EP1073143B1 - Dual polarisation printed antenna and corresponding array - Google Patents

Dual polarisation printed antenna and corresponding array Download PDF

Info

Publication number
EP1073143B1
EP1073143B1 EP00460045A EP00460045A EP1073143B1 EP 1073143 B1 EP1073143 B1 EP 1073143B1 EP 00460045 A EP00460045 A EP 00460045A EP 00460045 A EP00460045 A EP 00460045A EP 1073143 B1 EP1073143 B1 EP 1073143B1
Authority
EP
European Patent Office
Prior art keywords
polarization
radiating
antenna
situated
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00460045A
Other languages
German (de)
French (fr)
Other versions
EP1073143A1 (en
Inventor
M. Patrice Brachat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP1073143A1 publication Critical patent/EP1073143A1/en
Application granted granted Critical
Publication of EP1073143B1 publication Critical patent/EP1073143B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the field of the invention is that of microwave antennas. More specifically, the invention relates to a printed antenna bi-polarization, and a corresponding antenna array.
  • the antenna according to the present invention has many applications. It can for example be used as a probe in antenna test devices by radio-frequency measurement. It should be recalled that such devices make it possible, in particular, to carry out radio coverage forecasts, measurements of devices (mobile or other) with a view to compliance with standards, verification of the securing of the useful signals transmitted, or else measures intended to to studies of the interactions of radio waves with people.
  • GSM radio communication system
  • multimedia satellite receiver it can also be used in the field of telecommunications, for example in the base stations of a radio communication system (GSM or other), or in a multimedia satellite receiver.
  • GSM radio communication system
  • the antenna used has an omnidirectional radiation pattern (approaching an infinitesimal dipole), a wide bandwidth and excellent polarization purity.
  • the antenna is furthermore desirable for the antenna to be double polarized. Indeed, there is a generalization of the use of this type of polarized duplex antenna.
  • an antenna test device now requires the implementation of polarization duplex probes, that is to say able to measure two orthogonal components of the electric field. Indeed, the measurement performed by the test device must include providing, for the antenna under test, polarization decoupling characteristics. It is therefore understood that the probe itself must have excellent isolation between its access and have very low levels of cross polarization.
  • the invention particularly aims to overcome these disadvantages of the state of the art.
  • one of the objectives of the present invention is to provide a bi-polarization printed antenna having not only an omnidirectional radiation pattern and excellent polarization purity, but also a wide bandwidth (for example greater than 50% at ROS ⁇ 2).
  • the invention also aims to provide such an antenna that can operate in circular polarization.
  • Another object of the invention is to provide such an antenna having an increased directivity.
  • the general principle of the invention therefore consists in superimposing at least one first printed T-dipole and at least one second T printed dipole, each having a distinct polarization.
  • the general principle of the invention therefore consists in superimposing at least one first printed T-dipole and at least one second T printed dipole, each having a distinct polarization.
  • the bi-polarization antenna according to the invention benefits from all the advantages associated with the "monopolarization" T-printed dipole, namely a small space requirement, easy mechanical retention, an omnidirectional radiation pattern and a wide bandwidth. (greater than 50% at ROS ⁇ 2). In addition, it is a simple technology to implement.
  • the small size of the antenna according to the invention makes it particularly suitable for the aforementioned test devices, and in particular those in the near field. It is recalled that the latter make it possible to measure the radio-electric field emitted at a short distance by electronic equipment (under test). Such measures are intended to provide a better understanding of phenomena of short-range propagation of electronic devices, and to allow the demonstration of the interactions between the waves radiated by the apparatus and the human body (which is often made difficult by the extreme proximity of the apparatus).
  • said first metal deposit defines two first dipole-type radiating elements, each T-shaped and contiguous to each other by the free end of the vertical bar of each T
  • Said first supply line has two branches each supplying one of the first two radiating elements.
  • Said second metal deposit defines two second dipole-type radiating elements, each T-shaped and contiguous to each other by the free end of the vertical bar of each T.
  • Said second feed line has two branches feeding each one of the two second radiating elements.
  • the longitudinal axis of the T of said first radiating elements is shifted by about 90 ° relative to the longitudinal axis of the T of said second radiating elements.
  • the vertical bar of the T of each radiating element constitutes a ground plane for at least a portion of said first and second supply lines.
  • the vertical bars of the T of the first elements thus constitute a first ground plane, while the vertical bars of the T of the second elements therefore constitute a second ground plane.
  • the supply lines function as triplic elements (striplines), and are therefore shielded (they are between the first and second ground planes). This eliminates the problems of parasitic leaks and diffractions, which would be likely to deteriorate the performance (in particular of polarization purity) of the overall structure.
  • the invention also relates to a dual-band, dual-polarized printed antenna in each band.
  • the invention also provides networking of the antenna described above, so as to obtain an increased directivity.
  • the invention therefore relates to a bi-polarization printed antenna.
  • the case of horizontal and vertical polarizations is considered. It's clear however, the invention applies to other types of double polarization (polarizations at ⁇ 45 ° for example).
  • the first power supply line 7 has a first access (denoted "access V”, for vertical access, in FIG. 1).
  • the second feed line 11 has a second access (denoted "access H”, for horizontal access, in FIG. 1).
  • Each of the ports H, V of the supply lines 7, 11 is for example connected to a connector (not shown) of the SMA type (or other) itself connected to a coaxial cable.
  • the longitudinal axis of the T of the first radiating elements 5,6 is shifted by about 90 ° with respect to the longitudinal axis of the T of the second radiating elements 9, 10.
  • the first and second metal deposits 4, 8 have in this example the same shape (including the square-shaped conductive central surface discussed below), and are simply shifted by a quarter of a turn. one compared to the other.
  • the vertical bars of the T of the first radiating elements 5, 6 constitute a first ground plane for the first and second supply lines 7, 11 (and in particular for the divider by 2 included in each of these).
  • the vertical bars of the T of the second radiating elements 9, 10 constitute a second ground plane for the first and second supply lines 7, 11 (in particular for the divider by 2 included in each of these).
  • the first and second feed lines therefore function as stripline elements.
  • the free end of each of these vertical bars of T is widened, so as to increase the surface of the ground planes. In the illustrated example, the enlargement results in obtaining, in the center of each of the first and second metal deposits 4, 8, a conductive surface of square shape.
  • Each of the supply line branches 7a, 7b, 11a, 11b has a first end portion extending along an axis intercepting the axis of the slot of one of the radiating elements and protruding from the axis of the slot of one of the radiating elements of a first variable length of adaptation (or series stub) 11. Furthermore, the slot of each of the radiating elements has a second end portion protruding from the axis of the first portion end of a second variable adaptation length (or parallel stub) 12.
  • the first and second adaptation lengths 11, 12 are referenced, in FIG. 1, only for one branches of power (that referenced 7b). A suitable choice of these series and parallel stubs 11, 12 makes it possible to adapt the radiating element concerned to a wide band.
  • the antenna may further comprise variable capacitance means (not shown) for electrically acting on the first and second variable adaptation lengths (serial and parallel stubs) of each of the radiating elements. It is recalled that this electric action has the same effect as a lengthening or a decrease physical (that is to say real) stub on which one acts. Examples of such variable capacity means are described in detail in French Patent No. 93 14276, to which reference may be made.
  • This antenna is extremely broadband since it works from 0.6 GHz to 1.1 GHz for a ROS less than 2 (see fig.3). This corresponds to more than 75% of bandwidth. It is recalled that this percentage is obtained by division of the bandwidth by the central frequency of this band.
  • Its impedance curve shows a coupling loop characteristic of the dipole element, the latter being associated on the one hand with its series stub (feed line which goes beyond the slot of coupling) and on the other hand to its parallel stub (slot that extends beyond the power line). It is the presence of this loop that guarantees a low frequency dispersion and reflects the efficiency of the power supply device.
  • the antenna according to the invention also makes it possible to simply and efficiently generate the circular polarization, by feeding the pairs of first 5, 6 and second 9, 10 radiating elements in quadrature. In other words, there is introduced between these two couples a phase shift of ⁇ / 2 in time.
  • the antenna further comprises phase shift means.
  • a first solution is to use a hybrid element 80.
  • This hybrid element well known, comprises two input terminals 81, 82 and two output terminals 83, 84.
  • one injects on one of the input terminals if the antenna is transmitting), or receives (if the antenna is operating in reception), or a signal in right circular polarization (for example on the terminal of input 81), ie a signal in left circular polarization (for example on the input terminal 82).
  • the output terminals 83, 84 are respectively connected to the H and V ports of the first and second supply lines 7, 11.
  • a second solution (see Fig. 9) is to use a rat-race ring 90.
  • This rat-race ring also well known, also includes two input terminals 91, 92 and two output terminals 93, 94. Its implementation, in the context of the present application, is identical to that described above for the hybrid element 80.
  • a third solution (see fig.10), more compact, consists of using localized elements (inductors and capacities).
  • the corresponding assembly (well known in itself) 100 also comprises two input terminals 101, 102 and two output terminals 103, 104. Its implementation, in the context of the present application, is identical to that described. above for the hybrid element 80.
  • phase shift means may be integrated on a printed circuit to be placed in the middle of the superimposed structure.
  • the second substrate plate 2 (or central plate) is divided into two sub-layers 2A and 2B, between which is positioned the printed circuit (or metal deposit) 12 supporting the means of phase shift.
  • This printed circuit 12 is connected on the one hand to the access V of the first supply line 7, via a first metallized hole (or through contact) 13, and on the other hand to the access H of the second feed line 11, via a second metallized hole 14.
  • the antenna may include reflection means, to increase its directivity by removing some of its radiation. This involves, for example, removing a back radiation from the antenna, to direct the radiated energy forward and increase the directivity of the antenna a few dB, while maintaining broadband performance.
  • a first solution (see Fig. 12) is to introduce the antenna 120 (as previously described) in a waveguide section 121. This makes it possible to easily constitute a duplex feed system in a guide. waves.
  • a second solution (see Fig. 13) is to use a ground plane 131 at about ⁇ / 3 of the antenna 130 (as previously described). It will be noted that the radiation patterns shown in FIGS. 6 and 7 were obtained in the presence of a ground plane.
  • the antenna is then the basic element of the network.
  • FIGS. 14 and 15 two particular embodiments of such a network are presented. It is clear that these are only indicative, various variants that can be envisaged without departing from the scope of the present invention.
  • the network is one-dimensional. It presents a directional radiation pattern in elevation (as shown schematically by the arc of circle referenced 140) and wide (even omnidirectional) in azimuth (as shown schematically by the arc of circle referenced 141).
  • a network having such qualities is particularly suitable for antennas of the base stations of radio communication systems (for example GSM or DCS).
  • the array is two-dimensional plane. It allows significant pointing up to low elevations, thanks to its elementary diagram less directive than that of traditional resonant printed elements (patches).
  • a network having such qualities is suitable for ground antennas, intended for reception in the context of satellite multimedia applications.
  • the networking can be combined with the use of reflection means (for example a ground plane).
  • reflection means for example a ground plane.
  • the dimensions of the third and fourth metal deposits 24, 26, which are at the ends of the superposition, must be smaller than those of the first and second metal deposits 4, 8. In other words, the second frequency band must be larger than high in frequency than the first.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

