same way as probes 3 in the mechanical maintenance of the plate 21 or 22 with respect to the printed circuit 2 shown in FIG. 1.
  • the probes 3 and the short circuit 35 are made of the same way, for example by means of metal brass spacers crimped on the plate 21 or 22 and soldered on the printed circuit 2.
  • short-circuit 35 is soldered to plane 8 and in the vicinity of short circuit 35, there is no track on side 4 of the printed circuit 2.
  • Quant to the probes 3, they are each soldered on a track of the printed circuit and in the vicinity of the probes, plane 8 is cropped to avoid any contact and respect sufficient insulation between the probes and plan 8.
  • the coupler has two inputs E1 and E2 and two outputs S1 and S2 connected to the two probes 3 of a board 1.
  • the coupler includes four lines L1 to L4 shown in strong lines. Each has a length substantially equal to ⁇ / 4.
  • the first line L1 is located between the entry E1 and the output S1.
  • the second line L2 is located between the input E2 and the output S2.
  • the third line L3 is located between entry E1 and entry E2.
  • the fourth line L4 is located between exit S1 and S2.
  • This configuration ensures that for an incoming signal on input E1, practically no signal comes out on entry E2; there is a decoupling of around 40 dB between the two E1 inputs and E2. This configuration also ensures a 90 ° phase shift between the two signals present on the two outputs S1 and S2.
  • This coupler is symmetrical, it is possible to supply it with its two inputs E1 and E2.
  • the antenna can have two coaxial connectors 5 including the inner conductors can be connected separately via the printed circuit, to each of the inputs E1 or E2 of a 90 ° hybrid coupler.
  • a signal presented on an input 1 produces a circularly polarized electromagnetic wave to the right
  • a signal presented on input E2 of the same coupler produces an electromagnetic wave circularly polarized to the left.
  • the radiated electromagnetic wave will be polarized so straight.
  • Figure 4 represents a section of the printed circuit 2 comprising three portions of tracks.
  • a first portion 41 passes right through the section of the circuit printed 2.
  • a second portion 42 substantially perpendicular to the first portion 41 has one end 43 which does not come into contact with the portion 41.
  • a third portion 44 located approximately in the extension of the portion 42 also has an end 45 does not coming into contact with the portion 41.
  • the portions 42 and 44 form a track interrupted.
  • the purpose of the crossing means is to connect the portions 42 and 44 without contact with portion 41. It is understood that the relative position of the different portions 41, 42 and 44 is only given as example.
  • FIG. 5 represents the same section of the printed circuit 2 as the one shown in figure 4, but this time seen from the plan side 8.
  • a portion of coaxial cable 46 is laid flat on plane 8.
  • the portion of coaxial cable 46 comprises an outer conductor 47, for example a braid, and a inner conductor 48, for example a single-stranded wire.
  • the driver outside 47 is connected to plane 8.
  • the braid does not have of outer insulation and is brazed on plane 8.
  • the inner conductor 48 extends beyond the ends of the portion of coaxial cable 46 so as to be connected at the two ends 43 and 45 of the interrupted track.
  • the printed circuit 2 has two holes 49 and 50 each opening into one of the ends 43 and 45.
  • plane 8 is outlined so as to maintain sufficient isolation with the inner conductor 48.
  • the inner conductor 48 is arched so as to cross the holes 49 and 50 and slightly protrudes from the printed circuit 2 of the side of tracks 41, 42 and 44, so as to be brazed at each of its ends on ends 43 and 45.
  • the inner conductor 48 realizes thus the connection of the two track portions 42 and 44.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

The antenna consists of a series of radiating plates capable of transmitting and receiving a polarized electromagnetic wave and converting it into an electrical signal and vice versa. The antenna consists of a series of radiating plates (1) capable of transmitting and receiving a polarized electromagnetic wave and converting it into an electrical signal and vice versa. It has an input/output assembly (5, 6, 7), a printed circuit (2) supporting the plates, an electrical conductor plan (8) lying parallel to the printed circuit with which the circuit forms conductor tracks, electrical connectors (3), and electrical shuttering (9) which stops incoming and outgoing electromagnetic waves on the side of the printed circuit opposite the plates.

Description

La présente invention se rapporte à une antenne fixe G.S.M.. G.S.M. est l'abréviation de l'expression anglo-saxonne « Global System for Mobil communication » c'est-à-dire : Système global de communication mobile. Il s'agit d'un réseau de téléphonie mobile. Ce réseau comporte des antennes fixes pouvant émettre et recevoir des ondes électromagnétiques en direction de combinés portables se trouvant à proximité.The present invention relates to a fixed G.S.M. antenna. G.S.M. is the abbreviation of the Anglo-Saxon expression "Global System for Mobil communication ”ie: Global communication system mobile. It is a mobile phone network. This network includes fixed antennas capable of transmitting and receiving electromagnetic waves to nearby portable handsets.

Malgré un maillage important, certaines zones, notamment urbaines, présentent des anomalies de fonctionnement comme par exemple des évanouissements de propagation dus principalement à des réflexions multiples des ondes électromagnétiques.Despite a large network, certain areas, in particular urban, have operating anomalies such as for example propagation fainting due mainly to reflections multiples of electromagnetic waves.

De plus, la réalisation des antennes connues est onéreuse. Le fort développement actuel de la téléphonie mobile impose de réduire le coût de réalisation de ces antennes.In addition, the production of known antennas is expensive. The strong current development of mobile telephony means reducing the cost of these antennas.

L'invention a pour but d'améliorer la qualité de fonctionnement des antennes connues tout en réduisant leur coût de réalisation.The invention aims to improve the quality of operation known antennas while reducing their production cost.

