EP0929738A1 - Wabenkörper mit wärmeisolierung, vorzugsweise für einen abgaskatalysator - Google Patents

Wabenkörper mit wärmeisolierung, vorzugsweise für einen abgaskatalysator

Info

Publication number
EP0929738A1
EP0929738A1 EP97910300A EP97910300A EP0929738A1 EP 0929738 A1 EP0929738 A1 EP 0929738A1 EP 97910300 A EP97910300 A EP 97910300A EP 97910300 A EP97910300 A EP 97910300A EP 0929738 A1 EP0929738 A1 EP 0929738A1
Authority
EP
European Patent Office
Prior art keywords
insulating sheet
honeycomb body
body according
thermal insulation
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97910300A
Other languages
English (en)
French (fr)
Other versions
EP0929738B1 (de
Inventor
Rolf BRÜCK
Peter Hirth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP0929738A1 publication Critical patent/EP0929738A1/de
Application granted granted Critical
Publication of EP0929738B1 publication Critical patent/EP0929738B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • B01J35/56
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • F01N3/2821Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates the support being provided with means to enhance the mixing process inside the converter, e.g. sheets, plates or foils with protrusions or projections to create turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2864Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets comprising two or more insulation layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • F01N2330/04Methods of manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/32Honeycomb supports characterised by their structural details characterised by the shape, form or number of corrugations of plates, sheets or foils
    • F01N2330/321Honeycomb supports characterised by their structural details characterised by the shape, form or number of corrugations of plates, sheets or foils with two or more different kinds of corrugations in the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1234Honeycomb, or with grain orientation or elongated elements in defined angular relationship in respective components [e.g., parallel, inter- secting, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1241Nonplanar uniform thickness or nonlinear uniform diameter [e.g., L-shape]
    • Y10T428/12417Intersecting corrugating or dimples not in a single line [e.g., waffle form, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • Y10T428/24165Hexagonally shaped cavities

