EP0426972A1 - Flat antenna - Google Patents
Flat antenna Download PDFInfo
- Publication number
- EP0426972A1 EP0426972A1 EP90117356A EP90117356A EP0426972A1 EP 0426972 A1 EP0426972 A1 EP 0426972A1 EP 90117356 A EP90117356 A EP 90117356A EP 90117356 A EP90117356 A EP 90117356A EP 0426972 A1 EP0426972 A1 EP 0426972A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- slot
- antenna according
- supply
- line
- antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 claims abstract description 27
- 230000010287 polarization Effects 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 4
- 230000006978 adaptation Effects 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 abstract description 2
- 230000005284 excitation Effects 0.000 description 16
- 125000006850 spacer group Chemical group 0.000 description 14
- 230000005855 radiation Effects 0.000 description 9
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 239000000523 sample Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/045—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
- H01Q9/0457—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0414—Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
Definitions
- the invention relates to a plane antenna, for example printed or plated, radiating circularly or linearly polarized waves.
- the invention can be applied to the excitation of a waveguide in circular or linear polarization.
- Such an antenna according to the invention makes a compact transition between supply lines of the TEM (Electro-Magnetic Transverse) type such as the triplate, microstrip, coaxial, "bar-line” lines (non-exhaustive list) and the space. free (or a waveguide).
- TEM Electro-Magnetic Transverse
- Known systems allowing a transition between a TEM guided wave and free space are: - systems composed of an exciter and a horn: The size is then significant (length greater than a wavelength), - plated antennas: The size is then reduced (length less than half the wavelength).
- the antenna of the invention is one of the plated antennas, while improving their performance.
- Known devices in this category include: - the double resonators, respectively square, circular, etc., supplied by orthogonal coaxial probes. The radiation is then dissymmetrical by the excitation probes.
- a device requires welding operations, - double or single resonators supplied respectively by a linear slot or a coupling hole. Such a device avoids any welding.
- the excitation does not dissymmetry the diagrams, when the slot or the coupling hole is arranged (e) symmetrically with respect to the resonator (square, circular, etc.).
- - power supply by electromagnetic coupling Such a device does not have a weld. The radiation is degraded by that of the line appearing on the radiating side.
- the known compact systems allowing a transition between a TEM guided wave and a waveguide are: - the resonators arranged respectively at the bottom of a guide.
- the performance, bandwidth and polarization purity, are therefore rarely compatible with telecommunications bands, - the double-resonators supplied by coaxial probes.
- Such a device then requires three different stages: . TEM line excitation stage . powered resonator stage . passive resonator stage.
- the invention aims to improve the characteristics of the device of the known art.
- planar antenna characterized in that it comprises a passive resonator coupled to a supply line by a looped slot.
- the invention has a better bandwidth than the previous devices.
- it is well suited to maintaining a radiation symmetry in the case of a circular polarization or a double linear polarization.
- the performances obtained are: - increased bandwidth, - high purity of polarization in circular or linear polarization, with one or two ports, - a very symmetrical excitation; the supply lines being shielded on the excited waves side.
- Such an antenna can be used in a multisource antenna (antenna array) with frequency reuse in circular or linear polarization. It can also be used in a multisource antenna or direct radiation network, where only one type of polarization of the wave is excited.
- the device of the invention consists, according to Figures 1 and 2, of a passive resonator 1, of any shape, more specifically round or square.
- This resonator 1 is a conductor at the operating frequency, printed or plated, the center of which can be hollowed out.
- This resonator 1 can consist of several resonators which can be superimposed.
- This resonator is coupled to the supply line 4 by an annular slot 3 of circular, square or other shape, the width of the slot being constant or not.
- This slot 3 is formed by the spacing between a conductive plane 8 and a disk, square or other form of conductive material 2.
- Conductors 8 and 2 can be printed or engraved.
- the supply line 4 which can for example be a three-ply line or a microstrip line, can be between two ground planes 8 and 9. It can be devoid of the second ground plane 9, if the radiation on the line side supply is sufficiently low (supply by microstrip line).
- the antenna of the invention has various spacers of dielectric nature 5, 6 and 7.
- These spacers can be homogeneous or non-homogeneous, partial or not, of varying heights depending on the layer considered and based on expected performance.
- These spacers can be made of a material with low dielectric permittivity, especially the spacer 5. If the spacers 6 and 7 are identical in height and radioelectric qualities, the supply line is then of the triple line or "bar-line" type. "depending on the thickness of the conductor 4.
- the spacer materials 6 and 7 are generally of permittivity equal to or higher than that of the spacer 5.
- the supply line is of the shielded microstrip type.
- the permittivity of the spacer 6 can then be higher than that of the spacer 7.
- the thickness of the spacer 6 is then thinner than that of the spacer 7.
- the resonator 1 can be covered with a protective non-conductive material 13.
- the supply line 4 is, in general, radial and supplies the slot 3 by electromagnetic coupling, typically by a quarter wave stub terminated by an open circuit.
- the slot then couples to the resonator 1. All of these couplings makes it possible to obtain a wide passband, typically 20% at a TOS less than 1.2, on air substrates.
- the maximum radiation is then made perpendicular to the conductors 8 and 2, in a direction parallel to that of the arrow I in FIG. 2.
- the ground plane 8 and the conductor 2 therefore mask the radiation from the supply line.
- the radiation has very good symmetry and a low level of cross-polarization.
- the excitation of the annular slot 3 can be done by techniques known to those skilled in the art: - coupling by quarter-wave radial section, - tangential line coupling, - excitation by coaxial probe (welds), - excitation via a short circuit.
- FIG. 3 details the excitation of the annular slot 3 by quarter-radial wave section.
- This excitation can be done in triplate line, microstrip, ...
- the section 10 is a stub terminated by an open circuit, of length close to a quarter of the guided wavelength of the line.
- the open end circuit turns into a short circuit in the plane of the slot, thus allowing the excitation of the slot.
- the section 11 is an impedance transformer section of length close to a quarter of the guided wavelength of the line, allowing adaptation of the device to a desired impedance (50 ohms for example).
- Line 12 is then an access line to the device transporting the exchanged power.
- the excitation plane of the slot can be more or less comprised between the center of symmetry of the device and the slot, as illustrated in FIG. 3.
- Typical dimensions are: - diameter of the resonator 1 less than half the wavelength, - Diameter of the annular slot 3 of the order of half the wavelength. This diameter decreases all the more that the spacer 6 is of high relative permittivity. The circumference of the slit may be greater than the wavelength. Slot 3 is resonant. - The heights of the spacers 5 and 6 are a few fractions of wavelength.
- the antenna of the invention is supplied in two orthogonal positions (spaced 90 ° in the plane of the line parallel to the conductor 8).