Pour atteindre ce but, l'invention a pour objet une antenne fixe G.S.M. caractérisée en ce qu'elle comporte :

  • plusieurs plaquettes rayonnantes, susceptibles d'émettre et de recevoir une onde électromagnétique polarisée sensiblement circulairement et assurant ainsi la transformation de l'onde électromagnétique en un signal électrique et réciproquement ;
  • des moyens d'entrée/sortie de l'antenne, assurant la connexion de l'antenne avec les autres circuits d'un émetteur-récepteur G.S.M. fixe ;
  • un circuit imprimé supportant les plaquettes et des pistes conductrices, le circuit imprimé assurant la propagation du signal entre les moyens d'entrée/sortie et les plaquettes ;
  • un plan électriquement conducteur disposé sensiblement parallèlement au circuit imprimé, les pistes du circuit imprimé formant avec ce plan conducteur des lignes micro-ruban ;
  • des moyens de raccordement électriques entre le circuit imprimé et les plaquettes ;
  • des moyens de croisement entre pistes ;
  • un blindage électrique assurant l'arrêt d'ondes électromagnétiques émises et/ou susceptibles d'être reçues par l'antenne du côté du circuit imprimé opposé aux plaquettes.
To achieve this object, the invention relates to a fixed GSM antenna characterized in that it comprises:
  • several radiating plates, capable of emitting and receiving a substantially circularly polarized electromagnetic wave and thus ensuring the transformation of the electromagnetic wave into an electrical signal and vice versa;
  • antenna input / output means, ensuring the connection of the antenna with the other circuits of a fixed GSM transceiver;
  • a printed circuit supporting the wafers and conductive tracks, the printed circuit ensuring the propagation of the signal between the input / output means and the wafers;
  • an electrically conductive plane disposed substantially parallel to the printed circuit, the tracks of the printed circuit forming with this conductive plane microstrip lines;
  • electrical connection means between the printed circuit and the boards;
  • means for crossing between tracks;
  • an electrical shield ensuring the stopping of electromagnetic waves emitted and / or likely to be received by the antenna on the side of the printed circuit opposite the plates.

L'invention sera mieux comprise et d'autres caractéristiques apparaítront à la lecture de la description détaillée d'un mode de réalisation illustré par le dessin annexé, sur lequel :

  • la figure 1 représente en coupe partielle, les éléments principaux du mode de réalisation décrit ;
  • la figure 2 représente deux plaquettes voisines ;
  • la figure 3 représente schématiquement un coupleur hybride 90° ;
  • les figures 4 et 5 représentent les moyens de croisement entre deux pistes du circuit imprimé ;
    • la figure 4 représente ces moyens vus du côté pistes du circuit imprimé ;
    • la figure 5 représente ces mêmes moyens vus du côté du plan conducteur.
The invention will be better understood and other characteristics will appear on reading the detailed description of an embodiment illustrated by the appended drawing, in which:
  • Figure 1 shows in partial section, the main elements of the embodiment described;
  • FIG. 2 represents two neighboring plates;
  • FIG. 3 schematically represents a 90 ° hybrid coupler;
  • Figures 4 and 5 show the crossing means between two tracks of the printed circuit;
    • FIG. 4 represents these means seen from the track side of the printed circuit;
    • FIG. 5 represents these same means seen from the side of the conducting plane.

Par souci de simplicité, les mêmes éléments porteront les mêmes références dans les différentes figures.For the sake of simplicity, the same elements will bear the same references in the various figures.

L'antenne fixe G.S.M. représentée figure 1 est susceptible d'émettre et de recevoir une onde électromagnétique dans une bande de fréquence sensiblement comprise entre 890 MHz et 960 MHz. Cette bande de fréquence est utilisée par le réseau G.S.M. dans le transfert de données entre l'antenne fixe et des combinés téléphoniques mobiles se trouvant à proximité, mais il est bien entendu que l'invention n'est pas limitée à cette bande de fréquence ; on peut l'utiliser dans d'autres bandes moyennant une adaptation de ses dimensions. L'antenne comporte des plaquettes rayonnantes 1 (« patch » dans la littérature anglosaxonne). Ces plaquettes 1 ont sensiblement la forme d'un disque réalisé dans un matériau conducteur comme par exemple le laiton. Avantageusement, l'antenne comporte huit plaquettes 1, ce qui améliore son gain et sa directivité, mais, pour simplifier la représentation de la figure 1, seules deux plaquettes 1 ont été représentées. Ces plaquettes sont raccordées électriquement à un circuit imprimé 2 au moyen de sondes 3. Avantageusement ces sondes 3 servent aussi au maintien mécanique des plaquettes 1. Le circuit imprimé 2 comporte sur une de ses faces 4 des pistes conductrices contribuant à assurer la propagation d'un signal électrique entre les plaquettes 1 et des moyens d'entrée/sortie de l'antenne, via les sondes 3. Les moyens d'entrée/sortie comportent par exemple un (ou plusieurs) connecteur 5 coaxial dont le conducteur intérieur 6 est raccordé à une piste du circuit imprimé. Le conducteur extérieur 7 formant généralement le boítier extérieur du connecteur 5 coaxial est raccordé à un plan 8 conducteur de l'antenne. Ce plan 8 forme avec les pistes du circuit imprimé 2 des lignes micro-ruban assurant complètement la propagation du signal électrique. Avantageusement, le plan 8 est imprimé sur l'autre face du circuit imprimé 2. Ainsi, il est possible de réaliser le circuit imprimé 2 en technologie double face ; une face 4 comporte les pistes conductrices et l'autre face comporte le plan 8. Le substrat diélectrique du circuit imprimé peut être réalisé en fibre de verre enrobée de résine époxy. Cette réalisation est couramment appelée : verre-époxy. Un circuit imprimé verre-époxy réalisé en technologie double face présente l'avantage d'être peu onéreux ; d'autres matériaux plus onéreux comme par exemple le verre-téflon peuvent être envisagés pour le circuit imprimé dans le but de diminuer les pertes de puissance de l'antenne. Avantageusement, les plaquettes 1 sont disposées sensiblement parallèlement au circuit imprimé 2 et le plan 8 se trouve par rapport au circuit imprimé 2, du côté qui est en regard des plaquettes 1. Ainsi, le plan 8 sert de réflecteur aux ondes électromagnétiques rayonnées par les plaquettes 1 et sert également d'écran pour éviter les couplages par rayonnement entre les pistes du circuit imprimé 2 et les plaquettes 1.The G.S.M. fixed antenna shown in figure 1 is likely to emit and receive an electromagnetic wave in a frequency band substantially between 890 MHz and 960 MHz. This band of frequency is used by the G.S.M. in data transfer between the fixed antenna and mobile telephone handsets located proximity, but it is understood that the invention is not limited to this frequency band; it can be used in other tapes for a fee adaptation of its dimensions. The antenna has plates radiant 1 (“patch” in Anglo-Saxon literature). These pads 1 have substantially the shape of a disc made of a conductive material such as brass. Advantageously, the antenna comprises eight pads 1, which improves its gain and directivity, but, to simplify the representation of FIG. 1, only two plates 1 have been represented. These plates are electrically connected to a circuit printed 2 by means of probes 3. Advantageously these probes 3 serve also for mechanical holding of the wafers 1. The printed circuit 2 has conductive tracks on one of its faces 4 contributing to ensure the propagation of an electrical signal between plates 1 and antenna input / output means, via the probes 3. The means input / output include for example one (or more) connector 5 coaxial whose inner conductor 6 is connected to a track of the circuit printed. The outer conductor 7 generally forming the outer casing of the coaxial connector 5 is connected to a conductive plane 8 of the antenna. This plane 8 forms with the tracks of the printed circuit 2 of the micro-ribbon lines completely ensuring the propagation of the electrical signal. Advantageously, the plane 8 is printed on the other face of the printed circuit 2. Thus, it is possible to produce the printed circuit 2 in dual technology face; one side 4 has the conductive tracks and the other side has the plan 8. The dielectric substrate of the printed circuit can be made of fiber glass coated with epoxy resin. This achievement is commonly called : glass-epoxy. A glass-epoxy circuit board made using dual technology face has the advantage of being inexpensive; other more materials expensive such as for example glass-teflon can be considered for the printed circuit in order to reduce the power losses of the antenna. Advantageously, the plates 1 are arranged substantially parallel to the printed circuit 2 and the plane 8 is located relative to the printed circuit 2, on the side opposite the plates 1. Thus, the plane 8 serves as a reflector for electromagnetic waves radiated by plates 1 and also serves as a screen to avoid coupling by radiation between the tracks of the printed circuit 2 and the boards 1.

