EP3605734B1 - Antenna device comprising at least two antennas and electrical connection on a same substrate - Google Patents

Antenna device comprising at least two antennas and electrical connection on a same substrate Download PDF

Info

Publication number
EP3605734B1
EP3605734B1 EP19189717.2A EP19189717A EP3605734B1 EP 3605734 B1 EP3605734 B1 EP 3605734B1 EP 19189717 A EP19189717 A EP 19189717A EP 3605734 B1 EP3605734 B1 EP 3605734B1
Authority
EP
European Patent Office
Prior art keywords
antenna
transmitter
electronic circuit
antennas
radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19189717.2A
Other languages
German (de)
French (fr)
Other versions
EP3605734A1 (en
Inventor
Jean-François PINTOS
Christophe Delaveaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3605734A1 publication Critical patent/EP3605734A1/en
Application granted granted Critical
Publication of EP3605734B1 publication Critical patent/EP3605734B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to an antenna device comprising at least two antennas with the same electrical connection substrate.
  • Such a device is for example used in telecommunications systems with multiple access and bands.
  • each antenna must first be shaped so as to ensure load impedance matching with the electronic transmission and/or reception circuit, then must be connected to the electronic transmission circuit. and/or reception by any known means once impedance matching is ensured.
  • the connection can be made via bandpass filters themselves matched to the same load impedance.
  • the radio antennas are very close together and therefore very coupled. They interfere electromagnetically with each other and mutually disrupt their radiation and their adaptation levels. These disturbances adversely affect the performance of the antenna device.
  • the proposed solution is to create defects in the ground plane between the two antennas in order to hinder the propagation of currents thereon.
  • the proposed solution is to place an electromagnetic wave disruption device with a metamaterial structure between the two antennas.
  • the capacitive, inductive and/or resistive electrical components for impedance rehabilitation comprise capacitors for electrical connection of each radio antenna to the electronic transmission and/or reception circuit.
  • the predetermined threshold value is - 6 dB in logarithmic values, corresponding to a tolerance threshold value below which each radio antenna is considered to be matched in impedance with the electronic transmission and/or reception circuit for an application in mobile telephony. .
  • the predetermined threshold value is between - 20 and - 30 dB in logarithmic values, corresponding to a tolerance threshold value below which each radio antenna is considered to be matched in impedance with the electronic transmission and/or reception circuit for a application in satellite transmission.
  • the impedance readjustment with the electronic transmission and/or reception circuit is done at 50 ⁇ +/- 10%.
  • Said at least one radio antenna is at least one printed antenna extending over at least one face of said same substrate, in a first radiating portion of this substrate.
  • Said electrically conductive connection means extend in a second portion of said same substrate, separated from the first radiating portion by a ground plane extending in a intersecting plane of a main plane in which said same substrate extends.
  • an antenna device may comprise a first antenna printed at low frequencies operating in a first band of electromagnetic frequencies and a second antenna printed at high frequencies operating in a second band of electromagnetic frequencies which are all higher than the electromagnetic frequencies of the first frequency band.
  • the antenna device 10 shown schematically in front view on the figure 1 comprises a first substrate 12 which extends in a first plane, that of the figure. It further optionally comprises a second substrate 14 which extends in a second plane different and secant from the first plane, in particular a horizontal plane orthogonal to that of the figure.
  • the second substrate 14 has for example a rectilinear hole crossed by the first substrate 12, so that the latter has a first portion 16, located in a first upper half-space relative to the second plane of the second substrate 14, and a second portion 18, located in a second lower half-space relative to the second plane of the second substrate 14.
  • the two substrates are for example made of FR-4 type material (from the English “Flame Resistant 4”), that is to say i.e. made of epoxy resin composite reinforced with fiberglass.
  • two radio antennas 20 and 22 are formed by metal printing using known screen printing technology.
  • the larger of the two radio antennas i.e. the first printed antenna 20, comprises two metal strips 20A, 20B extending orthogonally from the second plane. These two metal strips 20A, 20B form two feet connected together at their ends most distant from the second plane by a portion of additional metal strip, as well as to another metal strip 20C extending horizontally in the upper part of the first portion radiant 16 of the first substrate 12.
  • the precise configuration of this first printed antenna 20, located furthest to the left on the front face of the first substrate 12, as well as its dimensioning remain concretely up to the appreciation of those skilled in the art depending on the the targeted application and radiation. It operates at low frequencies, in a first band of predetermined electromagnetic frequencies.
  • the two lower ends of the two metal strips 20A and 20B that is to say those which are at the level of the second plane, constitute the two electrical connection ports of the first printed antenna 20.
  • the smaller of the two radio antennas, ie the second printed antenna 22, also includes two metal strips 22A, 22B extending orthogonally from the second plane. These two metal strips 22A, 22B are shorter than the metal strips 20A, 20B. They also form two feet connected together at their ends most distant from the second plane by a portion of additional metal strip, as well as to another metal strip 22C extending horizontally under the metal strip 20C in the first radiating portion 16 of the first substrate 12. The metal strip 22C is shorter than the metal strip 20C.
  • the precise configuration of this second printed antenna 22, located furthest to the right on the front face of the first substrate 12, as well as its dimensioning remain concretely at the discretion of those skilled in the art depending on the application and the radiation targeted.
  • the electrical connection ports of the two radio antennas 20 and 22 are arranged on the same first substrate 12, more precisely on its visible front face.
  • electrically conductive means for connecting the ports of the two radio antennas 20 and 22 to an electronic circuit emission and/or reception are formed in particular by metal printing using the aforementioned screen printing technology.
  • the electronic transmission and/or reception circuit is generally located in the second lower half-space relative to the second plane of the second substrate 14, but it is not shown on the figure 1 because it is not useful for a good understanding of the invention.
  • each radio antenna 20, 22 is further shaped to present an impedance mismatch with this electronic transmission and/or reception circuit such that its input or output reflection coefficient is greater than a value predetermined threshold in the absence of any impedance rehabilitation.
  • the input/output impedance of the electronic transmission and/or reception circuit is by convention equal to 50 ⁇ +/- 10%.
  • the threshold value chosen to mismatch each antenna it depends on the intended application. It is for example - 6 dB in logarithmic values for an application in mobile telephony, corresponding to a threshold tolerance value below which each radio antenna is considered to be matched in impedance with the electronic transmission and/or reception circuit for such an application.
  • each radio antenna can be between - 20 and - 30 dB in logarithmic values for an application in satellite transmission, corresponding to a tolerance threshold value below which each radio antenna is considered to be matched in impedance with the electronic circuit of transmission and/or reception for such an application. Conforming each antenna precisely to achieve the desired impedance mismatch as a function of the chosen threshold value is within the reach of those skilled in the art, so this operation will not be detailed.
  • the electrically conductive connection means are designed to connect each antenna 20, 22 to the electronic transmission and/or reception circuit and to a ground plane. They thus include a metal ground plane portion 24 formed by metal printing on the front and/or rear face of the second lower portion 18 of the first substrate 12. They also include a first functional block 26 for connecting the first printed antenna 20 to the electronic transmission and/or reception circuit and a second functional block 28 for connecting the second printed antenna 22 to the electronic transmission and/or reception circuit.
  • first electrical connection port located in the lower part of the antenna base 20A is in electrical contact with the metal ground plane portion 24.
  • This electrical contact is not detailed in the figure 1 : it can be done at the level of the second plane of the second substrate 14 and via the rear face of the first substrate 12.
  • Its second electrical connection port located in the lower part of the antenna base 20B is connected to the electronic transmission circuit and/or or reception by the first functional block 26.
  • this first functional block 26 comprises capacitive, inductive and/or resistive electrical components for readjusting the impedance of the first printed antenna 20 with the electronic transmission circuit and /or reception, these components being arranged to reduce the reflection coefficient at the input or output of the first antenna printed 20 at a value lower than the predetermined threshold value, for example by reducing it by at least 1 dB.
  • first electrical connection port located in the lower part of the antenna base 22A is in electrical contact with the metal ground plane portion 24, for example by continuity of metallic impression as is clearly visible on the front face of the first substrate 12 as illustrated in the figure 1 .
  • second electrical connection port located in the lower part of the antenna base 22B is connected to the electronic transmission and/or reception circuit by the second functional block 28.
  • this second functional block 28 comprises electrical components capacitive, inductive and/or resistive impedance readjustment of the second printed antenna 22 with the electronic transmission and/or reception circuit, these components being arranged to bring back the reflection coefficient at the input or output of the second printed antenna 22 to a value lower than the predetermined threshold value, for example by reducing it by at least 1 dB.
  • the second substrate 14, whose function can be to constitute the mass reference for the antenna device 10 while electromagnetically isolating as much as possible the first upper radiating portion 16 from the second lower portion 18, has a face, called the upper face because it is the one which is oriented towards the first upper half-space in which the two radio antennas 20 and 22 are located, on which a ground plane 30 is formed by metal printing. Thanks to the presence of the rectilinear hole crossed by the first substrate 12, the ground plane 30 is not in direct electrical contact with the two radio antennas 20 and 22. Contact is established using electrical connection pins whose two pairs 32 and 34 are represented on the figure 1 . A first pair of pins 32 is arranged in the vicinity of the electrical connection ports of the first printed antenna 20.
  • It comprises two pins, electrically connected together using male and female elements in a manner known per se, one of which is arranged and electrically connected to the metal ground plane portion 24 of the first substrate 12 and the other to the ground plane 30 of the second substrate 14.
  • a second pair of pins 34 is arranged in the same way in the vicinity of the electrical connection ports of the second printed antenna 22.
  • Other electrical connection pins can be added for the connection of other elements, for example elements of the electronic transmission and/or reception circuit, to the ground plane 30 of the second substrate 14.
  • the second lower portion 18 of the first substrate 12 of the antenna device 10 is to be inserted, in the direction indicated by the two solid vertical arrows oriented downwards, in a corresponding slot of a support 36 such as a mast or cylindrical candelabra.
  • a support 36 such as a mast or cylindrical candelabra.
  • the support 36 can be metallic that the second substrate 14 may have to, depending on the application envisaged, fulfill a function of electromagnetic isolation of the radiating upper half-space against any electromagnetic interference due to the proximity of the support. This aspect, however, is not the subject of the present invention.
  • the first functional block 26 is illustrated in detail on the figure 2 . It comprises a first metal port 38, on the front face of the first substrate 12, for connection to the electronic transmission and/or reception circuit. It further comprises a first capacitor 40, called series capacitor, connecting the second electrical connection port of the first printed antenna 20 located in the lower part of the antenna base 20B to the first metal port 38. It further comprises a second capacitor 42 , called parallel capacitance, connecting the second electrical connection port of the first printed antenna 20 located in the lower part of the antenna base 20B to the ground plane portion 24.
  • a first capacitor 40 called series capacitor, connecting the second electrical connection port of the first printed antenna 20 located in the lower part of the antenna base 20B to the first metal port 38.
  • a second capacitor 42 called parallel capacitance
  • the second functional block 28 is illustrated in detail on the Figure 3 . It includes a second metal port 44, on the front face of the first substrate 12, for connection to the electronic transmission and/or reception circuit. It further comprises a third capacitor 46, called series capacitor, connecting the second electrical connection port of the second printed antenna 22 located in the lower part of the antenna base 22B to the second metal port 44.
  • a third capacitor 46 called series capacitor
  • FIG. 4 it is concretely advantageous to integrate the antenna device 10 in a housing protector 48 (shown transparent for better visibility of the device 10), only at least part of the second lower portion 18 coming out from under the housing 48 for its insertion into the support 36.
  • This is generally a plastic radome .
  • FIG 4 also illustrates conventional means 50 with lateral screws for fixing the radome 48 on the support 36 as well as the rectilinear hole 52 of the second substrate 14 crossed by the first substrate 12.
  • FIG. 5 illustrates in perspective an installation comprising the antenna device 10, integrated into the radome 48 and therefore not visible in this figure, as fixed by screwing on the support 36. It can be seen that the implementation of the present invention makes it possible to maintain a very good compactness of the whole.
  • Tests were carried out for a first printed antenna 20 shaped and sized to operate in the passband [865; 870] MHz, for a second printed antenna 22 shaped and sized to operate in the bandwidth [2.4000; 2.4835] GHz and for an antenna rehabilitation threshold value of - 6 dB.
  • FIG. 6 illustrates a Smith chart in which possible impedance locations are arranged for the two antennas 20 and 22.
  • a first curve C1 represents the possible impedance locations for the first printed antenna 20: there is noted the point m1 which locates the characteristic impedance of the first antenna printed 20 at 865 MHz and the point m2 which locates it at 870 MHz.
  • a second curve C2 represents the possible impedance locations for the second printed antenna 22: we note the point m3 which locates the characteristic impedance of the second printed antenna 22 at 2.4000 GHz and the point m4 which locates it at 2.4835 GHz.
  • the chart is standardized and sized to be centered on an impedance adaptation at 50 ⁇ .
  • the antennas 20 and 22 have been deliberately mismatched at a location C3 far from the center of the chart.
  • the two thick solid line arrows illustrated on this chart illustrate the impedance readjustment carried out by the addition of electrical components 40, 42 and 46 as indicated previously.
  • FIG. 7A illustrates a curve of interference transmission coefficients S 12 measured between two antennas of the antenna device 10 when the latter are shaped to be adapted to the impedance of the electronic transmission and/or reception circuit in the two pass bands [ 865; 870] MHz and [2.4000; 2.4835] GHz, that is to say designed in accordance with the state of the art, and when the connections to the electronic transmission and/or reception circuit and to the portion of ground plane 24 are direct without capacitive, inductive and/or resistive impedance rehabilitation electrical components.
  • FIG. 7B illustrates the same curve of interference transmission coefficients S 12 measured between the two antennas 20 and 22 of the antenna device 10 when the latter conform to the measurements of the Smith chart of the Figure 6 , that is to say when they are in both passbands [865; 870] MHz and [2.4000; 2.4835] GHz, misadapted by conformation, then readjusted using electrical components 40, 42 and 46.
  • the reduction in the transmission coefficients S 12 is very clear. In the low frequencies of the passband [865; 870] MHz the curve is no longer even visible on the diagram, which means that the transmission coefficients remain below -30 dB.
  • FIG. 8A illustrates two comparative curves of values of an intrinsic insulation parameter of the antenna device 10.
  • the lower curve measures the intrinsic insulation values for two antennas shaped to be adapted to the impedance of the electronic transmission circuit and/or or reception in both passbands [865; 870] MHz and [2.4000; 2.4835] GHz, that is to say designed in accordance with the state of the art, and when the connections to the electronic transmission and/or reception circuit and to the ground plane portion 24 are direct without components capacitive, inductive and/or resistive electrical impedance rehabilitation.
  • the upper curve measures what the intrinsic insulation values become for the two antennas 20 and 22 when they conform to the measurements of the Smith chart of the Figure 6 , that is to say when they are in both passbands [865; 870] MHz and [2.4000; 2.4835] GHz, misadapted by conformation, then readjusted using electrical components 40, 42 and 46.
  • the intrinsic isolation gain is 6 dB (we go from 7 to 13 dB).
  • the intrinsic isolation gain is 2 dB (we go from 4 to 6 dB).
  • FIG. 8B also illustrates two comparative curves of values of an intrinsic insulation parameter of the antenna device 10.
  • the lower curve measures the intrinsic insulation values for the two antennas 20 and 22 when they conform to the measurements of the chart of Smith of the Figure 6 , that is to say when they are in both passbands [865; 870] MHz and [2.4000; 2.4835] GHz and misadapted by conformation, but without rehabilitation, that is to say without the electrical components 40, 42 and 46.
  • the upper curve measures what becomes of the intrinsic insulation values for the two antennas 20 and 22 when they conform to the measurements of the Smith chart of the Figure 6 and when they are readapted using electrical components 40, 42 and 46.
  • the intrinsic isolation gain is 6 dB (we go from 7 to 13 dB).
  • the intrinsic isolation gain is 3 dB (we go from 3 to 6 dB).
  • This property is particularly appreciable when the antenna device is intended to be integrated into a compact housing such as that of the Figure 4 , for example to then be fixed on a support such as that of the figure 5 .
  • the electrical components 40, 42 and 46 described above are capacitors, but other capacitive, inductive electrical components and/or resistive can be used to carry out decoupling rehabilitation, in particular other capacitive and/or inductive electrical components.
  • the aforementioned antennas 20 and 22 are printed using screen printing technology, but other types of antennas are compatible with the present invention, provided that they have electrical connection ports arranged on the same substrate.
  • antennas 20 and 22 are also printed on the same face of substrate, but antennas printed on two different faces of the same substrate are also suitable.