- the types of excitation being those known to those skilled in the art, described above.
- the antenna then allows: - generate two waves of linear polarization orthogonal spatially (vertical and horizontal polarization, for example) and independently the two ports being decoupled.
- This system then makes it possible to benefit from the symmetrical radiation of the device for each of the accesses; - generate one or two circularly polarized wave (s) using a quadrature device (coupler, 90 ° hybrid, T-junction plus line length) while maintaining the symmetry of the device.
- FIG. 4 illustrates a front view of the device in the case of a double supply by quarter-wave sections in open circuit.
- the lines 14 and 15 each cross the slit perpendicularly (radially) and, possibly depending on their lengths, take a non-rectilinear shape under the conductor 2, moving away each other to reduce any coupling.
- Lines 14 and 15 are structured as described in Figure 3.
- Figures 5, 6 and 7 show variants of the invention, where it is to generate a circular polarization with a single access.
- an asymmetry related to a plated antenna is capable of creating a circularly polarized wave.
- the antenna of the invention can therefore also be used with the addition of these asymmetries.
- notch notches
- ears ears
- slot in the conductor 2 or 1 or the of them.
- the purpose of these modifications is to dissymmetry the radiating structure.
- FIG. 5 represents such notches arranged diagonally, the width of the notches continuously decreasing as they approach the center.
- This shape of the conductor 2 optimizes the ellipticity rate over a large bandwidth. (Ellipticity rate less than 1 dB on a band of almost 8%).
- FIG. 6 illustrates another way of generating a circular polarization wave with an access: on the diagonal is arranged a thin conductor shorting the slot 3 between the conductors 8 and 2.
- Figure 7 shows another variant.
- the feed line passes under the slot at two perpendicular locations.
- the length of the line between the two crossings is of the order of a quarter of the wavelength.
- the line is closed by a quarter wave section in open circuit, in accordance with the description of FIG. 3.
- the variants described above can be provided with a second access symmetrical with the first with respect to the asymmetry as shown in figure 8.
- the device of the invention is supplied by a supply line 4 in the presence of two conductive planes 8 and 9, it is possible that the waveguide consisting of the two conductors 8 and 9, is excited by the asymmetry provided by the slot to one of the conductors. This phenomenon may possibly degrade potential performance.
- the device can be fitted with traps for this parasitic wave: - on the periphery of the slot 3, between the conductors 8 and 9 can be added discrete or continuous short circuits 16, illustrated by FIG. 9.
- a cavity of any shape shorting the parallel plane waveguide is then formed. Its largest dimension is less than the wavelength and must be minimum, in order to reduce the size of the cavity. This cavity must allow the supply line or lines to pass.
- the cavity can be replaced by resonant metal studs;
- the cavity can be formed by an abrupt reduction in the spacing between the conductors 8 and 9, without necessarily making contact between the two conductors 8 and 9.
- the bringing together of the two conductors constitutes a strong capacity which short-circuits the wave noise at operating frequency;
- the excitation of the parallel plane guide can be controlled by making recesses 17 around the slot 3 in the conductor 8 illustrated in Figure 10. These recesses constitute open circuits for the parallel plan guide. They must not disturb the spread along the supply lines.
- the shape of these recesses can be arbitrary, but has a role on the desired performances.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
L'invention concerne une antenne plane, par exemple imprimée ou plaquée, rayonnant des ondes polarisées circulairement ou linéairement. L'invention peut s'appliquer à l'excitation d'un guide d'onde en polarisation circulaire ou linéaire.The invention relates to a plane antenna, for example printed or plated, radiating circularly or linearly polarized waves. The invention can be applied to the excitation of a waveguide in circular or linear polarization.
Une telle antenne selon l'invention réalise une transition compacte entre des lignes d'alimentation de type TEM (Transverse Electro-Magnétique) telles que les lignes triplaques, microruban, coaxiales, "bar-line" (liste non exhaustive) et l'espace libre (ou un guide d'onde).Such an antenna according to the invention makes a compact transition between supply lines of the TEM (Electro-Magnetic Transverse) type such as the triplate, microstrip, coaxial, "bar-line" lines (non-exhaustive list) and the space. free (or a waveguide).
Les systèmes connus permettant une transition entre une onde guidée TEM et l'espace libre sont :
- les systèmes composés d'un excitateur et d'un cornet :
L'encombrement est alors important (longueur supérieure à une longueur d'onde),
- les antennes plaquées : L'encombrement est alors réduit (longueur inférieure à la demi-longueur d'onde).Known systems allowing a transition between a TEM guided wave and free space are:
- systems composed of an exciter and a horn:
The size is then significant (length greater than a wavelength),
- plated antennas: The size is then reduced (length less than half the wavelength).
L'antenne de l'invention fait partie des antennes plaquées, tout en améliorant leurs performances.The antenna of the invention is one of the plated antennas, while improving their performance.
Les dispositifs connus de cette catégorie comprennent :
- les doubles résonateurs respectivement de forme carrée, circulaire, ..., alimentés par sondes coaxiales orthogonales. Le rayonnement est alors dissymétrisé par les sondes d'excitation. De plus un tel dispositif nécessite des opérations de soudure,
- les doubles ou simples résonateurs alimentés respectivement par une fente linéaire ou un trou de couplage. Un tel dispositif évite toute soudure. De plus, l'excitation ne dissymétrise pas les diagrammes, lorsque la fente ou le trou de couplage est disposé(e) symétriquement par rapport au résonateur (de forme carrée, circulaire, ...). Dans le cas d'une onde polarisée circulairement ou d'une double polarisation linéaire, il est alors nécessaire de dissymétriser l'excitation ou de croiser les lignes d'alimentation (cas d'une fente en croix).
- alimentation par couplage électromagnétique. Un tel dispositif est dépourvu de soudure. Le rayonnement est dégradé par celui de la ligne apparaissant du côté rayonnant.Known devices in this category include:
- the double resonators, respectively square, circular, etc., supplied by orthogonal coaxial probes. The radiation is then dissymmetrical by the excitation probes. In addition, such a device requires welding operations,
- double or single resonators supplied respectively by a linear slot or a coupling hole. Such a device avoids any welding. In addition, the excitation does not dissymmetry the diagrams, when the slot or the coupling hole is arranged (e) symmetrically with respect to the resonator (square, circular, etc.). In the case of a circularly polarized wave or of a linear double polarization, it is then necessary to dissymmetrate the excitation or to cross the supply lines (case of a cross slit).
- power supply by electromagnetic coupling. Such a device does not have a weld. The radiation is degraded by that of the line appearing on the radiating side.