Definitions

  • the present invention relates to a honeycomb body with a large number of honeycombs, preferably for use as a catalyst carrier body in motor vehicles.
  • a coating of catalytic material applied to the walls of the honeycombs enables exhaust gases from internal combustion engines to be converted.
  • WO 90/08249 and WO 96/09892 describe honeycomb bodies with macrostructures that determine the honeycomb shape.
  • the honeycomb bodies additionally have microstructures which influence the flow of exhaust gas flowing through the honeycomb.
  • honeycomb walls are made of metal, for example.
  • One way of manufacturing honeycomb bodies with such honeycomb walls involves soldering. Suitable types of soldering are known for example from WO 89/07488.
  • thermal radiation protection consists of one or more sheet metal layers, which are arranged outside a casing tube. The same sheet metal layers are used, which also form the honeycomb structure within the casing tube.
  • WO 96/07021 describes a catalytic reactor for converting exhaust gases, which has thermal insulation both inside and outside a jacket. An air gap and an insulating mat are mentioned as examples of such insulation.
  • the insulating effect is achieved by air or by a solid insulating material.
  • Quiet air has a lower thermal conductivity than known solid insulation materials, but it only minimally impedes the heat transfer by radiation.
  • several sheet metal layers as have been proposed in WO 96/07021, considerably reduce the heat radiation.
  • the sheet metal layers form thermal bridges due to their contact points, with the result that considerable heat transport can also occur due to heat conduction.
  • the present invention has for its object to develop a honeycomb body so that it has little heat loss to the environment.
  • the honeycomb body according to the invention is characterized in that it has thermal insulation with a plurality of stacked and / or wound insulating sheet layers, which are supported among one another by microstructures formed in the insulating sheet layers, so that there are spaces between the insulating sheet layers.
  • the micro structures have a height of approximately 15 ⁇ m to 250 ⁇ m. They are therefore significantly lower than the structures known from EP 0 229 352 for the formation of exhaust gas flowable honeycomb channels. Microstructures of this height are known from WO 96/09892, in which they have been proposed for the mixing of laminar-flowing exhaust gas in the honeycomb-like channels. In a honeycomb body according to the invention, the properties of such microstructures are used in a completely different way.
  • the greater stack density has another advantage.
  • the contact area between two insulating sheet layers can be significantly reduced. This means that heat transport due to heat conduction can also be significantly reduced.
  • the insulating sheet metal layers surround the honeycombs as closed as possible.
  • honeycomb bodies for use as exhaust gas catalyst carrier bodies openings for the entry or exit of exhaust gas must of course be kept clear.
  • the type of thermal insulation according to the invention is also used in a special embodiment to protect heat-sensitive objects in the vicinity of a honeycomb body.
  • the thermal insulation only partially surrounds the honeycombs, so that a thermal insulation effect is achieved in the solid angle ranges seen from the honeycombs.
  • the insulating sheet layers of the thermal insulation are at least partially connected to one another by joining technology, preferably soldered.
  • the honeycombs have metallic honeycomb walls.
  • soldered connections of the honeycombs to one another and of honeycombs with insulating sheet metal layers can be produced simultaneously in the same soldering process.
  • honeycomb walls are used for the honeycomb walls, or different materials are combined.
  • a special embodiment is achieved by attaching insulating sheet metal layers to a green ceramic with a large number of honeycombs and then firing the ceramic. In a variant of this, the insulating sheet layers hold onto the green ceramic due to their microstructures, since these are pressed into the green ceramic.
  • a honeycomb body according to the invention which is suitably equipped with catalytically active material, is suitable for converting exhaust gases from an internal combustion engine, in particular an Otto engine.
  • the exhaust gas temperature of such engines is typically above 800 ° C.
  • a honeycomb body for this purpose must withstand corrosion at these temperatures for thousands of hours of operation.
  • the same requirements must not be placed on the thermal insulation.
  • the thermal insulation is not exposed to as high temperatures as the honeycomb walls. With a good insulating effect, at most neighboring insulating sheet metal layers reach similarly to the honeycomb walls high temperatures.
  • the heat insulation also does not come into contact with corrosive gases, in particular in an embodiment in which the heat insulation is sealed against any gas entry into the interspaces.
  • a honeycomb body has a tubular casing, in the inner tube of which honeycombs lie.
  • a tubular casing in the inner tube of which honeycombs lie.
  • Such a configuration is advantageous for reasons of mechanical stability, but also for reasons of manufacturing technology.
  • the thermal insulation described above is also inside the pipe.
  • such thermal insulation lies outside the jacket tube.
  • a particularly thick outermost layer of insulating sheet metal or a second, outer jacket tube offers protection against mechanical damage.
  • connections between thermal insulation and the jacket pipes are advantageously at least partially soldered.
  • the insulating sheet layers of the thermal insulation are parts of a continuous sheet metal strip that is spirally wound.
  • the thermal insulation has exactly two metal strips, the microstructures being formed in at least one. The two metal strips are intertwined in a spiral winding.
  • a winding can be produced, for example, by first placing the two metal strips on top of one another, then fixing them to one another at one end and / or to another part of the honeycomb body, for example to a tubular casing, and then winding them.
  • Other variants use more than two metal strips. Spiral windings are advantageous, among other things, because they are particularly easy to manufacture.
  • ring-shaped, self-contained insulating sheet layers can also be used.
  • the honeycombs are at least partially heatable. Due to the thermal insulation, the heatable area can be quickly brought to a desired operating temperature without significant heat loss. The thermal insulation helps to conserve the energy source, e.g. a battery of a motor vehicle.
  • the thermal insulation has end faces on which edges of a plurality of the insulating sheet layers lie. If air flows onto one end face of such a honeycomb body, for example, then an undesirable cooling effect can occur due to an air flow through the intermediate spaces.
  • the insulating sheet layers are therefore at least partially connected to one another in the vicinity of the end face or the end faces, so that an air flow, or another gas flow, between the intermediate spaces and the surroundings of the heat insulation is blocked or blocked.
  • the insulating sheet layers are soldered to one another in the vicinity of the end face, they are provided with a filling compound on the end face or an additional end piece is attached to the end face.
  • the efficiency of thermal insulation is increased in that the spaces between the layers of insulating sheet are all or partially air-sealed and evacuated. Except for the decrease in total thermal conductivity This prevents the penetration of corrosive gases into the thermal insulation.
