EP0926646A1 - Optischer Rauchmelder - Google Patents

Optischer Rauchmelder Download PDF

Info

Publication number
EP0926646A1
EP0926646A1 EP97122894A EP97122894A EP0926646A1 EP 0926646 A1 EP0926646 A1 EP 0926646A1 EP 97122894 A EP97122894 A EP 97122894A EP 97122894 A EP97122894 A EP 97122894A EP 0926646 A1 EP0926646 A1 EP 0926646A1
Authority
EP
European Patent Office
Prior art keywords
light
receiver
smoke detector
detector according
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97122894A
Other languages
English (en)
French (fr)
Other versions
EP0926646B8 (de
EP0926646B1 (de
Inventor
Kurt Dr. Hess
Peter Kunz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES97122894T priority Critical patent/ES2221946T3/es
Priority to DE59711621T priority patent/DE59711621D1/de
Priority to AT97122894T priority patent/ATE284603T1/de
Priority to EP97122894A priority patent/EP0926646B8/de
Priority to PT97122894T priority patent/PT926646E/pt
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Priority to DK97122894T priority patent/DK0926646T3/da
Publication of EP0926646A1 publication Critical patent/EP0926646A1/de
Application granted granted Critical
Publication of EP0926646B1 publication Critical patent/EP0926646B1/de
Publication of EP0926646B8 publication Critical patent/EP0926646B8/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the present invention relates to an optical smoke detector with a detector insert, an optics module and an evaluation circuit, the optics module being a Light source, a measuring chamber and one connected to the evaluation circuit Has light receiver.
  • the invention is now a stray light detector with a significantly improved Response behavior to open fires can be specified.
  • this object is achieved in that the light source for transmission radiation in the wavelength range of visible light.
  • the wavelength of the radiation emitted by the light source is in the range of blue or red light and is preferably 460 nm or 660 nm.
  • Backscatter are known to be scattered light detectors with a scattering angle of over 90 °, which better recognize open fires, but where the receiver signal only one Fraction of the receiver signal from forward spreaders is.
  • the reason for this improved Detection of open fires is likely to be due to the shorter wavelengths Smaller aerosols, such as those that arise especially in the case of open fires, very much can be better detected.
  • the optics module is designed so that it goes from the light receiver to the evaluation circuit emitted signal a function of the impinging on it, in a Plane is polarized stray light.
  • a third preferred embodiment of the smoke detector according to the invention is characterized in that a superimposition of the signal in the evaluation circuit of the light receiver with a compensation signal, which is selected so that the signal of the light receiver is adjusted to zero.
  • the light source and the light receiver are arranged such that their optical axes lie in a common horizontal plane and with each other are kinked.
  • labyrinth parts serve the radiation of the light source and the Limit the field of view of the light receiver and light coming from outside at the entrance into the measuring chamber. The better the labyrinth fulfills these functions, the more it hinders the penetration of smoke into the measuring chamber the detector may only respond after a certain delay.
  • the invention should now also the penetration behavior of smoke in the measuring chamber can be significantly improved.
  • Smoke detector solved that the arrangement of light source and light receiver is selected so that the optical axes of the transmitter and the receiver Beam path spanned plane runs obliquely to the horizontal plane.
  • the axis of the beam path on the receiver side preferably runs vertically to that of the beam path on the transmitter side.
  • the labyrinth can be dispensed with almost completely, so that practically unimpeded smoke entry into the measuring chamber is made possible.
  • the optics module 1 shown in Fig. 1 is part of a detector insert 2, which in one preferably mounted on the ceiling of the room to be monitored (not shown) can be fastened.
  • the optics module 1 consists essentially of an optoelectronic Measuring chamber 3 with a light emitting diode (LED) Light source 4, a light receiver 5 also formed by a diode, a central one Aperture 6 and a so-called labyrinth 7.
  • the central aperture 6 prevents that light rays go directly from the light source 4 to the light receiver 5 can, and the labyrinth 7 serves as a light barrier to limit the field of view of the light receiver 5.
  • the measuring chamber 3 is through a side wall 8 and completed a cover, not shown, light-tight. This detector structure is known and will not be described here. It is in this context on the EP-A-0 772 170 and to the international application PCT / CH 97/00269.
  • the optical axes of the light source 4 and the light receiver 5 are not on a common straight line, but have a bent course, the central aperture 6 is arranged close to the intersection of these two axes.
  • the Labyrinth 7 suppresses the so-called background light, which is undesirable Scatter or reflection is caused. The better suppresses this background light the lower the base pulse, that is the signal that is detected when in there are no light-scattering particles in the measuring chamber 3.
  • the cutting area of the radiation beam emitted by the light source 4 and the field of view of the Light receiver 5 forms the actual one, hereinafter referred to as the scattering space Measuring range.
  • the light source 4 sends short, intense light pulses into the scattering space, the light receiver 5 indeed the scattering space, but not the light source 4
  • the light from the light source 4 is scattered by smoke penetrating into the scattering space, and part of this scattered light falls on the light receiver 5.
  • the receiver signal generated in this way is processed by evaluation electronics (FIG. 2).
  • the diode used as the light source 4 transmits infrared radiation instead of the previously customary one with a wavelength of about 880 nm red or blue light of one wavelength from about 660 nm or 460 nm.
  • These shorter wavelengths have the advantage that smaller aerosols, such as those that arise especially with open fires, do a lot can be detected better, so that compared to infrared radiation, the response behavior significantly improved on open fires.
  • a polarization filter is arranged in front of the light receiver 5, which only contains the polarization component perpendicular to the scattering plane (this is the plane in which the optical axes of light source 4 and light receiver 5) passes, or if the measuring chamber 3 is exposed to polarized light.
  • polarizing filters and polarized light is applied to CH-A-682 428 referred.
  • the light source (LED) 4 is preceded by a first modulator 9 a suitable modulation of the radiation emitted by the light source 4 takes place.
  • This radiation preferably consists of a continuous sequence of pulses and Pulse pauses, so that the measuring chamber 3 (Fig. 1) with a pulsating red or blue Light is applied. It can also be useful to follow a certain sequence Number of pulses and pulse pauses to insert a longer, predetermined transmission pause.