Les systèmes connus compacts permettant une transition entre une onde guidée TEM et un guide d'ondes sont :
- les résonateurs disposés respectivement au fond d'un guide. Les performances, largeur de bande et pureté de polarisation, sont alors rarement compatibles avec des bandes de télécommunications,
- les double-résonateurs alimentés par sondes coaxiales. Un tel dispositif nécessite alors trois étages différents :
. étage d'excitation en ligne TEM
. étage du résonateur alimenté
. étage du résonateur passif.The known compact systems allowing a transition between a TEM guided wave and a waveguide are:
- the resonators arranged respectively at the bottom of a guide. The performance, bandwidth and polarization purity, are therefore rarely compatible with telecommunications bands,
- the double-resonators supplied by coaxial probes. Such a device then requires three different stages:
. TEM line excitation stage
. powered resonator stage
. passive resonator stage.
Dans la demande de brevet n° 87 15359, le dispositif appliqué au cas de l'excitation d'un guide présente deux étages seulement pour des performances équivalentes à celle d'un diplexeur classique et ne nécessite aucune soudure.In patent application No. 87 15359, the device applied to the excitation of a guide has only two stages for performance equivalent to that of a conventional diplexer and does not require any welding.
L'invention a pour but d'améliorer les caractéristiques du dispositif de l'art connu.The invention aims to improve the characteristics of the device of the known art.
Elle présente, à cet effet, une antenne plane caractérisée en ce qu'elle comprend un résonateur passif couplé à une ligne d'alimentation par une fente bouclée.It has, for this purpose, a planar antenna characterized in that it comprises a passive resonator coupled to a supply line by a looped slot.
Avantageusement l'invention présente une meilleure largeur de bande que les dispositifs précédents. De plus, elle est bien adaptée à conserver une symétrie de rayonnement dans le cas d'une polarisation circulaire ou d'une double polarisation linéaire.Advantageously, the invention has a better bandwidth than the previous devices. In addition, it is well suited to maintaining a radiation symmetry in the case of a circular polarization or a double linear polarization.
Les performances obtenues sont :
- une largeur de bande accrue,
- une grande pureté de polarisation en polarisation circulaire ou linéaire, avec un ou deux accès,
- une excitation très symétrique ; les lignes d'alimentation étant blindées du côté ondes excitées.The performances obtained are:
- increased bandwidth,
- high purity of polarization in circular or linear polarization, with one or two ports,
- a very symmetrical excitation; the supply lines being shielded on the excited waves side.
Une telle antenne peut être utilisée dans une antenne multisource (réseau d'antennes) à ré-utilisation de fréquence en polarisation circulaire ou linéaire. Elle peut être également utilisée dans une antenne multisource ou réseau à rayonnement direct, où un seul type de polarisation de l'onde est excité.Such an antenna can be used in a multisource antenna (antenna array) with frequency reuse in circular or linear polarization. It can also be used in a multisource antenna or direct radiation network, where only one type of polarization of the wave is excited.
Les caractéristiques et avantages de l'invention ressortiront de la description qui va suivre, à titre d'exemple non limitatif, en référence aux figures annexées sur lesquelles :
- - les figures 1 et 2 représentent respectivement une vue de face et la figure 2 une vue en coupe longitudinale du dispositif de l'invention suivant le plan II-II de la figure 1 ;
- - la figure 3 représente le détail de la ligne d'alimentation sans contact ;
- - la figure 4 illustre une topologie de lignes d'alimentation orthogonales pouvant générer deux ondes polarisées linéairement indépendantes ou deux ondes polarisées circulairement opposées, lorsque ces lignes sont reliées à un dispositif de mise en quadrature ;
- - la figure 5 représente une variante de l'invention où une onde polarisée circulairement est générée avec un accès seulement ;
- - les figures 6, 7 et 8 représentent deux variantes de la variante représentée à la figure 5 ;
- - les figures 9 et 10 représentent le dispositif de l'invention associé à des pièges pour le guide d'onde plans parallèles ;
- - Figures 1 and 2 respectively represent a front view and Figure 2 a longitudinal sectional view of the device of the invention along the plane II-II of Figure 1;
- - Figure 3 shows the detail of the contactless power line;
- - Figure 4 illustrates a topology of orthogonal supply lines that can generate two linearly independent polarized waves or two circularly opposite polarized waves, when these lines are connected to a quadrature setting device;
- - Figure 5 shows a variant of the invention where a circularly polarized wave is generated with access only;
- - Figures 6, 7 and 8 show two variants of the variant shown in Figure 5;
- - Figures 9 and 10 show the device of the invention associated with traps for the parallel plane waveguide;
Le dispositif de l'invention est constitué, selon les figures 1 et 2, d'un résonateur passif 1, de forme quelconque, plus spécifiquement ronde ou carrée. Ce résonateur 1 est un conducteur à la fréquence de fonctionnement, imprimé ou plaqué, dont le centre peut être évidé. Ce résonateur 1 peut être constitué de plusieurs résonateurs qui peuvent être superposes.The device of the invention consists, according to Figures 1 and 2, of a
Ce résonateur est couplé à la ligne d'alimentation 4 par une fente annulaire 3 de forme circulaire, carrée ou autre, la largeur de la fente étant constante ou non. Cette fente 3 est constituée par l'espacement entre un plan conducteur 8 et un disque, carré ou autre forme de matériau conducteur 2.This resonator is coupled to the
Les conducteurs 8 et 2 peuvent être imprimés ou gravés.