  • the heat radiation within the heat insulation and / or the heat radiation from the honeycomb body to the outside is further reduced in that at least some of the insulation sheet layers of the heat insulation, in particular at least one outer insulation sheet layer, are provided with a surface that has an emissivity less than 0.1 owns.
  • these insulating sheet layers consist of a material with the desired emission properties, in another embodiment there is a material layer on the surface which is made of a different material than the majority of the insulating sheet layer.
  • the layer can, for example, have been vapor-deposited.
  • honeycomb bodies according to the invention are explained on the basis of the drawing. However, the invention is not limited to the exemplary embodiments listed there.
  • the individual figures in the drawing show:
  • FIG. 1 shows a cylindrical honeycomb body with a wound thermal insulation in a perspective view
  • FIG. 2 shows a section through a honeycomb body with two jacket tubes
  • Figure 3 shows a honeycomb body with thermal insulation from a
  • FIG. 4 shows a honeycomb body with thermal insulation made from two metal strips
  • FIG. 5 shows a piece of an insulating sheet layer with a microstructure and with an anti-emission layer
  • FIG. 6 shows an insulating sheet layer with parallel microstructures that rise on both sides of the insulating sheet layer
  • FIG. 7 an insulating sheet layer with crossed microstructures
  • FIG. 8 an insulating sheet layer with microstructures parallel to an end edge
  • FIG. 9 shows a partial section through a honeycomb body with thermal insulation, which consists of layers of insulating sheet metal with and without microstructures, and
  • FIG. 10 shows a partial section through a honeycomb body with thermal insulation which has microstructured insulating sheet metal layers on two sides.
  • FIG. 1 shows a preferred embodiment 1 of a honeycomb body according to the invention.
  • the core consists of a plurality of honeycombs 2, which are formed by wound, smooth and corrugated sheet layers.
  • the honeycombs form the channels 10 connecting the end faces.
  • the core is enclosed by a cylindrical jacket tube 6, which in turn is enclosed by the heat insulation 43.
  • the thermal insulation 43 has insulating sheet layers, one 4 of which is smooth and another 34 is microstructured 5 on two sides.
  • FIG. 1 shows a snapshot at a point in time just before the two insulating sheet layers 4 and 34 are completely wrapped around the core.
  • Figure 2 shows a honeycomb body with a core as in Figure 1, which is surrounded by an inner jacket tube 6.
  • the heat insulation 3 adjoining the inner jacket tube 6 on the outside has a considerably greater thickness in relation to the diameter of the core than the embodiment shown in FIG.
  • the heat insulation 3 is surrounded by a second, outer jacket tube 6.
  • the insulating sheet layers 24 are parts of a continuous spirally wound sheet metal strip 11 with microstructures 5, which rise on the inner side of the sheet metal strip 11.
  • the sheet metal strip 11 is connected at its start 8 to the casing tube 6. At its end 9 it is attached to another section of itself.
  • FIG. 4 Another possible structure of thermal insulation is shown in FIG. 4.
  • the structure is similar to that in FIG. 1, but here the microstructures 5 of the sheet metal strip 11 run in a direction approximately parallel to the channels, while in the example of FIG. 1 they run approximately transversely to them.
  • the heat insulation 33 consists of two metal strips 11; 12, one of which is 12 smooth, i.e. has no microstructures 5.
  • the insulating sheet layer 14 has approximately the same thickness on its microstructure 5 as otherwise. Such a microstructure is created, for example, by embossing or bending the insulating sheet layer 14. Another possibility for producing microstructures is to apply additional material to an insulating sheet layer.
  • the insulating sheet layer 14 is constructed in layers.
  • the thinner anti-emission layer 15 forms a continuous surface on one side of the insulating sheet layer 14 the base material 16 worn.
  • An anti-emission layer 15 can be applied galvanically to the base material 16, for example.
  • FIG. 6 shows an insulating sheet metal layer 34, in which the microstructures 5 have a family of parallel ridges running in a line-like manner. The ridges rise alternately on both sides of the insulating sheet layer 34. The microstructures 5 abut perpendicularly on the front edge 10 of the insulating sheet layer 34.
  • thermal insulation 3 By combining such an insulating sheet layer 34 with insulating sheet layers of the same type, a particularly advantageous construction of thermal insulation 3 can be achieved.
  • the layers of insulating sheet metal are stacked one above the other with ridges that run in mutually crossed directions.
  • the crossed ridges touch each other only at approximately point-like contact points at twice the distance between the parallel microstructures 5.
  • the contact points of an insulating sheet layer 34 to a lower and an upper stack neighbor lie at a distance from the parallel microstructures 5.
  • For the distances between parallel microstructures values between 1 mm and 20 mm are favorable, with values between 5 mm and 15 mm being preferred.
  • Heat that is conducted in a general direction perpendicular to the insulating sheet layers 34 therefore undergoes considerable detours. Due to these detours and due to the point-like contact points, a particularly high thermal insulation effect is achieved.
  • an insulating sheet layer 44 with microstructures 5 shown in FIG. 7 is particularly mechanically stable due to the height ridges running in mutually crossed directions. Depending on the desired bending radius, it may only be possible to bend it in certain directions and wrap it around a honeycomb core. Since the ridges rise to exactly one side of the insulating sheet layer 44, the insulating sheet layer becomes 44 on the other side advantageously with insulating sheet layers 14; 24; 34; 44 combined, which also have microstructures. The combination with insulating sheet layers without microstructures would lead to an undesirably large contact on one side.
  • FIG. 8 shows an insulating sheet layer with microstructures 5, which is suitable for a favorable combination with the insulating sheet layer shown in FIG. 7.
  • FIGS. 9 and 10 pieces of a honeycomb core and a thermal insulation 43; 53 shown.
  • the transition from the core to the thermal insulation 43; 53 takes place via an insulating sheet layer 4 without microstructures (FIG. 9) or via an insulating sheet layer 34 with microstructures (FIG. 10).
  • the insulating sheet layers 4; 34 each form a stack, but with a different stacking sequence.
  • all of the insulating sheet layers 34 are microstructured on two sides.
  • the insulating sheet layers 34 with the microstructures have at least one insulating sheet layer 4 without microstructures as the next following neighbors.
  • the cylindrical spatial shape shown in FIG. 1, or the circular cross sections shown in further figures, are by no means the only possibilities for the shape of a honeycomb body according to the invention. Examples of other shapes are a conical spatial shape or a polygonal cross section.
  • a thermal insulation 3; 23; 33; 43; 53 with micro-structured insulating sheet layers can also be relative to other than shown in the figures Arrange honeycomb 2. For example, it can only enclose the honeycomb 2 on one side, or it can also be honeycomb 2 outside of it.
  • Sheet metal strip without micro structure 14 Insulating sheet layer with anti-emission layer