The invention relates a printed bi-polarization acrial comprising first, second and third superimposed substrate lates (1, 2. 3); a first metal deposit (4), situated on the external face of said first substrate plate (1) which defines at least one first radiating element (5, 6) of the dipole type, in the form of a T, the horizontal bar of said T being constituted by two radiating lateral strands separated by a coupling slit; a first power supply line (7) pursuant to a first polarization, situated between said first and second substrate plates (1, 2) and supplying power to said at least one first radiating element (5, 6); a second metal deposit (8). situated on the external face of said third substrate plate (3) and defining at least one second radiating element of the dipole type (9, 10), in the form of a T, the horizontal bar of said T being constituted by two radiating lateral strands separated by a coupling slit; a second power supply line (11) pursuant to a second polarization, situated between said second and third substrate plates (2, 3) and supplying power to said at least one second radiating element (9, 10).

Description

Le domaine de l'invention est celui des antennes hyperfréquences. Plus précisément, l'invention concerne une antenne imprimée bi-polarisation, ainsi qu'un réseau d'antennes correspondant.The field of the invention is that of microwave antennas. More specifically, the invention relates to a printed antenna bi-polarization, and a corresponding antenna array.

L'antenne selon la présente invention a de nombreuses applications. Elle peut par exemple être utilisée comme sonde dans des dispositifs de test d'antenne par mesure de rayonnements radioélectriques. On rappelle que de tels dispositifs permettent notamment d'effectuer des prévisions de couverture radioélectrique, des mesures d'appareils (mobiles ou autres) en vue de la conformité aux normes, une vérification de la sécurisation des signaux utiles émis, ou encore des mesures destinées aux études des interactions des ondes radioélectriques avec les personnes.The antenna according to the present invention has many applications. It can for example be used as a probe in antenna test devices by radio-frequency measurement. It should be recalled that such devices make it possible, in particular, to carry out radio coverage forecasts, measurements of devices (mobile or other) with a view to compliance with standards, verification of the securing of the useful signals transmitted, or else measures intended to to studies of the interactions of radio waves with people.

Elle peut également être utilisée dans le domaine des télécommunications, par exemple dans les stations de base d'un système de radiocommunication (GSM ou autre), ou encore dans un récepteur satellite multimédia.It can also be used in the field of telecommunications, for example in the base stations of a radio communication system (GSM or other), or in a multimedia satellite receiver.

Dans toutes ces applications, on souhaite de façon classique que l'antenne utilisée possède un diagramme de rayonnement omnidirectionnel (s'approchant le plus d'un dipôle infinitésimal), une large bande passante et une excellente pureté de polarisation.In all these applications, it is conventionally desired that the antenna used has an omnidirectional radiation pattern (approaching an infinitesimal dipole), a wide bandwidth and excellent polarization purity.

Dans le cadre de la présente invention, on souhaite en outre que l'antenne soit à double polarisation. En effet, on note une généralisation de l'usage de ce type d'antenne duplexée en polarisation.In the context of the present invention, it is furthermore desirable for the antenna to be double polarized. Indeed, there is a generalization of the use of this type of polarized duplex antenna.

C'est également du fait de cette généralisation qu'un dispositif de test d'antenne nécessite maintenant la mise en oeuvre de sondes duplexées en polarisation, c'est-à-dire capables de mesurer deux composantes orthogonales du champ électrique. En effet, la mesure effectuée par le dispositif de test doit notamment fournir, pour l'antenne sous test, les caractéristiques en découplage de polarisation. On comprend donc que la sonde doive elle-même avoir une excellente isolation entre ses accès et présenter des niveaux de polarisation croisée très faibles.It is also because of this generalization that an antenna test device now requires the implementation of polarization duplex probes, that is to say able to measure two orthogonal components of the electric field. Indeed, the measurement performed by the test device must include providing, for the antenna under test, polarization decoupling characteristics. It is therefore understood that the probe itself must have excellent isolation between its access and have very low levels of cross polarization.

Traditionnellement, on utilise comme sondes de mesure des antennes de type guide ouvert ou cornet. Or, celles-ci présentent une "épaisseur" importante (5 à 10 longueurs d'onde λ) qui devient rédhibitoire pour un usage dans des bandes de fréquences inférieures à 3 GHz.Conventionally, open-type or horn antennas are used as measurement probes. However, these have a significant "thickness" (5 to 10 wavelengths λ) which becomes unacceptable for use in frequency bands below 3 GHz.

Afin de résoudre ce problème d'encombrement, certains ont pu être tentés par la technologie imprimée. En effet, l'un des intérêts majeurs de cette technologie est de permettre la réalisation d'antennes de faible encombrement (dont l'épaisseur reste généralement de l'ordre de λ/4) et de faible poids. En outre, on connaît à travers la littérature de nombreuses structures d'antennes imprimées duplexées en polarisation.In order to solve this congestion problem, some may have been tempted by the printed technology. Indeed, one of the major interests of this technology is to allow the realization of small size antennas (whose thickness remains generally of the order of λ / 4) and low weight. In addition, numerous structures of polarized duplex printed antennas are known throughout the literature.