La ligne d'alimentation 4, qui peut être par exemple une ligne triplaque ou une ligne microruban, peut être comprise entre deux plans de masse 8 et 9. Elle peut être dépourvue du deuxième plan de masse 9, si le rayonnement côté ligne d'alimentation est suffisamment faible (alimentation par ligne microruban).The
L'antenne de l'invention possède divers espaceurs de nature diélectrique 5, 6 et 7. Ces espaceurs peuvent être homogènes ou inbomogènes, partiels ou non, de hauteurs variables suivant la couche considérée et en fonction des performances attendues. Ces espaceurs peuvent être constitués d'un matériau à faible permittivité diélectrique, spécialement l'espaceur 5. Si les espaceurs 6 et 7 sont identiques en hauteur et qualités radioélectriques, la ligne d'alimentation est alors de type ligne triplaque ou "bar-line" suivant l'épaisseur du conducteur 4. Les matériaux espaceurs 6 et 7 sont en général de permittivité égale ou plus élevée que celle de l'espaceur 5.The antenna of the invention has various spacers of
Dans le cas ou les espaceurs 6 et 7 sont différents, la ligne d'alimentation est de type microruban blindé. La permittivité de l'espaceur 6 peut être alors plus élevée que celle de l'espaceur 7. L'épaisseur de l'espaceur 6 est alors plus faible que celle de l'espaceur 7.In the case where the
Le résonateur 1 peut être recouvert d'un matériau non conducteur protecteur 13.The
La ligne d'alimentation 4 est, en général, radiale et alimente la fente 3 par couplage électromagnétique, typiquement par un stub quart d'onde terminé par un circuit ouvert. La fente se couple alors au résonateur 1. L'ensemble de ces couplages permet d'obtenir une bande passante large, typiquement 20% à un TOS inférieur à 1.2, sur des substrats à air.The
Le rayonnement maximum se fait alors perpendiculairement aux conducteurs 8 et 2, selon une direction parallèle à celle de la flèche I de la figure 2. Le plan de masse 8 et le conducteur 2 masquent donc le rayonnement de la ligne d'alimentation. Le rayonnement présente une très bonne symétrie et un niveau de polarisation croisée faible.The maximum radiation is then made perpendicular to the
L'excitation de la fente annulaire 3 peut se faire les techniques connues de l'homme de l'art :
- couplage par tronçon quart d'onde radial,
- couplage par ligne tangentielle,
- excitation par sonde coaxiale (soudures),
- excitation via un court-circuit.The excitation of the
- coupling by quarter-wave radial section,
- tangential line coupling,
- excitation by coaxial probe (welds),
- excitation via a short circuit.
La figure 3 détaille l'excitation de la fente annulaire 3 par tronçon quart d'onde radial. Cette excitation peut se faire en ligne triplaque, microruban, ... le tronçon 10 est un stub terminé par un circuit ouvert, de longueur voisine du quart de la longueur d'onde guidée de la ligne. Le circuit ouvert de l'extrémité se transforme en un court-circuit dans le plan de la fente, permettant alors l'excitation de la fente. Le tronçon 11 est un tronçon transformateur d'impédance de longueur voisine du quart de la longueur d'onde guidée de la ligne, permettant une adaptation du dispositif à une impédance voulue (50 ohms par exemple). La ligne 12 est alors une ligne d'accès au dispositif transportant la puissance échangée.FIG. 3 details the excitation of the
Suivant la géométrie du dispositif, le plan d'excitation de la fente peut être plus ou moins compris entre le centre de symétrie du dispositif et la fente, comme illustré sur la figure 3.Depending on the geometry of the device, the excitation plane of the slot can be more or less comprised between the center of symmetry of the device and the slot, as illustrated in FIG. 3.
Les dimensions typiques sont :
- diamètre du résonateur 1 inférieur à la demi-longueur d'onde,
- diamètre de la fente annulaire 3 de l'ordre de la demi-longueur d'onde. Ce diamètre décroit d'autant plus que l'espaceur 6 est de permittivité relative élevée. La circonférence de la fente peut être supérieure à la longueur d'onde. La fente 3 est résonante.
- les hauteurs des espaceurs 5 et 6 sont de quelques fractions de longueur d'onde.Typical dimensions are:
- diameter of the
- Diameter of the
- The heights of the
Dans une première variante de l'invention représentée à la figure 4, l'antenne de l'invention est alimentée en deux positions orthogonales (espacées de 90° dans le plan de la ligne parallèle au conducteur 8). Les types d'excitation étant ceux connus de l'homme de l'art, décrits précédemment. L'antenne permet alors :
- de générer deux ondes de polarisation linéaire orthogonales spatialement (polarisation verticale et horizontale, par exemple) et indépendamment les deux accès étant découplés. Ce système permet alors de bénéficier du rayonnement symétrique du dispositif pour chacun des accès ;
- de générer une ou deux onde(s) polarisée(s) circulairement à l'aide d'un dispositif de mise en quadrature (coupleur, hybride 90°, jonction en Té plus longueur de ligne) tout en conservant la symétrie du dispositif.In a first variant of the invention shown in Figure 4, the antenna of the invention is supplied in two orthogonal positions (spaced 90 ° in the plane of the line parallel to the conductor 8). The types of excitation being those known to those skilled in the art, described above. The antenna then allows:
- generate two waves of linear polarization orthogonal spatially (vertical and horizontal polarization, for example) and independently the two ports being decoupled. This system then makes it possible to benefit from the symmetrical radiation of the device for each of the accesses;
- generate one or two circularly polarized wave (s) using a quadrature device (coupler, 90 ° hybrid, T-junction plus line length) while maintaining the symmetry of the device.
La figure 4 illustre une vue de face du dispositif dans le cas d'une double alimentation par tronçons quart d'onde en circuit ouvert. Les lignes 14 et 15 croisent, chacune, la fente perpendiculairement (radialement) et, éventuellement en fonction de leurs longueurs, prennent sous le conducteur 2 une forme non rectiligne en s'éloignant l'une de l'autre pour réduire tout couplage. Les lignes 14 et 15 sont structurées selon la description de la figure 3.FIG. 4 illustrates a front view of the device in the case of a double supply by quarter-wave sections in open circuit. The
Les figures 5, 6 et 7 représentent des variantes à l'invention, où il s'agit de générer une polarisation circulaire avec un seul accès.Figures 5, 6 and 7 show variants of the invention, where it is to generate a circular polarization with a single access.
Il est connu de l'homme de l'art, qu'une dissymétrie rapportée à une antenne plaquée est susceptible de créer une onde polarisée circulairement.It is known to those skilled in the art, that an asymmetry related to a plated antenna is capable of creating a circularly polarized wave.
L'antenne de l'invention peut donc être aussi utilisé avec adjonction de ces dissymétries. En particulier, on peut utiliser des entailles ("notch") sur le conducteur 2 ou 1 ou les deux, des oreilles ("ear") sur le conducteur 2 ou 1 ou les deux, une fente dans le conducteur 2 ou 1 ou les deux. Ces modifications ont pour but de dissymétriser la structure rayonnante.The antenna of the invention can therefore also be used with the addition of these asymmetries. In particular, it is possible to use notches ("notch") on the
La figure 5 représente de telles entailles disposées diagonalement, la largeur d'entailles diminuant continuellement en se rapprochant du centre. Cette forme du conducteur 2 optimise le taux d'ellipticité sur une grande largeur bande. (Taux d'ellipticité inférieur à 1 dB sur une bande de près de 8%).FIG. 5 represents such notches arranged diagonally, the width of the notches continuously decreasing as they approach the center. This shape of the
La figure 6 illustre une autre façon de générer une onde de polarisation circulaire avec un accès : sur la diagonale est disposé un conducteur fin court-circuitant la fente 3 entre les conducteurs 8 et 2.FIG. 6 illustrates another way of generating a circular polarization wave with an access: on the diagonal is arranged a thin conductor shorting the
La figure 7 représente une autre variante. La ligne d'alimentation passe sous la fente à deux endroits perpendiculaires. La longueur de la ligne entre les deux croisements est de l'ordre du quart de la longueur d'onde. La fermeture de la ligne est obtenue par un tronçon quart d'onde en circuit ouvert, en accord avec la description de la figure 3.Figure 7 shows another variant. The feed line passes under the slot at two perpendicular locations. The length of the line between the two crossings is of the order of a quarter of the wavelength. The line is closed by a quarter wave section in open circuit, in accordance with the description of FIG. 3.