Abstract

Die vorliegende Erfindung betrifft einen Wabenkörper mit einer Vielzahl von Waben und mit Wärmeisolierung (43), die eine Mehrzahl von gestapelten und/oder gewickelten Isolierblechlagen (4; 34) aufweist, die sich untereinander durch in den Isolierblechlagen (34) ausgebildete Mikrostrukturen (5) abstützen, so daß zwischen den Isolierblechlagen (4; 34) Zwischenräume bestehen, wobei die Mikrostrukturen (5) eine Höhe von 10 νm bis 250 νm haben. Auf diese Weise hat der Wabenkörper nur geringe Wärmeverluste an die Umgebung.

Description

Wabenkörper mit Wärmeisolierung, vorzugsweise für einen Abgaskatalysator
Die vorliegende Erfindung betrifft einen Wabenkörper mit einer Vielzahl von Waben, vorzugsweise für den Einsatz als Katalysatorträgerkörper in Kraftfahrzeugen. Eine auf Wände der Waben aufgebrachte Beschichtung aus katalytischem Material ermöglicht eine Umsetzung von Abgasen aus Verbren- nungskraftmaschinen.
In der WO 90/08249 und in der WO 96/09892 werden Wabenkörper mit Makrostrukturen beschrieben, die die Wabenform bestimmen. Die Wabenkörper weisen zusätzlich MikroStrukturen auf, die die Strömung von durch die Waben strömendem Abgas beeinflussen.
Die Wabenwände bestehen beispielsweise aus Metall. Eine Möglichkeit der Herstellung von Wabenkörpern mit solchen Wabenwänden beinhaltet Verlöten. Geeignete Arten von Verlötungen sind beispielsweise aus der WO 89/07488 bekannt.
Aus der EP 0 229 352 ist bekannt, einen Wärmestrahlungsschutz zu verwenden. Der Wärmestrahlungsschutz besteht aus einer oder mehreren Blechlagen, die außerhalb eines Mantelrohrs angeordnet sind. Dabei werden dieselben Blechlagen verwendet, die auch die Wabenstruktur innerhalb des Mantelrohres bilden.
Insbesondere beim Automobilbau werden immer höhere Anforderungen an die Eigenschaften eines Abgaskatalysators gestellt. Im Zuge immer strengerer Abgasnormen muß vor allem das Kaltstart- und Wiederstartverhalten ständig verbessert werden. Beim Wiederstart eines Motors nach einer Standzeit kommt es darauf an, daß der Wabenkörper des Katalysators noch eine möglichst hohe Temperatur besitzt. Die WO 96/07021 beschreibt einen katalytischen Reaktor zur Umsetzung von Abgasen, der sowohl innerhalb als auch außerhalb eines Mantels eine thermische Isolierung aufweist. Als Beispiele für solche Isolierungen werden ein Luftspalt und eine Isoliermatte genannt.
Bei dem genannten Stand der Technik wird die Isolierwirkung durch Luft bzw. durch ein festes Isoliermaterial erreicht. Ruhende Luft besitzt zwar eine niedrigere Wärmeleitfähigkeit als bekannte feste Isoliermaterialien, sie behindert jedoch den Wärmetransport durch Strahlung nur äußerst geringfügig. Mehrere Blechlagen, wie sie in der WO 96/07021 vorgeschlagen worden sind, vermindern die Wärmestrahlung dagegen erheblich. Jedoch bilden die Blechlagen durch ihre Berührstellen Wärmebrücken mit der Folge, daß wiederum ein erheblicher Wärmetransport durch Wärmeleitung auftreten kann.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Wabenkörper so weiterzubilden, daß er nur geringe Wärmeverluste an die Umgebung hat.
Diese Aufgabe wird erfindungsgemäß durch einen Wabenkörper mit den Merkmalen gelöst, die in Anspruch 1 angegeben sind. Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Ansprüche.
Der erfindungsgemäße Wabenkörper zeichnet sich dadurch aus, daß er eine Wärmeisolierung mit einer Mehrzahl von gestapelten und/oder gewickelten Isolierblechlagen aufweist, die sich untereinander durch in den Isolierblechlagen ausgebildete MikroStrukturen abstützen, so daß zwischen den Isolierblechlagen Zwischenräume bestehen. Die MikroStrukturen haben ungefähr eine Höhe von 15 μm bis 250 μm. Sie sind damit wesentlich niedriger als die aus der EP 0 229 352 bekannten Strukturen zur Bildung von von Abgas durchströmbaren wabenartigen Kanälen. MikroStrukturen dieser Höhe sind aus der WO 96/09892 bekannt, in der sie für die Durchmischung laminar strömenden Abgases in den wabenartigen Kanälen vorgeschlagen worden sind. Bei einem erfindungsgemäßen Wabenkörper werden die Eigenschaften solcher MikroStrukturen aber in ganz anderer Weise genutzt. Wegen ihrer geringen Höhe ist es möglich, eine Vielzahl von Isolierblechlagen auf geringem Raum übereinander zu stapeln, wodurch der Wärmetransport aufgrund von Wärmestrahlung durch den Stapel hindurch erheblich reduziert wird. Da die Reduzierung in guter Näherung allein von der Anzahl der Isolierblechlagen abhängt, kann gegenüber dem Stand der Technik Platz gespart werden oder eine höhere Isolierwirkung erzielt werden.
Die größere Stapeldichte hat aber noch einen anderen Vorteil. Durch geeignete Ausbildung der MikroStrukturen, z.B. so, daß diese schmale scharf- kantige Höhenrücken aufweisen, läßt sich die Berührfläche zwischen jeweils zwei Isolierblechlagen erheblich verkleinern. Somit kann auch der Wärmetransport aufgrund von Wärmeleitung deutlich reduziert werden.
Insbesondere um den Wabenkörper mit seiner Vielzahl von Waben wirksam vor Wärmeverlusten zu schützen, ist es günstig, wenn die Isolierblechlagen die Waben möglichst geschlossen umgeben. Bei Wabenkörpern für den Einsatz als Abgaskatalysatorträgerkörper sind natürlich Öffnungen für den Eintritt bzw. Austritt von Abgas freizuhalten. Die erfindungsgemäße Art einer Wärmeisolierung wird in besonderer Ausgestaltung aber auch zum Schutz wärmeempfindlicher Gegenstände in der Umgebung eines Wabenkörpers eingesetzt. Hierbei umgibt die Wärmeisolierung die Waben nur teilweise, so daß eine Wärmeisolierwirkung in, von den Waben aus gesehen, begrenzten Raumwinkelbereichen erzielt wird. In einer bevorzugten Ausgestaltung eines erfindungsgemäßen Wabenkörpers sind die Isolierblechlagen der Wärmeisolierung zumindest teilweise untereinander fügetechnisch verbunden, vorzugsweise verlötet. Ein Vorteil ist die damit erreichbare mechanische Stabilität der Wärmeisolierung.
In einer vorteilhaften Ausgestaltung weisen die Waben metallische Wabenwände auf. Bei Ausgestaltungsvarianten, bei denen auch an die Waben angrenzende Isolierblechlagen metallisch sind, können Lötverbindungen der Waben untereinander und von Waben mit Isolierblechlagen gleichzeitig in demselben Verlötungsprozeß hergestellt werden.
Alternativ werden aber auch andere Materialien, beispielsweise keramische, für die Wabenwände verwendet, oder auch verschiedene Materialien kombiniert. Eine besondere Ausgestaltung wird erreicht, indem an einer Grünke- ramik mit einer Vielzahl von Waben Isolierblechlagen angebracht werden und anschließend die Keramik gebrannt wird. Bei einer Variante davon halten die Isolierblechlagen an der Grünkeramik aufgrund ihrer Mikrostruktu- ren fest, da diese in die Grünkeramik eingedrückt werden.
