EP0922297B1 - Fluorescent lamp - Google Patents

Fluorescent lamp Download PDF

Info

Publication number
EP0922297B1
EP0922297B1 EP98931925A EP98931925A EP0922297B1 EP 0922297 B1 EP0922297 B1 EP 0922297B1 EP 98931925 A EP98931925 A EP 98931925A EP 98931925 A EP98931925 A EP 98931925A EP 0922297 B1 EP0922297 B1 EP 0922297B1
Authority
EP
European Patent Office
Prior art keywords
wall
discharge vessel
electrode
electrodes
fluorescent lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98931925A
Other languages
German (de)
French (fr)
Other versions
EP0922297A1 (en
Inventor
Frank Vollkommer
Lothar Hitzschke
Simon Jerebic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitzschke Lothar Dr
Vollkommer Frank Dr
Osram GmbH
Original Assignee
Hitzschke Lothar Dr
Vollkommer Frank Dr
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitzschke Lothar Dr, Vollkommer Frank Dr, Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Hitzschke Lothar Dr
Publication of EP0922297A1 publication Critical patent/EP0922297A1/en
Application granted granted Critical
Publication of EP0922297B1 publication Critical patent/EP0922297B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/76Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a filling of permanent gas or gases only
    • H01J61/78Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a filling of permanent gas or gases only with cold cathode; with cathode heated only by discharge, e.g. high-tension lamp for advertising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/80Lamps suitable only for intermittent operation, e.g. flash lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0672Main electrodes for low-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/01Fluorescent lamp circuits with more than two principle electrodes