  • the measuring chamber is irradiated by intermittently emitted and pulse trains or pulse packets interrupted by pauses in transmission. You can the transmission breaks to the pulse trains in a fixed or in a variable time Relationship.
  • the first modulator 9 is controlled by a control stage 10, which receives its clock from a clock 11.
  • the control stage 10 determines in particular the chronological sequence and the length of the output to the light source 4 Signals.
  • the scattered light reaching the light receiver 7 is converted into a proportional current (receiver signal) I e , which is fed to a current / voltage converter 12 connected downstream of the light receiver 5 and is converted into a voltage (received signal) U e by the latter.
  • the converter 12 additionally acts as a type of filter in that it suppresses external light originating from natural or artificial lighting.
  • a frequency filter 13 connected downstream of the current / voltage converter 12, undesired frequencies are filtered out of the received signal U e .
  • the output of the frequency filter 13 is connected to a switch 14 controlled by the control stage 10 in time with the modulation of the light source 4.
  • the switch 14 is controlled by the control stage 10 in such a way that the received signal U e is transmitted to one integrator, for example to the integrator 15, during the duration of the pulses and to the other integrator, for example to the integrator 15 ', during the pulse pauses. , is directed. During any pauses in transmission between the pulse trains or pulse packets, the switch 14 remains in a neutral position in which neither of the two integrators 15 or 15 'is acted upon by the received signal.
  • the switch 14 is preferably formed by a controlled switch.
  • the integrator 15 receives only the scattered light generated in the scattering space, including any remnants of the filtered interference signal from the time of the transmission pulses, and the integrator 15 'only receives any remnants of the filtered interference signal from the time of the pulse pauses, so that the scattered light can be obtained by simply forming the difference between the output signals of the two integrators 15 and 15 '. This difference formation takes place in a stage 16 connected downstream of the two integrators 15, 15 '. Its output signal is the scattered light which has largely been cleaned of interference and strikes the light receiver 5 and which forms the useful signal U n for the signal evaluation.
  • the useful signal U n is supplied on the one hand to a comparator 18 and on the other hand to the one input of a second modulator 19, the second input of which is connected to the control stage 10 and the output of which is led via a resistor 20 to the input of the current / voltage converter 12.
  • This control loop can be compared to a self-balancing bridge circuit. If properly constructed, this circuit allows the resolution of photo currents down to the picoampere range.
  • the comparator 18 compares the useful signal U n with at least one threshold value and delivers a corresponding signal to an alarm output 21 when it is exceeded
  • the signal at alarm output 21 can be further evaluated, for example for plausibility it is checked what can be done in the detector or in the associated control center, or it is sent to the head office without further processing, where the corresponding one is then sent Condition registered and alarm triggered if necessary.
  • the signal at the alarm output 21 can additionally or alternatively a light emitting diode arranged in the detector activate.
  • a measuring channel it is also possible instead of a measuring channel to provide two measuring channels, one of which has a conventional structure, for example is and an infrared transmitter diode 4 and a receive diode 5 and the other one contains colored LED and / or a polarization filter 22.
  • the polarization filter 22 can also be arranged between transmitter diode 4 and measuring chamber 3.
  • the scattered light detector shown in Figures 3 and 4 differs from that shown in Fig. 1 essentially in that the optical axes of the transmitter and receiver beam path are not in a common horizontal but in a plane inclined to the horizontal plane, so that the light receiver 5 not in the horizontal direction but diagonally from top to bottom or vice versa looks ".
  • the optical axis of the beam path on the receiver side runs vertically from top to bottom, but it could also run in the opposite direction and their angle of inclination to the optical axis of the beam path could also be be smaller or larger than 90 °. It is essential that the optical axis of the receiver Ray goose is oriented so that the recipient's field of vision is not through one component that inhibits the entry of smoke into the measuring chamber must be limited.
  • the detector insert 2 has essentially the shape of a flat, open at the top round box, in the interior of a circuit board (not shown) with the evaluation electronics is arranged.
  • a detector hood 23 is put over the detector insert 2, which is provided with smoke entry slots 24.
  • a housing 25 At the bottom of the bottom of the Detector insert 2 are a housing 25 with the light transmitter 4 and holding means 26 for the one denoted by reference numeral 27 and closing the measuring chamber 3 at the bottom Cover provided.
  • the cover 27 carries an upwardly projecting against the bottom of the detector insert 2 Light barrier 28.
  • the measuring chamber is between the light source 4 and the light barrier 28 3 formed.
  • the side wall 8 of the lid 27 is largely except for the light barrier 28 open, which ensures that smoke can enter the measuring chamber as freely as possible 3 is guaranteed.
  • the axis of the beam cone emitted by the light source 4 runs across the Measuring room 3 in a horizontal plane parallel to the bottom of the detector insert 2.
  • the Light barrier 28 prevents the light emitted by the light source 4 from the Detector can penetrate to the side.
  • the light receiver 5 is in the middle of the floor the detector insert 2 arranged, and is shown just above of this.
  • the bottom of the detector insert 2 points below the light receiver 5 and in alignment with this an opening which is against the measuring space 13 of is surrounded by an annular diaphragm 30 and into which a lens 31 is preferably inserted is.
  • the light receiver 5, the aperture 30 and possibly the lens 31 define the optical axis of the beam path on the receiver side, which runs in the vertical direction and perpendicularly crosses the horizontal optical axis on the transmitter side.
  • the light receiver 5 thus looks, as it were, from above onto the beam of rays emitted by the light source 4.
  • the scattering space forming the actual measuring range in the cutting area of the transmitter and of the receiver-side beam is designated by the reference numeral 32.
  • the field of view of the light receiver 5 is through the bottom of the lid 27 and through the detector hood 23 limits and direct irradiation of the light receiver 5 with External light is prevented by the aperture 30.
  • the side wall 27 loses their previous functions and can be omitted, reducing the penetration behavior of smoke and aerosols in the measuring chamber 3 is markedly improved.
  • the above a short area of the side wall of the cover 27 still existing and from the Functionally not necessarily necessary light barrier 28 has the penetration behavior practically no influence from smoke.