Mais, dans la pratique, il n'existe à ce jour aucune antenne imprimée bi-polarisation possédant un diagramme de rayonnement omnidirectionnel, une large bande passante et une excellente pureté de polarisation. En effet, elles sont toutes actuellement constituées à bases de pastilles métalliques résonantes (ou "patchs résonants"), alimentées par couplage (lignes ou fentes découpées dans un plan de masse) ou par contact (sondes coaxiales). Or, l'usage de "patchs résonants" conduit malheureusement à des bandes passantes réduites (rarement plus de 20 % à ROS (Rapport d'Onde Stationnaire) inférieur à 2). Les antennes imprimées connues ne vérifient que deux des trois critères (à savoir diagramme de rayonnement omnidirectionnel et pureté de polarisation), et ne conviennent donc pas aux applications précitées.But, in practice, there is currently no bi-polarized printed antenna having an omnidirectional radiation pattern, a wide bandwidth and excellent polarization purity. Indeed, they are all currently made of resonant metal pellets (or "resonant patches"), supplied by coupling (lines or slots cut in a ground plane) or by contact (coaxial probes). However, the use of "resonant patches" unfortunately leads to reduced bandwidths (rarely more than 20% at ROS (Stationary Wave Ratio) less than 2). The known printed antennas verify only two of the three criteria (namely omnidirectional radiation pattern and polarization purity), and are therefore not suitable for the aforementioned applications.

L'invention a notamment pour objectif de pallier ces différents inconvénients de l'état de la technique.The invention particularly aims to overcome these disadvantages of the state of the art.

Plus précisément, l'un des objectifs de la présente invention est de fournir une antenne imprimée bi-polarisation possédant non seulement un diagramme de rayonnement omnidirectionnel et une excellente pureté de polarisation, mais également une large bande passante (par exemple supérieure à 50 % à ROS < 2).More precisely, one of the objectives of the present invention is to provide a bi-polarization printed antenna having not only an omnidirectional radiation pattern and excellent polarization purity, but also a wide bandwidth (for example greater than 50% at ROS <2).

L'invention a également pour objectif de fournir une telle antenne pouvant fonctionner en polarisation circulaire.The invention also aims to provide such an antenna that can operate in circular polarization.

Un autre objectif de l'invention est de fournir une telle antenne ayant une directivité accrue.Another object of the invention is to provide such an antenna having an increased directivity.

Ces différents objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints selon l'invention à l'aide d'une antenne imprimée bi-polarisation comprenant :

  • des première, seconde et troisième plaques de substrat superposées ;
  • un premier dépôt métallique, situé sur la face externe de ladite première plaque de substrat et définissant au moins un premier élément rayonnant du type dipôle, en forme de T, la barre horizontale dudit T étant constituée de deux brins latéraux rayonnants séparés par une fente de couplage ;
  • une première ligne d'alimentation selon une première polarisation, située entre lesdites première et seconde plaques de substrat et alimentant ledit au moins un premier élément rayonnant ;
  • un second dépôt métallique, situé sur la face externe de ladite troisième plaque de substrat et définissant au moins un second élément rayonnant du type dipôle, en forme de T, la barre horizontale dudit T étant constituée de deux brins latéraux rayonnants séparés par une fente de couplage ;
  • une seconde ligne d'alimentation selon une seconde polarisation, située entre lesdites seconde et troisième plaques de substrat et alimentant ledit au moins un second élément rayonnant.
These various objectives, as well as others which will appear subsequently, are achieved according to the invention with the aid of a bi-polarization printed antenna comprising:
  • first, second and third superimposed substrate plates;
  • a first metal deposit, located on the outer face of said first substrate plate and defining at least one first T-shaped dipole type radiating element, the horizontal bar of said T being consisting of two radiating lateral strands separated by a coupling slot;
  • a first supply line in a first polarization, located between said first and second substrate plates and feeding said at least one first radiating element;
  • a second metal deposit, located on the outer face of said third substrate plate and defining at least one second T-shaped dipole radiating element, the horizontal bar of said T being constituted by two radiating lateral strands separated by a slot of coupling;
  • a second power supply line according to a second polarization, located between said second and third substrate plates and supplying said at least one second radiating element.

Le principe général de l'invention consiste donc à superposer au moins un premier dipôle imprimé en T et au moins un second dipôle imprimé en T, chacun ayant une polarisation distincte. On obtient donc une structure à trois couches de substrat et quatre couches de métallisation (deux pour les éléments rayonnants et deux pour les lignes d'alimentation). Cette topologie évite les intersections physiques entre les lignes d'alimentation et limite donc les risques de couplages parasites.The general principle of the invention therefore consists in superimposing at least one first printed T-dipole and at least one second T printed dipole, each having a distinct polarization. There is thus obtained a structure with three substrate layers and four metallization layers (two for the radiating elements and two for the supply lines). This topology avoids the physical intersections between the supply lines and thus limits the risks of parasitic couplings.

De cette façon, l'antenne bi-polarisation selon l'invention bénéficie de tous les avantages liés au dipôle imprimé en T "monopolarisation", à savoir un faible encombrement, un maintien mécanique aisé, un diagramme de rayonnement omnidirectionnel et une large bande passante (supérieure à 50 % à ROS < 2). En outre, il s'agit d'une technologie simple à mettre en oeuvre.In this way, the bi-polarization antenna according to the invention benefits from all the advantages associated with the "monopolarization" T-printed dipole, namely a small space requirement, easy mechanical retention, an omnidirectional radiation pattern and a wide bandwidth. (greater than 50% at ROS <2). In addition, it is a simple technology to implement.

Pour une description détaillée du dipôle imprimé en T, on pourra se reporter notamment au brevet français n° 93 14276.For a detailed description of the T printed dipole, reference may in particular be made to French Patent No. 93 14276.

Il est à noter que le faible encombrement de l'antenne selon l'invention (en particulier en épaisseur) la rend particulièrement adaptée aux dispositifs de test précités, et notamment à ceux en champ proche. On rappelle que ces derniers permettent de mesurer le champ radioélectrique émis à faible distance par un équipement électronique (sous test). De telles mesures visent à fournir une meilleure connaissance des phénomènes de propagation à faible distance des appareils électroniques, et à permettre la mise en évidence des interactions entre les ondes rayonnées par les appareils et le corps humain (ce qui est souvent rendu difficile par l'extrême proximité de l'appareil).It should be noted that the small size of the antenna according to the invention (in particular in thickness) makes it particularly suitable for the aforementioned test devices, and in particular those in the near field. It is recalled that the latter make it possible to measure the radio-electric field emitted at a short distance by electronic equipment (under test). Such measures are intended to provide a better understanding of phenomena of short-range propagation of electronic devices, and to allow the demonstration of the interactions between the waves radiated by the apparatus and the human body (which is often made difficult by the extreme proximity of the apparatus).

Dans un mode de réalisation préférentiel de l'invention, ledit premier dépôt métallique définit deux premiers éléments rayonnants du type dipôle, chacun en forme de T et accolés l'un à l'autre par l'extrémité libre de la barre verticale de chaque T. Ladite première ligne d'alimentation possède deux branches alimentant chacune l'un des deux premiers éléments rayonnants. Ledit second dépôt métallique définit deux seconds éléments rayonnants du type dipôle, chacun en forme de T et accolés l'un à l'autre par l'extrémité libre de la barre verticale de chaque T. Ladite seconde ligne d'alimentation possède deux branches alimentant chacune l'un des deux seconds éléments rayonnants.In a preferred embodiment of the invention, said first metal deposit defines two first dipole-type radiating elements, each T-shaped and contiguous to each other by the free end of the vertical bar of each T Said first supply line has two branches each supplying one of the first two radiating elements. Said second metal deposit defines two second dipole-type radiating elements, each T-shaped and contiguous to each other by the free end of the vertical bar of each T. Said second feed line has two branches feeding each one of the two second radiating elements.

En accolant deux à deux des éléments rayonnants en T associés à une même polarisation, on introduit une symétrie géométrique qui permet d'améliorer la pureté de polarisation (niveaux de polarisation croisée très faibles) et l'isolation entre accès.By joining in pairs T-elements associated with the same polarization, we introduce a geometric symmetry that improves the polarization purity (very low cross-polarization levels) and isolation between access.

Préférentiellement, l'axe longitudinal des T desdits premiers éléments rayonnants est décalé d'environ 90° par rapport à l'axe longitudinal des T desdits seconds éléments rayonnants.Preferably, the longitudinal axis of the T of said first radiating elements is shifted by about 90 ° relative to the longitudinal axis of the T of said second radiating elements.

De cette façon, on introduit un niveau de symétrie supplémentaire, ce qui permet d'améliorer encore la pureté de polarisation et l'isolation entre accès.In this way, an additional level of symmetry is introduced, which further improves the polarization purity and the isolation between access.