L'antenne comporte en outre un blindage 9 électrique. Ce blindage assure l'arrêt d'ondes électromagnétiques susceptibles d'être émises ou reçues par l'antenne du côté du circuit imprimé 2 opposé aux plaquettes 1. Ce blindage 9 est relié à une terre électrique. Pour simplifier la réalisation de l'antenne, il est possible de réaliser le blindage 9 en moulant un réseau de fils conducteurs à l'intérieur d'un capot plastique 10. Les fils conducteurs sont par exemple en métal ou en carbone. Le réseau peut être constitué de fils tissés ou non tissés. Avantageusement, le capot plastique 10 sert également de support mécanique au circuit imprimé 2 et au connecteur 5. On peut imaginer d'autres réalisations pour le blindage 9 et le capot 10 comme par exemple une pièce en tôle emboutie. Pour faciliter la réalisation de l'antenne, on peut préférer utiliser une pièce 11 intermédiaire pour supporter le connecteur 5. Cette pièce 11 étant assemblée sur le capot plastique 10.The antenna further comprises an electrical shielding 9. This shielding ensures the stopping of electromagnetic waves likely to be emitted or received by the antenna on the side of the printed circuit 2 opposite the plates 1. This shield 9 is connected to an electrical ground. To simplify the realization of the antenna, it is possible to make the shield 9 by molding a network of conductive wires inside a plastic cover 10. The conductive wires are for example made of metal or carbon. The network can consist of woven or non-woven yarns. Advantageously, the plastic cover 10 serves also mechanical support to the printed circuit 2 and to the connector 5. One can imagine other achievements for the shielding 9 and the cover 10 like for example a stamped sheet metal part. To facilitate the realization of the antenna, it is preferable to use an intermediate piece 11 for support the connector 5. This part 11 being assembled on the cover plastic 10.

L'antenne peut comporter en outre un radôme 12 transparent aux ondes électromagnétiques et formant avec le capot plastique 10 une enveloppe protégeant le circuit imprimé 2 et les plaquettes 1 de toutes les agressions extérieures comme par exemple : la pluie, le vent et le soleil.The antenna may also include a radome 12 transparent to electromagnetic waves and forming with the plastic cover 10 a envelope protecting the printed circuit 2 and the plates 1 from all external aggressions such as: rain, wind and sun.

Afin d'améliorer la qualité de la propagation des ondes électromagnétiques, on a choisi de les polariser circulairement. Cette polarisation est mieux décrite au moyen de la figure 2. La figure 2 représente deux plaquettes 1 situées l'une au dessus de l'autre dans un plan sensiblement parallèle au circuit imprimé 2. Avantageusement les plaquettes 1 ont la forme d'un disque dont le rayon est choisi sensiblement égal à λ/4, λ étant la longueur d'onde centrale de la bande de fréquence choisie pour l'antenne. En effet, cette forme apporte un taux d'ellipticité de la polarisation circulaire plus proche de 1 que d'autres formes telles que polygonales par exemple. On rappelle que le taux d'ellipticité se définit comme le rapport entre l'amplitude maximum et l'amplitude minimum, mesurées radialement, de l'onde électromagnétique. La plaquette supérieure porte le repère 21 ; la plaquette inférieure porte le repère 22. Un axe 23 passe par le centre des deux plaquettes 21 et 22. Un axe 24 passe par le centre de la plaquette 21 et est perpendiculaire à l'axe 23. Un axe 25 passe par le centre de la plaquette 22 et est perpendiculaire à l'axe 23.To improve the quality of wave propagation electromagnetic, we chose to polarize them circularly. This polarization is best described using Figure 2. Figure 2 represents two plates 1 located one above the other in a plane substantially parallel to the printed circuit 2. Advantageously the plates 1 have the shape of a disc whose radius is chosen substantially equal to λ / 4, λ being the central wavelength of the frequency band chosen for the antenna. Indeed, this form brings a rate of ellipticity of the circular polarization closer to 1 than other forms such as polygonal for example. Remember that the ellipticity rate is defined as the ratio between the maximum amplitude and the minimum amplitude, measured radially, from the electromagnetic wave. The brochure upper is marked 21; the lower plate bears the mark 22. A axis 23 passes through the center of the two plates 21 and 22. An axis 24 passes through the center of the plate 21 and is perpendicular to the axis 23. An axis 25 passes through the center of the plate 22 and is perpendicular to the axis 23.