Im Fall metallischer Wabenwände werden hohe Anforderungen an ihre Korrosionsbeständigkeit gestellt. Ein erfindungsgemäßer Wabenkörper, der in geeigneter Weise mit katalytisch wirkendem Material ausgestattet ist, eignet sich zur Umwandlung von Abgasen einer Verbrennungskraftmaschine, insbesondere eines Otto-Motors. Die Abgastemperatur solcher Motoren liegt typischerweise über 800 °C. Ein Wabenkörper für diesen Einsatzzweck muß Korrosionsvorgängen bei diesen Temperaturen über Tausende von Betriebsstunden hinweg standhalten. An die Wärmeisolierung sind dagegen nicht dieselben Anforderungen zu stellen. Die Wärmeisolierung ist nicht so hohen Temperaturen wie die Wabenwände ausgesetzt. Bei guter Isolierwirkung erreichen höchstens den Wabenwänden benachbarte Isolierblechlagen ähnlich hohe Temperaturen. Bei einer bevorzugten Ausgestaltung eines erfindungsgemäßen Wabenkörpers kommt die Wärmeisolierung auch nicht in Kontakt mit korrosiven Gasen, insbesondere in einer Ausführungsform, bei der die Wärmeisolierung gegen jeglichen Gaseintritt in die Zwischenräume abge- schlössen ist.
In einer weiteren Ausgestaltung weist ein Wabenkörper ein Mantelrohr auf, in dessen Rohrinnern Waben liegen. Eine solche Ausgestaltung ist aus Gründen der mechanischen Stabilität, aber auch aus herstellungstechnischen Gründen vorteilhaft. Von einem solchen Wabenkörper gibt es verschiedene Ausgestaltungsvarianten. Bei einer liegt eine oben beschriebene Wärmeisolierung ebenfalls im Rohrinnern. Bei anderen Varianten liegt, stattdessen oder zusätzlich, eine solche Wärmeisolierung außerhalb des Mantelrohrs. Dabei bietet beispielsweise eine besonders dick ausgeführte äußerste Isolier- blechlage oder ein zweites, äußeres Mantelrohr Schutz gegen mechanische Beschädigung. Bei Varianten mit metallischen Mantelrohren sind Verbindungen zwischen Wärmeisolierung und den Mantelrohren vorteilhafterweise zumindest teilweise verlötet.
Die Isolierblechlagen der Wärmeisolierung sind in einer anderen Ausgestaltung Teile eines durchgehenden Blechbandes, das spiralig gewickelt ist. Bei einer speziellen Variante weist die Wärmeisolierung genau zwei Blechbänder auf, wobei in mindestens einem die MikroStrukturen ausgebildet sind. Die beiden Blechbänder sind in einer spiraligen Wicklung miteinander verschlungen. Eine solche Wicklung läßt sich beispielsweise dadurch herstellen, daß die beiden Blechbänder zunächst aufeinander gelegt werden, an einem Ende dann aneinander und/oder an einem anderen Teil des Wabenkörpers, z.B. an einem Mantelrohr, befestigt und anschließend gewickelt werden. Bei weiteren Varianten werden mehr als zwei Blechbänder verwendet. Spiralige Wicklungen sind unter anderem deswegen vorteilhaft, weil sie besonders leicht herzustellen sind. Es können aber auch ringförmige, in sich geschlossene Isolierblechlagen verwendet werden. Für spezielle Zwecke sind, unter Beibehaltung des Aufbauprinzips, auch völlig andere Formen der Wärmeisolierung möglich. Um einzelne empfindliche Gegenstände außerhalb des Wabenkörpers vor Wärmestrahlung zu schützen, wird beispielsweise an einem begrenzten Teil der Oberfläche des Wabenkörpers ein Stapel von leicht gebogenen Isolierblechlagen angeordnet.
In einer weiteren Ausführungsform sind die Waben mindestens teilweise beheizbar. Aufgrund der Wärmeisolierung kann der heizbare Bereich ohne wesentliche Wärmeverluste zügig auf eine gewünschte Betriebstemperatur gebracht werden. Die Wärmeisolierung hilft die Energiequelle zu schonen, z.B. eine Batterie eines Kraftfahrzeuges.
In verschiedenen Ausgestaltungen weist die Wärmeisolierung Stirnseiten auf, an denen Ränder von einer Mehrzahl der Isolierblechlagen liegen. Wird eine Stirnseite eines solchen Wabenkörpers beispielsweise von Luft angeströmt, dann kann eine unerwünschte Kühlwirkung durch einen Luftstrom durch die Zwischenräume hindurch auftreten. In einer günstigen Weiterbildung sind die Isolierblechlagen daher in der Nähe der Stirnseite oder der Stirnseiten mindestens teilweise untereinander verbunden, so daß ein Luftstrom, oder ein anderer Gasstrom, zwischen den Zwischenräumen und der Umgebung der Wärmeisolierung behindert oder blockiert ist. Zum Beispiel sind die Isolierblechlagen in der Nähe der Stirnseite untereinander verlötet, sind sie an der Stirnseite mit einer Füllmasse versehen oder es ist ein zusätzliches Abschlußstück an der Stirnseite angebracht.
Die Effizienz einer Wärmeisolierung wird dadurch gesteigert, daß die Zwischenräume zwischen den Isolierblechlagen alle oder teilweise luftabgeschlos- sen und evakuiert sind. Außer der Abnahme der Gesamtwärmeleitfähigkeit wird somit auch ein Eindringen unter Umständen korrosiver Gase in die Wärmeisolierung verhindert.
Die Wärmestrahlung innerhalb der Wärmeisolierung und/oder die Wärme- abstrahlung von dem Wabenkörper nach außen wird weiter reduziert, indem mindestens ein Teil der Isolierblechlagen der Wärmeisolierung, insbesondere mindestens eine äußere Isolierblechlage, mit einer Oberfläche ausgestattet sind, die einen Emissionsgrad kleiner als 0,1 besitzt. Bei einer Ausführungsform bestehen diese Isolierblechlagen durchgehend aus einem Material mit den gewünschten Emissionseigenschaften, bei einer anderen Ausführungsform liegt an der Oberfläche eine Materialschicht, die aus einem anderen Material besteht, als der überwiegende Teil der Isolierblechlage sonst. Die Schicht kann beispielsweise aufgedampft worden sein.
Weitere Merkmale und Vorteile von erfindungsgemäßen Wabenkörpern werden anhand der Zeichnung erklärt. Die Erfindung ist jedoch nicht auf die dort aufgeführten Ausführungsbeispiele beschränkt. Die einzelnen Figuren der Zeichnung zeigen:
Figur 1 einen zylindrischen Wabenkörper mit einer gewickelten Wärmeisolierung in perspektivischer Darstellung,
Figur 2 einen Schnitt durch einen Wabenkörper mit zwei Mantelrohren,
Figur 3 einen Wabenkörper mit einer Wärmeisolierung aus einem
Blechband,
Figur 4 einen Wabenkörper mit einer Wärmeisolierung aus zwei Blechbändern, Figur 5 ein Stück einer Isolierblechlage mit MikroStruktur und mit einer Anti-Emissionsschicht,
Figur 6 eine Isolierblechlage mit parallelen MikroStrukturen, die sich nach beiden Seiten der Isolierblechlage erheben,
Figur 7 eine Isolierblechlage mit gekreuzten MikroStrukturen,
Figur 8 eine Isolierblechlage mit MikroStrukturen parallel zu einer stirnseitigen Kante,
Figur 9 einen Teilschnitt durch einen Wabenkörper mit einer Wärmeisolierung, die aus Isolierblechlagen mit und ohne Mikrostruktu- ren besteht, und
Figur 10 einen Teilschnitt durch einen Wabenkörper mit einer Wärmeisolierung, die zweiseitig mikrostrukturierte Isolierblechlagen aufweist.