Abstract

Der Rauchmelder enthält einen Meldereinsatz (2), ein Optikmodul und eine Auswerteschaltung. Das Optikmodul weist eine Lichtquelle (4), eine Messkammer (3) und einen mit der Auswerteschaltung verbundenen Lichtempfänger (5) auf. Die Lichtquelle (4) ist zur Aussendung einer Strahlung im Wellenlängenbereich des sichtbaren Lichts ausgebildet, wobei diese Wellenlänge vorzugsweise im Bereich von blauem oder rotem Licht liegt. Vorzugsweise ist das Optikmodul so ausgebildet, dass das vom Lichtempfänger (5) abgegebene Signal eine Funktion des auf diesen auftreffenden, in einer Ebene polarisierten Streulichts ist. In der Auswerteschaltung erfolgt eine Überlagerung des Signals des Lichtempfängers (5) mit einem Kompensationssignal, welches so gewählt ist, dass das Signal des Lichtempfängers (5) auf den Wert null ausgeregelt wird. Der Rauchmelder zeichnet sich durch ein signifikant verbessertes Ansprechverhalten auf offene Brände aus. <IMAGE>

Description

Die vorliegende Erfindung betrifft einen optischen Rauchmelder mit einem Meldereinsatz, einem Optikmodul und einer Auswerteschaltung, wobei das Optikmodul eine Lichtquelle, eine Messkammer und einen mit der Auswerteschaltung verbundenen Lichtempfänger aufweist.
Diese als Streulichtmelder bekannten Rauchmelder, bei denen die Lichtquelle durch eine Infrarotdiode gebildet wird, sind überall dort besonders vorteilhaft einsetzbar, wo ein Feuer mit einer entsprechenden Rauchentwicklung verbunden ist. So werden beispielsweise Schwelbrände wesentlich früher erkannt als mit anderen Detektionsprinzipien. Andererseits ist es bekannt, dass Streulichtmelder nicht das allerbeste Ansprechverhalten auf offene Brände aufweisen, so dass hier ein gewisser Verbesserungsbedarf besteht.
Durch die Erfindung soll nun ein Streulichtmelder mit einem signifikant verbesserten Ansprechverhalten auf offene Brände angegeben werden.
Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Lichtquelle zur Aussendung einer Strahlung im Wellenlängenbereich des sichtbaren Lichts ausgebildet ist.
Bei einer ersten bevorzugten Ausführungsform des erfindungsgemässen Rauchmelders liegt die Wellenlänge der von der Lichtquelle ausgesandten Strahlung im Bereich von blauem oder rotem Licht und beträgt vorzugsweise 460 nm beziehungsweise 660 nm.
Praktische Versuche haben ergeben, dass Streulichtmelder mit einer roten Sender-Diode ein deutlich besseres und solche mit einer blauen Sender-Diode ein markant besseres Ansprechverhalten auf offene Brände aufweisen. Das Ansprechverhalten wird durch die Verwendung der Licht im genannten Wellenlängenbereich aussendenden Sender-Dioden so weit verbessert, dass die Detektionseigenschaften der so ausgerüsteten Streulichtmeder für offene Brände in die Nähe von Ionisationsmeldern oder von sogenannten Rückwärtsstreuern gelangt.
Rückwärtsstreuer sind bekanntlich Streulichtmelder mit einem Streuwinkel von über 90°, die offene Brände besser erkennen, bei denen aber das Empfängersignal nur einen Bruchteil des Empfängersignals von Vorwärtsstreuern beträgt. Der Grund für diese verbesserte Detektion von offenen Bränden dürfte darin liegen, dass bei den kürzeren Wellenlängen kleinere Aerosole, wie sie vor allem bei offenen Bränden entstehen, sehr viel besser detektiert werden können.
Das Ansprechverhalten auf offene Brände kann noch weiter verbessert werden, wenn gemäss einer zweiten bevorzugten Ausführungsform des erfindungsgemässen Rauchmelders das Optikmodul so ausgebildet ist, dass das vom Lichtempfänger an die Auswerteschaltung abgegebene Signal eine Funktion des auf diesen auftreffenden, in einer Ebene polarisierten Streulichts ist.
Eine dritte bevorzugte Ausführungsform des erfindungsgemässen Rauchmelders ist dadurch gekennzeichnet, dass in der Auswerteschaltung eine Überlagerung des Signals des Lichtempfängers mit einem Kompensationssignal erfolgt, welches so gewählt ist, dass das Signal des Lichtempfängers auf den Wert null ausgeregelt wird.
Bei den bekannten Streulichtmeldern, wie beispielsweise bei dem in der DE-A-44 12 212 beschriebenen, sind die die Lichtquelle und der Lichtempfänger so angeordnet, dass ihre optischen Achsen in einer gemeinsamen horizontalen Ebene liegen und zueinander geknickt sind. Entlang des Seitenrandes des dosenförmig ausgebildeten Optikmoduls sind Labyrinthteile vorgesehen, die dazu dienen, die Strahlung der Lichtquelle und das Blickfeld des Lichtempfängers zu begrenzen und von aussen kommendes Licht am Eintritt in die Messkammer zu hindem. Je besser das Labyrinth diese Funktionen erfüllt, desto mehr behindert es aber das Eindringen von Rauch in die Messkammer, wodurch unter Umständen der Melder erst nach einer gewissen Verzögerung anspricht.
Durch die Erfindung soll nun auch das Eindringverhalten von Rauch in die Messkammer signifikant verbessert werden.
Diese Aufgabe wird bei einer vierten bevorzugten Ausführungsform des erfindungsgemässen Rauchmelders dadurch gelöst, dass die Anordnung von Lichtquelle und Lichtempfänger so gewählt ist, dass die von den optischen Achsen des sender- und des empfängerseitigen Strahlengangs aufgespannte Ebene schräg zur Horizontalebene verläuft.
Vorzugsweise verläuft die Achse des empfängerseitigen Strahlengangs vertikal zu derjenigen des senderseitigen Strahlengangs.
Da bei dieser Anordnung das Blickfeld des Empfängers je nach
Figure 00030001
Blickrichtung" durch den Boden oder den Deckel der Messkammer oder des Melders begrenzt wird, kann auf das Labyrinth nahezu vollständig verzichtet werden, so dass ein praktisch ungehinderter Raucheintritt in die Messkammer ermöglicht wird.
Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und der Zeichnungen näher erläutert; es zeigt:
Fig. 1
eine vereinfachte Ansicht des Optikmoduls eines ersten Ausführungsbeispiels eines erfindungsgemässen Streulichtmelder,
Fig. 2
ein Blockschaltbild eines Ausführungsbeispiels der Auswerteschaltung des Streulichtmelders von Fig. 1,
Fig. 3
eine schematische Darstellung eines zweiten Ausführungsbeispiels eines erfindungsgemässen Streulichtmelders,
Fig. 4
einen Querschnitt durch ein dritten Ausführungsbeispiel eines erfindungsgemässen Streulichtrauchmelder im Niveau der optischen Achse der Lichtquelle mit Blickrichtung gegen den Meldersockel; und
Fig. 5
einen schematischen Schnitt nach der Linie V-V von Fig. 4.