La plaquette 21 est raccordée électriquement aux pistes du circuit imprimé 2 représenté figure 1 par deux sondes 3. Une première sonde 31 est positionnée sensiblement sur l'axe 23 au dessus du centre de la plaquette 21. Cette sonde 31 conduit un signal électrique. Une seconde sonde 32 est positionnée sensiblement sur l'axe 24, à droite du centre de la plaquette 21. Cette sonde 32 conduit le signal électrique déphasé de 90°. Cette configuration des sondes assure que les ondes électromagnétiques rayonnées par la plaquette 21 sont polarisées sensiblement circulairement.The plate 21 is electrically connected to the tracks of the circuit printed 2 shown in Figure 1 by two probes 3. A first probe 31 is positioned substantially on the axis 23 above the center of the wafer 21. This probe 31 conducts an electrical signal. A second probe 32 is positioned substantially on the axis 24, to the right of the center of the wafer 21. This probe 32 conducts the electrical signal 90 ° out of phase. This configuration of the probes ensures that the electromagnetic waves radiated by the plate 21 are substantially circularly polarized.

La plaquette 22 est raccordée électriquement aux pistes du circuit imprimé 2 représenté figure 1 par deux sondes 3. Une première sonde 33 est positionnée sensiblement sur l'axe 25 à droite du centre de la plaquette 22. Cette sonde 33 conduit le signal électrique. Une seconde sonde 34 est positionnée sensiblement sur l'axe 23, au dessous du centre de la plaquette 22. Cette sonde 34 conduit le signal électrique déphasé de 90°. Cette configuration des sondes 33 et 34 assure que les ondes électromagnétiques rayonnées par la plaquette 22 sont polarisées sensiblement circulairement. A un instant donné, la polarisation de ces deux plaquettes 21 et 22 voisines est décalée d'environ 90° ce qui améliore la qualité de la propagation. La distance entre le centre des plaquettes 21 et 22 et les sondes 31, 32 ,33 et 34 est définie principalement pour adapter l'impédance des plaquettes 21 et 22 à celle du circuit imprimé 2. En effet, dans la bande de fréquence de l'antenne, l'impédance au centre d'une plaquette 21 ou 22 est pratiquement nulle et l'impédance sur un point de sa circonférence est sensiblement infinie. On choisit donc la distance des sondes au centre de la plaquette en fonction de l'impédance du circuit imprimé 2 au point de raccordement de celui-ci avec les sondes. Le circuit imprimé doit aussi adapter son impédance à celle des moyens d'entrée/sortie de l'antenne.The plate 22 is electrically connected to the tracks of the circuit printed 2 shown in Figure 1 by two probes 3. A first probe 33 is positioned substantially on the axis 25 to the right of the center of the plate 22. This probe 33 conducts the electrical signal. A second probe 34 is positioned substantially on axis 23, below the center of the insert 22. This probe 34 conducts the electrical signal 90 ° out of phase. This configuration of probes 33 and 34 ensures that electromagnetic waves radiated by the plate 22 are substantially circularly polarized. At a given instant, the polarization of these two neighboring plates 21 and 22 is offset by about 90 ° which improves the quality of the propagation. The distance between the center of the plates 21 and 22 and the probes 31, 32, 33 and 34 is mainly defined to adapt the impedance of platelets 21 and 22 to that of printed circuit 2. Indeed, in the frequency band of the antenna, the impedance in the center of a plate 21 or 22 is practically zero and the impedance on a point of its circumference is substantially infinite. We therefore choose the distance of the probes to the center of the plate by function of the impedance of the printed circuit 2 at the connection point of this one with the probes. The printed circuit must also adapt its impedance to that of the antenna input / output means.

La distance entre les plaquettes 1 et le plan 8, autrement dit: la hauteur des sondes 31 à 34, est principalement définie par la bande passante que l'on souhaite pour l'antenne. Lorsque la distance entre les plaquettes 1 et le plan 8 reste très inférieure à la longueur d'onde λ, on estime que la bande passante est sensiblement proportionnelle à la distance entre les plaquettes 1 et le plan 8. Environ au delà d'une distance de λ/10 cette proportionnalité se dégrade et la polarisation se détériore. Dans le cas particulier de l'antenne G.S.M., pour assurer une bande passante sensiblement comprise entre 890 MHz et 960 MHz, on choisit une hauteur de sonde de l'ordre de λ/20, ce qui correspond à une hauteur d'environ 16 mm.The distance between the plates 1 and the plane 8, in other words: the height of probes 31 to 34, is mainly defined by the strip bandwidth that you want for the antenna. When the distance between plates 1 and the plane 8 remains much less than the wavelength λ, we considers that the bandwidth is substantially proportional to the distance between plates 1 and plane 8. About beyond a distance of λ / 10 this proportionality degrades and the polarization deteriorates. In the case particular of the G.S.M. antenna, to ensure bandwidth substantially between 890 MHz and 960 MHz, a height is chosen of probe of the order of λ / 20, which corresponds to a height of approximately 16 mm.

Le potentiel du centre des plaquettes 21 et 22 est pratiquement nul mais il peut fluctuer légèrement. Avantageusement, on fixe ce potentiel au moyen d'un court-circuit 35, un par plaquette, raccordant le centre de chaque plaquette 21 et 22 au plan 8 représenté figure 1. Le court-circuit 35 peut participer au même titre que les sondes 3 au maintien mécanique de la plaquette 21 ou 22 par rapport au circuit imprimé 2 représenté figure 1. Avantageusement, les sondes 3 et le court-circuit 35 sont réalisés de la même façon, par exemple au moyen d'entretoises métalliques en laiton serties sur la plaquette 21 ou 22 et soudées sur le circuit imprimé 2. Sur le circuit imprimé, le court-circuit 35 est soudé sur le plan 8 et au voisinage du court-circuit 35, il n'y a pas de piste sur la face 4 du circuit imprimé 2. Quant aux sondes 3, elles sont soudées chacune sur une piste du circuit imprimé et au voisinage des sondes, le plan 8 est détouré pour éviter tout contact et respecter une isolation suffisante entre les sondes et le plan 8.The potential of the center of platelets 21 and 22 is practically zero but it may fluctuate slightly. Advantageously, this potential is fixed at by means of a short circuit 35, one per plate, connecting the center of each plate 21 and 22 in plane 8 shown in FIG. 1. The short circuit 35 can participate in the same way as probes 3 in the mechanical maintenance of the plate 21 or 22 with respect to the printed circuit 2 shown in FIG. 1. Advantageously, the probes 3 and the short circuit 35 are made of the same way, for example by means of metal brass spacers crimped on the plate 21 or 22 and soldered on the printed circuit 2. On the printed circuit, short-circuit 35 is soldered to plane 8 and in the vicinity of short circuit 35, there is no track on side 4 of the printed circuit 2. Quant to the probes 3, they are each soldered on a track of the printed circuit and in the vicinity of the probes, plane 8 is cropped to avoid any contact and respect sufficient insulation between the probes and plan 8.