Landscapes

  • Details Of Aerials (AREA)

Description

La présente invention concerne un dispositif d'antenne comportant au moins deux antennes à même substrat de raccordement électrique. Un tel dispositif est par exemple employé dans les systèmes de télécommunication à accès et bandes multiples.The present invention relates to an antenna device comprising at least two antennas with the same electrical connection substrate. Such a device is for example used in telecommunications systems with multiple access and bands.

Plus précisément, elle s'applique à un dispositif d'antenne comportant :

  • au moins deux antennes radioélectriques dont les ports de raccordement électrique sont disposés sur un même substrat, et
  • des moyens électriquement conducteurs de raccordement des ports desdites au moins deux antennes radioélectriques à un circuit électronique d'émission et/ou réception.
More precisely, it applies to an antenna device comprising:
  • at least two radio antennas whose electrical connection ports are arranged on the same substrate, and
  • electrically conductive means for connecting the ports of said at least two radio antennas to an electronic transmission and/or reception circuit.

Généralement, pour un encombrement et des spécifications radioélectriques donnés, chaque antenne doit préalablement être conformée de manière à assurer une adaptation d'impédance de charge avec le circuit électronique d'émission et/ou réception, puis doit être raccordée au circuit électronique d'émission et/ou réception par tous moyens connus une fois que l'adaptation d'impédance est assurée. Le raccordement peut se faire par l'intermédiaire de filtres passe-bande eux-mêmes adaptés sur la même impédance de charge.Generally, for a given size and radio specifications, each antenna must first be shaped so as to ensure load impedance matching with the electronic transmission and/or reception circuit, then must be connected to the electronic transmission circuit. and/or reception by any known means once impedance matching is ensured. The connection can be made via bandpass filters themselves matched to the same load impedance.

Mais dans ce type de dispositif à structure souvent très compacte, les antennes radioélectriques sont très rapprochées donc très couplées. Elles interfèrent électromagnétiquement entre elles et perturbent mutuellement leurs rayonnements et leurs niveaux d'adaptation. Ces perturbations nuisent aux performances du dispositif d'antenne.But in this type of device with an often very compact structure, the radio antennas are very close together and therefore very coupled. They interfere electromagnetically with each other and mutually disrupt their radiation and their adaptation levels. These disturbances adversely affect the performance of the antenna device.

Une solution technique pour éviter ou au moins limiter ces interférences ne peut pas être d'éloigner les antennes car cela nuit directement à la compacité du dispositif pour une efficacité limitée. Les documents WO 2015/160450A1 , WO 2017/159184A1 , US 9 130 279B1 et US 2017/373393A1 sont considérés comme utiles pour comprendre l'invention.A technical solution to avoid or at least limit this interference cannot be to move the antennas away because this directly harms the compactness of the device for limited efficiency. The documents WO 2015/160450A1 , WO 2017/159184A1 , US 9 130 279B1 And US 2017/373393A1 are considered useful for understanding the invention.