De façon avantageuse, la barre verticale du T de chaque élément rayonnant constitue un plan de masse pour au moins une partie desdites première et seconde lignes d'alimentation. Les barres verticales des T des premiers éléments constituent donc un premier plan de masse, tandis que les barres verticales des T des seconds éléments constituent donc un second plan de masse. Ainsi, les lignes d'alimentation fonctionnent comme des éléments triplaques (striplines), et sont donc blindées (elles sont comprises entre les premier et second plans de masse). Ceci supprime les problèmes de fuites et de diffractions parasites, qui seraient susceptibles de détériorer les performances (en particulier de pureté de polarisation) de la structure globale.Advantageously, the vertical bar of the T of each radiating element constitutes a ground plane for at least a portion of said first and second supply lines. The vertical bars of the T of the first elements thus constitute a first ground plane, while the vertical bars of the T of the second elements therefore constitute a second ground plane. Thus, the supply lines function as triplic elements (striplines), and are therefore shielded (they are between the first and second ground planes). This eliminates the problems of parasitic leaks and diffractions, which would be likely to deteriorate the performance (in particular of polarization purity) of the overall structure.

L'invention concerne également une antenne imprimée bi-bande, à double polarisation dans chaque bande.The invention also relates to a dual-band, dual-polarized printed antenna in each band.

L'invention prévoit aussi la mise en réseau de l'antenne décrite ci-dessus, de façon à obtenir une directivité accrue.The invention also provides networking of the antenna described above, so as to obtain an increased directivity.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante d'un mode de réalisation préférentiel de l'invention, donné à titre d'exemple indicatif et non limitatif, et des dessins annexés, dans lesquels :

  • la figure 1 présente une vue de dessus, faisant néanmoins apparaître les différentes couches constitutives superposées, d'un mode de réalisation préférentiel de l'antenne selon l'invention ;
  • la figure 2 présente une vue de côté de l'antenne de la figure 1 ;
  • la figure 3 présente une courbe de variation, en fonction de la fréquence, du rapport d'onde stationnaire pour l'antenne de la figure 1 ;
  • la figure 4 présente une courbe de variation, en fonction de la fréquence, de l'isolation aux accès pour l'antenne de la figure 1 ;
  • la figure 5 présente une courbe de variation, dans un abaque de Smith, de l'impédance d'entrée pour l'antenne de la figure 1 ;
  • les figures 6 et 7 présentent des diagrammes de rayonnement pour les accès H et V respectivement de l'antenne de la figure 1 ;
  • les figures 8, 9 et 10 présentent trois variantes de moyens de déphasage permettant à l'antenne selon l'invention de générer une polarisation circulaire ;
  • la figure 11 présente une vue de côté de l'antenne de la figure 1 incluant en outre des moyens de déphasage ;
  • les figures 12 et 13 présentent deux variantes de moyens de réflexion permettant de supprimer une partie du rayonnement arrière de l'antenne de la figure 1 ;
  • les figures 14 et 15 présentent deux variantes de mise en réseau de l'antenne de la figure 1 ; et
  • la figure 16 présente une vue de côté d'une variante bi-bande de l'antenne selon l'invention.
Other features and advantages of the invention will appear on reading the following description of a preferred embodiment of the invention, given by way of indicative and nonlimiting example, and the appended drawings, in which:
  • FIG. 1 shows a view from above, nevertheless showing the different superimposed constituent layers, of a preferred embodiment of the antenna according to the invention;
  • Figure 2 shows a side view of the antenna of Figure 1;
  • FIG. 3 shows a variation curve, as a function of frequency, of the standing wave ratio for the antenna of FIG. 1;
  • FIG. 4 shows a variation curve, as a function of frequency, of the access isolation for the antenna of FIG. 1;
  • FIG. 5 shows a variation curve, in a Smith chart, of the input impedance for the antenna of FIG. 1;
  • Figures 6 and 7 show radiation patterns for access H and V respectively of the antenna of Figure 1;
  • FIGS. 8, 9 and 10 show three variants of phase shift means enabling the antenna according to the invention to generate a circular polarization;
  • Figure 11 shows a side view of the antenna of Figure 1 further including phase shift means;
  • Figures 12 and 13 show two variants of reflection means for removing a portion of the rear radiation of the antenna of Figure 1;
  • Figures 14 and 15 show two variants of networking of the antenna of Figure 1; and
  • Figure 16 shows a side view of a two-band variant of the antenna according to the invention.

L'invention concerne donc une antenne imprimée bi-polarisation. Dans la suite de la description on considère le cas des polarisations horizontale et verticale. Il est clair toutefois que l'invention s'applique à d'autres types de double polarisation (polarisations à ± 45° par exemple).The invention therefore relates to a bi-polarization printed antenna. In the remainder of the description, the case of horizontal and vertical polarizations is considered. It's clear however, the invention applies to other types of double polarization (polarizations at ± 45 ° for example).

Comme illustré sur les figures 1 et 2, dans un mode de réalisation préférentiel, l'antenne selon la présente invention comprend :

  • des première, seconde et troisième plaques de substrat, 1 à 3, superposées (représentées sur la figure 2 uniquement) ;
  • un premier dépôt métallique 4, situé sur la face externe la de la première plaque de substrat 1 et définissant deux premiers éléments rayonnants 5, 6 du type dipôle, chacun en forme de T et accolés l'un à l'autre par l'extrémité libre de la barre verticale 5a, 6a de chaque T, la barre horizontale 5b, 6b de chaque T étant constituée de deux brins latéraux rayonnants 5c, 5d et 6c, 6d séparés par une fente de couplage 5e, 6e ;
  • une première ligne d'alimentation 7 selon une première polarisation, située entre les première et seconde plaques de substrat 1, 2 et possédant deux branches 7a, 7b (grâce à un diviseur par deux non représenté) alimentant chacune l'un des deux premiers éléments rayonnants 5, 6 ;
  • un second dépôt métallique 8, situé sur la face externe 3a de la troisième plaque de substrat 3 et définissant deux seconds éléments rayonnants 9, 10 du type dipôle, chacun en forme de T et accolés l'un à l'autre par l'extrémité libre de la barre verticale 9a, 10a de chaque T, la barre horizontale 9b, 10b de chaque T étant constituée de deux brins latéraux rayonnants 9c, 9d et 10c, 10d séparés par une fente de couplage 9e, 10e ;
  • une seconde ligne d'alimentation 11 selon une seconde polarisation, située entre les seconde et troisième plaques de substrat 2, 3 et possédant deux branches 11a, 11b (grâce à un diviseur par deux non représenté) alimentant chacune l'un des deux seconds éléments rayonnants 9, 10.
As illustrated in FIGS. 1 and 2, in a preferred embodiment, the antenna according to the present invention comprises:
  • first, second and third substrate plates, 1 to 3, superimposed (shown in Figure 2 only);
  • a first metal deposit 4, located on the outer face 1a of the first substrate plate 1 and defining two first dipole-type radiating elements 5, 6, each T-shaped and contiguous to each other by the end free of the vertical bar 5a, 6a of each T, the horizontal bar 5b, 6b of each T being constituted by two radiating lateral strands 5c, 5d and 6c, 6d separated by a coupling slot 5e, 6e;
  • a first power supply line 7 according to a first polarization, located between the first and second substrate plates 1, 2 and having two branches 7a, 7b (thanks to a divider by two not shown) each supplying one of the first two elements radiating 5, 6;
  • a second metal deposit 8, located on the outer face 3a of the third substrate plate 3 and defining two second radiating elements 9, 10 of the dipole type, each T-shaped and contiguous to each other by the end free of the vertical bar 9a, 10a of each T, the horizontal bar 9b, 10b of each T consisting of two radiating lateral strands 9c, 9d and 10c, 10d separated by a coupling slot 9e, 10e;
  • a second power supply line 11 according to a second polarization, located between the second and third substrate plates 2, 3 and having two branches 11a, 11b (by means of a divider by two not shown) each supplying one of the two second elements radiating 9, 10.

La première ligne d'alimentation 7 possède un premier accès (noté "accès V", pour accès vertical, sur la figure 1). De même, la seconde ligne d'alimentation 11 possède un second accès (noté "accès H", pour accès horizontal, sur la figure 1).The first power supply line 7 has a first access (denoted "access V", for vertical access, in FIG. 1). Likewise, the second feed line 11 has a second access (denoted "access H", for horizontal access, in FIG. 1).

Chacun des accès H, V des lignes d'alimentation 7, 11 est par exemple relié à un connecteur (non représenté) de type SMA (ou autre) lui-même relié à un câble coaxial.Each of the ports H, V of the supply lines 7, 11 is for example connected to a connector (not shown) of the SMA type (or other) itself connected to a coaxial cable.