Afin d'obtenir sur la première sonde 31 ou 33, un signal électrique et sur la deuxième sonde 32 ou 34 le même signal électrique déphasé de 90°, on utilise un coupleur hybride 90° représenté schématiquement figure 3. Ce coupleur est réalisé au moyen d'une technologie micro-ruban sur le circuit imprimé 2. Le coupleur comporte deux entrée E1 et E2 et deux sorties S1 et S2 raccordées aux deux sondes 3 d'une plaquette 1. Le coupleur comporte quatre lignes L1 à L4 représentées en trait fort. Chacune a une longueur sensiblement égale à λ/4. La première ligne L1 se situe entre l'entrée E1 et la sortie S1. La deuxième ligne L2 se situe entre l'entrée E2 et la sortie S2. La troisième ligne L3 se situe entre l'entrée E1 et l'entrée E2. La quatrième ligne L4 se situe entre la sortie S1 et S2. Cette configuration assure que pour un signal entrant sur l'entrée E1, pratiquement aucun signal ne sort sur l'entrée E2 ; il y a découplage de l'ordre de 40 dB entre les deux entrées E1 et E2. Cette configuration assure aussi un déphasage de 90° entre les deux signaux présents sur les deux sorties S1 et S2. Ce coupleur est symétrique, il est possible de l'alimenter par ses deux entrées E1 et E2. L'antenne peut comporter deux connecteurs coaxiaux 5 dont les conducteurs intérieurs peuvent être raccordés séparément via le circuit imprimé, à chacune des entrées E1 ou E2 d'un coupleur hybride 90°. En fonction de la position relative des deux sondes 3 sur une plaquette 1, si un signal présenté sur une entrée 1 produit une onde électromagnétique polarisée circulairement vers la droite, alors un signal présenté sur l'entrée E2 du même coupleur produit une onde électromagnétique polarisée circulairement vers la gauche. Dans le cas particulier où deux signaux élémentaires présentés sur les deux entrées E1 et E2 d'un coupleur sont à même fréquence et de même amplitude, l'onde électromagnétique rayonnée sera polarisée de façon rectiligne.In order to obtain on the first probe 31 or 33, an electrical signal and on the second probe 32 or 34 the same electrical signal 90 ° out of phase, using a 90 ° hybrid coupler shown schematically in Figure 3. This coupler is made using micro-ribbon technology on the circuit printed 2. The coupler has two inputs E1 and E2 and two outputs S1 and S2 connected to the two probes 3 of a board 1. The coupler includes four lines L1 to L4 shown in strong lines. Each has a length substantially equal to λ / 4. The first line L1 is located between the entry E1 and the output S1. The second line L2 is located between the input E2 and the output S2. The third line L3 is located between entry E1 and entry E2. The fourth line L4 is located between exit S1 and S2. This configuration ensures that for an incoming signal on input E1, practically no signal comes out on entry E2; there is a decoupling of around 40 dB between the two E1 inputs and E2. This configuration also ensures a 90 ° phase shift between the two signals present on the two outputs S1 and S2. This coupler is symmetrical, it is possible to supply it with its two inputs E1 and E2. The antenna can have two coaxial connectors 5 including the inner conductors can be connected separately via the printed circuit, to each of the inputs E1 or E2 of a 90 ° hybrid coupler. Depending on the position relative of the two probes 3 on a wafer 1, if a signal presented on an input 1 produces a circularly polarized electromagnetic wave to the right, then a signal presented on input E2 of the same coupler produces an electromagnetic wave circularly polarized to the left. In the particular case where two elementary signals presented on the two inputs E1 and E2 of a coupler are at the same frequency and the same amplitude, the radiated electromagnetic wave will be polarized so straight.

Afin de réduire la longueur de certaines pistes du circuit imprimé 2, il est avantageux de prévoir des moyens de croisement de deux pistes. Un exemple de moyen est représenté figures 4 et 5. La figure 4 représente un tronçon du circuit imprimé 2 comportant trois portions de pistes. Une première portion 41 traverse de part en part le tronçon du circuit imprimé 2. Une deuxième portion 42 sensiblement perpendiculaire à la première portion 41 comporte une extrémité 43 ne venant pas en contact avec la portion 41. Une troisième portion 44 située approximativement dans le prolongement de la portion 42 présente elle aussi une extrémité 45 ne venant pas en contact avec la portion 41. Les portions 42 et 44 forment une piste interrompue. Les moyens de croisement ont pour but de raccorder les portions 42 et 44 sans contact avec la portion 41. Il est bien entendu que la position relative des différentes portions 41, 42 et 44 n'est donnée qu'à titre d'exemple.To reduce the length of certain tracks on the circuit printed 2, it is advantageous to provide means for crossing two tracks. An example of means is shown in Figures 4 and 5. Figure 4 represents a section of the printed circuit 2 comprising three portions of tracks. A first portion 41 passes right through the section of the circuit printed 2. A second portion 42 substantially perpendicular to the first portion 41 has one end 43 which does not come into contact with the portion 41. A third portion 44 located approximately in the extension of the portion 42 also has an end 45 does not coming into contact with the portion 41. The portions 42 and 44 form a track interrupted. The purpose of the crossing means is to connect the portions 42 and 44 without contact with portion 41. It is understood that the relative position of the different portions 41, 42 and 44 is only given as example.