Dans l'article de Chen et al, intitulé « A decoupling technique for increasing the port isolation between two strongly coupled antennas », publié dans IEEE Transactions on Antennas and Propagation, vol. 56, n° 12, pages 3650-3658, décembre 2008 , un circuit de découplage de deux antennes est ajouté à cette fin en amont de leurs ports de raccordement électrique et un bloc d'adaptation doit en outre être prévu pour chacune des deux voies en sortie du circuit de découplage. Dans la demande de brevet EP 2 466 684 A1 , une ligne de neutralisation est ajoutée entre deux antennes afin d'améliorer le découplage en créant un chemin complémentaire aux courants induits dans la structure rayonnante.In the article of Chen et al, entitled “A decoupling technique for increasing the port isolation between two strongly coupled antennas”, published in IEEE Transactions on Antennas and Propagation, vol. 56, n° 12, pages 3650-3658, December 2008 , a decoupling circuit for two antennas is added for this purpose upstream of their electrical connection ports and an adaptation block must also be provided for each of the two channels at the output of the decoupling circuit. In the patent application EP 2 466 684 A1 , a neutralization line is added between two antennas in order to improve decoupling by creating a complementary path to the currents induced in the radiating structure.

Ces ajouts engendrent une certaine complexité du dispositif entre les deux antennes, voire un encombrement plus important.These additions create a certain complexity of the device between the two antennas, or even a larger footprint.

Dans l'article de Chiu et al, intitulé « Réduction of mutual coupling between closely-packed antenna éléments », publié dans IEEE Transactions on Antennas and Propagation, vol. 55, n° 6, pages 1732-1738, juin 2007 , la solution proposée est de créer des défauts dans le plan de masse entre les deux antennes afin d'entraver la propagation de courants sur celui-ci. Dans le brevet EP 2 808 946 B1 , la solution proposée est de placer un dispositif de perturbation d'ondes électromagnétiques à structure de métamatériau entre les deux antennes.In the article of Chiu et al, entitled “Reduction of mutual coupling between closely-packed antenna elements”, published in IEEE Transactions on Antennas and Propagation, vol. 55, n° 6, pages 1732-1738, June 2007 , the proposed solution is to create defects in the ground plane between the two antennas in order to hinder the propagation of currents thereon. In the patent EP 2 808 946 B1 , the proposed solution is to place an electromagnetic wave disruption device with a metamaterial structure between the two antennas.

Ces deux dernières solutions engendrent un certain encombrement entre les antennes.These last two solutions generate a certain amount of space between the antennas.

Il peut ainsi être souhaité de prévoir un dispositif d'antenne compact qui permette de s'affranchir d'au moins une partie des problèmes et contraintes précités, notamment qui permette une réduction de perturbations entre antennes telles que celles mentionnées ci-dessus sans nuire à la compacité et à la simplicité du dispositif.It may thus be desired to provide a compact antenna device which makes it possible to overcome at least part of the aforementioned problems and constraints, in particular which allows a reduction in disturbances between antennas such as those mentioned above without harming the compactness and simplicity of the device.

Il est donc proposé un dispositif d'antenne tel que défini dans les revendications 1 et 2.An antenna device as defined in claims 1 and 2 is therefore proposed.

En désadaptant volontairement les antennes radioélectriques par conformation, ce qui est contraire à l'enseignement de l'état de la technique, et en les réadaptant au circuit électronique d'émission et/ou réception par insertion de simples composants électriques capacitifs, inductifs et/ou résistifs dans les moyens électriquement conducteurs de raccordement, il a été observé un effet supplémentaire inattendu : celui de découpler fonctionnellement les antennes radioélectriques. Etant donnée la simplicité des composants électriques qui peuvent être employés, ils n'ajoutent ni complexité ni encombrement significatifs.By deliberately misadapting the radio antennas by conformation, which is contrary to the teaching of the state of the art, and by readapting them to the electronic transmission and/or reception circuit by inserting simple capacitive, inductive and/or resistive electrical components in the electrically conductive connection means, an unexpected additional effect was observed: that of functionally decoupling the radio antennas. Given the simplicity of the electrical components that can be used, they do not add significant complexity or bulk.

De façon optionnelle, les composants électriques capacitifs, inductifs et/ou résistifs de réadaptation d'impédance comportent des condensateurs de raccordement électrique de chaque antenne radioélectrique au circuit électronique d'émission et/ou réception.Optionally, the capacitive, inductive and/or resistive electrical components for impedance rehabilitation comprise capacitors for electrical connection of each radio antenna to the electronic transmission and/or reception circuit.

De façon optionnelle également :

  • les moyens électriquement conducteurs de raccordement comportent en outre une portion de plan de masse s'étendant sur ledit même substrat, et
  • les composants électriques capacitifs, inductifs et/ou résistifs de réadaptation d'impédance comportent au moins un condensateur de raccordement électrique d'au moins l'une des antennes radioélectriques à cette portion de plan de masse.
Also optionally:
  • the electrically conductive connection means further comprise a ground plane portion extending on said same substrate, and
  • the capacitive, inductive and/or resistive electrical components for impedance rehabilitation comprise at least one capacitor for electrical connection of at least one of the radio antennas to this portion of the ground plane.

La valeur seuil prédéterminée est de - 6 dB en valeurs logarithmiques, correspondant à une valeur seuil de tolérance en dessous de laquelle chaque antenne radioélectrique est considérée comme adaptée en impédance avec le circuit électronique d'émission et/ou réception pour une application en téléphonie mobile.The predetermined threshold value is - 6 dB in logarithmic values, corresponding to a tolerance threshold value below which each radio antenna is considered to be matched in impedance with the electronic transmission and/or reception circuit for an application in mobile telephony. .

La valeur seuil prédéterminée est comprise entre - 20 et - 30 dB en valeurs logarithmiques, correspondant à une valeur seuil de tolérance en dessous de laquelle chaque antenne radioélectrique est considérée comme adaptée en impédance avec le circuit électronique d'émission et/ou réception pour une application en transmission satellite.The predetermined threshold value is between - 20 and - 30 dB in logarithmic values, corresponding to a tolerance threshold value below which each radio antenna is considered to be matched in impedance with the electronic transmission and/or reception circuit for a application in satellite transmission.

De façon optionnelle également, la réadaptation d'impédance avec le circuit électronique d'émission et/ou réception se fait à 50 Ω +/- 10%.Also optionally, the impedance readjustment with the electronic transmission and/or reception circuit is done at 50 Ω +/- 10%.

Ladite au moins une antenne radioélectrique est au moins une antenne imprimée s'étendant sur au moins une face dudit même substrat, dans une première portion rayonnante de ce substrat.Said at least one radio antenna is at least one printed antenna extending over at least one face of said same substrate, in a first radiating portion of this substrate.

Lesdites moyens électriquement conducteurs de raccordement s'étendent dans une deuxième portion dudit même substrat, séparée de la première portion rayonnante par un plan de masse s'étendant dans un plan sécant d'un plan principal dans lequel s'étend ledit même substrat.Said electrically conductive connection means extend in a second portion of said same substrate, separated from the first radiating portion by a ground plane extending in a intersecting plane of a main plane in which said same substrate extends.

De façon optionnelle également, un dispositif d'antenne selon l'invention peut comporter une première antenne imprimée à basses fréquences opérant dans une première bande de fréquences électromagnétiques et une deuxième antenne imprimée à hautes fréquences opérant dans une deuxième bande de fréquences électromagnétiques toutes plus élevées que les fréquences électromagnétiques de la première bande de fréquences.Also optionally, an antenna device according to the invention may comprise a first antenna printed at low frequencies operating in a first band of electromagnetic frequencies and a second antenna printed at high frequencies operating in a second band of electromagnetic frequencies which are all higher than the electromagnetic frequencies of the first frequency band.

De façon optionnelle également :

  • la première antenne imprimée à basses fréquences est raccordée électriquement au circuit électronique d'émission et/ou réception à l'aide d'un premier condensateur, dit capacité série, et à la portion de plan de masse à l'aide d'un deuxième condensateur, dit capacité parallèle, et
  • la deuxième antenne imprimée à hautes fréquences est raccordée électriquement au circuit électronique d'émission et/ou réception à l'aide d'un troisième condensateur, dit capacité série.
Also optionally:
  • the first antenna printed at low frequencies is electrically connected to the electronic transmission and/or reception circuit using a first capacitor, called series capacitor, and to the ground plane portion using a second capacitor, called parallel capacitance, and
  • the second antenna printed at high frequencies is electrically connected to the electronic transmission and/or reception circuit using a third capacitor, called series capacitor.

L'invention sera mieux comprise à l'aide de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels :

  • la figure 1 représente schématiquement et en vue de face la structure générale des éléments principaux d'un dispositif d'antenne selon un mode de réalisation de l'invention, tel qu'inséré dans un support de type mât ou candélabre cylindrique,
  • Les figures 2 et 3 représentent schématiquement respectivement deux détails de la figure 1,
  • la figure 4 illustre en perspectives vue de dessus une réalisation concrète du dispositif d'antenne de la figure 1,
  • la figure 5 illustre en perspective une installation comportant le dispositif d'antenne de la figure 4 fixé à un support,
  • la figure 6 est un abaque de Smith illustrant le principe d'une réadaptation d'impédance d'antennes radioélectriques du dispositif d'antenne de la figure 1,
  • les figures 7A et 7B sont des courbes comparatives de coefficients de transmission d'interférences entre antennes radioélectriques de dispositifs d'antennes respectivement selon l'état de l'art et selon l'invention, et
  • les figures 8A et 8B sont des courbes comparatives de paramètres d'isolation intrinsèque de dispositifs d'antennes selon l'état de l'art et selon l'invention.
The invention will be better understood with the help of the description which follows, given solely by way of example and made with reference to the appended drawings in which:
  • there figure 1 represents schematically and in front view the general structure of the main elements of an antenna device according to one embodiment of the invention, as inserted in a mast or cylindrical candelabra type support,
  • THE figures 2 and 3 schematically represent respectively two details of the figure 1 ,
  • there figure 4 illustrates in perspective view from above a concrete realization of the antenna device of the figure 1 ,
  • there Figure 5 illustrates in perspective an installation comprising the antenna device of the Figure 4 attached to a support,
  • there Figure 6 is a Smith chart illustrating the principle of impedance rehabilitation of radio antennas of the antenna device of the figure 1 ,
  • THE Figures 7A and 7B are comparative curves of interference transmission coefficients between radio antennas of antenna devices respectively according to the state of the art and according to the invention, and
  • THE Figures 8A and 8B are comparative curves of intrinsic insulation parameters of antenna devices according to the state of the art and according to the invention.