L'axe longitudinal des T des premiers éléments rayonnants 5,6 est décalé d'environ 90° par rapport à l'axe longitudinal des T des seconds éléments rayonnants 9, 10. Ainsi, on a une topologie parfaitement symétrique, en forme de croix. En d'autres termes, les premier et second dépôts métalliques 4, 8 ont dans cet exemple la même forme (y compris la surface centrale conductrice de forme carrée discutée ci-dessous), et sont simplement décalés d'un quart de tour l'un par rapport à l'autre.The longitudinal axis of the T of the first radiating elements 5,6 is shifted by about 90 ° with respect to the longitudinal axis of the T of the second radiating elements 9, 10. Thus, we have a perfectly symmetrical topology, in the form of a cross . In other words, the first and second metal deposits 4, 8 have in this example the same shape (including the square-shaped conductive central surface discussed below), and are simply shifted by a quarter of a turn. one compared to the other.

Les barres verticales des T des premiers éléments rayonnants 5, 6 constituent un premier plan de masse pour les première et seconde lignes d'alimentation 7, 11 (et en particulier pour le diviseur par 2 compris dans chacune de ces dernières). De même, les barres verticales des T des seconds éléments rayonnants 9, 10 constituent un second plan de masse pour les première et seconde lignes d'alimentation 7, 11 (en particulier pour le diviseur par 2 compris dans chacune de ces dernières). Les première et seconde lignes d'alimentation fonctionnent donc comme des éléments triplaques (stripline). L'extrémité libre de chacune de ces barres verticales de T est élargie, de façon à augmenter la surface des plans de masse. Dans l'exemple illustré, l'élargissement se traduit par l'obtention, au centre de chacun des premier et second dépôts métalliques 4, 8, d'une surface conductrice de forme carrée.The vertical bars of the T of the first radiating elements 5, 6 constitute a first ground plane for the first and second supply lines 7, 11 (and in particular for the divider by 2 included in each of these). Similarly, the vertical bars of the T of the second radiating elements 9, 10 constitute a second ground plane for the first and second supply lines 7, 11 (in particular for the divider by 2 included in each of these). The first and second feed lines therefore function as stripline elements. The free end of each of these vertical bars of T is widened, so as to increase the surface of the ground planes. In the illustrated example, the enlargement results in obtaining, in the center of each of the first and second metal deposits 4, 8, a conductive surface of square shape.

Chacune des branches 7a, 7b, 11a, 11b de ligne d'alimentation présente une première portion d'extrémité s'étendant selon un axe interceptant l'axe de la fente de l'un des éléments rayonnants et dépassant de l'axe de la fente de l'un des éléments rayonnants d'une première longueur variable d'adaptation (ou stub série) 11. Par ailleurs, la fente de chacun des éléments rayonnants présente une seconde portion d'extrémité dépassant de l'axe de la première portion d'extrémité d'une seconde longueur variable d'adaptation (ou stub parallèle) 12. Dans un souci de clarté, les première et seconde longueurs d'adaptation 11, 12 ne sont référencées, sur la figure 1, que pour l'une des branches d'alimentation (celle référencée 7b). Un choix convenable de ces stubs série et parallèle 11, 12 permet d'adapter l'élément rayonnant concerné sur une large bande.Each of the supply line branches 7a, 7b, 11a, 11b has a first end portion extending along an axis intercepting the axis of the slot of one of the radiating elements and protruding from the axis of the slot of one of the radiating elements of a first variable length of adaptation (or series stub) 11. Furthermore, the slot of each of the radiating elements has a second end portion protruding from the axis of the first portion end of a second variable adaptation length (or parallel stub) 12. For the sake of clarity, the first and second adaptation lengths 11, 12 are referenced, in FIG. 1, only for one branches of power (that referenced 7b). A suitable choice of these series and parallel stubs 11, 12 makes it possible to adapt the radiating element concerned to a wide band.

L'antenne peut en outre comprendre des moyens à capacité variable (non représentés), permettant d'agir électriquement sur les première et seconde longueurs variables d'adaptation (stubs série et parallèle) de chacun des éléments rayonnants. On rappelle que cette action électrique a le même effet qu'un allongement ou une diminution physique (c'est-à-dire réelle) du stub sur lequel on agit. Des exemples de tels moyens à capacité variable sont décrits en détails dans le brevet français n° 93 14276, auquel on pourra se reporter.The antenna may further comprise variable capacitance means (not shown) for electrically acting on the first and second variable adaptation lengths (serial and parallel stubs) of each of the radiating elements. It is recalled that this electric action has the same effect as a lengthening or a decrease physical (that is to say real) stub on which one acts. Examples of such variable capacity means are described in detail in French Patent No. 93 14276, to which reference may be made.

On présente maintenant, en relation avec les figures 3 à 7, les performances d'un exemple d'antenne selon le mode de réalisation préférentiel décrit ci-dessus. Dans cet exemple, l'antenne possède les caractéristiques suivantes :

  • encombrement (cf. fig. 1 et 2) : L = 160 mm, l = 160 mm et h = 45 mm ;
  • substrat : Duroïd type verre téflon, de permittivité relative εr = 2,2 et d'épaisseur 1,52 mm (pour chacune des trois plaques de substrat 1, 2, 3).
The performance of an exemplary antenna according to the preferred embodiment described above is now presented with reference to FIGS. 3 to 7. In this example, the antenna has the following characteristics:
  • overall dimensions (see Figs 1 and 2): L = 160 mm, l = 160 mm and h = 45 mm;
  • substrate: Teflon glass-type duroid with a relative permittivity ε r = 2.2 and a thickness of 1.52 mm (for each of the three substrate plates 1, 2, 3).

Cette d'antenne est extrêmement large bande puisqu'elle fonctionne de 0,6 GHz à 1,1 GHz pour un ROS inférieur à 2 (cf. fig.3). Ceci correspond à plus de 75 % de bande passante. On rappelle que ce pourcentage est obtenu par division de la largeur de bande par la fréquence centrale de cette bande.This antenna is extremely broadband since it works from 0.6 GHz to 1.1 GHz for a ROS less than 2 (see fig.3). This corresponds to more than 75% of bandwidth. It is recalled that this percentage is obtained by division of the bandwidth by the central frequency of this band.

Son isolation reste inférieure à - 30 dB de 0,75 GHz à 1,1 GHz (cf. fig.4).Its isolation remains below -30 dB from 0.75 GHz to 1.1 GHz (see fig.4).

Sa courbe d'impédance (cf. fig.5) montre une boucle de couplage caractéristique de l'élément dipôle, ce dernier étant associé d'une part à son stub série (ligne d'alimentation qui va au-delà de la fente de couplage) et d'autre part à son stub parallèle (fente qui se prolonge au-delà de la ligne d'alimentation). C'est la présence de cette boucle qui garantit une faible dispersion en fréquence et traduit l'efficacité du dispositif d'alimentation.Its impedance curve (see fig.5) shows a coupling loop characteristic of the dipole element, the latter being associated on the one hand with its series stub (feed line which goes beyond the slot of coupling) and on the other hand to its parallel stub (slot that extends beyond the power line). It is the presence of this loop that guarantees a low frequency dispersion and reflects the efficiency of the power supply device.

Ses diagrammes de rayonnement (cf. fig.6 et 7) ont été mesurés à la fréquence de 980 MHz. Ils mettent en évidence, pour les deux accès de l'antenne, les excellentes propriétés de symétrie de la structure. On notera aussi le faible niveau de polarisation croisée qu'elle génère (inférieur à - 30 dB dans l'axe de l'élément).His radiation patterns (see Fig.6 and 7) were measured at 980 MHz. They highlight, for both accesses of the antenna, the excellent properties of symmetry of the structure. Note also the low level of cross polarization it generates (less than - 30 dB in the axis of the element).

L'antenne selon l'invention permet également de générer de façon simple et efficace de la polarisation circulaire, en alimentant les couples de premiers 5, 6 et seconds 9, 10 éléments rayonnants en quadrature. En d'autres termes, on introduit entre ces deux couples un déphasage de π/2 dans le temps. A cet effet, l'antenne comprend en outre des moyens de déphasage.The antenna according to the invention also makes it possible to simply and efficiently generate the circular polarization, by feeding the pairs of first 5, 6 and second 9, 10 radiating elements in quadrature. In other words, there is introduced between these two couples a phase shift of π / 2 in time. For this purpose, the antenna further comprises phase shift means.