Das in Fig. 1 dargestellte Optikmodul 1 ist Teil eines Meldereinsatzes 2, der in einem vorzugsweise an der Decke des zu überwachenden Raumes montierten Sockel (nicht dargestellt) befestigbar ist. Das Optikmodul 1 besteht im wesentlichen aus einer optoelektronischen Messkammer 3 mit einer durch eine Leuchtdiode (LED) gebildeten Lichtquelle 4, einem ebenfalls durch eine Diode gebildeten Lichtempfänger 5, einer zentralen Blende 6 und einem sogenannten Labyrinth 7. Die zentrale Blende 6 verhindert, dass Lichtstrahlen auf direktem Weg von der Lichtquelle 4 zum Lichtempfänger 5 gelangen können, und das Labyrinth 7 dient als Lichtbarriere zur Begrenzung des Blickfelds des Lichtempfängers 5. Die Messkammer 3 ist durch eine Seitenwand 8 und durch einen nicht dargestellten Deckel lichtdicht abgeschlossen. Dieser Melderaufbau ist bekannt und wird hier nicht näher beschrieben. Es wird in diesem Zusammenhang auf die EP-A-0 772 170 und auf die Internationale Anmeldung PCT/CH 97/00269 verwiesen.
Die optischen Achsen der Lichtquelle 4 und des Lichtempfängers 5 liegen nicht auf einer gemeinsamen Geraden, sondern weisen einen geknickten Verlauf auf, wobei die zentrale Blende 6 nahe beim Schnittpunkt dieser beiden Achsen angeordnet ist. Das Labyrinth 7 unterdrückt das sogenannte Untergrundlicht, welches von unerwünschten Streuungen oder Reflexionen verursacht ist. Je besser dieses Untergrundlicht unterdrückt wird, desto tiefer ist der Grundpuls, das ist dasjenige Signal, das detektiert wird, wenn in der Messkammer 3 keine lichtstreuenden Partikel vorhanden sind. Der Schnittbereich des von der Lichtquelle 4 ausgesandten Strahlenbündels und des Gesichtsfeldes des Lichtempfängers 5 bildet den nachstehend als Streuraum bezeichneten eigentlichen Messbereich.
Die Lichtquelle 4 sendet kurze, intensive Lichtpulse in den Streuraum, wobei der Lichtempfänger 5 zwar den Streuraum, nicht aber die Lichtquelle 4 sieht". Das Licht der Lichtquelle 4 wird durch in den Streuraum eindringenden Rauch gestreut, und ein Teil dieses Streulichts fällt auf den Lichtempfänger 5. Das dadurch erzeugte Empfänger-Signal wird von einer Auswerteelektronik (Fig. 2) verarbeitet.
Die als Lichtquelle 4 verwendete Diode sendet anstatt der bisher üblichen Infrarotstrahlung mit einer Wellenlänge von etwa 880 nm rotes oder blaues Licht von einer Wellenlänge von etwa 660 nm bzw. 460 nm aus. Diese kürzeren Wellenlängen haben den Vorteil, dass kleinere Aerosole, wie sie vor allem bei offenen Bränden entstehen, sehr viel besser detektiert werden können, so dass sich, verglichen mit Infrarotstrahlung, das Ansprechverhalten auf offene Brände deutlich verbessert.
Das Ansprechverhalten auf offene Brände kann noch weiter verbessert werden, wenn vor dem Lichtempfänger 5 ein Polarisationsfilter angeordnet wird, das nur die Polarisationskomponente senkrecht zur Streuebene (das ist die Ebene, in der die optischen Achsen von Lichtquelle 4 und Lichtempfänger 5 liegen) durchlässt, oder wenn die Messkammer 3 mit polarisiertem Licht beaufschlagt wird. Bezüglich der Vorteile der Verwendung von Polarisationsfiltern und polarisiertem Licht wird auf die CH-A-682 428 verwiesen.
Gemäss Fig. 2 ist der Lichtquelle (LED) 4 ein erster Modulator 9 vorgeschaltet, durch den eine geeignete Modulation der von der Lichtquelle 4 ausgesandten Strahlung erfolgt. Vorzugsweise besteht diese Strahlung aus einer fortlaufenden Folge von Pulsen und Pulspausen, so dass die Messkammer 3 (Fig. 1) mit pulsierendem rotem oder blauem Licht beaufschlagt wird. Es kann auch sinnvoll sein, nach einer Folge einer bestimmten Anzahl von Pulsen und Pulspausen eine längere, vorbestimmte Sendepause einzufügen. In diesem Fall erfolgt die Bestrahlung der Messkammer durch intermittierend ausgesandte und von Sendepausen unterbrochene Impulszüge oder Impulspakete. Dabei können die Sendepausen zu den Impulszügen in einem festen oder in einem variablen zeitlichen Verhältnis stehen. Die Steuerung des ersten Modulators 9 erfolgt durch eine Steuerstufe 10, die ihren Takt von einem Taktgeber 11 erhält. Die Steuerstufe 10 bestimmt insbesondere die zeitliche Folge und die Länge der an die Lichtquelle 4 abgegebenen Signale.
Das an den Lichtempfänger 7 gelangende Streulicht wird in einen proportionalen Strom (Empfängersignal) Ie umgewandelt, der einem dem Lichtempfänger 5 nachgeschalteten Strom/Spannungswandler 12 zugeführt und von diesem in eine Spannung (Empfangssignal) Ue umgewandelt wird. Der Wandler 12 wirkt zusätzlich als eine Art Filter, indem er von natürlicher oder künstlicher Beleuchtung herrührendes Fremdlicht unterdrückt. In einem dem Strom/Spannungswandler 12 nachgeschalteten Frequenzfilter 13 werden aus dem Empfangssignal Ue unerwünschte Frequenzen herausgefiltert. Der Ausgang des Frequenzfilters 13 ist mit einer von der Steuerstufe 10 im Takt der Modulation der Lichtquelle 4 gesteuerten Weiche 14 verbunden.
Das von Störungen weitgehend befreite Ausgangssignal des Frequenzfilters 13 wird über die Weiche 14 abwechselnd einem von zwei Integratoren 15, 15' zugeführt. Dabei ist die Weiche 14 von der Steuerstufe 10 so gesteuert, das das Empfangssignal Ue während der Sendedauer der Impulse an den einen Integrator, beispielsweise an den Integrator 15, und während der Dauer der Pulspausen an den anderen Integrator, beispielsweise an den Integrator 15', geleitet wird. Während allfälliger Sendepausen zwischen den Impulszügen oder Impulspaketen verharrt die Weiche 14 in einer neutralen Stellung, in der keiner der beiden Integratoren 15 oder 15' mit dem Empfangssignal beaufschlagt ist. Die Weiche 14 ist vorzugsweise durch einen gesteuerten Schalter gebildet.
Aufgrund der Steuerung der Weiche 14 im Takt der Modulation erhält der Integrator 15 ausschliesslich das im Streuraum erzeugte Streulicht einschliesslich eventueller Reste des gefilterten Störsignals aus der Zeit der Sendepulse, und der Integrator 15' erhält nur eventuelle Reste des gefilterten Störsignals aus der Zeit der Pulspausen, so dass das Streulicht durch eine einfache Differenzbildung der Ausgangssignale der beiden Integratoren 15 und 15' gewonnen werden kann. Diese Differenzbildung erfolgt in einer den beiden Integratoren 15, 15' nachgeschalteten Stufe 16. Deren Ausgangssignal ist das von Störungen weitgehend gereinigte, auf den Lichtempfänger 5 treffende Streulicht, welches das Nutzsignal Un für die Signalauswertung bildet.