Le dispositif d'antenne 10 représenté schématiquement en vue de face sur la figure 1 comporte un premier substrat 12 qui s'étend dans un premier plan, celui de la figure. Il comporte en outre de façon optionnelle un deuxième substrat 14 qui s'étend dans un deuxième plan différent et sécant du premier plan, notamment un plan horizontal orthogonal à celui de la figure. Le deuxième substrat 14 présente par exemple un trou rectiligne traversé par le premier substrat 12, de sorte que ce dernier présente une première portion 16, située dans un premier demi-espace supérieur par rapport au deuxième plan du deuxième substrat 14, et une deuxième portion 18, située dans un deuxième demi-espace inférieur par rapport au deuxième plan du deuxième substrat 14. Les deux substrats sont par exemple en matériau de type FR-4 (de l'anglais « Flame Résistant 4 »), c'est-à-dire en composite de résine époxy renforcé de fibre de verre.The antenna device 10 shown schematically in front view on the figure 1 comprises a first substrate 12 which extends in a first plane, that of the figure. It further optionally comprises a second substrate 14 which extends in a second plane different and secant from the first plane, in particular a horizontal plane orthogonal to that of the figure. The second substrate 14 has for example a rectilinear hole crossed by the first substrate 12, so that the latter has a first portion 16, located in a first upper half-space relative to the second plane of the second substrate 14, and a second portion 18, located in a second lower half-space relative to the second plane of the second substrate 14. The two substrates are for example made of FR-4 type material (from the English “Flame Resistant 4”), that is to say i.e. made of epoxy resin composite reinforced with fiberglass.

Sur la face avant visible et dans la première portion supérieure 16 du premier substrat 12, formant une première portion rayonnante de ce premier substrat 12, deux antennes radioélectriques 20 et 22 sont formées par impression métallique selon une technologie sérigraphique connue.On the visible front face and in the first upper portion 16 of the first substrate 12, forming a first radiating portion of this first substrate 12, two radio antennas 20 and 22 are formed by metal printing using known screen printing technology.

La plus grande des deux antennes radioélectriques, i.e. la première antenne imprimée 20, comporte deux bandes métalliques 20A, 20B s'étendant orthogonalement depuis le deuxième plan. Ces deux bandes métalliques 20A, 20B forment deux pieds reliés entre eux à leurs extrémités les plus distantes du deuxième plan par une portion de bande métallique supplémentaire, ainsi qu'à une autre bande métallique 20C s'étendant horizontalement en partie supérieure de la première portion rayonnante 16 du premier substrat 12. La configuration précise de cette première antenne imprimée 20, située la plus à gauche en face avant du premier substrat 12, ainsi que son dimensionnement restent concrètement à l'appréciation de l'homme du métier en fonction de l'application et du rayonnement visés. Elle opère à basses fréquences, dans une première bande de fréquences électromagnétiques prédéterminées. Les deux extrémités inférieures des deux bandes métalliques 20A et 20B, c'est-à-dire celles qui se trouvent au niveau du deuxième plan, constituent les deux ports de raccordement électrique de la première antenne imprimée 20.The larger of the two radio antennas, i.e. the first printed antenna 20, comprises two metal strips 20A, 20B extending orthogonally from the second plane. These two metal strips 20A, 20B form two feet connected together at their ends most distant from the second plane by a portion of additional metal strip, as well as to another metal strip 20C extending horizontally in the upper part of the first portion radiant 16 of the first substrate 12. The precise configuration of this first printed antenna 20, located furthest to the left on the front face of the first substrate 12, as well as its dimensioning remain concretely up to the appreciation of those skilled in the art depending on the the targeted application and radiation. It operates at low frequencies, in a first band of predetermined electromagnetic frequencies. The two lower ends of the two metal strips 20A and 20B, that is to say those which are at the level of the second plane, constitute the two electrical connection ports of the first printed antenna 20.

La plus petite des deux antennes radioélectriques, i.e. la deuxième antenne imprimée 22, comporte elle aussi deux bandes métalliques 22A, 22B s'étendant orthogonalement depuis le deuxième plan. Ces deux bandes métalliques 22A, 22B sont plus courtes que les bandes métalliques 20A, 20B. Elles forment également deux pieds reliés entre eux à leurs extrémités les plus distantes du deuxième plan par une portion de bande métallique supplémentaire, ainsi qu'à une autre bande métallique 22C s'étendant horizontalement sous la bande métallique 20C dans la première portion rayonnante 16 du premier substrat 12. La bande métallique 22C est plus courte que la bande métallique 20C. La configuration précise de cette deuxième antenne imprimée 22, située la plus à droite en face avant du premier substrat 12, ainsi que son dimensionnement restent concrètement à l'appréciation de l'homme du métier en fonction de l'application et du rayonnement visés. Elle opère à hautes fréquences, dans une deuxième bande de fréquences électromagnétiques prédéterminées, par exemple toutes plus élevées que les fréquences électromagnétiques de la première bande de fréquences de la première antenne imprimée 20. Les deux extrémités inférieures des deux bandes métalliques 22A et 22B, c'est-à-dire celles qui se trouvent au niveau du deuxième plan, constituent les deux ports de raccordement électrique de la deuxième antenne imprimée 22.The smaller of the two radio antennas, ie the second printed antenna 22, also includes two metal strips 22A, 22B extending orthogonally from the second plane. These two metal strips 22A, 22B are shorter than the metal strips 20A, 20B. They also form two feet connected together at their ends most distant from the second plane by a portion of additional metal strip, as well as to another metal strip 22C extending horizontally under the metal strip 20C in the first radiating portion 16 of the first substrate 12. The metal strip 22C is shorter than the metal strip 20C. The precise configuration of this second printed antenna 22, located furthest to the right on the front face of the first substrate 12, as well as its dimensioning remain concretely at the discretion of those skilled in the art depending on the application and the radiation targeted. It operates at high frequencies, in a second band of predetermined electromagnetic frequencies, for example all higher than the electromagnetic frequencies of the first frequency band of the first printed antenna 20. The two lower ends of the two metal bands 22A and 22B, c that is to say those which are at the level of the second plane, constitute the two electrical connection ports of the second printed antenna 22.

Il en résulte que les ports de raccordement électrique des deux antennes radioélectriques 20 et 22 sont disposés sur le même premier substrat 12, plus précisément sur sa face avant visible.As a result, the electrical connection ports of the two radio antennas 20 and 22 are arranged on the same first substrate 12, more precisely on its visible front face.

Sur cette même face avant et dans la deuxième portion inférieure 18 du premier substrat 12, séparée éventuellement de la première portion rayonnante 16 par le deuxième substrat 14, des moyens électriquement conducteurs de raccordement des ports des deux antennes radioélectriques 20 et 22 à un circuit électronique d'émission et/ou réception sont formés notamment par impression métallique selon la technologie sérigraphique précitée. Le circuit électronique d'émission et/ou réception est situé d'une façon générale dans le deuxième demi-espace inférieur par rapport au deuxième plan du deuxième substrat 14, mais il n'est pas représenté sur la figure 1 parce qu'il n'est pas utile à la bonne compréhension de l'invention.On this same front face and in the second lower portion 18 of the first substrate 12, possibly separated from the first radiating portion 16 by the second substrate 14, electrically conductive means for connecting the ports of the two radio antennas 20 and 22 to an electronic circuit emission and/or reception are formed in particular by metal printing using the aforementioned screen printing technology. The electronic transmission and/or reception circuit is generally located in the second lower half-space relative to the second plane of the second substrate 14, but it is not shown on the figure 1 because it is not useful for a good understanding of the invention.

Conformément à la présente invention, chaque antenne radioélectrique 20, 22 est en outre conformée pour présenter une désadaptation d'impédance avec ce circuit électronique d'émission et/ou réception telle que son coefficient de réflexion en entrée ou en sortie soit supérieur à une valeur seuil prédéterminée en l'absence de toute réadaptation d'impédance. En général, l'impédance d'entrée/sortie du circuit électronique d'émission et/ou réception est par convention égale à 50 Ω +/- 10%. Quant à la valeur seuil choisie pour désadapter chaque antenne, elle dépend de l'application visée. Elle est par exemple de - 6 dB en valeurs logarithmiques pour une application en téléphonie mobile, correspondant à une valeur seuil de tolérance en dessous de laquelle chaque antenne radioélectrique est considérée comme adaptée en impédance avec le circuit électronique d'émission et/ou réception pour une telle application. En variante, elle peut être comprise entre - 20 et - 30 dB en valeurs logarithmiques pour une application en transmission satellite, correspondant à une valeur seuil de tolérance en dessous de laquelle chaque antenne radioélectrique est considérée comme adaptée en impédance avec le circuit électronique d'émission et/ou réception pour une telle application. Conformer chaque antenne précisément pour réaliser la désadaptation d'impédance souhaitée en fonction de la valeur seuil choisie est à la portée de l'homme du métier, de sorte que cette opération ne sera pas détaillée.In accordance with the present invention, each radio antenna 20, 22 is further shaped to present an impedance mismatch with this electronic transmission and/or reception circuit such that its input or output reflection coefficient is greater than a value predetermined threshold in the absence of any impedance rehabilitation. In general, the input/output impedance of the electronic transmission and/or reception circuit is by convention equal to 50 Ω +/- 10%. As for the threshold value chosen to mismatch each antenna, it depends on the intended application. It is for example - 6 dB in logarithmic values for an application in mobile telephony, corresponding to a threshold tolerance value below which each radio antenna is considered to be matched in impedance with the electronic transmission and/or reception circuit for such an application. Alternatively, it can be between - 20 and - 30 dB in logarithmic values for an application in satellite transmission, corresponding to a tolerance threshold value below which each radio antenna is considered to be matched in impedance with the electronic circuit of transmission and/or reception for such an application. Conforming each antenna precisely to achieve the desired impedance mismatch as a function of the chosen threshold value is within the reach of those skilled in the art, so this operation will not be detailed.