On décrit maintenant, en relation avec les figures 8 à 11 plusieurs variantes de ces moyens de déphasage. Il est clair que ces exemples ne sont donnés qu'à titre indicatif, d'autres solutions pouvant être envisagées sans sortir du cadre de la présente invention.Several variants of these phase shift means are now described with reference to FIGS. 8 to 11. It is clear that these examples are given only indicative, other solutions that can be envisaged without departing from the scope of the present invention.

Une première solution (cf. fig.8) consiste à utiliser un élément hybride 80. Cet élément hybride, bien connu, comprend deux bornes d'entrée 81, 82 et deux bornes de sortie 83, 84. Dans la présente application, on injecte sur l'une des borne d'entrée (si l'antenne fonctionne en émission), ou l'on y reçoit (si l'antenne fonctionne en réception), soit un signal en polarisation circulaire droite (par exemple sur la borne d'entrée 81), soit un signal en polarisation circulaire gauche (par exemple sur la borne d'entrée 82). Les bornes de sortie 83, 84 sont connectées respectivement aux accès H et V des première et seconde lignes d'alimentation 7, 11.A first solution (see Fig. 8) is to use a hybrid element 80. This hybrid element, well known, comprises two input terminals 81, 82 and two output terminals 83, 84. In the present application, one injects on one of the input terminals (if the antenna is transmitting), or receives (if the antenna is operating in reception), or a signal in right circular polarization (for example on the terminal of input 81), ie a signal in left circular polarization (for example on the input terminal 82). The output terminals 83, 84 are respectively connected to the H and V ports of the first and second supply lines 7, 11.

Une seconde solution (cf. fig.9) consiste à utiliser un anneau rat-race 90. Cet anneau rat-race, également bien connu, comprend lui aussi deux bornes d'entrée 91, 92 et deux bornes de sortie 93, 94. Sa mise en oeuvre, dans le cadre de la présente application, est identique à celle décrite ci-dessus pour l'élément hybride 80.A second solution (see Fig. 9) is to use a rat-race ring 90. This rat-race ring, also well known, also includes two input terminals 91, 92 and two output terminals 93, 94. Its implementation, in the context of the present application, is identical to that described above for the hybrid element 80.

Une troisième solution (cf. fig.10), plus compacte, consiste à utiliser des éléments localisés (selfs et capacités). L'assemblage correspondant (bien connu en lui-même) 100 comprend également deux bornes d'entrée 101, 102 et deux bornes de sortie 103, 104. Sa mise en oeuvre, dans le cadre de la présente application, est identique à celle décrite ci-dessus pour l'élément hybride 80.A third solution (see fig.10), more compact, consists of using localized elements (inductors and capacities). The corresponding assembly (well known in itself) 100 also comprises two input terminals 101, 102 and two output terminals 103, 104. Its implementation, in the context of the present application, is identical to that described. above for the hybrid element 80.

Quelle que soit la solution retenue, ces moyens de déphasage peuvent être intégrés sur un circuit imprimé venant se placer au milieu de la structure superposée. Dans ce cas, comme illustré sur la figure 11, la seconde plaque de substrat 2 (ou plaque centrale) est divisée en deux sous-couches 2A et 2B, entre lesquelles vient se positionner le circuit imprimé (ou dépôt métallique) 12 supportant les moyens de déphasage. Ce circuit imprimé 12 est relié d'une part à l'accès V de la première ligne d'alimentation 7, par l'intermédiaire d'un premier trou métallisé (ou contact traversant) 13, et d'autre part à l'accès H de la seconde ligne d'alimentation 11, par l'intermédiaire d'un second trou métallisé 14.Whatever the solution adopted, these phase shift means may be integrated on a printed circuit to be placed in the middle of the superimposed structure. In this case, as illustrated in FIG. 11, the second substrate plate 2 (or central plate) is divided into two sub-layers 2A and 2B, between which is positioned the printed circuit (or metal deposit) 12 supporting the means of phase shift. This printed circuit 12 is connected on the one hand to the access V of the first supply line 7, via a first metallized hole (or through contact) 13, and on the other hand to the access H of the second feed line 11, via a second metallized hole 14.

Par ailleurs, de façon optionnelle, l'antenne peut comprendre des moyens de réflexion, visant à augmenter sa directivité en supprimant une partie de son rayonnement. Il s'agit par exemple de supprimer un rayonnement arrière de l'antenne, de façon à diriger vers l'avant l'énergie rayonnée et augmenter la directivité de l'antenne de quelques dB, tout en conservant des performances large bande.Furthermore, optionally, the antenna may include reflection means, to increase its directivity by removing some of its radiation. This involves, for example, removing a back radiation from the antenna, to direct the radiated energy forward and increase the directivity of the antenna a few dB, while maintaining broadband performance.

On présente maintenant, en relation avec les figures 12 et 13, deux variantes de ces moyens de réflexion. Il est clair que ces exemples ne sont donnés qu'à titre indicatif, d'autres solutions pouvant être envisagées sans sortir du cadre de la présente invention.Two variants of these reflection means are now presented with reference to FIGS. 12 and 13. It is clear that these examples are only indicative, other solutions that can be envisaged without departing from the scope of the present invention.

Une première solution (cf. fig.12) consiste à introduire l'antenne 120 (telle que précédemment décrite) dans un tronçon de guide d'ondes 121. Ceci permet de constituer de manière simple un système d'alimentation duplexé en guide d'ondes.A first solution (see Fig. 12) is to introduce the antenna 120 (as previously described) in a waveguide section 121. This makes it possible to easily constitute a duplex feed system in a guide. waves.

Une seconde solution (cf. fig.13) consiste à utiliser un plan de sol 131 à environ λ/3 de l'antenne 130 (telle que précédemment décrite). On notera que les diagrammes de rayonnement présentés sur les figures 6 et 7 ont été obtenus en présence d'un plan de sol.A second solution (see Fig. 13) is to use a ground plane 131 at about λ / 3 of the antenna 130 (as previously described). It will be noted that the radiation patterns shown in FIGS. 6 and 7 were obtained in the presence of a ground plane.

Il est également possible, afin d'accroître l'obtenir une directivité accrue, de mettre en réseau l'antenne telle que décrite ci-dessus. En d'autres termes, l'antenne constitue alors l'élément de base du réseau.It is also possible, in order to increase the obtain an increased directivity, to network the antenna as described above. In other words, the antenna is then the basic element of the network.

On présente maintenant, en relation avec les figures 14 et 15, deux modes de réalisation particuliers d'une telle mise en réseau. Il est clair que ceux-ci ne sont donnés qu'à titre indicatif, diverses variantes pouvant être envisagées sans sortir du cadre de la présente invention.Now, with reference to FIGS. 14 and 15, two particular embodiments of such a network are presented. It is clear that these are only indicative, various variants that can be envisaged without departing from the scope of the present invention.

Dans le premier mode de réalisation (cf. fig.14), le réseau est monodimensionnel. Il présente un diagramme de rayonnement directif en élévation (comme schématisé par l'arc de cercle référencé 140) et large (voire omnidirectionnel) en azimut (comme schématisé par l'arc de cercle référencé 141). Un réseau ayant de telles qualités convient notamment aux antennes des stations de base des systèmes de radiocommunication (par exemple GSM ou DCS).In the first embodiment (see Fig. 14), the network is one-dimensional. It presents a directional radiation pattern in elevation (as shown schematically by the arc of circle referenced 140) and wide (even omnidirectional) in azimuth (as shown schematically by the arc of circle referenced 141). A network having such qualities is particularly suitable for antennas of the base stations of radio communication systems (for example GSM or DCS).

Dans le second mode de réalisation (cf. fig.15), le réseau est plan bidimensionnel. Il permet des pointages importants jusqu'à de faibles élévations, grâce à son diagramme élémentaire moins directif que celui des éléments imprimés résonants traditionnels (à patchs). Un réseau ayant de telles qualités convient aux antennes sol, destinées à la réception dans le cadre d'applications multimédia par satellite.In the second embodiment (see Fig. 15), the array is two-dimensional plane. It allows significant pointing up to low elevations, thanks to its elementary diagram less directive than that of traditional resonant printed elements (patches). A network having such qualities is suitable for ground antennas, intended for reception in the context of satellite multimedia applications.

Comme illustré sur la figure 15, la mise en réseau peut être combinée avec l'utilisation de moyens de réflexion (par exemple un plan de sol).As illustrated in FIG. 15, the networking can be combined with the use of reflection means (for example a ground plane).