Afin de disposer de deux accès générant une polarisation circulaire d'une façon indépendante, les variantes décrites précédemment (en particulier, celles des figures 5 et 6), peuvent être munies d'un deuxième accès symétrique du premier par rapport à la dissymétrie comme représenté sur la figure 8.In order to have two accesses generating a circular polarization independently, the variants described above (in particular, those of FIGS. 5 and 6), can be provided with a second access symmetrical with the first with respect to the asymmetry as shown in figure 8.
Toutes les descriptions précédentes sont valables, lorsque l'espace libre, au-delà du matériau 13, est remplacé par un guide d'onde cylindrique (de section circulaire, carrées, elliptique, ...), d'axe de propagation confondu avec l'axe perpendiculaire au conducteur 8. L'axe de symétrie du guide d'onde passe par l'axe de symétrie des conducteurs 1 et 2. Les parois métalliques du guide d'onde rentrent en contact avec le dispositif en interceptant les conducteurs 8 ou 9.All the preceding descriptions are valid, when the free space, beyond the
Dans le cas, où le dispositif de l'invention est alimenté par une ligne d'alimentation 4 en présence de deux plans conducteurs 8 et 9, il est possible que le guide d'onde constitué des deux conducteurs 8 et 9, soit excité par la dissymétrie apportée par la fente à l'un des conducteurs. Ce phénomène peut éventuellement dégrader les performances potentielles. Dans ce cas, le dispositif peut être muni de pièges pour cette onde parasite :
- sur la périphérie de la fente 3, entre les conducteurs 8 et 9 peuvent être rapportés des court-circuits discrets 16 ou continus, illustrés par la figure 9. Une cavité de forme quelconque court-circuitant le guide d'onde plans parallèles est alors formée. Sa plus grande dimension est inférieure à la longueur d'onde et doit être minimale, afin de réduire l'encombrement de la cavité. Cette cavité doit laisser passer la ligne ou les lignes d'alimentation.
- la cavité peut être remplacée par des plots métalliques résonants ;
- la cavité peut être constituée par une diminution abrupte de l'espacement entre les conducteurs 8 et 9, sans réaliser nécessairement un contact entre les deux conducteurs 8 et 9. Le rapprochement des deux conducteurs constitue une capacité forte qui court-circuite l'onde parasite à la fréquence de fonctionnement ;
- l'excitation du guide plan parallèle peut être contrôlée en procédant à des évidements 17 autour de la fente 3 dans le conducteur 8 illustré par la figure 10. Ces évidements constituent des circuits ouverts pour le guide plans parallèles. Ils ne doivent pas perturber la propagation le long des lignes d'alimentation. La forme de ces évidements peut être quelconque, mais a un rôle sur les performances désirées.In the case where the device of the invention is supplied by a
- on the periphery of the
- the cavity can be replaced by resonant metal studs;
- The cavity can be formed by an abrupt reduction in the spacing between the
- The excitation of the parallel plane guide can be controlled by making
Ces deux dernières méthodes sont dépourvues de soudure.These last two methods are devoid of soldering.
D'autres variantes au dispositif, sont possibles :
- on peut utiliser deux ou plus de deux résonateurs, afin d'accroître la bande passante ou la directivité,
- on peut utiliser les variantes précédentes dans l'espace libre mais aussi avec un guide d'onde.Other variants of the device are possible:
- two or more than two resonators can be used, in order to increase the bandwidth or directivity,
- the previous variants can be used in free space but also with a waveguide.
Il est bien entendu que la présente invention n'a été décrite et représentée qu'à titre d'exemple préférentiel et que l'on pourra remplacer ses éléments constitutifs par des éléments équivalents sans, pour autant, sortir du cadre de l'invention.It is understood that the present invention has only been described and shown as a preferred example and that its constituent elements can be replaced by equivalent elements without, however, departing from the scope of the invention.
Claims (16)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8911829 | 1989-09-11 | ||
FR8911829A FR2651926B1 (en) | 1989-09-11 | 1989-09-11 | FLAT ANTENNA. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0426972A1 true EP0426972A1 (en) | 1991-05-15 |
EP0426972B1 EP0426972B1 (en) | 1994-04-13 |
Family
ID=9385303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90117356A Expired - Lifetime EP0426972B1 (en) | 1989-09-11 | 1990-09-10 | Flat antenna |
Country Status (6)
Country | Link |
---|---|
US (1) | US5539420A (en) |
EP (1) | EP0426972B1 (en) |
JP (1) | JP2951707B2 (en) |
CA (1) | CA2024992C (en) |
DE (1) | DE69008116T2 (en) |
FR (1) | FR2651926B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2677491A1 (en) * | 1991-06-10 | 1992-12-11 | Alcatel Espace | BIPOLARIZED ELEMENTARY HYPERFREQUENCY ANTENNA. |
EP0871239A1 (en) * | 1997-04-10 | 1998-10-14 | Murata Manufacturing Co., Ltd. | Antenna device and radar module |
FR2833764A1 (en) * | 2001-12-19 | 2003-06-20 | Thomson Licensing Sa | Domestic wire less transmission wide frequency band circular polarization transmitter/receiver having feed line annular slot antenna connected and feed line two points connected. |
EP1309035B1 (en) * | 2001-10-29 | 2008-04-02 | Thomson Licensing | Switched antenna |
US8089409B2 (en) | 2006-11-06 | 2012-01-03 | Murata Manufacturing Co., Ltd. | Patch antenna device and antenna device |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2683952A1 (en) * | 1991-11-14 | 1993-05-21 | Dassault Electronique | IMPROVED MICRO-TAPE ANTENNA DEVICE, PARTICULARLY FOR TELEPHONE TRANSMISSIONS BY SATELLITE. |