Das Nutzsignal Un wird einerseits einem Komparator 18 und andererseits dem einen Eingang eines zweiten Modulators 19 zugeführt, dessen zweiter Eingang mit der Steuerstufe 10 verbunden und dessen Ausgang über einen Widerstand 20 an den Eingang des Strom/Spannungswandlers 12 geführt ist. Der zweite Modulator 19 überlagert dem Signal des Lichtempfängers 5 im Gegentakt einen Kompensationsstrom Ik bis das Eingangssignal des Strom/Spannungswandlers 12 null beziehungsweise Ik = Ie wird. Durch die Schlaufenverstärkung von ≥ 109 gilt mit grosser Genauigkeit Un = Ie · R, wobei R den Wert des Widerstands 20 bezeichnet. Dies gilt auch für Schlaufenverstärkungen mit einer Abweichung von mehreren Zehnerpotenzen. Dieser Regelkreis kann mit einer selbstabgleichenden Brückenschaltung verglichen werden. Bei entsprechend sachgemässem Aufbau erlaubt diese Schaltung die Auflösung von Fotoströmen bis in den Bereich von Pikoampere. Der Komparator 18 vergleicht das Nutzsignal Un mit mindestens einem Schwellenwert und liefert bei dessen Überschreitung ein entsprechendes Signal an einen Alarmausgang 21.
Das Signal am Alarmausgang 21 kann weiter ausgewertet, beispielsweise auf Plausibilität überprüft werden, was im Melder oder in der zugehörigen Zentrale erfolgen kann, oder es wird ohne Weiterverarbeitung an die Zentrale geleitet, wo dann der entsprechende Zustand registriert und gegebenenfalls Alarm ausgelöst wird. Das Signal am Alarmausgang 21 kann auch zusätzlich oder alternativ eine im Melder angeordnete Leuchtdiode aktivieren.
Wie in Fig. 3 schematisch angedeutet ist, ist es auch möglich, anstatt eines Messkanals zwei Messkanäle vorzusehen, von denen beispielsweise der eine konventionell aufgebaut ist und eine Infrarot-Senderdiode 4 und eine Empfangsdiode 5 und der andere eine farbige LED und/ oder ein Polarisationsfilter 22 enthält. Vorzugsweise sind zwei Senderdioden und eine Empfangsdiode oder eine Senderdiode und zwei Empfangsdioden 5, 5' vorgesehen sein, wobei im letzteren Fall der zweiten Empfangsdiode 5' ein Polarisationsfilter 22 vorgeschaltet oder die zweite Empfangsdiode als Rückwärtsstreuer 5", eventuell mit vorgeschaltetem Polarisationsfilter 22', ausgebildet sein kann. Das Polarisationsfilter 22 kann auch zwischen Senderdiode 4 und Messkammer 3 angeordnet sein.
Der in den Figuren 3 und 4 dargestellte Streulichtmelder unterscheidet sich von dem in Fig. 1 dargestellten im wesentlichen dadurch, dass die optischen Achsen von sender- und empfängerseitigem Strahlengang nicht in einer gemeinsamen horizontalen sondern in einer zur Horizontalebene geneigten Ebene liegen, so dass der Lichtempfänger 5 nicht in horizontaler Richtung sondern schräg von oben nach unten oder umgekehrt blickt".
Darstellungsgemäss verläuft die optische Achse des empfängerseitigen Strahlengangs vertikal von oben nach unten, sie könnte aber auch in der Gegenrichtung verlaufen und ihr Neigungswinkel zur optischen Achse des senderseitigen Strahlengangs könnte auch kleiner oder grösser als 90° sein. Wesentlich ist, dass die optische Achse des empfängerseitigen Strahlengans so orientiert ist, dass das Blickfeld des Empfängers nicht durch ein den Raucheintritt in die Messkammer hemmendes Bauteil begrenzt werden muss.
Der Meldereinsatz 2 hat im wesentlichen die Form einer flachen nach oben offenen runden Dose, in deren Innenraum eine Leiterplatte (nicht dargestellt) mit der Auswerteelektronik angeordnet ist. Über den Meldereinsatz 2 ist eine Melderhaube 23 gestülpt, welche mit Raucheintrittsschlitzen 24 versehen ist. An der Unterseite des Bodens des Meldereinsatzes 2 sind ein Gehäuse 25 mit dem Lichtsender 4 und Haltemittel 26 für den mit dem Bezugszeichen 27 bezeichneten, die Messkammer 3 nach unten abschliessenden Deckel vorgesehen.
Der Deckel 27 trägt eine nach oben gegen den Boden des Meldereinsatzes 2 ragende Lichtbarriere 28. Zwischen der Lichtquelle 4 und der Lichtbarriere 28 ist die Messkammer 3 gebildet. Die Seitenwand 8 des Deckels 27 ist bis auf die Lichtbarriere 28 weitgehend offen, wodurch ein möglichst ungehinderter Zutritt von Rauch in die Messkammer 3 gewährleistet ist. Über den am Boden des Meldereinsatzes 2 befestigten Deckel 27 ist aussen ein der Form des Deckels angepasstes Insektengitter 29 geschoben, welches ebenfalls an den Haltemitteln 26 befestigt ist.
Die Achse des von der Lichtquelle 4 ausgesandten Strahlkegels verläuft quer durch den Messraum 3 in einer horizontalen Ebene parallel zum Boden des Meldereinsatzes 2. Die Lichtbarriere 28 verhindert, dass das von der Lichtquelle 4 ausgesandte Licht aus dem Melder seitlich nach aussen dringen kann. Der Lichtempfänger 5 ist in der Mitte des Bodens des Meldereinsatzes 2 angeordnet, und liegt darstellungsgemäss knapp oberhalb von diesem. Der Boden des Meldereinsatzes 2 weist unterhalb des Lichtempfängers 5 und fluchtend mit diesem eine Durchbrechung auf, die gegen den Messraum 13 von einer ringförmigen Blende 30 umgeben ist und in die vorzugsweise eine Linse 31 eingesetzt ist.
Der Lichtempfänger 5, die Blende 30 und gegebenenfalls die Linse 31 definieren die optische Achse des empfängerseitigen Strahlengangs, die in vertikaler Richtung verläuft und die horizontale senderseitige optische Achse senkrecht kreuzt. Der Lichtempfänger 5 blickt also gleichsam von oben auf das von der Lichtquelle 4 ausgesandte Strahlenbündel. Der den eigentlichen Messbereich bildende Streuraum im Schnittbereich des sender- und des empfängerseitigen Strahlenbündels ist mit dem Bezugszeichen 32 bezeichnet.
Das Blickfeld des Lichtempfängers 5 wird durch den Boden des Deckels 27 und durch die Melderhaube 23 begrenzt und eine direkte Bestrahlung des Lichtempfängers 5 mit Fremdlicht wird durch die Blende 30 verhindert. Dadurch verliert die Seitenwand 27 ihre bisherige Funktionen und kann weggelassen werden, wodurch das Eindringverhalten von Rauch und Aerosolen in die Messkammer 3 merklich verbessert wird. Die über einen kurzen Bereich der Seitenwand des Deckels 27 noch vorhandene und von der Funktion her nicht zwingend notwendige Lichtbarriere 28 hat auf das Eindringverhalten von Rauch praktisch keinen Einfluss.
Selbstverständlich können die anhand der in den Figuren 1, 3 sowie 4 und 5 dargestellten Ausführungsbeispiele beschriebenen Anordnungen sowohl einzeln für sich als auch in beliebiger Kombination realisiert werden. Es kann also die farbige Sender-LED von Fig. 1 auch in einem Melder nach den Figuren 4 und 5 eingesetzt werden, und ebenso könnte der Melder gemäss den Fig. 4 und 5 zwei Messkanäle und/oder Polarisationsfilter aufweisen. Die in Fig. 2 dargestellte Auswerteschaltung ist ebenfalls bei allen Ausführungsbeispielen einsetzbar, wobei gewisse geringfügige Anpassungen erforderlich sind.