Les moyens électriquement conducteurs de raccordement sont conçus pour connecter chaque antenne 20, 22 au circuit électronique d'émission et/ou réception et à un plan de masse. Ils comportent ainsi une portion de plan de masse métallique 24 formée par impression métallique sur la face avant et/ou arrière de la deuxième portion inférieure 18 du premier substrat 12. Ils comportent en outre un premier bloc fonctionnel 26 de raccordement de la première antenne imprimée 20 au circuit électronique d'émission et/ou réception et un deuxième bloc fonctionnel 28 de raccordement de la deuxième antenne imprimée 22 au circuit électronique d'émission et/ou réception.The electrically conductive connection means are designed to connect each antenna 20, 22 to the electronic transmission and/or reception circuit and to a ground plane. They thus include a metal ground plane portion 24 formed by metal printing on the front and/or rear face of the second lower portion 18 of the first substrate 12. They also include a first functional block 26 for connecting the first printed antenna 20 to the electronic transmission and/or reception circuit and a second functional block 28 for connecting the second printed antenna 22 to the electronic transmission and/or reception circuit.

Plus précisément, en ce qui concerne la première antenne imprimée 20, son premier port de raccordement électrique situé en partie inférieure du pied d'antenne 20A est en contact électrique avec la portion de plan de masse métallique 24. Ce contact électrique n'est pas détaillé dans la figure 1 : il peut se faire au niveau du deuxième plan du deuxième substrat 14 et via la face arrière du premier substrat 12. Son deuxième port de raccordement électrique situé en partie inférieure du pied d'antenne 20B est raccordé au circuit électronique d'émission et/ou réception par le premier bloc fonctionnel 26. Conformément à la présente invention, ce premier bloc fonctionnel 26 comporte des composants électriques capacitifs, inductifs et/ou résistifs de réadaptation d'impédance de la première antenne imprimée 20 avec le circuit électronique d'émission et/ou réception, ces composants étant disposés pour ramener le coefficient de réflexion en entrée ou en sortie de la première antenne imprimée 20 à une valeur inférieure à la valeur seuil prédéterminée, par exemple en le réduisant d'au moins 1 dB.More precisely, with regard to the first printed antenna 20, its first electrical connection port located in the lower part of the antenna base 20A is in electrical contact with the metal ground plane portion 24. This electrical contact is not detailed in the figure 1 : it can be done at the level of the second plane of the second substrate 14 and via the rear face of the first substrate 12. Its second electrical connection port located in the lower part of the antenna base 20B is connected to the electronic transmission circuit and/or or reception by the first functional block 26. In accordance with the present invention, this first functional block 26 comprises capacitive, inductive and/or resistive electrical components for readjusting the impedance of the first printed antenna 20 with the electronic transmission circuit and /or reception, these components being arranged to reduce the reflection coefficient at the input or output of the first antenna printed 20 at a value lower than the predetermined threshold value, for example by reducing it by at least 1 dB.

Plus précisément également, en ce qui concerne la deuxième antenne imprimée 22, son premier port de raccordement électrique situé en partie inférieure du pied d'antenne 22A est en contact électrique avec la portion de plan de masse métallique 24, par exemple par continuité d'impression métallique comme cela est bien visible sur la face avant du premier substrat 12 tel qu'illustré sur la figure 1. Son deuxième port de raccordement électrique situé en partie inférieure du pied d'antenne 22B est raccordé au circuit électronique d'émission et/ou réception par le deuxième bloc fonctionnel 28. Conformément à la présente invention, ce deuxième bloc fonctionnel 28 comporte des composants électriques capacitifs, inductifs et/ou résistifs de réadaptation d'impédance de la deuxième antenne imprimée 22 avec le circuit électronique d'émission et/ou réception, ces composants étant disposés pour ramener le coefficient de réflexion en entrée ou en sortie de la deuxième antenne imprimée 22 à une valeur inférieure à la valeur seuil prédéterminée, par exemple en le réduisant d'au moins 1 dB.Also more precisely, with regard to the second printed antenna 22, its first electrical connection port located in the lower part of the antenna base 22A is in electrical contact with the metal ground plane portion 24, for example by continuity of metallic impression as is clearly visible on the front face of the first substrate 12 as illustrated in the figure 1 . Its second electrical connection port located in the lower part of the antenna base 22B is connected to the electronic transmission and/or reception circuit by the second functional block 28. In accordance with the present invention, this second functional block 28 comprises electrical components capacitive, inductive and/or resistive impedance readjustment of the second printed antenna 22 with the electronic transmission and/or reception circuit, these components being arranged to bring back the reflection coefficient at the input or output of the second printed antenna 22 to a value lower than the predetermined threshold value, for example by reducing it by at least 1 dB.

Le deuxième substrat 14, dont la fonction peut être de constituer le référentiel de masse pour le dispositif d'antenne 10 tout en isolant électromagnétiquement autant que possible la première portion supérieure rayonnante 16 de la deuxième portion inférieure 18, présente une face, dite face supérieure parce que c'est celle qui est orientée du côté du premier demi-espace supérieur dans lequel sont situées les deux antennes radioélectriques 20 et 22, sur laquelle est formé un plan de masse 30 par impression métallique. Grâce à la présence du trou rectiligne traversé par le premier substrat 12, le plan de masse 30 n'est pas en contact électrique direct avec les deux antennes radioélectriques 20 et 22. Le contact est établi à l'aide de broches de raccordement électrique dont deux paires 32 et 34 sont représentées sur la figure 1. Une première paire de broches 32 est disposée au voisinage des ports de raccordement électrique de la première antenne imprimée 20. Elle comporte deux broches, raccordées électriquement entre elles à l'aide éléments mâles et femelles de façon connue en soi, dont l'une est disposée et connectée électriquement à la portion de plan de masse métallique 24 du premier substrat 12 et l'autre au plan de masse 30 du deuxième substrat 14. Une deuxième paire de broches 34 est disposée de la même façon au voisinage des ports de raccordement électrique de la deuxième antenne imprimée 22. D'autres broches de raccordement électrique peuvent être ajoutées pour le raccordement d'autres éléments, par exemple des éléments du circuit électronique d'émission et/ou réception, au plan de masse 30 du deuxième substrat 14.The second substrate 14, whose function can be to constitute the mass reference for the antenna device 10 while electromagnetically isolating as much as possible the first upper radiating portion 16 from the second lower portion 18, has a face, called the upper face because it is the one which is oriented towards the first upper half-space in which the two radio antennas 20 and 22 are located, on which a ground plane 30 is formed by metal printing. Thanks to the presence of the rectilinear hole crossed by the first substrate 12, the ground plane 30 is not in direct electrical contact with the two radio antennas 20 and 22. Contact is established using electrical connection pins whose two pairs 32 and 34 are represented on the figure 1 . A first pair of pins 32 is arranged in the vicinity of the electrical connection ports of the first printed antenna 20. It comprises two pins, electrically connected together using male and female elements in a manner known per se, one of which is arranged and electrically connected to the metal ground plane portion 24 of the first substrate 12 and the other to the ground plane 30 of the second substrate 14. A second pair of pins 34 is arranged in the same way in the vicinity of the electrical connection ports of the second printed antenna 22. Other electrical connection pins can be added for the connection of other elements, for example elements of the electronic transmission and/or reception circuit, to the ground plane 30 of the second substrate 14.

Conformément à l'exemple non limitatif illustré sur la figure 1, la deuxième portion inférieure 18 du premier substrat 12 du dispositif d'antenne 10 est à insérer, selon la direction indiquée par les deux flèches pleines verticales orientées vers le bas, dans une fente correspondante d'un support 36 tel qu'un mât ou candélabre cylindrique. C'est parce que le support 36 peut être métallique que le deuxième substrat 14 peut devoir, selon l'application envisagée, remplir une fonction d'isolation électromagnétique du demi-espace supérieur rayonnant contre toute interférence électromagnétique due à la proximité du support. C'est aspect ne fait cependant pas l'objet de la présente invention.In accordance with the non-limiting example illustrated on the figure 1 , the second lower portion 18 of the first substrate 12 of the antenna device 10 is to be inserted, in the direction indicated by the two solid vertical arrows oriented downwards, in a corresponding slot of a support 36 such as a mast or cylindrical candelabra. It is because the support 36 can be metallic that the second substrate 14 may have to, depending on the application envisaged, fulfill a function of electromagnetic isolation of the radiating upper half-space against any electromagnetic interference due to the proximity of the support. This aspect, however, is not the subject of the present invention.

Le premier bloc fonctionnel 26 est illustré en détail sur la figure 2. Il comporte un premier port métallique 38, en face avant du premier substrat 12, de raccordement au circuit électronique d'émission et/ou réception. Il comporte en outre un premier condensateur 40, dit capacité série, reliant le deuxième port de raccordement électrique de la première antenne imprimée 20 situé en partie inférieure du pied d'antenne 20B au premier port métallique 38. Il comporte en outre un deuxième condensateur 42, dit capacité parallèle, reliant le deuxième port de raccordement électrique de la première antenne imprimée 20 situé en partie inférieure du pied d'antenne 20B à la portion de plan de masse 24.The first functional block 26 is illustrated in detail on the figure 2 . It comprises a first metal port 38, on the front face of the first substrate 12, for connection to the electronic transmission and/or reception circuit. It further comprises a first capacitor 40, called series capacitor, connecting the second electrical connection port of the first printed antenna 20 located in the lower part of the antenna base 20B to the first metal port 38. It further comprises a second capacitor 42 , called parallel capacitance, connecting the second electrical connection port of the first printed antenna 20 located in the lower part of the antenna base 20B to the ground plane portion 24.