JPH08204444A (en) * | 1995-01-31 | 1996-08-09 | Mitsumi Electric Co Ltd | Converter function incorporated type gps antenna |
SE505473C2 (en) * | 1995-05-05 | 1997-09-01 | Saab Ericsson Space Ab | Antenna element for two orthogonal polarizations |
DE19628125A1 (en) * | 1996-07-12 | 1998-01-15 | Daimler Benz Ag | Active receiving antenna |
AUPO425096A0 (en) * | 1996-12-18 | 1997-01-16 | University Of Queensland, The | Radial line slot antenna |
AU719338B2 (en) * | 1996-12-18 | 2000-05-04 | University Of Queensland, The | Radial line slot antenna |
DE19710131A1 (en) * | 1997-03-12 | 1998-09-17 | Rothe Lutz Dr Ing Habil | Cellular sector radiator |
US5818391A (en) * | 1997-03-13 | 1998-10-06 | Southern Methodist University | Microstrip array antenna |
US5905465A (en) * | 1997-04-23 | 1999-05-18 | Ball Aerospace & Technologies Corp. | Antenna system |
DE19831877A1 (en) | 1998-07-17 | 2000-01-20 | Daimler Chrysler Ag | Group antenna |
US6329958B1 (en) * | 1998-09-11 | 2001-12-11 | Tdk Rf Solutions, Inc. | Antenna formed within a conductive surface |
US6211824B1 (en) * | 1999-05-06 | 2001-04-03 | Raytheon Company | Microstrip patch antenna |
SE517218C2 (en) * | 1999-09-03 | 2002-05-07 | Ericsson Telefon Ab L M | A low profile antenna structure and a device comprising wireless communication means, a wireless mobile terminal, a computer card suitable for insertion into an electronic device and a local network system comprising a base station and a plurality of terminals in wireless communication with the base station comprising such a low profile antenna structure |
WO2001052353A2 (en) * | 2000-01-12 | 2001-07-19 | Emag Technologies L.L.C. | Low cost compact omni-directional printed antenna |
US6664932B2 (en) | 2000-01-12 | 2003-12-16 | Emag Technologies, Inc. | Multifunction antenna for wireless and telematic applications |
WO2002007261A1 (en) * | 2000-07-13 | 2002-01-24 | Thomson Licensing S.A. | Multiband planar antenna |
KR100767543B1 (en) * | 2000-08-16 | 2007-10-17 | 레이던 컴퍼니 | Switched beam antenna architecture |
JP2004511166A (en) * | 2000-10-04 | 2004-04-08 | モトローラ・インコーポレイテッド | Folded inverted F antenna for GPS applications |
DE10103965C2 (en) * | 2000-12-15 | 2003-04-24 | Plath Naut Elektron Tech | DF |
DE10063437A1 (en) * | 2000-12-20 | 2002-07-11 | Bosch Gmbh Robert | antenna array |
FR2826512B1 (en) * | 2001-06-22 | 2003-08-29 | Thomson Licensing Sa | COMPACT ANTENNA WITH ANNULAR SLOT |
FR2828015A1 (en) * | 2001-07-27 | 2003-01-31 | D Phy Espace Dev De Produits H | Antenna feed circuit used in connection with a flat antenna incorporates a dielectric plate with a micro-tape and an earth surface with a radiant slot |
FR2834837A1 (en) * | 2002-01-14 | 2003-07-18 | Thomson Licensing Sa | DEVICE FOR RECEIVING AND / OR TRANSMITTING ELECTROMAGNETIC WAVES WITH RADIATION DIVERSITY |
GB0204748D0 (en) * | 2002-02-28 | 2002-04-17 | Nokia Corp | Improved antenna |
US6768469B2 (en) * | 2002-05-13 | 2004-07-27 | Honeywell International Inc. | Methods and apparatus for radar signal reception |
US6778144B2 (en) * | 2002-07-02 | 2004-08-17 | Raytheon Company | Antenna |
US6989791B2 (en) * | 2002-07-19 | 2006-01-24 | The Boeing Company | Antenna-integrated printed wiring board assembly for a phased array antenna system |
US6943731B2 (en) * | 2003-03-31 | 2005-09-13 | Harris Corporation | Arangements of microstrip antennas having dielectric substrates including meta-materials |
JP4507507B2 (en) * | 2003-04-30 | 2010-07-21 | 日星電気株式会社 | Multi-frequency antenna |
US7053847B2 (en) * | 2004-08-11 | 2006-05-30 | Northrop Grumman Corporation | Millimeter wave phased array systems with ring slot radiator element |
US7126549B2 (en) * | 2004-12-29 | 2006-10-24 | Agc Automotive Americas R&D, Inc. | Slot coupling patch antenna |
CN1815806B (en) * | 2005-01-31 | 2012-05-09 | 东南大学 | Medium substrate radiation reinforcing-chamber type antenna |
US7443354B2 (en) * | 2005-08-09 | 2008-10-28 | The Boeing Company | Compliant, internally cooled antenna apparatus and method |
US7623073B2 (en) * | 2005-11-14 | 2009-11-24 | Anritsu Corporation | Linearly polarized antenna and radar apparatus using the same |
JP4296282B2 (en) * | 2005-11-24 | 2009-07-15 | 国立大学法人埼玉大学 | Multi-frequency microstrip antenna |
JP4769629B2 (en) * | 2006-05-12 | 2011-09-07 | 古野電気株式会社 | Antenna device and receiving device |
CN101401262B (en) | 2006-05-25 | 2012-10-10 | 松下电器产业株式会社 | Variable slot antenna and method for driving same |
WO2007138960A1 (en) | 2006-05-25 | 2007-12-06 | Panasonic Corporation | Variable slot antenna and method for driving same |
KR100917847B1 (en) * | 2006-12-05 | 2009-09-18 | 한국전자통신연구원 | Omni-directional planar antenna |
US7986279B2 (en) * | 2007-02-14 | 2011-07-26 | Northrop Grumman Systems Corporation | Ring-slot radiator for broad-band operation |
JP4691054B2 (en) * | 2007-03-06 | 2011-06-01 | 株式会社エヌ・ティ・ティ・ドコモ | Microstrip antenna |
US8503941B2 (en) | 2008-02-21 | 2013-08-06 | The Boeing Company | System and method for optimized unmanned vehicle communication using telemetry |
CN101924272B (en) * | 2009-06-16 | 2013-06-05 | 鸿富锦精密工业(深圳)有限公司 | Slot antenna and slot antenna array |
US8542153B2 (en) * | 2009-11-16 | 2013-09-24 | Skyware Antennas, Inc. | Slot halo antenna device |
US8797227B2 (en) | 2009-11-16 | 2014-08-05 | Skywave Antennas, Inc. | Slot halo antenna with tuning stubs |
US8766854B2 (en) * | 2010-01-07 | 2014-07-01 | National Taiwan University | Bottom feed cavity aperture antenna |
JP5048092B2 (en) * | 2010-02-16 | 2012-10-17 | 東芝テック株式会社 | Antenna and portable device |