Claims (10)

  1. Optischer Rauchmelder mit einem Meldereinsatz (2), einem Optikmodul (1) und einer Auswerteschaltung, wobei das Optikmodul (1) eine Lichtquelle (4, 4'), eine Messkammer (3) und einen mit der Auswerteschaltung verbundenen Lichtempfänger (5, 5') aufweist, dadurch gekennzeichnet, dass die Lichtquelle (4) zur Aussendung einer Strahlung im Wellenlängenbereich des sichtbaren Lichts ausgebildet ist.
  2. Rauchmelder nach Anspruch 1, dadurch gekennzeichnet, dass die Wellenlänge der von der Lichtquelle (4) ausgesandten Strahlung im Bereich von blauem oder rotem Licht liegt und vorzugsweise 460 nm beziehungsweise 660 nm beträgt.
  3. Rauchmelder nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Optikmodul (1) so ausgebildet ist, dass das vom Lichtempfänger (5') an die Auswerteschaltung abgegebene Signal eine Funktion des auf diesen auftreffenden, in einer Ebene polarisierten Streulichts ist.
  4. Rauchmelder nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zwei Messkanäle mit entweder einem Lichtsender (4) und zwei Lichtempfängern (5, 5', 5'') oder zwei Lichtsendern (4) und einem Lichtempfänger (5) vorgesehen sind, wobei in einem der Messkanäle ein Polarisationsfilter (22) angeordnet ist.
  5. Rauchmelder nach Anspruch 4, dadurch gekennzeichnet, dass bei einer Anordnung mit zwei Lichtsendern (4) und einem Lichtempfänger (5) einer der Lichtsender (4) durch eine farbiges Licht aussendende Diode gebildet ist.
  6. Rauchmelder nach Anspruch 4, dadurch gekennzeichnet, dass bei einer Anordnung mit zwei Lichtempfängern (5, 5', 5'') einer der Lichtempfänger (5'') mit Rückwärts-Streulicht beaufschlagt ist.
  7. Rauchmelder nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in der Auswerteschaltung eine Überlagerung des Signals (Ie) des Lichtempfängers (5, 5') mit einem Kompensationssignal (Ik) erfolgt, welches so gewählt ist, dass das Signal des Lichtempfängers (5, 5') auf den Wert null ausgeregelt wird.
  8. Rauchmelder nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Anordnung von Lichtquelle (4, 4') und Lichtempfänger (5, 5') so gewählt ist, dass die von den optischen Achsen des sender- und des empfängerseitigen Strahlengangs aufgespannte Ebene schräg zur Horizontalebene verläuft.
  9. Rauchmelder nach Anspruch 8, dadurch gekennzeichnet, dass die Achse des empfängerseitigen Strahlengangs vertikal zu derjenigen des senderseitigen Strahlengangs verläuft.
  10. Rauchmelder nach Anspruch 9, dadurch gekennzeichnet, dass der Meldereinsatz (2) an seinem Boden ein Gehäuse (25) mit der Lichtquelle (4) und Haltemittel (26) für einen die Messkammer (3) nach unten begrenzenden Deckel (27) mit einer weitgehend offenen Seitenwand (8) aufweist, und dass der Lichtempfänger (5) im Bereich des Bodens des Meldereinsatzes (2) angeordnet ist.
EP97122894A 1997-12-24 1997-12-24 Optischer Rauchmelder Expired - Lifetime EP0926646B8 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE59711621T DE59711621D1 (de) 1997-12-24 1997-12-24 Optischer Rauchmelder
AT97122894T ATE284603T1 (de) 1997-12-24 1997-12-24 Optischer rauchmelder
EP97122894A EP0926646B8 (de) 1997-12-24 1997-12-24 Optischer Rauchmelder
PT97122894T PT926646E (pt) 1997-12-24 1997-12-24 Detector optico de fumo
ES97122894T ES2221946T3 (es) 1997-12-24 1997-12-24 Detector de humo optico.
DK97122894T DK0926646T3 (da) 1997-12-24 1997-12-24 Optisk rögdetektor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97122894A EP0926646B8 (de) 1997-12-24 1997-12-24 Optischer Rauchmelder