In Figur 1 ist eine bevorzugte Ausführungsform 1 eines erfindungsgemäßen Wabenkörpers dargestellt. Der Kern besteht aus einer Vielzahl von Waben 2, die durch gewickelte, glatte und gewellte Blechlagen gebildet werden. Die Waben bilden die Stirnseiten 10 verbindende Kanäle. Der Kern wird von einem zylindrischen Mantelrohr 6 umfaßt, der wiederum von der Wärmeiso- lierung 43 umfaßt wird. Die Wärmeisolierung 43 weist in der Ausführungsform Isolierblechlagen auf, von denen eine 4 glatt und eine andere 34 zweiseitig mikrostrukturiert 5 ist. Figur 1 zeigt eine Momentaufnahme zu einem Zeitpunkt, kurz bevor die beiden Isolierblechlagen 4 und 34 vollständig um den Kern herumgewickelt werden. Figur 2 zeigt einen Wabenkörper mit einem Kern wie in Figur 1, der von einem inneren Mantelrohr 6 umfaßt wird. Die sich außen an das innere Mantelrohr 6 anschließende Wärmeisolierung 3 weist im Verhältnis zum Durchmesser des Kerns eine wesentlich größere Dicke auf als die in Figur 1 gezeigte Ausführungsform. Die Wärmeisolierung 3 wird von einem zweiten, äußeren Mantelrohr 6 umfaßt.
In Figur 3 ist eine spezieller Aufbau einer Wärmeisolierung 23 erkennbar. Die Isolierblechlagen 24 sind Teile eines durchgehenden spiralig gewickelten Blechbandes 11 mit MikroStrukturen 5, die sich an der inneren Seite des Blechbandes 11 erheben. Das Blechband 11 ist an seinem Anfang 8 mit dem Mantelrohr 6 verbunden. An seinem Ende 9 ist es an einem anderen Abschnitt von sich selbst befestigt.
Einen anderen möglichen Aufbau einer Wärmeisolierung zeigt Figur 4. Der Aufbau ähnelt dem in Figur 1, jedoch verlaufen hier die MikroStrukturen 5 des Blechbandes 11 in einer Richtung ungefähr parallel zu den Kanälen, während sie in dem Beispiel von Figur 1 etwa quer dazu verlaufen. Die Wärmeisolierung 33 besteht, im Gegensatz zur Wärmeisolierung 23 in Figur 3, aus zwei Blechbändern 11; 12, von denen eines 12 glatt ist, d.h. keine MikroStrukturen 5 aufweist.
Anhand von Figur 5 lassen sich zwei Details einer Isolierblechlage 14 erklären. Die Isolierblechlage 14 weist an ihrer MikroStruktur 5 etwa dieselbe Dicke auf wie sonst auch. Eine solche MikroStruktur entsteht beispielsweise durch Prägen oder Biegen der Isolierblechlage 14. Eine andere Möglichkeit der Erzeugung von MikroStrukturen besteht in dem Aufbringen von zusätzlichem Material auf eine Isolierblechlage. Die Isolierblechlage 14 ist schichtartig aufgebaut. Die dünnere Anti-Emissionsschicht 15 bildet eine durch- gehende Oberfläche auf einer Seite der Isolierblechlage 14. Sie wird von dem Basismaterial 16 getragen. Eine Anti-Emissionsschicht 15 kann z.B. galvanisch auf das Basismaterial 16 aufgebracht werden.
Figur 6 zeigt eine Isolierblechlage 34, bei der die MikroStrukturen 5 eine Schar von einander parallelen linienartig verlaufenden Höhenrücken aufweisen. Die Höhenrücken erheben sich abwechselnd nach beiden Seiten der Isolierblechlage 34. Die MikroStrukturen 5 stoßen senkrecht an der stirnseitigen Kante 10 der Isolierblechlage 34 an.
Durch Kombination einer solchen Isolierblechlage 34 mit Isolierblechlagen gleicher Art läßt sich ein besonders vorteilhafter Aufbau einer Wärmeisolierung 3 erreichen. Dabei werden die Isolierblechlagen mit in zueinander gekreuzten Richtungen verlaufenden Höhenrücken übereinander gestapelt. Die gekreuzt zueinander verlaufenden Höhenrücken berühren sich nur an annä- hernd punktartigen Berührstellen im doppelten Abstand der parallelen Mikro- strukturen 5. Berührstellen einer Isolierblechlage 34 zu einem unteren und einem oberen Stapelnachbarn liegen im Abstand der parallelen Mikrostruktu- ren 5. Für die Abstände paralleler MikroStrukturen sind Werte zwischen 1 mm und 20 mm günstig, wobei Werte zwischen 5 mm und 15 mm bevor- zugt werden. Wärme, die in einer Generalrichtung senkrecht zu den Isolierblechlagen 34 geleitet wird, durchläuft daher erhebliche Umwege. Aufgrund dieser Umwege und aufgrund der punktartigen Berührstellen wird eine besonders hohe Wärmeisolierwirkung erzielt.
Die in Figur 7 gezeigte Ausführungsform einer Isolierblechlage 44 mit MikroStrukturen 5 ist wegen der in zueinander gekreuzten Richtungen verlaufenden Höhenrücken mechanisch besonders stabil. Sie läßt sich, abhängig vom gewünschten Biegeradius, u.U. nur in bestimmten Richtungen biegen und um einen Wabenkörperkern wickeln. Da die Höhenrücken sich nach genau einer Seite der Isolierblechlage 44 erheben, wird die Isolierblechlage 44 auf der anderen Seite vorteilhafterweise mit Isolierblechlagen 14; 24; 34; 44 kombiniert, die ebenfalls MikroStrukturen aufweisen. Die Kombination mit Isolierblechlagen ohne MikroStrukturen würde auf einer Seite zu einem unerwünscht großflächigen Kontakt führen. Günstig ist insbesondere die Kombination mit Isolierblechlagen 14; 24; 34, deren Gesamtbild der Mikro- strukturen sich hinsichtlich der Form, des Kreuzungswinkels und/oder des Abstandes der MikroStrukturen sich von dem Gesamtbild der Isolierblechlage 44 unterscheidet. Auf diese Weise kann verhindert werden, daß Mikrostruk- turen einer Isolierblechlage in die MikroStrukturen einer anderen Isolier- blechlage formschlüssig eingreifen können. Figur 8 zeigt eine Isolierblechlage mit MikroStrukturen 5, die für eine günstige Kombination mit der in Figur 7 gezeigten Isolierblechlage geeignet ist.
In den Figuren 9 und 10 sind in einem Teilschnitt jeweils Stücke eines Wabenkörperkernes und einer Wärmeisolierung 43; 53 dargestellt. Der Übergang vom Kern auf die Wärmeisolierung 43; 53 erfolgt über eine Isolierblechlage 4 ohne MikroStrukturen (Figur 9) bzw. über eine Isolierblechlage 34 mit MikroStrukturen (Figur 10). Die Isolierblechlagen 4; 34 bilden jeweils einen Stapel, jedoch mit einer unterschiedlichen Stapelfolge. In Figur 10 sind alle Isolierblechlagen 34 zweiseitig mikrostrukturiert. In Figur 9 haben die Isolierblechlagen 34 mit den MikroStrukturen wenigstens eine Isolierblechlage 4 ohne MikroStrukturen als nächsten Folgenachbarn.
Die in Figur 1 gezeigte zylindrische Raumform, bzw. die in weiteren Figuren gezeigten kreisförmigen Querschnitte sind keineswegs die einzigen Möglichkeiten für die Form eines erfindungsgemäßen Wabenkörper. Beispiele für andere Formen sind eine konische Raumform, bzw. ein polygonaler Querschnitt. Eine Wärmeisolierung 3; 23; 33; 43; 53 mit mikrostrukturierten Isolierblechlagen läßt sich auch anders als in den Figuren gezeigt relativ zu Waben 2 anordnen. Sie kann beispielsweise die Waben 2 nur halbseitig umfassen, oder es können auch noch außerhalb von ihr Waben 2 liegen.
Bezugszeichenliste
1 Wabenkörper
2 Waben 3 Wärmeisolierung
4 glatte Isolierblechlage
5 MikroStruktur
6 Mantelrohr
7 Isolierblechlage als Beschädigungsschutz 8 Blechbandanfang
9 Blechbandende
10 Stirnseite
11 Blechband mit MikroStruktur
12 Blechband ohne MikroStruktur 14 Isolierblechlage mit Anti-Emissionsschicht
15 Anti-Emissionsschicht
16 Basismaterial
23 Wärmeisolierung aus einem Blechband
24 einseitig mikrostrukturierte Isolierblechlage 33 Wärmeisolierung aus zwei Blechbändern
34 zweiseitig mikrostrukturierte Isolierblechlage
43 Wärmeisolierung mit mikrostrukturierten und glatten Blechlagen
44 Isolierblechlage mit einseitigen gekreuzten MikroStrukturen 53 Wärmeisolierung aus mikrostrukturierten Blechlagen