CN201699134U (en) * | 2010-03-12 | 2011-01-05 | 鸿富锦精密工业(深圳)有限公司 | Antenna |
US8754819B2 (en) * | 2010-03-12 | 2014-06-17 | Agc Automotive Americas R&D, Inc. | Antenna system including a circularly polarized antenna |
JP2011217190A (en) * | 2010-03-31 | 2011-10-27 | Sansei Denki Kk | Directional antenna |
US8648758B2 (en) * | 2010-05-07 | 2014-02-11 | Raytheon Company | Wideband cavity-backed slot antenna |
FR2963168B1 (en) * | 2010-07-26 | 2012-08-24 | Bouygues Telecom Sa | PRINTED ANTENNA WITH OPTICALLY TRANSPARENT DIRECT RADIATION OF PREFERENCE |
US8542151B2 (en) | 2010-10-21 | 2013-09-24 | Mediatek Inc. | Antenna module and antenna unit thereof |
TWI458177B (en) * | 2010-11-19 | 2014-10-21 | Univ Tatung | Circularly polarized antenna having two linked slot rings |
US9252499B2 (en) | 2010-12-23 | 2016-02-02 | Mediatek Inc. | Antenna unit |
FR2971631A1 (en) * | 2011-02-11 | 2012-08-17 | France Telecom | ANTENNA BASED ON ANNULAR SLOT GUIDES |
US8773323B1 (en) * | 2011-03-18 | 2014-07-08 | The Boeing Company | Multi-band antenna element with integral faraday cage for phased arrays |
CN102832444A (en) * | 2011-06-17 | 2012-12-19 | 云南银河之星科技有限公司 | Planar four-ring circularly polarized antenna |
US8749446B2 (en) * | 2011-07-29 | 2014-06-10 | The Boeing Company | Wide-band linked-ring antenna element for phased arrays |
WO2013106208A1 (en) * | 2012-01-12 | 2013-07-18 | Skywave Antennas, Inc. | Slot halo antenna with tuning stubs |
US9356353B1 (en) * | 2012-05-21 | 2016-05-31 | The Boeing Company | Cog ring antenna for phased array applications |
US8878735B2 (en) * | 2012-06-25 | 2014-11-04 | Gn Resound A/S | Antenna system for a wearable computing device |
US20130343586A1 (en) * | 2012-06-25 | 2013-12-26 | Gn Resound A/S | Hearing aid having a slot antenna |
US20150303576A1 (en) * | 2012-11-21 | 2015-10-22 | Eseo | Miniaturized Patch Antenna |
US20140225800A1 (en) * | 2013-02-12 | 2014-08-14 | Qualcomm Incorporated | Apparatus and methods to improve antenna isolation |
US10079428B2 (en) * | 2013-03-11 | 2018-09-18 | Pulse Finland Oy | Coupled antenna structure and methods |
CN103794846B (en) * | 2014-01-17 | 2016-07-06 | 复旦大学 | A kind of double frequency round polarized Beidou antenna |
EP2924799B1 (en) | 2014-03-28 | 2018-08-22 | Thomson Licensing | Filtering circuit with slot line resonators |
JP6305360B2 (en) * | 2015-02-27 | 2018-04-04 | 三菱電機株式会社 | Patch antenna and array antenna |
GB201513565D0 (en) * | 2015-07-30 | 2015-09-16 | Drayson Technologies Europ Ltd | Antenna |
US9912050B2 (en) | 2015-08-14 | 2018-03-06 | The Boeing Company | Ring antenna array element with mode suppression structure |
CN110400779B (en) * | 2018-04-25 | 2022-01-11 | 华为技术有限公司 | Packaging structure |
CN110504526B (en) * | 2018-05-18 | 2022-03-04 | 华为技术有限公司 | Antenna device and terminal |
EP3910735B1 (en) * | 2020-05-11 | 2024-03-06 | Nokia Solutions and Networks Oy | An antenna arrangement |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4208660A (en) * | 1977-11-11 | 1980-06-17 | Raytheon Company | Radio frequency ring-shaped slot antenna |
EP0207029A2 (en) * | 1985-06-25 | 1986-12-30 | Communications Satellite Corporation | Electromagnetically coupled microstrip antennas having feeding patches capacitively coupled to feedlines |
US4710775A (en) * | 1985-09-30 | 1987-12-01 | The Boeing Company | Parasitically coupled, complementary slot-dipole antenna element |
US4719470A (en) * | 1985-05-13 | 1988-01-12 | Ball Corporation | Broadband printed circuit antenna with direct feed |
FR2603744A1 (en) * | 1986-09-05 | 1988-03-11 | Matsushita Electric Works Ltd | FLAT ANTENNA |
EP0271458A2 (en) * | 1986-11-13 | 1988-06-15 | Communications Satellite Corporation | Electromagnetically coupled printed-circuit antennas having patches or slots capacitively coupled to feedlines |
JPS6439102A (en) * | 1987-08-03 | 1989-02-09 | Matsushita Electric Works Ltd | Plane antenna |
EP0315141A1 (en) * | 1987-11-05 | 1989-05-10 | Alcatel Espace | Excitation arrangement of a circular polarised wave with a patch antenna in a waveguide |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3665480A (en) * | 1969-01-23 | 1972-05-23 | Raytheon Co | Annular slot antenna with stripline feed |
JPS56160103A (en) * | 1980-05-14 | 1981-12-09 | Toshiba Corp | Microstrip-type antenna |
US4443802A (en) * | 1981-04-22 | 1984-04-17 | University Of Illinois Foundation | Stripline fed hybrid slot antenna |
FR2505097A1 (en) * | 1981-05-04 | 1982-11-05 | Labo Electronique Physique | RADIATION ELEMENT OR CIRCULAR POLARIZATION HYPERFREQUENCY SIGNAL RECEIVER AND MICROWAVE PLANE ANTENNA COMPRISING A NETWORK OF SUCH ELEMENTS |
JPS6215902A (en) * | 1985-07-15 | 1987-01-24 | Yagi Antenna Co Ltd | Primary radiator and converter provided therewith |
CA1266325A (en) * | 1985-07-23 | 1990-02-27 | Fumihiro Ito | Microwave antenna |
EP0295003A3 (en) * | 1987-06-09 | 1990-08-29 | THORN EMI plc | Antenna |
-
1989
- 1989-09-11 FR FR8911829A patent/FR2651926B1/en not_active Expired - Fee Related
-
1990
- 1990-09-10 JP JP2239777A patent/JP2951707B2/en not_active Expired - Lifetime
- 1990-09-10 CA CA002024992A patent/CA2024992C/en not_active Expired - Lifetime
- 1990-09-10 EP EP90117356A patent/EP0426972B1/en not_active Expired - Lifetime
- 1990-09-10 DE DE69008116T patent/DE69008116T2/en not_active Expired - Lifetime
-
1994
- 1994-06-30 US US08/268,735 patent/US5539420A/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4208660A (en) * | 1977-11-11 | 1980-06-17 | Raytheon Company | Radio frequency ring-shaped slot antenna |
US4719470A (en) * | 1985-05-13 | 1988-01-12 | Ball Corporation | Broadband printed circuit antenna with direct feed |