Le deuxième bloc fonctionnel 28 est illustré en détail sur la figure 3. Il comporte un deuxième port métallique 44, en face avant du premier substrat 12, de raccordement au circuit électronique d'émission et/ou réception. Il comporte en outre un troisième condensateur 46, dit capacité série, reliant le deuxième port de raccordement électrique de la deuxième antenne imprimée 22 situé en partie inférieure du pied d'antenne 22B au deuxième port métallique 44.The second functional block 28 is illustrated in detail on the Figure 3 . It includes a second metal port 44, on the front face of the first substrate 12, for connection to the electronic transmission and/or reception circuit. It further comprises a third capacitor 46, called series capacitor, connecting the second electrical connection port of the second printed antenna 22 located in the lower part of the antenna base 22B to the second metal port 44.

Grâce aux composants électriques 40, 42 et 46, en choisissant de façon appropriée et connue en soi leurs caractéristiques R (résistance), L (inductance) et C (capacité), il est simple et peu encombrant de réadapter l'impédance des deux antennes 20 et 22 à celle du circuit électronique d'émission et/ou réception. En outre, comme cela sera vu en référence aux figures 7A à 8B, cette réadaptation d'impédance permet en même temps d'améliorer le découplage et l'isolation intrinsèque électromagnétique des deux antennes 20 et 22.Thanks to the electrical components 40, 42 and 46, by choosing in an appropriate and known manner their characteristics R (resistance), L (inductance) and C (capacitance), it is simple and space-saving to readjust the impedance of the two antennas 20 and 22 to that of the electronic transmission and/or reception circuit. Furthermore, as will be seen with reference to Figures 7A to 8B , this impedance readjustment makes it possible at the same time to improve the decoupling and the intrinsic electromagnetic isolation of the two antennas 20 and 22.

Comme illustré sur la figure 4 en perspective vue de dessus, il est concrètement avantageux d'intégrer le dispositif d'antenne 10 dans un boîtier protecteur 48 (représenté transparent pour une meilleure visibilité du dispositif 10), seule au moins une partie de la deuxième portion inférieure 18 sortant sous le boîtier 48 pour son insertion dans le support 36. Il s'agit généralement d'un radôme en matière plastique. La figure 4 illustre également des moyens classiques 50 à vis latérales de fixation du radôme 48 sur le support 36 ainsi que le trou rectiligne 52 du deuxième substrat 14 traversé par le premier substrat 12.As illustrated on the figure 4 in perspective seen from above, it is concretely advantageous to integrate the antenna device 10 in a housing protector 48 (shown transparent for better visibility of the device 10), only at least part of the second lower portion 18 coming out from under the housing 48 for its insertion into the support 36. This is generally a plastic radome . There Figure 4 also illustrates conventional means 50 with lateral screws for fixing the radome 48 on the support 36 as well as the rectilinear hole 52 of the second substrate 14 crossed by the first substrate 12.

La figure 5 illustre en perspective une installation comportant le dispositif d'antenne 10, intégré dans le radôme 48 et donc non visible sur cette figure, tel que fixé par vissage sur le support 36. On y voit que la mise en oeuvre de la présente invention permet de conserver une très bonne compacité de l'ensemble.There Figure 5 illustrates in perspective an installation comprising the antenna device 10, integrated into the radome 48 and therefore not visible in this figure, as fixed by screwing on the support 36. It can be seen that the implementation of the present invention makes it possible to maintain a very good compactness of the whole.

Des tests ont été effectués pour une première antenne imprimée 20 conformée et dimensionnée pour opérer dans la bande passante [865 ; 870] MHz, pour une deuxième antenne imprimée 22 conformée et dimensionnée pour opérer dans la bande passante [2,4000 ; 2,4835] GHz et pour une valeur seuil de réadaptation d'antenne à - 6 dB.Tests were carried out for a first printed antenna 20 shaped and sized to operate in the passband [865; 870] MHz, for a second printed antenna 22 shaped and sized to operate in the bandwidth [2.4000; 2.4835] GHz and for an antenna rehabilitation threshold value of - 6 dB.

La figure 6 illustre un abaque de Smith dans lequel sont disposés des lieux d'impédance possibles pour les deux antennes 20 et 22. Une première courbe C1 représente les lieux d'impédance possibles pour la première antenne imprimée 20 : on y a noté le point m1 qui localise l'impédance caractéristique de la première antenne imprimée 20 à 865 MHz et le point m2 qui la localise à 870 MHz. Une deuxième courbe C2 représente les lieux d'impédance possibles pour la deuxième antenne imprimée 22 : on y a noté le point m3 qui localise l'impédance caractéristique de la deuxième antenne imprimée 22 à 2,4000 GHz et le point m4 qui la localise à 2,4835 GHz. L'abaque est normalisé et dimensionné pour être centré sur une adaptation d'impédance à 50 Ω. On remarque que, conformément à la présente invention, les antennes 20 et 22 ont été volontairement désadaptées en un lieu C3 éloigné du centre de l'abaque. Les deux flèches en trait plein épais illustrées sur cet abaque illustrent la réadaptation d'impédance réalisée par l'ajout des composants électriques 40, 42 et 46 comme indiqué précédemment.There Figure 6 illustrates a Smith chart in which possible impedance locations are arranged for the two antennas 20 and 22. A first curve C1 represents the possible impedance locations for the first printed antenna 20: there is noted the point m1 which locates the characteristic impedance of the first antenna printed 20 at 865 MHz and the point m2 which locates it at 870 MHz. A second curve C2 represents the possible impedance locations for the second printed antenna 22: we note the point m3 which locates the characteristic impedance of the second printed antenna 22 at 2.4000 GHz and the point m4 which locates it at 2.4835 GHz. The chart is standardized and sized to be centered on an impedance adaptation at 50 Ω. Note that, in accordance with the present invention, the antennas 20 and 22 have been deliberately mismatched at a location C3 far from the center of the chart. The two thick solid line arrows illustrated on this chart illustrate the impedance readjustment carried out by the addition of electrical components 40, 42 and 46 as indicated previously.

La figure 7A illustre une courbe de coefficients de transmission d'interférences S12 mesurés entre deux antennes du dispositif d'antenne 10 lorsque ces dernières sont conformées pour être adaptées à l'impédance du circuit électronique d'émission et/ou réception dans les deux bandes passantes [865 ; 870] MHz et [2,4000 ; 2,4835] GHz, c'est-à-dire conçues conformément à l'état de la technique, et lorsque les raccordements au circuit électronique d'émission et/ou réception et à la portion de plan de masse 24 sont directs sans composants électriques capacitifs, inductifs et/ou résistifs de réadaptation d'impédance.There Figure 7A illustrates a curve of interference transmission coefficients S 12 measured between two antennas of the antenna device 10 when the latter are shaped to be adapted to the impedance of the electronic transmission and/or reception circuit in the two pass bands [ 865; 870] MHz and [2.4000; 2.4835] GHz, that is to say designed in accordance with the state of the art, and when the connections to the electronic transmission and/or reception circuit and to the portion of ground plane 24 are direct without capacitive, inductive and/or resistive impedance rehabilitation electrical components.

La figure 7B illustre la même courbe de coefficients de transmission d'interférences S12 mesurés entre les deux antennes 20 et 22 du dispositif d'antenne 10 lorsque ces dernières sont conformes aux mesures de l'abaque de Smith de la figure 6, c'est-à-dire lorsqu'elles sont dans les deux bandes passantes [865 ; 870] MHz et [2,4000 ; 2,4835] GHz, désadaptées par conformation, puis réadaptées à l'aide des composants électriques 40, 42 et 46. La réduction des coefficients de transmission S12 y est très nette. Dans les fréquences basses de la bande passante [865 ; 870] MHz la courbe n'est même plus visible sur le diagramme, ce qui signifie que les coefficients de transmission restent inférieurs à -30 dB. Dans les fréquences hautes de la bande passante [2,4000 ; 2,4835] GHz la courbe est passée d'environ -7 dB à moins de -18 dB. Ces mesures sont révélatrices d'un découplage amélioré des antennes 20 et 22 dans le dispositif 10 par rapport à des antennes adaptées en impédance de l'état de la technique conformées pour les mêmes fréquences dans le même dispositif 10.There Figure 7B illustrates the same curve of interference transmission coefficients S 12 measured between the two antennas 20 and 22 of the antenna device 10 when the latter conform to the measurements of the Smith chart of the Figure 6 , that is to say when they are in both passbands [865; 870] MHz and [2.4000; 2.4835] GHz, misadapted by conformation, then readjusted using electrical components 40, 42 and 46. The reduction in the transmission coefficients S 12 is very clear. In the low frequencies of the passband [865; 870] MHz the curve is no longer even visible on the diagram, which means that the transmission coefficients remain below -30 dB. In the high frequencies of the passband [2.4000; 2.4835] GHz the curve went from around -7 dB to less than -18 dB. These measurements reveal improved decoupling of the antennas 20 and 22 in the device 10 compared to antennas matched in impedance from the state of the art configured for the same frequencies in the same device 10.