Claims

Patentansprüche
1. Wabenkörper mit einer Vielzahl von Waben und mit Wärmeisolierung, dadurch gekennzeichnet, daß die Wärmeisolierung (3; 23; 33; 43; 53) eine Mehrzahl von gestapelten und/oder gewickelten Isolierblechlagen (4; 7; 14; 24; 34; 44) aufweist, die sich untereinander durch in den Isolierblech- lagen (14; 24; 34; 44) ausgebildete MikroStrukturen (5) abstützen, so daß zwischen den Isolierblechlagen (4; 7; 14; 24; 34; 44) Zwischenräume bestehen, wobei die MikroStrukturen (5) eine Höhe von 15 μm bis 250 μm haben.
2. Wabenkörper nach Anspruch 1 , dadurch gekennzeichnet, daß die
Wärmeisolierung (3; 23; 33; 43; 53) die Waben (2) nur teilweise umgibt.
3. Wabenkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß er ein Konverter zur katalytischen Umwandlung von Abgasen ist, insbesondere von Abgasen von Verbrennungskraftmaschinen, insbesondere von Otto-Motoren.
4. Wabenkörper nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, daß die Isolierblechlagen (4; 7; 14; 24; 34; 44) zumindest teilweise untereinander fügetechnisch verbunden, vorzugsweise verlötet, sind.
5. Wabenkörper nach einem der Ansprüche 1 bis 4, dadurch gekenn- zeichnet, daß die Waben (2) metallische Wabenwände aufweisen.
6. Wabenkörper nach Anspruch 5, dadurch gekennzeichnet, daß die metallischen Wabenwände zumindest teilweise untereinander fügetechnisch verbunden, vorzugsweise verlötet, sind.
7. Wabenkörper nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß das Material der metallischen Wabenwände und das Material der Isolierblechlagen (4; 7; 14; 24; 34; 44) sich unterscheiden, wobei insbesondere das erstere korrosionsbeständig bei Temperaturen über 800 °C und das letztere weniger korrosionsbeständig ist.
Wabenkörper nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß ein Teil der Wabenwände mit mindestens einer der Isolierblechlagen (4; 14; 24; 34; 44) fügetechnisch verbunden, vorzugsweise verlötet, ist.
Wabenkörper nach einem Ansprüche 1 bis 8, dadurch gekennzeichnet, daß er ein Mantelrohr (6) aufweist, in dessen Rohrinnern die Waben (2) liegen.
10. Wabenkörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß er ein Mantelrohr (6) aufweist und daß die Wärmeisolierung (3; 23; 33; 43; 53) außerhalb des Mantelrohrs (6) liegt.
11. Wabenkörper nach einem der Ansprüche 1 bis 10, dadurch gekenn- zeichnet, daß die äußerste Isolierblechlage (7) dicker als die innerhalb von ihr liegenden Isolierblechlagen (4; 14; 24; 34; 44) ist.
12. Wabenkörper nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß er ein Mantelrohr (6) aufweist, in dessen Rohrinnern die Wärmeisolierung (3; 23; 33; 43; 53) liegt.
13. Wabenkörper nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Isolierblechlagen (4; 14; 24; 34; 44) Teile eines durchgehenden spiralig gewickelten Blechbandes (11; 12) sind.
14. Wabenkörper nach Anspruch 13, dadurch gekennzeichnet, daß die
Wärmeisolierung (33) zwei Blechbänder (11; 12) aufweist, wobei in mindestens einem die MikroStrukturen (5) ausgebildet sind, und daß die beiden Blechbänder (11; 12) in einer spiraligen Wicklung miteinander verschlungen sind.
15. Wabenkörper nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Waben (2) mindestens teilweise Wände aufweisen, die beheizbar sind.
16. Wabenkörper nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Wärmeisolierung (3; 23; 33; 43; 53) eine Stirnseite (10) aufweist, an der Ränder von einer Mehrzahl der Isolierblechlagen (4; 7; 14; 24; 34; 44) liegen, und daß die Isolierblechlagen (4; 7; 14; 24; 34; 44) in der Nähe der Stirnseite (10) mindestens teilweise untereinander verbunden sind, so daß ein
Luftstrom zwischen den Zwischenräumen und der Umgebung der Wärmeisolierung (3; 23; 33; 43; 53) behindert oder blockiert ist.
17. Wabenkörper nach einem der Ansprüche 1 bis 16, dadurch gekenn- zeichnet, daß die Zwischenräume alle oder teilweise luftabgeschlossen und evakuiert sind.
18. Wabenkörper nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß mindestens ein Teil der Isolierblechlagen (4; 7; 14; 24; 34; 44), insbesondere mindestens eine Isolierblechlage (4; 7; 14; 24; 34; 44) an einer Außenseite der Wärmeisolierung (3; 23; 33; 43; 53), einen Emissionsgrad kleiner als 0, 1 für die Emission von Wärmestrahlung besitzt.
19. Wabenkörper nach Anspruch 18, dadurch gekennzeichnet, daß an der Oberfläche einer solchen Isolierblechlage (14) eine Anti-Emis- sions-Materialschicht (15) liegt, die aus einem anderem Material besteht als der überwiegende Teil der Isolierblechlage sonst (16).
20. Wabenkörper nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß bei mindestens einer, jedoch vorzugsweise bei allen Isolierblechlagen (14; 24; 34; 44) mit den MikroStrukturen (5), die MikroStrukturen (5) mindestens eine Schar von einander parallelen linienartig verlaufenden Höhenrücken aufweisen.
21. Wabenkörper nach Anspruch 20, dadurch gekennzeichnet, daß die
MikroStrukturen (5) jeweils einer Schar Abstände zwischen 1 mm und 20 mm voneinander aufweisen, vorzugsweise 5 bis 15 mm.
22. Wabenkörper nach Anspruch 20 oder 21, dadurch gekennzeichnet, daß die MikroStrukturen (5) zwei solche Scharen mit in zueinander gekreuzten Richtungen verlaufenden Höhenrücken aufweisen.
23. Wabenkörper nach Anspruch 20 oder 21 mit mindestens einem Paar von Isolierblechlagen (4; 7; 14; 24; 34; 44), die mindestens einen gemeinsamen Zwischenraum haben, dadurch gekennzeichnet, daß das Paar sich untereinander durch jeweils genau eine solche Schar abstützt, wobei die Höhenrücken in zueinander gekreuzten Richtungen verlaufen.
EP97910300A 1996-10-04 1997-09-17 Wabenkörper mit wärmeisolierung, vorzugsweise für einen abgaskatalysator Expired - Lifetime EP0929738B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19641049A DE19641049A1 (de) 1996-10-04 1996-10-04 Wabenkörper mit Wärmeisolierung, vorzugsweise für einen Abgaskatalysator
DE19641049 1996-10-04
PCT/EP1997/005098 WO1998015724A1 (de) 1996-10-04 1997-09-17 Wabenkörper mit wärmeisolierung, vorzugsweise für einen abgaskatalysator

Publications (2)

Publication Number Publication Date
EP0929738A1 true EP0929738A1 (de) 1999-07-21
EP0929738B1 EP0929738B1 (de) 2001-05-23

Family

ID=7807924

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97910300A Expired - Lifetime EP0929738B1 (de) 1996-10-04 1997-09-17 Wabenkörper mit wärmeisolierung, vorzugsweise für einen abgaskatalysator

Country Status (11)