La figure 5 représente le même tronçon du circuit imprimé 2 que celui représenté figure 4, mais cette fois vu du côté plan 8. Une portion de câble coaxial 46 est posée à plat sur le plan 8. La portion de câble coaxial 46 comporte un conducteur extérieur 47 , par exemple une tresse, et un conducteur intérieur 48, par exemple un fil mono-brin. Le conducteur extérieur 47 est raccordé au plan 8. Par exemple, la tresse ne comporte pas d'isolant extérieur et est brasée sur le plan 8. Le conducteur intérieur 48 déborde au-delà des extrémités de la portion de câble coaxial 46 afin d'être raccordé aux deux extrémités 43 et 45 de la piste interrompue. Pour réaliser ce raccordement, le circuit imprimé 2 comporte deux trous 49 et 50 débouchant chacun dans une des extrémités 43 et 45. Autour des trous 49 et 50, le plan 8 est détouré de façon à conserver un isolement suffisant avec le conducteur intérieur 48. Le conducteur intérieur 48 est cambré de façon à traverser les trous 49 et 50 et dépasse légèrement du circuit imprimé 2 du côté des pistes 41, 42 et 44, de façon à être brasé à chacune de ses extrémités sur les extrémités 43 et 45. Le conducteur intérieur 48 réalise ainsi le raccordement des deux portions 42 et 44 de piste.FIG. 5 represents the same section of the printed circuit 2 as the one shown in figure 4, but this time seen from the plan side 8. A portion of coaxial cable 46 is laid flat on plane 8. The portion of coaxial cable 46 comprises an outer conductor 47, for example a braid, and a inner conductor 48, for example a single-stranded wire. The driver outside 47 is connected to plane 8. For example, the braid does not have of outer insulation and is brazed on plane 8. The inner conductor 48 extends beyond the ends of the portion of coaxial cable 46 so as to be connected at the two ends 43 and 45 of the interrupted track. To realize this connection, the printed circuit 2 has two holes 49 and 50 each opening into one of the ends 43 and 45. Around the holes 49 and 50, plane 8 is outlined so as to maintain sufficient isolation with the inner conductor 48. The inner conductor 48 is arched so as to cross the holes 49 and 50 and slightly protrudes from the printed circuit 2 of the side of tracks 41, 42 and 44, so as to be brazed at each of its ends on ends 43 and 45. The inner conductor 48 realizes thus the connection of the two track portions 42 and 44.

Ce moyen de croisement entre deux pistes modifie légèrement l'impédance de la piste interrompue. Avantageusement, pour deux pistes distinctes, par exemple provenant de deux connecteurs 5 distincts et aboutissant aux deux entrées E1 et E2 d'un coupleur hybride 90°, on a tout intérêt de conserver sensiblement la même impédance. On mettra sur ces deux pistes, le même nombre de moyens de croisement de pistes, quitte à interrompre une de ces pistes même en l'absence de piste 41 pour y placer une portion de câble coaxial 46.This means of crossing between two tracks modifies slightly the impedance of the interrupted track. Advantageously, for two tracks separate, for example from two separate connectors 5 and leading to the two inputs E1 and E2 of a 90 ° hybrid coupler, we have everything interest of keeping substantially the same impedance. We will put on these two tracks, the same number of ways of crossing tracks, even if interrupt one of these tracks even in the absence of track 41 to place a portion of coaxial cable 46.

Claims (15)