On présente maintenant, en relation avec la figure 16, une variante bi-bande de l'antenne selon l'invention.We now present, in connection with Figure 16, a two-band variant of the antenna according to the invention.

On retrouve au centre de la superposition, les différentes couches constitutives (trois plaques de substrat 1, 2, 3, deux lignes d'alimentation 7, 11, et deux couples d'éléments rayonnants en T accolés 4, 8) de l'antenne de la figure 1. On suppose que celles-ci fonctionnent dans une première bande de fréquences.In the center of the superposition, the various constituent layers (three substrate plates 1, 2, 3, two supply lines 7, 11, and two pairs of radiating elements T connected 4, 8) of the antenna are found. of Figure 1. It is assumed that they operate in a first frequency band.

Par ailleurs, afin de permettre son fonctionnement dans une autre bande de fréquences, l'antenne comprend les autres couches suivantes :

  • des quatrième et cinquième plaques de substrat 20, 21, superposées contre la face externe de la première plaque de substrat 1, et des sixième et septième plaques de substrat 22, 23, superposées contre la face externe de la troisième plaque de substrat 3 ;
  • un troisième dépôt métallique 24, situé sur la face externe de la cinquième 21 plaque de substrat et définissant un couple de troisièmes éléments rayonnants en T ;
  • une troisième ligne d'alimentation 25 selon l'une deux polarisations, située entre les quatrième et cinquième plaques de substrat 20, 21 et alimentant les troisièmes éléments rayonnants ;
  • un quatrième dépôt métallique 26, situé sur la face externe de la septième plaque de substrat 23 et définissant un couple de quatrièmes éléments rayonnants en T ;
  • une quatrième ligne d'alimentation 27 selon l'autre des polarisations, située entre les sixième et septième plaques de substrat 22, 23 et alimentant les quatrièmes éléments rayonnants.
Moreover, in order to allow its operation in another frequency band, the antenna comprises the following other layers:
  • fourth and fifth substrate plates 20, 21, superimposed against the outer face of the first substrate plate 1, and sixth and seventh substrate plates 22, 23 superimposed against the outer face of the third substrate plate 3;
  • a third metal deposit 24, located on the outer face of the fifth substrate plate 21 and defining a pair of third T-shaped radiating elements;
  • a third feed line 25 in one of two polarizations, located between the fourth and fifth substrate plates 20, 21 and feeding the third radiating elements;
  • a fourth metal deposit 26, located on the outer face of the seventh substrate plate 23 and defining a pair of fourth T-shaped radiating elements;
  • a fourth feed line 27 according to the other of the polarizations, located between the sixth and seventh substrate plates 22, 23 and feeding the fourth radiating elements.

Les dimensions des troisième et quatrième dépôts métalliques 24, 26, qui se trouvent aux extrémités de la superposition, doivent être inférieures à celles des premier et second dépôts métalliques 4, 8. En d'autres termes, la seconde bande de fréquences doit être plus élevée en fréquence que la première.The dimensions of the third and fourth metal deposits 24, 26, which are at the ends of the superposition, must be smaller than those of the first and second metal deposits 4, 8. In other words, the second frequency band must be larger than high in frequency than the first.

Il est clair que l'on peut aisément, tout en restant dans le cadre de la présente invention, passer de cette antenne imprimée bi-bande à une antenne imprimée multibande, avec au moins trois bandes de fréquences et une bi-polarisation dans chaque bande. En effet, il suffit pour chaque nouvelle bande d'ajouter quatre couches de substrat (deux de part et d'autre de la superposition) et quatre couches de métallisation (deux pour les éléments rayonnants et deux pour les lignes d'alimentation).It is clear that it is easy, while remaining within the scope of the present invention, to go from this dual-band printed antenna to a multi-band printed antenna, with at least three frequency bands and one bi-polarization in each band. . Indeed, it is sufficient for each new band to add four layers of substrate (two on either side of the superposition) and four metallization layers (two for the radiating elements and two for the supply lines).

Claims (14)

  1. Dual-polarization printed antenna, characterized in that it comprises:
    - first, second and third superimposed substrate plates (1,2,3);
    - a first metallic deposition (4), situated on the external face of said first substrate plate (1) and defining at least one first radiating element (5,6) of the dipole type, in the form of a T-shape, the horizontal bar of said T consisting of two radiating lateral strands separated by a coupling slot;
    - a first feed line (7) for supplying according to a first polarization, situated between said first and second substrate plates (1,2) and supplying said at least one first radiating element (5,6);
    - a second metallic deposition (8), situated on the external face of said third substrate plate (3) and defining at least one second radiating element of the dipole type (9,10), in the form of a T-shape, the horizontal bar of said T consisting of two radiating lateral strands separated by a coupling slot;
    - a second feed line (11) for supplying according to a second polarization, situated between said second and third substrate plates (2,3) and supplying said at least one second radiating element (9,10).
  2. Antenna according to Claim 1, characterized in that said first metallic deposition (4) defines two first radiating elements (5,6) of the dipole type, each in the form of a T-shape and adjoining one another via the free end of the vertical bar of each T,
    in that said first feed line (7) possesses two branches (7a,7b) each supplying one of the two first radiating elements,
    in that said second metallic deposition (8) defines two second radiating elements (9,10) of the dipole type, each in the form of a T-shape and adjoining one another via the free end of the vertical bar of each T,
    and in that said second feed line (11) possesses two branches (11a, 11b) each supplying one of the two second radiating elements.
  3. Antenna according to Claim 2, characterized in that the longitudinal axis of the T of said first radiating elements (5,6) is shifted by about 90° with respect to the longitudinal axis of the T of said second radiating elements (9,10).
  4. Antenna according to any one of Claims 1 to 3, characterized in that the vertical bar of the T of each radiating element constitutes an earth plane for at least one part of said first and second feed lines (7, 11) .
  5. Antenna according to Claim 4, characterized in that the free end of the vertical bar of at least one of the Ts is widened, so as to increase the surface area of said earth plane.
  6. Antenna according to any one of Claims 1 to 5, characterized in that each of said feed lines or of said feed line branches has a first end portion extending along an axis intercepting the axis of the slot of one of said radiating elements and overshooting said axis of the slot of one of said radiating elements by a first variable adaptation length (11),
    and in that the slot of each of said radiating elements has a second end portion overshooting the axis of said first end portion by a second variable adaptation length (12).
  7. Antenna according to Claim 6, characterized in that it furthermore comprises variable-capacitance means, making it possible to act electrically on at least one of said first and second variable adaptation lengths of at least one of said radiating elements.
  8. Antenna according to any one of Claims 1 to 7, characterized in that said first and second polarizations form a pair belonging to the group comprising:
    - the pair (horizontal polarization, vertical polarization);
    - the pair (+45° polarization, -45° polarization).
  9. Antenna according to any one of Claims 1 to 9, characterized in that it furthermore comprises means (80;90;100) for phase shifting said first and second feed lines with respect to one another, by about π/2 over time, in such a way that said antenna generates a circular polarization.
  10. Antenna according to Claim 9, characterized in that said phase shifting means belong to the group comprising:
    - hybrid elements (80);
    - "rat-race" rings (90);
    - solutions based on localized elements (100).
  11. Antenna according to any one of Claims 1 to 10, characterized in that it furthermore comprises reflection means (121;131) making it possible to remove part of the radiation of said antenna.
  12. Antenna according to Claim 11, characterized in that said reflection means belong to the group comprising:
    - ground planes (131);
    - waveguide portions (121).
  13. Dual-band printed antenna, with dual-polarization in each band, characterized in that it comprises the constituent elements of an antenna according to any one of Claims 1 to 12, for dual-polarization operation in a first frequency band,
    and in that it furthermore comprises, for dual-polarization operation in a second frequency band:
    - fourth and fifth substrate plates (20,21), superimposed against the external face of said first substrate plate (1), and sixth and seventh substrate plates (22,23), superimposed against the external face of said third substrate plate (3);
    - a third metallic deposition (24), situated on the external face of said fifth substrate plate and defining at least one third radiating element of the dipole type, in the form of a T-shape, the horizontal bar of said T consisting of two radiating lateral strands separated by a coupling slot;
    - a third feed line (25) for supplying according to one of said first and second polarizations, situated between said fourth and fifth substrate plates and supplying said at least one third radiating element;
    - a fourth metallic deposition (26), situated on the external face of said seventh substrate plate and defining at least one fourth radiating element of the dipole type, in the form of a T-shape, the horizontal bar of said T consisting of two radiating lateral strands separated by a coupling slot;
    - a fourth feed line (27) for supplying according to the other of said first and second polarizations, situated between said sixth and seventh substrate plates and supplying said at least one fourth radiating element.
  14. Antenna array, characterized in that it comprises at least two antennas according to any one of Claims 1 to 13.
EP00460045A 1999-07-30 2000-07-26 Dual polarisation printed antenna and corresponding array Expired - Lifetime EP1073143B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9910105A FR2797098B1 (en) 1999-07-30 1999-07-30 BI-POLARIZED PRINTED ANTENNA AND CORRESPONDING ANTENNA ARRAY
FR9910105 1999-07-30