EP0207029A2 (en) * | 1985-06-25 | 1986-12-30 | Communications Satellite Corporation | Electromagnetically coupled microstrip antennas having feeding patches capacitively coupled to feedlines |
US4710775A (en) * | 1985-09-30 | 1987-12-01 | The Boeing Company | Parasitically coupled, complementary slot-dipole antenna element |
FR2603744A1 (en) * | 1986-09-05 | 1988-03-11 | Matsushita Electric Works Ltd | FLAT ANTENNA |
EP0271458A2 (en) * | 1986-11-13 | 1988-06-15 | Communications Satellite Corporation | Electromagnetically coupled printed-circuit antennas having patches or slots capacitively coupled to feedlines |
JPS6439102A (en) * | 1987-08-03 | 1989-02-09 | Matsushita Electric Works Ltd | Plane antenna |
EP0315141A1 (en) * | 1987-11-05 | 1989-05-10 | Alcatel Espace | Excitation arrangement of a circular polarised wave with a patch antenna in a waveguide |
Non-Patent Citations (2)
Title |
---|
L'ONDE ELECTRIQUE vol. 69, no. 2, mars/avril 1989, pages 15-21, Paris, FR; A. PAPIERNIK: "Les activités du Groupement de Recherche microantennes du CNRS" * |
PATENT ABSTRACTS OF JAPAN vol. 013, no. 232 (E - 765)<3580> 29 May 1989 (1989-05-29) * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2677491A1 (en) * | 1991-06-10 | 1992-12-11 | Alcatel Espace | BIPOLARIZED ELEMENTARY HYPERFREQUENCY ANTENNA. |
EP0518271A1 (en) * | 1991-06-10 | 1992-12-16 | Alcatel Espace | Elemental microwave antenna with two polarisations |
US5233364A (en) * | 1991-06-10 | 1993-08-03 | Alcatel Espace | Dual-polarized microwave antenna element |
EP0871239A1 (en) * | 1997-04-10 | 1998-10-14 | Murata Manufacturing Co., Ltd. | Antenna device and radar module |
US6052087A (en) * | 1997-04-10 | 2000-04-18 | Murata Manufacturing Co., Ltd. | Antenna device and radar module |
EP1309035B1 (en) * | 2001-10-29 | 2008-04-02 | Thomson Licensing | Switched antenna |
FR2833764A1 (en) * | 2001-12-19 | 2003-06-20 | Thomson Licensing Sa | Domestic wire less transmission wide frequency band circular polarization transmitter/receiver having feed line annular slot antenna connected and feed line two points connected. |
WO2003052872A1 (en) * | 2001-12-19 | 2003-06-26 | Thomson Licensing S.A. | Circular polarization antenna |
US7227507B2 (en) | 2001-12-19 | 2007-06-05 | Thomson Licensing | Circular polarization antenna |
US8089409B2 (en) | 2006-11-06 | 2012-01-03 | Murata Manufacturing Co., Ltd. | Patch antenna device and antenna device |
Also Published As
Publication number | Publication date |
---|---|
JPH03107203A (en) | 1991-05-07 |
FR2651926A1 (en) | 1991-03-15 |
DE69008116D1 (en) | 1994-05-19 |
FR2651926B1 (en) | 1991-12-13 |
DE69008116T2 (en) | 1994-07-21 |
JP2951707B2 (en) | 1999-09-20 |
EP0426972B1 (en) | 1994-04-13 |
CA2024992C (en) | 1994-07-26 |
CA2024992A1 (en) | 1991-03-12 |
US5539420A (en) | 1996-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0426972B1 (en) | Flat antenna | |
EP0403910B1 (en) | Radiating, diplexing element | |
CA1290449C (en) | Device for exciting a circularly polarized wage guide by means of a planar antenna | |
EP0108463B1 (en) | Radiating element for cross-polarized microwave signals and planar antenna consisting of an array of such elements | |
EP0961344B1 (en) | Device for radiocommunication and a slot loop antenna | |
EP1407512B1 (en) | Antenna | |
EP0825673A1 (en) | Plane printed antenna with interposed short-circuited elements | |
FR2797352A1 (en) | ANTENNA WITH A STACK OF RESONANT STRUCTURES AND MULTI-FREQUENCY RADIO COMMUNICATION DEVICE INCLUDING THIS ANTENNA | |
EP0045682B1 (en) | Antenna feed for a transmitting-receiving antenna | |
CA2267536A1 (en) | Radiocommunication device and dual frequency antenna produced using microstrip technology | |
EP2710676B1 (en) | Radiating element for an active array antenna consisting of elementary tiles | |
FR2641904A1 (en) | ANTENNA DEVICE FOR CIRCULAR POLARIZATION | |
EP3602689B1 (en) | Electromagnetic antenna | |
FR2518827A1 (en) | DEVICE FOR SUPPLYING A RADIANT DIPOLE | |
FR2677814A1 (en) | FLAT MICROWAVE ANTENNA WITH TWO ORTHOGONAL POLARIZATIONS WITH A COUPLE OF RADIANT ORTHOGONAL SLOTS. | |
CA2006291C (en) | Bifrequency radiating device | |
EP0023873B1 (en) | Passive power limiter using semiconductors realised in a striplike configuration, and microwave circuit using such a limiter | |
EP1949496B1 (en) | Flat antenna system with a direct waveguide access | |
EP3692598B1 (en) | Antenna with partially saturated dispersive ferromagnetic substrate | |
FR2484154A1 (en) | HYPERFREQUENCY COUPLER WITH WAVEGUIDE | |
WO2004006386A1 (en) | Coplanar polarization dual-band radiating device | |
FR2729011A1 (en) | Dual polarisation antenna network | |
FR2903232A1 (en) | SYMMETRIC ANTENNA IN MICRO-RIBBON TECHNOLOGY. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19911104 |
|
17Q | First examination report despatched |
Effective date: 19921027 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940418 |
|
REF | Corresponds to: |
Ref document number: 69008116 Country of ref document: DE Date of ref document: 19940519 |
|
ITF | It: translation for a ep patent filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 90117356.7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20090910 Year of fee payment: 20 Ref country code: GB Payment date: 20090909 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090903 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20091012 Year of fee payment: 20 Ref country code: IT Payment date: 20090915 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20100909 |
|
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100910 |