Antenne fixe G.S.M., caractérisée en ce qu'elle comporte : plusieurs plaquettes (1, 21, 22) rayonnantes, susceptibles d'émettre et de recevoir une onde électromagnétique polarisée sensiblement circulairement et assurant ainsi la transformation de l'onde électromagnétique en un signal électrique et réciproquement, des moyens d'entrée/sortie (5, 6, 7) de l'antenne, assurant la connexion de l'antenne avec les autres circuits d'un émetteur-récepteur G.S.M. fixe, un circuit imprimé (2) supportant les plaquettes (1, 21, 22) et des pistes conductrices, le circuit imprimé (2) assurant la propagation du signal entre les moyens d'entrée/sortie (5, 6, 7) et les plaquettes (1, 21, 22), un plan (8) électriquement conducteur disposé sensiblement parallèlement au circuit imprimé, les pistes du circuit imprimé(2) formant avec ce plan (8) conducteur des lignes micro-ruban, des moyens de raccordement électriques (3, 31 à 35) entre le circuit imprimé (2) et les plaquettes (1, 21, 22), pour appliquer à chaque plaquette (1, 21, 22) le signal électrique et le même signal électrique déphasé de 90°, des moyens (41 à 50) de croisement entre pistes, un blindage (9) électrique assurant l'arrêt d'ondes électromagnétiques émises et/ou susceptibles d'être reçues par l'antenne du côté du circuit imprimé (2) opposé aux plaquettes (1, 21, 22). GSM fixed antenna, characterized in that it comprises: several radiating plates (1, 21, 22) capable of emitting and receiving an electromagnetic wave substantially circularly polarized and thus ensuring the transformation of the electromagnetic wave into an electrical signal and vice versa, input / output means (5, 6, 7) of the antenna, ensuring the connection of the antenna with the other circuits of a fixed GSM transceiver, a printed circuit (2) supporting the plates (1, 21, 22) and conductive tracks, the printed circuit (2) ensuring the propagation of the signal between the input / output means (5, 6, 7) and the plates (1, 21, 22), an electrically conductive plane (8) disposed substantially parallel to the printed circuit, the tracks of the printed circuit (2) forming with this conductive plane (8) microstrip lines, electrical connection means (3, 31 to 35) between the printed circuit (2) and the boards (1, 21, 22), to apply to each board (1, 21, 22) the electrical signal and the same electrical signal 90 ° out of phase, means (41 to 50) for crossing between tracks, an electrical shield (9) ensuring the stopping of electromagnetic waves emitted and / or likely to be received by the antenna on the side of the printed circuit (2) opposite the plates (1, 21, 22). Antenne selon la revendication 1, caractérisée en ce que le signal et le signal déphasé de 90° sont obtenus au moyen d'un coupleur hybride 90° réalisé en lignes micro-ruban sur ledit circuit imprimé (2).Antenna according to claim 1, characterized in that the signal and the 90 ° phase shifted signal are obtained by means of a coupler 90 ° hybrid produced in micro-ribbon lines on said printed circuit (2). Antenne selon la revendication 2, caractérisée en ce que les moyens d'entrée/sortie (5, 6, 7) comportent deux connecteurs (5) chacun susceptible de conduire un signal élémentaire, les signaux élémentaires se propageant chacun sur le circuit imprimé vers une des entrées (E1, E2) du coupleur hybride 90°. Antenna according to claim 2, characterized in that the input / output means (5, 6, 7) have two connectors (5) each likely to conduct an elementary signal, the elementary signals are each propagating on the printed circuit towards one of the inputs (E1, E2) of the 90 ° hybrid coupler. Antenne selon l'une des revendications précédentes, caractérisée en ce que le circuit imprimé (2) comporte sur une de ses faces le plan (8) conducteur.Antenna according to one of the preceding claims, characterized in that the printed circuit (2) has on one of its faces the conductive plane (8). Antenne selon la revendication 4, caractérisée en ce que le plan (8) conducteur se situe entre les plaquettes (1) et les pistes conductrices du circuit imprimé (2).Antenna according to claim 4, characterized in that the conductor plane (8) is located between the pads (1) and the tracks conductors of the printed circuit (2). Antenne selon l'une des revendications précédentes, caractérisée en ce que la plaquette (1) a sensiblement la forme d'un disque et en ce que les moyens de raccordement électriques (3) comportent une première sonde (31, 33) raccordant une première sortie du coupleur hybride 90° à un point de la plaquette sensiblement positionné sur une première direction radiale de celle-ci et une deuxième sonde (32, 34) raccordant une deuxième sortie du coupleur hybride 90° à un point de la plaquette (1, 21, 22) sensiblement positionné sur une deuxième direction radiale de la plaquette (1, 21, 22) perpendiculaire à la première direction radiale.Antenna according to one of the preceding claims, characterized in that the plate (1) has substantially the shape of a disc and in that the electrical connection means (3) include a first probe (31, 33) connecting a first output of the hybrid coupler 90 ° at a point on the plate substantially positioned on a first radial direction thereof and a second probe (32, 34) connecting a second output of the 90 ° hybrid coupler at a point on the board (1, 21, 22) substantially positioned on a second radial direction of the plate (1, 21, 22) perpendicular to the first radial direction. Antenne selon la revendication 6, caractérisée en ce que les moyens de raccordement électriques (3) comportent en outre un court-circuit (35) raccordant le plan (8) conducteur à un point de la plaquette (1, 21, 22) sensiblement situé au centre de la plaquette (1, 21, 22).Antenna according to claim 6, characterized in that the electrical connection means (3) also include a short circuit (35) connecting the conductive plane (8) to a point on the plate (1, 21, 22) substantially located in the center of the plate (1, 21, 22). Antenne selon l'une des revendications précédentes, caractérisée en ce que les moyens de raccordement électriques (3) sont réalisés au moyens d'entretoises métalliques fixées sur la plaquette et sur le circuit imprimé (2), ces entretoises supportant mécaniquement la plaquette sensiblement parallèlement au circuit imprimé (2).Antenna according to one of the preceding claims, characterized in that the electrical connection means (3) are made by means of metal spacers fixed on the plate and on the printed circuit (2), these spacers mechanically supporting the wafer substantially parallel to the printed circuit (2). Antenne selon l'une des revendications précédentes, caractérisée en ce que le circuit imprimé (2) est réalisé en technologie double face sur un substrat en verre époxy.Antenna according to one of the preceding claims, characterized in that the printed circuit (2) is produced in technology double sided on an epoxy glass substrate. Antenne selon la revendication 9 caractérisée en ce que le substrat est réalisé en diélectrique. Antenna according to claim 9 characterized in that the substrate is made of dielectric. Antenne selon l'une des revendications précédentes, caractérisée en ce que les moyens de croisement (41 à 50) entre deux pistes (41, 42, 44) du circuit imprimé (2) dont l'une (42, 44) est interrompue, comportent une portion de câble coaxial (46) posé à plat sur le plan (8) conducteur, câble coaxial (46) dont le conducteur extérieur (47) est raccordé au plan (8) conducteur et dont le conducteur intérieur (48) est raccordé au delà des extrémités de la portion de câble coaxial (46) à la piste (42, 44) interrompue.Antenna according to one of the preceding claims, characterized in that the crossing means (41 to 50) between two tracks (41, 42, 44) of the printed circuit (2) one of which (42, 44) is interrupted, have a portion of coaxial cable (46) laid flat on the plane (8) conductor, coaxial cable (46) with the outer conductor (47) connected to the conductor plane (8) and the inner conductor (48) of which is connected to the beyond the ends of the portion of coaxial cable (46) to the track (42, 44) interrupted. Antenne selon l'une des revendications précédentes, caractérisée en ce que le blindage (9) est réalisé au moyen d'un réseau (9) de fils conducteurs intégré dans le moulage d'un capot plastique (10).Antenna according to one of the preceding claims, characterized in that the shield (9) is produced by means of a network (9) of conductive wires integrated in the molding of a plastic cover (10). Antenne selon l'une des revendications précédentes, caractérisée en ce que les fils conducteurs sont réalisés en alliage de cuivre.Antenna according to one of the preceding claims, characterized in that the conductive wires are made of an alloy copper. Antenne selon l'une des revendications précédentes, caractérisée en ce qu'elle comporte un radôme (12) formant avec le capot plastique (10) une enveloppe compatible avec une utilisation extérieure.Antenna according to one of the preceding claims, characterized in that it comprises a radome (12) forming with the cover plastic (10) an envelope compatible with outdoor use. Antenne selon l'une des revendications précédentes, caractérisée en ce qu'entre deux plaquettes voisines (21, 22) la polarisation de l'onde électromagnétique est décalée d'environ 90°.Antenna according to one of the preceding claims, characterized in that between two adjacent plates (21, 22) the polarization of the electromagnetic wave is offset by approximately 90 °.
EP98403246A 1997-12-19 1998-12-21 GSM base station antenna Withdrawn EP0930668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9716144 1997-12-19
FR9716144A FR2772991B1 (en) 1997-12-19 1997-12-19 FIXED ANTENNA G.S.M.