Publications (3)

Publication Number Publication Date
EP0926646A1 true EP0926646A1 (de) 1999-06-30
EP0926646B1 EP0926646B1 (de) 2004-05-12
EP0926646B8 EP0926646B8 (de) 2004-09-22

Family

ID=8227883

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97122894A Expired - Lifetime EP0926646B8 (de) 1997-12-24 1997-12-24 Optischer Rauchmelder

Country Status (6)

Country Link
EP (1) EP0926646B8 (de)
AT (1) ATE284603T1 (de)
DE (1) DE59711621D1 (de)
DK (1) DK0926646T3 (de)
ES (1) ES2221946T3 (de)
PT (1) PT926646E (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1087352A1 (de) * 1999-09-22 2001-03-28 Siemens Building Technologies AG Optischer Rauchmelder
EP1103937A1 (de) * 1999-11-19 2001-05-30 Siemens Building Technologies AG Brandmelder
WO2001050432A1 (en) * 1999-12-31 2001-07-12 Digital Security Controls, Ltd. Photoelectric smoke detector and chamber therefor
EP1701161A2 (de) 2005-03-08 2006-09-13 Robert Bosch Gmbh Gassensor
EP1732049A1 (de) 2005-06-10 2006-12-13 Siemens S.A.S. Brand- oder Rauchmelder mit erhöhter Fehlalarmunterdrükungsleistung
US7365846B2 (en) 2002-06-20 2008-04-29 Siemens Aktiengesellschaft Scattered light smoke detector
US7463159B2 (en) 2002-06-20 2008-12-09 Siemens Building Technologies Ag Fire detector
DE19902319B4 (de) * 1999-01-21 2011-06-30 Novar GmbH, Albstadt-Ebingen Zweigniederlassung Neuss, 41469 Streulichtbrandmelder
DE102015117361A1 (de) 2014-10-13 2016-04-14 Universität Duisburg-Essen Vorrichtung zur Identifikation von Aerosolen
EP3029647A1 (de) * 2014-12-04 2016-06-08 Siemens Schweiz AG Offener Streulichtrauchmelder, insbesondere mit einer Sidelooker-LED
WO2018089660A1 (en) * 2016-11-11 2018-05-17 Carrier Corporation High sensitivity fiber optic based detection
WO2020064935A1 (de) 2018-09-28 2020-04-02 Siemens Schweiz Ag Streulichtrauchmelder mit einer zweifarben-led, einem photosensor und einem dem photosensor vorgeschalteten oder der zweifarben-led nachgeschalteten wellenlängenselektiven polarisator sowie geeignete verwendung eines solchen polarisators
CN111795951A (zh) * 2020-05-28 2020-10-20 南京颗粒光电科技有限公司 一种新能源电池热失控检测用一体化传感器及预警方法
US10957176B2 (en) 2016-11-11 2021-03-23 Carrier Corporation High sensitivity fiber optic based detection
US11127270B2 (en) 2016-11-11 2021-09-21 Carrier Corporation High sensitivity fiber optic based detection
US11132883B2 (en) 2016-11-11 2021-09-28 Carrier Corporation High sensitivity fiber optic based detection
US11145177B2 (en) 2016-11-11 2021-10-12 Carrier Corporation High sensitivity fiber optic based detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0031096A1 (de) * 1979-12-20 1981-07-01 Heimann GmbH Optische Anordnung für einen Rauchmelder nach dem Lichtstreuungsprinzip
EP0530723A1 (de) * 1991-09-06 1993-03-10 Cerberus Ag Optischer Rauchmelder mit aktiver Überwachung
CH682428A5 (de) * 1991-09-13 1993-09-15 Cerberus Ag Optischer Rauchmelder.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0031096A1 (de) * 1979-12-20 1981-07-01 Heimann GmbH Optische Anordnung für einen Rauchmelder nach dem Lichtstreuungsprinzip
EP0530723A1 (de) * 1991-09-06 1993-03-10 Cerberus Ag Optischer Rauchmelder mit aktiver Überwachung
CH682428A5 (de) * 1991-09-13 1993-09-15 Cerberus Ag Optischer Rauchmelder.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. S. GOODMAN: "METHOD FOR LOCALIZING LIGHT SCATTERED PARTICLES", IBM TECHNICAL DISCLOSURE BULLETIN, vol. 27, no. 5, October 1984 (1984-10-01), pages 3164, XP002066860 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19902319B4 (de) * 1999-01-21 2011-06-30 Novar GmbH, Albstadt-Ebingen Zweigniederlassung Neuss, 41469 Streulichtbrandmelder
EP1087352A1 (de) * 1999-09-22 2001-03-28 Siemens Building Technologies AG Optischer Rauchmelder
EP1103937A1 (de) * 1999-11-19 2001-05-30 Siemens Building Technologies AG Brandmelder
CZ301163B6 (cs) * 1999-11-19 2009-11-25 Siemens Aktiengesellschaft Hlásic požáru
WO2001050432A1 (en) * 1999-12-31 2001-07-12 Digital Security Controls, Ltd. Photoelectric smoke detector and chamber therefor
AU775466B2 (en) * 1999-12-31 2004-08-05 Tyco Safety Products Canada Ltd Photoelectric smoke detector and chamber therefor
US7463159B2 (en) 2002-06-20 2008-12-09 Siemens Building Technologies Ag Fire detector
US7365846B2 (en) 2002-06-20 2008-04-29 Siemens Aktiengesellschaft Scattered light smoke detector
EP1701161A3 (de) * 2005-03-08 2007-04-25 Robert Bosch Gmbh Gassensor
US7791056B2 (en) 2005-03-08 2010-09-07 Robert Bosch Gmbh Gas sensor for use as a fire detector
EP1701161A2 (de) 2005-03-08 2006-09-13 Robert Bosch Gmbh Gassensor
US7760102B2 (en) 2005-06-10 2010-07-20 Siemens Ag Fire or smoke detector with high false alarm rejection performance
EP1732049A1 (de) 2005-06-10 2006-12-13 Siemens S.A.S. Brand- oder Rauchmelder mit erhöhter Fehlalarmunterdrükungsleistung
EP3096130A2 (de) 2014-10-13 2016-11-23 Universität Duisburg-Essen Vorrichtung zur identifikation von aerosolen
DE102015117361A1 (de) 2014-10-13 2016-04-14 Universität Duisburg-Essen Vorrichtung zur Identifikation von Aerosolen
EP3029647B1 (de) 2014-12-04 2017-05-31 Siemens Schweiz AG Offener Streulichtrauchmelder, insbesondere mit einer Sidelooker-LED
US9666048B2 (en) 2014-12-04 2017-05-30 Siemens Schweiz Ag Scattered light smoke detector of the open type, in particular having a sidelooker led
EP3029647A1 (de) * 2014-12-04 2016-06-08 Siemens Schweiz AG Offener Streulichtrauchmelder, insbesondere mit einer Sidelooker-LED
WO2018089660A1 (en) * 2016-11-11 2018-05-17 Carrier Corporation High sensitivity fiber optic based detection
US10957176B2 (en) 2016-11-11 2021-03-23 Carrier Corporation High sensitivity fiber optic based detection
US11127270B2 (en) 2016-11-11 2021-09-21 Carrier Corporation High sensitivity fiber optic based detection
US11132883B2 (en) 2016-11-11 2021-09-28 Carrier Corporation High sensitivity fiber optic based detection
US11145177B2 (en) 2016-11-11 2021-10-12 Carrier Corporation High sensitivity fiber optic based detection
US11151853B2 (en) 2016-11-11 2021-10-19 Carrier Corporation High sensitivity fiber optic based detection
WO2020064935A1 (de) 2018-09-28 2020-04-02 Siemens Schweiz Ag Streulichtrauchmelder mit einer zweifarben-led, einem photosensor und einem dem photosensor vorgeschalteten oder der zweifarben-led nachgeschalteten wellenlängenselektiven polarisator sowie geeignete verwendung eines solchen polarisators
US11506590B2 (en) 2018-09-28 2022-11-22 Siemens Schweiz Ag Scattered light smoke detector having a two-color LED, a photosensor, and a wavelength-selective polarizer connected upstream of the photosensor or connected downstream of the two-color LED, and suitable use of such a polarizer
CN111795951A (zh) * 2020-05-28 2020-10-20 南京颗粒光电科技有限公司 一种新能源电池热失控检测用一体化传感器及预警方法