La figure 8A illustre deux courbes comparatives de valeurs d'un paramètre d'isolation intrinsèque du dispositif d'antenne 10. La courbe inférieure mesure les valeurs d'isolation intrinsèque pour deux antennes conformées pour être adaptées à l'impédance du circuit électronique d'émission et/ou réception dans les deux bandes passantes [865 ; 870] MHz et [2,4000 ; 2,4835] GHz, c'est-à-dire conçues conformément à l'état de la technique, et lorsque les raccordements au circuit électronique d'émission et/ou réception et à la portion de plan de masse 24 sont directs sans composants électriques capacitifs, inductifs et/ou résistifs de réadaptation d'impédance. La courbe supérieure mesure ce que deviennent les valeurs d'isolation intrinsèque pour les deux antennes 20 et 22 lorsqu'elles sont conformes aux mesures de l'abaque de Smith de la figure 6, c'est-à-dire lorsqu'elles sont dans les deux bandes passantes [865 ; 870] MHz et [2,4000 ; 2,4835] GHz, désadaptées par conformation, puis réadaptées à l'aide des composants électriques 40, 42 et 46. A 860 MHz, c'est-à-dire au voisinage de la bande passante [865 ; 870] MHz, le gain en isolation intrinsèque est de 6 dB (on passe de 7 à 13 dB). A 2,44 GHz, c'est-à-dire dans la bande passante [2,4000 ; 2,4835] GHz, le gain en isolation intrinsèque est de 2 dB (on passe de 4 à 6 dB). Ces mesures sont révélatrices d'un découplage amélioré des antennes 20 et 22 dans le dispositif 10 par rapport à des antennes adaptées en impédance de l'état de la technique conformées pour les mêmes fréquences dans le même dispositif 10.There Figure 8A illustrates two comparative curves of values of an intrinsic insulation parameter of the antenna device 10. The lower curve measures the intrinsic insulation values for two antennas shaped to be adapted to the impedance of the electronic transmission circuit and/or or reception in both passbands [865; 870] MHz and [2.4000; 2.4835] GHz, that is to say designed in accordance with the state of the art, and when the connections to the electronic transmission and/or reception circuit and to the ground plane portion 24 are direct without components capacitive, inductive and/or resistive electrical impedance rehabilitation. The upper curve measures what the intrinsic insulation values become for the two antennas 20 and 22 when they conform to the measurements of the Smith chart of the Figure 6 , that is to say when they are in both passbands [865; 870] MHz and [2.4000; 2.4835] GHz, misadapted by conformation, then readjusted using electrical components 40, 42 and 46. At 860 MHz, that is to say in the vicinity of the passband [865; 870] MHz, the intrinsic isolation gain is 6 dB (we go from 7 to 13 dB). At 2.44 GHz, that is to say in the bandwidth [2.4000; 2.4835] GHz, the intrinsic isolation gain is 2 dB (we go from 4 to 6 dB). These measurements reveal improved decoupling of the antennas 20 and 22 in the device 10 compared to Antennas matched in impedance from the state of the art configured for the same frequencies in the same device 10.

La figure 8B illustre également deux courbes comparatives de valeurs d'un paramètre d'isolation intrinsèque du dispositif d'antenne 10. La courbe inférieure mesure les valeurs d'isolation intrinsèque pour les deux antennes 20 et 22 lorsqu'elles sont conformes aux mesures de l'abaque de Smith de la figure 6, c'est-à-dire lorsqu'elles sont dans les deux bandes passantes [865 ; 870] MHz et [2,4000 ; 2,4835] GHz et désadaptées par conformation, mais sans réadaptation, c'est-à-dire sans les composants électriques 40, 42 et 46. La courbe supérieure mesure ce que deviennent les valeurs d'isolation intrinsèque pour les deux antennes 20 et 22 lorsqu'elles sont conformes aux mesures de l'abaque de Smith de la figure 6 et lorsqu'elles sont réadaptées à l'aide des composants électriques 40, 42 et 46. A 860 MHz, c'est-à-dire au voisinage de la bande passante [865 ; 870] MHz, le gain en isolation intrinsèque est de 6 dB (on passe de 7 à 13 dB). A 2,44 GHz, c'est-à-dire dans la bande passante [2,4000 ; 2,4835] GHz, le gain en isolation intrinsèque est de 3 dB (on passe de 3 à 6 dB). Par comparaison avec celles de la figure 8A, ces nouvelles mesures sont révélatrices du fait que le découplage amélioré des antennes 20 et 22 dans le dispositif 10 est vraiment essentiellement dû à l'ajout des composants électriques 40, 42 et 46.There Figure 8B also illustrates two comparative curves of values of an intrinsic insulation parameter of the antenna device 10. The lower curve measures the intrinsic insulation values for the two antennas 20 and 22 when they conform to the measurements of the chart of Smith of the Figure 6 , that is to say when they are in both passbands [865; 870] MHz and [2.4000; 2.4835] GHz and misadapted by conformation, but without rehabilitation, that is to say without the electrical components 40, 42 and 46. The upper curve measures what becomes of the intrinsic insulation values for the two antennas 20 and 22 when they conform to the measurements of the Smith chart of the Figure 6 and when they are readapted using electrical components 40, 42 and 46. At 860 MHz, that is to say in the vicinity of the passband [865; 870] MHz, the intrinsic isolation gain is 6 dB (we go from 7 to 13 dB). At 2.44 GHz, that is to say in the bandwidth [2.4000; 2.4835] GHz, the intrinsic isolation gain is 3 dB (we go from 3 to 6 dB). In comparison with those of the Figure 8A , these new measurements reveal the fact that the improved decoupling of the antennas 20 and 22 in the device 10 is really essentially due to the addition of the electrical components 40, 42 and 46.

Il apparaît clairement qu'un dispositif d'antenne tel que celui décrit précédemment permet de préserver les performances radioélectriques individuelles des antennes qu'il comporte en les découplant simplement tout en conservant une très bonne compacité. Les mesures des figures 7A à 8B montrent que la désadaptation des antennes 20 et 22 et leur réadaptation au circuit à l'aide des composants électriques 40, 42 et 46 réalisent efficacement ce découplage. On peut également observer et mesurer un meilleur rendement de rayonnement en basses et hautes fréquences.It clearly appears that an antenna device such as that described above makes it possible to preserve the individual radio performance of the antennas it contains by simply decoupling them while maintaining very good compactness. The measurements of Figures 7A to 8B show that the mismatching of the antennas 20 and 22 and their readjustment to the circuit using the electrical components 40, 42 and 46 effectively achieve this decoupling. We can also observe and measure better radiation efficiency at low and high frequencies.

Cette propriété est tout particulièrement appréciable lorsque le dispositif d'antenne est destiné à être intégré dans un boîtier compact tel que celui de la figure 4, par exemple pour être ensuite fixé sur un support tel que celui de la figure 5.This property is particularly appreciable when the antenna device is intended to be integrated into a compact housing such as that of the Figure 4 , for example to then be fixed on a support such as that of the figure 5 .

On notera par ailleurs que l'invention n'est pas limitée au mode de réalisation décrit précédemment.It should also be noted that the invention is not limited to the embodiment described above.

Notamment, les composants électriques 40, 42 et 46 décrits précédemment sont des condensateurs, mais d'autres composants électriques capacitifs, inductifs et/ou résistifs peuvent être utilisés pour réaliser la réadaptation découplante, en particulier d'autres composants électriques capacitifs et/ou inductifs.In particular, the electrical components 40, 42 and 46 described above are capacitors, but other capacitive, inductive electrical components and/or resistive can be used to carry out decoupling rehabilitation, in particular other capacitive and/or inductive electrical components.

Deux antennes radioélectriques ont été décrites dans le dispositif d'antenne 10, mais les principes de la présente invention sont aisément généralisables à un dispositif d'antenne à plus de deux antennes radioélectriques.Two radio antennas have been described in the antenna device 10, but the principles of the present invention are easily generalizable to an antenna device with more than two radio antennas.

Les antennes précitées 20 et 22 sont imprimées en technologie sérigraphique, mais d'autres types d'antennes sont compatibles avec la présente invention, à condition qu'elles soient à ports de raccordement électrique disposés sur un même substrat.The aforementioned antennas 20 and 22 are printed using screen printing technology, but other types of antennas are compatible with the present invention, provided that they have electrical connection ports arranged on the same substrate.

Les antennes précitées 20 et 22 sont en outre imprimées sur une même face de substrat, mais des antennes imprimées sur deux faces différentes d'un même substrat conviennent également.The aforementioned antennas 20 and 22 are also printed on the same face of substrate, but antennas printed on two different faces of the same substrate are also suitable.

Il apparaîtra plus généralement à l'homme de l'art que diverses modifications peuvent être apportées au mode de réalisation décrit ci-dessus, à la lumière de l'enseignement qui vient de lui être divulgué. Dans la présentation détaillée de l'invention qui est faite précédemment, les termes utilisés ne doivent pas être interprétés comme limitant l'invention au modes de réalisation exposé dans la présente description, mais doivent être interprétés pour y inclure tous les équivalents dont la prévision est à la portée de l'homme de l'art en appliquant ses connaissances générales à la mise en oeuvre de l'enseignement qui vient de lui être divulgué.It will appear more generally to those skilled in the art that various modifications can be made to the embodiment described above, in light of the teaching which has just been disclosed to him. In the detailed presentation of the invention which is made previously, the terms used should not be interpreted as limiting the invention to the embodiments set out in the present description, but must be interpreted to include all the equivalents for which the prediction is within the reach of those skilled in the art by applying their general knowledge to the implementation of the teaching which has just been disclosed to them.