Publications (1)

Publication Number Publication Date
EP0930668A1 true EP0930668A1 (en) 1999-07-21

Family

ID=9514833

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98403246A Withdrawn EP0930668A1 (en) 1997-12-19 1998-12-21 GSM base station antenna

Country Status (2)

Country Link
EP (1) EP0930668A1 (en)
FR (1) FR2772991B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093983A1 (en) * 2005-02-28 2006-09-08 Sirit Technologies Inc. Circularly polarized square patch antenna
US7245267B2 (en) 2005-02-08 2007-07-17 Kathrein-Werke Kg Mobile radio antenna radome with integral reflector
US7546137B2 (en) 2005-02-28 2009-06-09 Sirit Technologies Inc. Power control loop and LO generation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0247454A1 (en) * 1986-05-20 1987-12-02 Ball Corporation Broadbanded microstrip antenna having series-broadbanding capacitance integral with feedline connection
US4866451A (en) * 1984-06-25 1989-09-12 Communications Satellite Corporation Broadband circular polarization arrangement for microstrip array antenna
US5436405A (en) * 1993-02-12 1995-07-25 Alcatel Network Systems, Inc. Electromagnetically shielded microstrip circuit and method of fabrication
WO1996035240A1 (en) * 1995-05-05 1996-11-07 Saab Ericsson Space Ab Antenna element for two orthogonal polarizations
WO1996036136A1 (en) * 1995-05-11 1996-11-14 Ericsson Inc. Method and apparatus for polarization diversity in a base station using antenna arrays
GB2301712A (en) * 1995-06-02 1996-12-11 Dsc Communications Integrated directional antenna
US5600285A (en) * 1994-11-18 1997-02-04 Unisys Corporation Monolithic stripline crossover coupler having a pyramidal grounding structure
WO1998054785A1 (en) * 1997-05-27 1998-12-03 Allen Telecom Inc. Dual polarized aperture coupled microstrip patch antenna system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866451A (en) * 1984-06-25 1989-09-12 Communications Satellite Corporation Broadband circular polarization arrangement for microstrip array antenna
EP0247454A1 (en) * 1986-05-20 1987-12-02 Ball Corporation Broadbanded microstrip antenna having series-broadbanding capacitance integral with feedline connection
US5436405A (en) * 1993-02-12 1995-07-25 Alcatel Network Systems, Inc. Electromagnetically shielded microstrip circuit and method of fabrication
US5600285A (en) * 1994-11-18 1997-02-04 Unisys Corporation Monolithic stripline crossover coupler having a pyramidal grounding structure
WO1996035240A1 (en) * 1995-05-05 1996-11-07 Saab Ericsson Space Ab Antenna element for two orthogonal polarizations
WO1996036136A1 (en) * 1995-05-11 1996-11-14 Ericsson Inc. Method and apparatus for polarization diversity in a base station using antenna arrays
GB2301712A (en) * 1995-06-02 1996-12-11 Dsc Communications Integrated directional antenna
WO1998054785A1 (en) * 1997-05-27 1998-12-03 Allen Telecom Inc. Dual polarized aperture coupled microstrip patch antenna system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245267B2 (en) 2005-02-08 2007-07-17 Kathrein-Werke Kg Mobile radio antenna radome with integral reflector
WO2006093983A1 (en) * 2005-02-28 2006-09-08 Sirit Technologies Inc. Circularly polarized square patch antenna
US7546137B2 (en) 2005-02-28 2009-06-09 Sirit Technologies Inc. Power control loop and LO generation method

Also Published As

Publication number Publication date
FR2772991B1 (en) 2000-03-03
FR2772991A1 (en) 1999-06-25

Similar Documents

Publication Publication Date Title
EP0954055B1 (en) Dual-frequency radiocommunication antenna realised according to microstrip technique
EP0924797B1 (en) Multifrequency microstrip antenna and apparatus using the same
EP0403910B1 (en) Radiating, diplexing element
EP1073143B1 (en) Dual polarisation printed antenna and corresponding array
EP1038333B1 (en) Patch antenna
FR2811479A1 (en) CONDUCTIVE LAYER ANTENNA AND DUAL BAND TRANSMISSION DEVICE INCLUDING THIS ANTENNA
WO1999060657A1 (en) Radio communication base station antenna
FR2810163A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS
EP0426972A1 (en) Flat antenna
FR2817661A1 (en) DEVICE FOR RECEIVING AND / OR TRANSMITTING MULTI-BEAM SIGNALS
EP0012055A1 (en) Microstrip monopulse primary feed and antenna using same
FR2550892A1 (en) WAVEGUIDE ANTENNA OUTPUT FOR A HYPERFREQUENCY PLANE ANTENNA TO A NETWORK OF RADIANT ELEMENTS OR RECEIVERS AND SYSTEM FOR TRANSMITTING OR RECEIVING MICROWAVE SIGNALS COMPRISING A FLANE ANTENNA EQUIPPED WITH SUCH ANTENNA OUTPUT
EP1042845A1 (en) Antenna
EP0834954A1 (en) Transition between a ridge wave guide and a planar circuit
WO1998057391A1 (en) Integrated transmitter or receiver device
FR2773913A1 (en) Connector for linking cables to external vehicle radio aerial
EP0930668A1 (en) GSM base station antenna
FR2644937A1 (en) Omnidirectional antenna with transverse circular polarisation and maximum gain beneath the horizon
EP3605734B1 (en) Antenna device comprising at least two antennas and electrical connection on a same substrate
FR2967537A1 (en) Antenna i.e. planar Inverted-F slot antenna, for e.g. mobile telephone to receive TV channels during live telecasting of sports events, has adaptation element realizing inductive impedance adaptation if antenna is capacitive type antenna
EP0082053B1 (en) Radiating system comprising two stacked antennas working in the same frequency band
EP0334270A1 (en) Microwave matching arrangement for a waveguide-to-planar line transition
FR2591807A1 (en) Dielectric antenna
FR2690019A1 (en) Harmonic circuit and mixer.
FR3111480A1 (en) Multimode, multiport and multistandard antenna for adaptable communication system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000122