Also Published As

Publication number Publication date
ATE284603T1 (de) 2004-05-15
ES2221946T3 (es) 2005-01-16
PT926646E (pt) 2004-10-29
EP0926646B8 (de) 2004-09-22
DE59711621D1 (de) 2004-06-17
DK0926646T3 (da) 2004-09-20
EP0926646B1 (de) 2004-05-12

Similar Documents

Publication Publication Date Title
EP0926646B1 (de) Optischer Rauchmelder
DE3831654C2 (de)
DE3514982C2 (de)
DE2851444C2 (de) Lichtgitter
DE2749494A1 (de) Optischer rauchdetektor
CH683464A5 (de) Optischer Rauchmelder mit aktiver Ueberwachung.
DE3134815C2 (de) Flächensicherung
DE4328671B4 (de) Streulichtrauchmelder
WO2008017698A1 (de) Streulicht-rauchmelder
EP0821330B1 (de) Rauchmelder
EP0711442B1 (de) Aktiver infrarotmelder
EP1061489A1 (de) Intrusionsmelder mit einer Einrichtung zur Sabotageüberwachung
DE102005011116B4 (de) Vorrichtung zur Ansteuerung und/oder Überwachung eines Flügels
EP0200186B1 (de) Lichtschranke
EP2093731A1 (de) Linearer optischer Rauchmelder mit mehreren Teilstrahlen
DE2703225A1 (de) Rauchdetektor-anordnung
DE2632876A1 (de) Rauchdetektor
EP1087352A1 (de) Optischer Rauchmelder
DE2709866A1 (de) Vorrichtung zur feststellung von schwebeteilchen
DE2908099C2 (de) Rauchdetektor
DE2916086B2 (de) Einrichtung zum Melden von optischen Feuererscheinungen, insbesondere Funken
EP0014874B1 (de) Mit Strahlunsimpulsen arbeitender Brandmelder
DE102019110336A1 (de) Rauchmelder
DE2855026A1 (de) Ueberwachungseinrichtung, insbesondere zum schutz gegen einbruch, diebstahl u.dgl.
DE2908100C2 (de) Rauchdetektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991214

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB IE IT LI LU NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS BUILDING TECHNOLOGIES AG

17Q First examination report despatched

Effective date: 20030211

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040512

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59711621

Country of ref document: DE

Date of ref document: 20040617

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI LU NL PT SE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20040811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041224

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2221946

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050215

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SIEMENS BUILDING TECHNOLOGIES AG C-IPR

Free format text: SIEMENS BUILDING TECHNOLOGIES AG#BELLERIVESTRASSE 36#8034 ZUERICH (CH) -TRANSFER TO- SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH)

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: SIEMENS SCHWEIZ AG, US

Effective date: 20080829

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Effective date: 20080829

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS AKTIENGESELLSCHAFT

Free format text: SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090514 AND 20090520

BECA Be: change of holder's address

Owner name: SIEMENS A.G.WITTELSBACHERPLATZ 2, DE-80333 MUENCHE

Effective date: 20100423

BECH Be: change of holder

Owner name: SIEMENS A.G.

Effective date: 20100423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20101207

Year of fee payment: 14

Ref country code: AT

Payment date: 20101110

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101209

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20110318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101229

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20111220

Year of fee payment: 15

Ref country code: FI

Payment date: 20111214

Year of fee payment: 15

Ref country code: FR

Payment date: 20111227

Year of fee payment: 15

Ref country code: IE

Payment date: 20111228

Year of fee payment: 15

Ref country code: SE

Payment date: 20111213

Year of fee payment: 15

Ref country code: PT

Payment date: 20111128

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120305

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120117

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120117

Year of fee payment: 15

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20121231

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20130624

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 284603

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121224

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130624

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121224

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59711621

Country of ref document: DE

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121224

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130702

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121224

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121224

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121225