Claims (9)

  1. An antenna device (10) comprising:
    - at least two radio antennas (20, 22), each comprising electrical connection ports (20A, 20B, 22A, 22B), said electrical connection ports (20A, 20B, 22A, 22B) are arranged on one and the same substrate (12),
    - a transmitter and/or receiver electronic circuit,
    - electrically conductive means (24, 26, 28) for connecting the ports (20A, 20B, 22A, 22B) of said at least two radio antennas (20, 22) to the transmitter and/or receiver electronic circuit,
    and wherein
    - each radio antenna (20, 22) is shaped to present, in a predetermined electromagnetic frequency band in which it operates, an impedance mismatch with the transmitter and/or receiver electronic circuit such that its input or output reflection coefficient is greater than a predetermined threshold value of -6 dB in logarithmic values in the absence of any impedance matching, this predetermined threshold value corresponding to a tolerance threshold value below which each radio antenna (20, 22) is considered impedance matched with the transmitter and/or receiver electronic circuit for a mobile telephony application, and
    - the electrically conductive connection means (24, 26, 28) comprise capacitive, inductive and/or resistive electrical components (40, 42, 46) for impedance matching with the transmitter and/or receiver electronic circuit, arranged to reduce said reflection coefficient to a value below the predetermined threshold value in said predetermined electromagnetic frequency band, and
    - said at least two radio antennas (20, 22) are printed antennas extending on at least one face of said same substrate (12), in a first radiating portion (16) of this substrate, and
    - said electrically conductive connection means (24, 26, 28) extend in a second portion (18) of said same substrate (12), separated from the first radiating portion (16) by a ground plane (30) extending in a plane intersecting a main plane in which said same substrate (12) extends.
  2. An antenna device (10) comprising:
    - at least two radio antennas (20, 22) each comprising electrical connection ports (20A, 20B, 22A, 22B), said electrical connection ports (20A, 20B, 22A, 22B) are arranged on one and the same substrate (12),
    - a transmitter and/or receiver electronic circuit,
    - electrically conductive means (24, 26, 28) for connecting the ports (20A, 20B, 22A, 22B) of said at least two radio antennas (20, 22) to the transmitter and/or receiver electronic circuit,
    and wherein
    - each radio antenna (20, 22) is shaped to present, in a predetermined electromagnetic frequency band in which it operates, an impedance mismatch with the transmitter and/or receiver electronic circuit such that its input or output reflection coefficient is greater than a predetermined threshold value of between -20 and -30 dB in logarithmic values in the absence of any impedance matching, this predetermined threshold value corresponding to a tolerance threshold value below which each radio antenna (20, 22) is considered as impedance matched with the transmitter and/or receiver electronic circuit for a satellite transmission application, and
    - the electrically conductive connection means (24, 26, 28) comprise capacitive, inductive and/or resistive electrical components (40, 42, 46) for impedance matching with the transmitter and/or receiver electronic circuit, arranged to reduce said reflection coefficient to a value below the predetermined threshold value in said predetermined electromagnetic frequency band, and
    - said at least two radio antennas (20, 22) are printed antennas extending on at least one face of said same substrate (12), in a first radiating portion (16) of this substrate, and
    - said electrically conductive connection means (24, 26, 28) extend in a second portion (18) of said same substrate (12), separated from the first radiating portion (16) by a ground plane (30) extending in a plane intersecting a main plane in which said same substrate (12) extends.
  3. The antenna device (10) according to claim 1, wherein said at least two radio antennas (20, 22) comprise a first radio antenna (20) shaped and sized to operate in the [865; 870] MHz bandwidth and a second radio antenna (22) shaped and sized to operate in the [2.4000; 2.4835] GHz bandwidth.
  4. The antenna device (10) according to any of claims 1 to 3, wherein the capacitive, inductive and/or resistive electrical components (40, 42, 46) for impedance matching comprise capacitors (40, 46) for electrical connection of each radio antenna (20, 22) to the transmitter and/or receiver electronic circuit.
  5. The antenna device (10) according to claim 4, wherein:
    - the electrically conductive connection means (24, 26, 28) further comprise a ground plane portion (24) extending on said same substrate (12), and
    - the capacitive, inductive and/or resistive electrical components (40, 42, 46) for impedance matching include at least one capacitor (42) for electrical connection of at least one of the radio antennas (20) to this ground plane portion (24).
  6. The antenna device (10) according to any of claims 1 to 5, wherein the impedance matching with the transmitter and/or receiver electronic circuit takes place at 50 Ω +/- 10%.
  7. The antenna device (10) according to any of claims 1 to 6, comprising a first low-frequency printed antenna (20) operating in a first band of electromagnetic frequencies and a second high-frequency printed antenna (22) operating in a second band of electromagnetic frequencies all higher than the electromagnetic frequencies of the first band of frequencies.
  8. The antenna device (10) according to claim 7, wherein:
    - the first low-frequency printed antenna (20) is electrically connected to the transmitter and/or receiver electronic circuit by means of a first capacitor (40), referred to as series capacitance, and to the ground plane portion (24) by means of a second capacitor (42), referred to as parallel capacitance, and
    - the second high-frequency printed antenna (22) is electrically connected to the transmitter and/or receiver electronic circuit by means of a third capacitor (46), known as the series capacitor.
  9. The antenna device (10) according to claim 1, wherein the capacitive, inductive and/or resistive electrical components (40, 42, 46) for impedance matching with the transmitter and/or receiver electronic circuit are arranged to reduce said reflection coefficient to said value below the predetermined threshold value by reducing it by at least 1 dB.
EP19189717.2A 2018-08-02 2019-08-02 Antenna device comprising at least two antennas and electrical connection on a same substrate Active EP3605734B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1857245A FR3084779B1 (en) 2018-08-02 2018-08-02 ANTENNA DEVICE COMPRISING AT LEAST TWO ANTENNAS WITH THE SAME ELECTRICAL CONNECTION SUBSTRATE

Publications (2)

Publication Number Publication Date
EP3605734A1 EP3605734A1 (en) 2020-02-05
EP3605734B1 true EP3605734B1 (en) 2024-05-15

Family

ID=65494221

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19189717.2A Active EP3605734B1 (en) 2018-08-02 2019-08-02 Antenna device comprising at least two antennas and electrical connection on a same substrate

Country Status (2)

Country Link
EP (1) EP3605734B1 (en)
FR (1) FR3084779B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629392B (en) * 2021-08-17 2023-10-17 安徽安努奇科技有限公司 Antenna unit, antenna system and terminal equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110128206A1 (en) * 2009-11-30 2011-06-02 Funai Electric Co., Ltd. Multi-Antenna Apparatus and Mobile Device
US20170373393A1 (en) * 2016-06-27 2017-12-28 Intel IP Corporation Frequency reconfigurable antenna decoupling for wireless communication

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5435190A (en) * 1989-04-18 1990-11-16 Novatel Communications Ltd. Duplexing antenna for portable radio transceiver
FR2968845B1 (en) 2010-12-14 2013-01-11 Centre Nat Rech Scient DIVERSE ANTENNA SYSTEM
US9130279B1 (en) * 2013-03-07 2015-09-08 Amazon Technologies, Inc. Multi-feed antenna with independent tuning capability
FR3006505B1 (en) 2013-05-31 2017-02-10 Commissariat Energie Atomique DEVICE FOR DISTURBING ELECTROMAGNETIC WAVE PROPAGATION AND METHOD FOR MANUFACTURING THE SAME
US10312593B2 (en) * 2014-04-16 2019-06-04 Apple Inc. Antennas for near-field and non-near-field communications
JP6557872B2 (en) * 2016-03-17 2019-08-14 パナソニックIpマネジメント株式会社 Wireless module and image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110128206A1 (en) * 2009-11-30 2011-06-02 Funai Electric Co., Ltd. Multi-Antenna Apparatus and Mobile Device
US20170373393A1 (en) * 2016-06-27 2017-12-28 Intel IP Corporation Frequency reconfigurable antenna decoupling for wireless communication

Also Published As

Publication number Publication date
FR3084779B1 (en) 2022-01-21
EP3605734A1 (en) 2020-02-05
FR3084779A1 (en) 2020-02-07

Similar Documents

Publication Publication Date Title
EP0924797B1 (en) Multifrequency microstrip antenna and apparatus using the same
EP0954055B1 (en) Dual-frequency radiocommunication antenna realised according to microstrip technique
CA2254255A1 (en) Microribbon antenna and device including the said antenna
EP1172885A1 (en) Short-circuit microstrip antenna and dual-band transmission device including that antenna
EP2184803B1 (en) Coplanar differential bi-strip delay line, higher-order differential filter and filtering antenna furnished with such a line
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
EP1075043A1 (en) Antenna with stacked resonating structures and multiband radiocommunication device using the same
FR2860927A1 (en) LOW VOLUME INTERNAL ANTENNA
WO2002103844A1 (en) Antenna
EP1589608A1 (en) Compact RF antenna
EP3602689B1 (en) Electromagnetic antenna
EP2178152A1 (en) Electronic switching device for high-frequency signals
EP3605734B1 (en) Antenna device comprising at least two antennas and electrical connection on a same substrate
EP1225655A1 (en) Dual-band planar antenna and apparatus including such an antenna device
WO2008028892A1 (en) Polarization diversity multi-antenna system
EP2404348B1 (en) Methode of realizing an antenna operating in a given frequnecy band from a dual band antenna
EP0127526B1 (en) Magnetostatic wave filter device
EP0015610B1 (en) Microwave image-frequency reflecting filter and microwave receiver comprising such a filter
EP3605730B1 (en) Antenna device with two different and secant planar substrates
FR2965112A1 (en) MULTI-LAYER CIRCUIT BROADBAND SYMETRISER FOR NETWORK ANTENNA
EP3942649B1 (en) Compact directional antenna, device comprising such an antenna
FR2702598A1 (en) Low profile antenna for on-board radio equipment with multiple frequencies.
EP3301751B1 (en) Electronic device with insulated antenna
FR2960347A1 (en) Electromagnetic wave radiating elements array for active electronically scanned antenna of radar, has filtering device i.e. band-pass filter, formed upstream from adaptation circuit in signal emitting direction
FR2906937A1 (en) DECOUPLING NETWORKS OF RADIANT ELEMENTS OF AN ANTENNA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200721

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210618

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602019052171

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0009040000

Ipc: H01Q0001520000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H01Q0009040000

Ipc: H01Q0001520000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 5/314 20150101ALI20231212BHEP

Ipc: H01Q 21/28 20060101ALI20231212BHEP

Ipc: H01Q 9/04 20060101ALI20231212BHEP

Ipc: H01Q 9/42 20060101ALI20231212BHEP

Ipc: H01Q 1/52 20060101AFI20231212BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240131

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019052171

Country of ref document: DE