Publications (2)

Publication Number Publication Date
EP1073143A1 EP1073143A1 (en) 2001-01-31
EP1073143B1 true EP1073143B1 (en) 2007-05-30

Family

ID=9548869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00460045A Expired - Lifetime EP1073143B1 (en) 1999-07-30 2000-07-26 Dual polarisation printed antenna and corresponding array

Country Status (7)

Country Link
US (1) US6281849B1 (en)
EP (1) EP1073143B1 (en)
JP (1) JP2001085939A (en)
AT (1) ATE363745T1 (en)
CA (1) CA2314688A1 (en)
DE (1) DE60035003T2 (en)
FR (1) FR2797098B1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400332B1 (en) * 2001-01-03 2002-06-04 Hon Hai Precision Ind. Co., Ltd. PCB dipole antenna
US6836254B2 (en) * 2001-08-10 2004-12-28 Antonis Kalis Antenna system
US20040036655A1 (en) * 2002-08-22 2004-02-26 Robert Sainati Multi-layer antenna structure
FR2854739A1 (en) * 2003-05-06 2004-11-12 France Telecom ANTENNA, SENSOR OR ELECTROMAGNETIC PROBE
JP4347002B2 (en) * 2003-09-10 2009-10-21 日本電業工作株式会社 Dual polarization antenna
US7088299B2 (en) * 2003-10-28 2006-08-08 Dsp Group Inc. Multi-band antenna structure
US20070222696A1 (en) * 2004-05-18 2007-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Closely Packed Dipole Array Antenna
FR2882468A1 (en) * 2005-02-18 2006-08-25 France Telecom PRINTED DIPOLE ANTENNA MULTIBAND
US7688271B2 (en) * 2006-04-18 2010-03-30 Andrew Llc Dipole antenna
JP5444167B2 (en) * 2010-08-27 2014-03-19 電気興業株式会社 Omnidirectional antenna
KR101231514B1 (en) * 2011-01-06 2013-02-07 주식회사 에이스테크놀로지 Power shifter for feeding power to an antenna from which polarization waves are outputted individually
CN103403898B (en) 2011-01-27 2016-10-19 盖尔创尼克斯有限公司 Broadband dual polarized antenna
EP2908381B1 (en) * 2013-04-15 2019-05-15 China Telecom Corporation Limited Multi-antenna array of long term evolution multi-input multi-output communication system
CN105990691A (en) * 2015-01-30 2016-10-05 深圳光启高等理工研究院 Antenna and communication device
US9722326B2 (en) * 2015-03-25 2017-08-01 Commscope Technologies Llc Circular base station antenna array and method of reconfiguring a radiation pattern
CN104993227A (en) * 2015-06-26 2015-10-21 王波 Small-size broadband circularly-polarized patch antenna
CN104916912A (en) * 2015-06-26 2015-09-16 王波 Wideband circularly-polarized patch antenna
CN104953263A (en) * 2015-06-26 2015-09-30 王波 Radio antenna equipment
CN104953266A (en) * 2015-06-26 2015-09-30 王波 Small-size patch antenna
CN104934701A (en) * 2015-06-26 2015-09-23 王波 Miniaturized antenna device
CN104993252A (en) * 2015-06-26 2015-10-21 王波 Radio converter
CN104953251A (en) * 2015-06-26 2015-09-30 王波 Radio equipment
CN104993229A (en) * 2015-06-26 2015-10-21 王波 Small-size broadband patch antenna
CN104953250A (en) * 2015-06-26 2015-09-30 王波 Wideband patch antenna
CN105186104A (en) * 2015-06-26 2015-12-23 王波 Antenna device
CN104953264A (en) * 2015-06-26 2015-09-30 王波 Small-size circularly-polarized patch antenna
CN104993228A (en) * 2015-06-26 2015-10-21 王波 Small-size circularly-polarized antenna
CN107342457B (en) * 2017-06-29 2019-03-19 电子科技大学 A kind of strong mutual coupling ultra wide bandwidth angle sweep dual polarization conformal phased array antenna
US10571503B2 (en) * 2018-01-31 2020-02-25 Rockwell Collins, Inc. Methods and systems for ESA metrology
JP7016554B2 (en) * 2018-07-19 2022-02-07 日本電業工作株式会社 Antennas, array antennas, sector antennas and dipole antennas
US10938121B2 (en) * 2018-09-04 2021-03-02 Mediatek Inc. Antenna module of improved performances
CN115133285B (en) * 2022-07-21 2023-01-17 广东工业大学 Ultra-wideband dual-polarized base station antenna
CN115799827B (en) * 2023-02-07 2023-05-05 广东工业大学 Circularly polarized compact full duplex antenna and wireless communication device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2713020B1 (en) * 1993-11-24 1996-02-23 Roger Behe Radiating element of the dipole type produced in printed technology, matching adjustment process and corresponding network.
FR2743199B1 (en) * 1996-01-03 1998-02-27 Europ Agence Spatiale RECEIVE AND / OR TRANSMITTER FLAT MICROWAVE NETWORK ANTENNA AND ITS APPLICATION TO THE RECEPTION OF GEOSTATIONARY TELEVISION SATELLITES
JPH11177335A (en) * 1997-12-15 1999-07-02 Nec Corp Antenna system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US6281849B1 (en) 2001-08-28
FR2797098B1 (en) 2007-02-23
ATE363745T1 (en) 2007-06-15
EP1073143A1 (en) 2001-01-31
DE60035003D1 (en) 2007-07-12
FR2797098A1 (en) 2001-02-02
CA2314688A1 (en) 2001-01-30
JP2001085939A (en) 2001-03-30
DE60035003T2 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
EP1073143B1 (en) Dual polarisation printed antenna and corresponding array
EP0714151B1 (en) Broadband monopole antenna in uniplanar printed circuit technology and transmit- and/or receive device with such an antenna
EP0954055B1 (en) Dual-frequency radiocommunication antenna realised according to microstrip technique
EP2047558B1 (en) Isotropic antenna and associated measurement sensor
EP0888647B1 (en) Helix antenna with a built-in broadband power supply, and manufacturing methods therefor
FR2810163A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS
EP1145378B1 (en) Dual-band transmission device and antenna therefor
FR2752646A1 (en) PLANE PRINTED ANTENNA WITH OVERLAPPING ELEMENTS SHORT CIRCUITS
EP0403910A1 (en) Radiating, diplexing element
FR3070224A1 (en) PLATED ANTENNA HAVING TWO DIFFERENT RADIATION MODES WITH TWO SEGREGATED WORK FREQUENCIES, DEVICE USING SUCH ANTENNA
EP1589608A1 (en) Compact RF antenna
EP0315141A1 (en) Excitation arrangement of a circular polarised wave with a patch antenna in a waveguide
EP3180816B1 (en) Multiband source for a coaxial horn used in a monopulse radar reflector antenna.
EP1225655A1 (en) Dual-band planar antenna and apparatus including such an antenna device
EP1470614A1 (en) Circular polarization antenna
EP0463263B1 (en) Circularly-polarized omnidirectionnal antenna with maximum horizontal gain
WO2012095365A1 (en) Dielectric resonator antenna
EP0520908B1 (en) Linear antenna array
CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
EP3900113A1 (en) Elementary microstrip antenna and array antenna
EP3942649B1 (en) Compact directional antenna, device comprising such an antenna
Kot et al. An integrated wideband circularly-polarized 60 GHz array antenna with low axial-ratio
EP2889955B1 (en) Compact antenna structure for satellite telecommunication
WO2004006386A1 (en) Coplanar polarization dual-band radiating device
WO2002037606A1 (en) Multiband antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010417

AKX Designation fees paid

Free format text: AT DE ES GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60035003

Country of ref document: DE

Date of ref document: 20070712

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070910

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

26N No opposition filed

Effective date: 20080303

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090625 AND 20090701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130624

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130731

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60035003

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60035003

Country of ref document: DE

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140726