Country Link
US (1) US6040064A (de)
EP (1) EP0929738B1 (de)
JP (1) JP4166832B2 (de)
KR (1) KR100495790B1 (de)
CN (1) CN1082133C (de)
AU (1) AU4775097A (de)
DE (2) DE19641049A1 (de)
ES (1) ES2158516T3 (de)
MY (1) MY121648A (de)
TW (1) TW384345B (de)
WO (1) WO1998015724A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19755354A1 (de) * 1997-12-12 1999-06-17 Emitec Emissionstechnologie Metallfolie mit Durchbrechungen
EP1180202A4 (de) * 1999-05-20 2004-08-18 Institue For Advanced Engineer Abgasreinigungssystem für brennkraftmaschinen
JP3811349B2 (ja) * 2000-12-18 2006-08-16 本田技研工業株式会社 排ガス浄化用ハニカム構造体の製造装置
JP2002305157A (ja) * 2000-12-28 2002-10-18 Tokyo Electron Ltd ハニカム構造断熱体及び熱再利用システム
DE10293166D2 (de) 2001-07-19 2004-07-01 Emitec Emissionstechnologie Feder-Dämpfer-System eines Wabenkörpers und dessen Herstellung
DE10137878A1 (de) * 2001-08-02 2003-02-27 Emitec Emissionstechnologie Abgaskatalysator mit Dehnungen ausgleichender Lagerung
JP2003080083A (ja) * 2001-09-14 2003-03-18 Calsonic Kansei Corp メタル触媒担体
US7476366B2 (en) * 2002-04-18 2009-01-13 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Catalyst carrier body with corrugated casing and process for producing the same
US7366340B1 (en) * 2004-06-22 2008-04-29 Reflect Scientific (Dba) Miralogix Method and system for optically determining perpendicularity of end surface of part formed from parallel channels
EP1828352A4 (de) * 2004-09-17 2012-04-04 0783963 Bc Ltd Kohlenwasserstoffverarbeitungsvorrichtungen und systeme für motoren und verbrennungseinrichtungen
CN101060911A (zh) * 2004-11-23 2007-10-24 乔纳森·J·范斯坦 具有喷射撞击传热的反应器
EP1690589A1 (de) * 2005-02-10 2006-08-16 Tzong-Yih Lee Aktiv Abgasreinigungskatalysatoreinheit
DE102005017725A1 (de) * 2005-04-15 2006-10-19 Emitec Gesellschaft Für Emissionstechnologie Mbh Wabenkörper mit Doppelmantelrohr
US7611561B2 (en) * 2006-07-20 2009-11-03 Benteler Automotive Corporation Diesel exhaust filter construction
JP2008045521A (ja) * 2006-08-21 2008-02-28 Ibiden Co Ltd 保持シール材および排気ガス処理装置
JP4863828B2 (ja) 2006-09-29 2012-01-25 イビデン株式会社 シート材、その製造方法および排気ガス処理装置
DE102008019999A1 (de) 2008-04-21 2009-10-22 J. Eberspächer GmbH & Co. KG Luftspaltisolierter Abgaskrümmer
JP5679645B2 (ja) * 2009-02-03 2015-03-04 カルソニックカンセイ株式会社 金属触媒担体及びその製造方法
DE102009018825A1 (de) * 2009-04-24 2010-10-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Blechlage mit Anti-Diffusionsstrukturen und metallischer Wabenkörper mit mindestens einer solchen Blechlage
DE102015110997A1 (de) * 2015-07-08 2017-01-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Partikelfilter für ein Kraftfahrzeug
DE102017201468A1 (de) * 2017-01-31 2018-08-02 Continental Automotive Gmbh Turbolader für eine Brennkraftmaschine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022019A (en) * 1970-11-20 1977-05-10 Alfa Romeo S.P.A. Exhaust conveying system for internal combustion engines
JPS5958715U (ja) * 1982-10-12 1984-04-17 トヨタ自動車株式会社 触媒コンバ−タの遮熱構造
DE3601011A1 (de) * 1986-01-15 1987-07-16 Interatom Metallischer katalysatorkoerper mit waermestrahlungsschutz
JPH0621558B2 (ja) * 1986-08-25 1994-03-23 カルソニック株式会社 メタルハニカム担体
DE3833675A1 (de) * 1988-10-04 1990-04-05 Sueddeutsche Kuehler Behr Traegerkoerper fuer einen katalytischen reaktor zur abgasreinigung
DE8900467U1 (de) * 1989-01-17 1990-05-17 Emitec Emissionstechnologie
JP2517535Y2 (ja) * 1990-09-17 1996-11-20 スズキ株式会社 排気管の支持構造
JPH0478939U (de) * 1990-11-22 1992-07-09
JPH04190850A (ja) * 1990-11-22 1992-07-09 Toyota Motor Corp 排気ガス浄化触媒用メタル担体
JP3083161B2 (ja) * 1991-01-09 2000-09-04 新日本製鐵株式会社 自動車排気ガス浄化触媒用メタル担体
JP2580353Y2 (ja) * 1991-09-03 1998-09-10 臼井国際産業株式会社 自動車用触媒装置
JPH06212966A (ja) * 1993-01-19 1994-08-02 Toyota Motor Corp 横置きv型エンジンの排気装置
JPH08144740A (ja) * 1994-11-14 1996-06-04 Isuzu Ceramics Kenkyusho:Kk ディーゼルパティキュレートフィルタ装置
DE19636367A1 (de) * 1996-09-06 1998-03-12 Emitec Emissionstechnologie Verfahren und Vorrichtungen zum Herstellen eines Metallbleches mit einer Wellung und einer quer dazu liegenden Mikrostruktur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9815724A1 *

Also Published As

Publication number Publication date
CN1232526A (zh) 1999-10-20
WO1998015724A1 (de) 1998-04-16
DE19641049A1 (de) 1998-04-09
JP2001501705A (ja) 2001-02-06
AU4775097A (en) 1998-05-05
ES2158516T3 (es) 2001-09-01
KR100495790B1 (ko) 2005-06-17
US6040064A (en) 2000-03-21
EP0929738B1 (de) 2001-05-23
DE59703615D1 (de) 2001-06-28
CN1082133C (zh) 2002-04-03
MY121648A (en) 2006-02-28
TW384345B (en) 2000-03-11
KR20000048541A (ko) 2000-07-25
JP4166832B2 (ja) 2008-10-15

Similar Documents

Publication Publication Date Title
EP0929738B1 (de) Wabenkörper mit wärmeisolierung, vorzugsweise für einen abgaskatalysator
EP0541585B1 (de) Elektrisch beheizbarer wabenkörper, insbesondere katalysator-trägerkörper, mit inneren tragstrukturen
EP0186801B1 (de) Trägermatrix, insbesondere für einen katalytischen Reaktor zur Abgasreinigung
EP0581784B1 (de) Elektrisch beheizbarer wabenkörper
EP2836687B1 (de) Elektrischer anschluss von mehreren blechlagen eines elektrisch beheizbaren wabenkörpers und zugehöriger wabenkörper
DE2302746A1 (de) Traegermatrix fuer einen katalytischen reaktor zur abgasreinigung bei brennkraftmaschinen, insb. ottomotoren von kraftfahrzeugen, sowie ein herstellungsverfahren
EP0683851B1 (de) In einem inneren und einem äusseren mantelrohr gehalterter metallischer wabenkörper, insbesondere katalysator-trägerkörper
EP1084333A1 (de) Wabenkörperanordnung
WO1993007364A1 (de) Abgaskatalysator
WO1999036682A1 (de) Wabenkörperanordnung mit einer mindestens eine metallfolie enthaltenden zwischenschicht
EP0618842B1 (de) Wabenkörper mit einer innenstruktur, die durch eine stützstruktur gehalten ist
DE4313187A1 (de) Metallischer Trägerkörper für Abgasreinigungskatalysator-Material
DE10051562A1 (de) Beheizbarer Wabenkörper mit zwei verschiedenen Beschichtungen
EP0674944B1 (de) Verfahren zur Herstellung eines beschichteten, monolithischen Metallträgers
EP0289817A1 (de) Wabenkörper zur Reinigung der Abgase von Verbrennungskraftmaschinen
DE3312944A1 (de) Spannungsentlastetes metalltraegergehaeuse fuer abgaskatalysatoren mit hoher thermischer betriebsbelastung
DE4400314A1 (de) x-förmig gewickelter metallischer wabenförmiger Körper
EP0762934B1 (de) Wabenkörper aus blechlagen aus vormaterial unterschiedlicher dicke
EP0591689A1 (de) Metallträgerkatalysator mit in einem Mantelrohr eingeschweisster Matrix aus katalytisch beschichteten Metallbändern
EP3464850B1 (de) Wabenkörper für die abgasnachbehandlung
EP0959988B1 (de) Wabenkörper mit im inneren eingerahmtem querschnittsbereich, insbesondere für kleinmotoren
EP0969929B1 (de) Wabenkörper, insbesondere katalysator-trägerkörper, mit verstärkter wandstruktur
DE102018214929B4 (de) Katalysator mit metallischem Wabenkörper
DE19507385C2 (de) Metallträger-Körper für Abgas- und Abluftreinigungsanlagen
DE10223452A1 (de) Partikelfilter für Abgase von Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20001005

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 59703615

Country of ref document: DE

Date of ref document: 20010628

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010808

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2158516

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140925

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140922

Year of fee payment: 18

Ref country code: ES

Payment date: 20140918

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140925

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140922

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59703615

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150917

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150917

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150917

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150918