Definitions

  • the invention is based on a fluorescent lamp according to the preamble of claim 1.
  • the invention also relates to a method for its Operation according to the preamble of claim 11.
  • dielectric electrodes are hereinafter also abbreviated as "dielectric electrodes”.
  • the dielectric layer can through the wall of the discharge vessel itself be formed by the electrodes outside the discharge vessel, are arranged on the outer wall.
  • An advantage of this version with external electrodes is that there are no gas-tight feedthroughs must be passed through the wall of the discharge vessel.
  • the thickness of the dielectric layer - an important parameter, which among other things the ignition voltage and the burning voltage of the discharge influenced - essentially by the requirements for the discharge vessel, especially its mechanical strength. Since the Height of the required supply voltage with the thickness of the dielectric Layer increases, there are the following disadvantages. In First of all, the power supply provided for the operation of the flat radiator must be used can be designed for the higher voltage requirements. This is usually associated with additional costs and larger external dimensions. There are also higher safety precautions to protect against contact required. Finally, undesirably high electromagnetic Radiations become problematic.
  • the dielectric layer can also be at least in the form of a partial cladding or layer of at least one within the discharge vessel arranged electrode can be realized. That has the advantage, that the thickness of the dielectric layer depends on the discharge properties can be optimized.
  • inner electrodes require gas-tight Current feedthroughs. As a result, additional manufacturing steps are required which usually makes the production more expensive.
  • fluorescent lamps with a tubular, Discharge vessel closed on both sides, its inner wall is at least partially coated with a phosphor.
  • OA O ffice A utomation
  • the signal light for example as brake and turn signal light in automobiles
  • auxiliary such as the interior lighting of motor vehicles
  • backlighting of displays for example liquid crystal displays
  • both a high luminance and uniform luminance over the length of the lamp is also necessary.
  • the lamps are used for OA usually provided with an aperture along the longitudinal axis.
  • coupled power increase because the load of a lamp for one permanent and reliable operation cannot be increased arbitrarily can.
  • the previously in the copiers and Systems used by scanners increase the efficiency of the discharge Power coupling decreases.
  • a noble gas discharge lamp for is already known from the document US Pat. No. 5,117,160 OA devices known.
  • On the outer surface of the wall of a tubular Discharge vessel are two strip-shaped electrodes along the longitudinal axis of the lamp arranged.
  • the lamp comes with an AC voltage preferred frequency operated between 20 kHz and 100 kHz. Operational the 147 nm xenon line is excited.
  • One disadvantage is one not completely transparent due to protection against accidental contact
  • the protective layer also has that Function to prevent parasitic surface discharge.
  • a tubular discharge lamp is included in US Pat. No. 5,604,410 circular cross-section, with a strip-shaped outer electrode and a rod-shaped inner electrode is disclosed.
  • the rod-shaped inner electrode is eccentric in the with the help of two bow-shaped power supplies Close to the inner wall and parallel to the longitudinal axis of the discharge vessel arranged.
  • the two power supplies are each one Crushing by means of melting the plate with the discharge vessel is connected gastight, led to the outside.
  • the outer electrode is diametrical fixed opposite on the outer wall. They are disadvantageous relatively complex and consequently expensive construction for the attachment of the metallic electrode rod inside the lamp as well as the two bruises.
  • the metallic inner electrode rod must be relatively thick be carried out to ensure the necessary rigidity.
  • the basic idea of the invention is based on the knowledge that on the one hand the Impact range of the pulsed, dielectric barrier discharge for a high electrical power input should be as large as possible. On the other hand, should the arrangement of all electrodes on the outer wall of the discharge vessel and the associated disadvantages are avoided.
  • the pulsed, dielectric barrier discharge To strive for a constant stroke length along the discharge tube. This is therefore important to ensure the same ignition conditions for all individual discharges during operation (see US Pat. No. 5,604,410) along the electrodes. This ensures that the individual discharges Form lined up along the entire length of the electrode (assuming sufficient electrical input power) and consequently one Basic requirement for achieving a high and homogeneous luminance the lamp is satisfied.
  • a first way according to the invention to solve this problem suggests before, at least one or all of the electrodes on the inner wall of the Arrange discharge vessel.
  • the following is such an electrode abbreviated as "inner wall electrode”.
  • the concept can up to a maximum of the entire inner diameter can be used as a striking distance.
  • One advantage is the good thermal coupling of the Electrodes over the vascular material to the outside. This ensures that the inner wall electrodes do not move from the inner wall even in continuous operation peel off. As a result, the stroke length remains constant.
  • the inner wall electrode is considered to be electrically conductive, if necessary "Line-like" strips - similar to an electrical conductor track - formed and oriented parallel to the longitudinal axis of the tubular discharge vessel.
  • the strip can e.g. in the form of liquid conductive silver or similar on the inner wall be applied.
  • the strip is then solidified, e.g. by baking.
  • the inner wall electrode is also as Implementation further trained including external power supply. Is to the tubular discharge vessel at least at one of its two ends sealed with a stopper which is soldered, e.g. Glass solder, gas-tight with the inner wall of the vessel end is connected.
  • the inner wall electrode is guided gas-tight to the outside through the solder, i.e.
  • the inner wall electrode goes into an implementation in the range of the solder and finally into an external power supply outside the vessel.
  • inner wall electrode, their associated implementation and associated external power supply as functionally different Sub-areas of a single common, track-like structure educated. This structure is a key to realizing the inner wall electrode This concept can be simply put Realize wisely and with relatively few components and is about it easy to automate.
  • At least one inner wall electrode uses a relatively thick conductor track. Too small a conductor path carries the risk of cracking due to local overheating of the conductor track. The warming of the Conductor path through the ohmic part of the conductor path current is the higher, the smaller the cross section of the conductor track.
  • Typical thicknesses for conductive silver strips are in the Range from approx. 5 ⁇ m to approx. 50 ⁇ m, preferably in the range from approx. 5.5 ⁇ m to approx. 30 ⁇ m, particularly preferably in the range from approx. 6 ⁇ m to approx. 15 ⁇ m.
  • one or more further electrodes are arranged on the outer wall or also on the inner wall.
  • at least part of the inner wall has a phosphor layer.
  • one or more reflection layers for visible light for example made of Al 2 O 3 and / or TiO 2 , can be applied below the phosphor layer. This may prevent some of the light emitted by the phosphor layer from being transmitted through the vessel wall. Rather, the light is essentially directed onto the aperture by reflection or multiple reflection, and consequently the luminance is increased there.
  • the phosphor layer itself can also additionally be used as a reflection layer, in that the phosphor layer is applied sufficiently thick.
  • the fluorescent lamp has two electrodes on, each with a strip-shaped electrode on the outer and inner wall is arranged. If the lamp is for use with bipolar Voltage pulses is provided, the inner wall electrode is additional completely covered with a dielectric layer. For use with This double-sided dielectric impedance is unipolar voltage pulses not absolutely necessary (see US Pat. No. 5,604,410). Security of touch To ensure the inner wall electrode in the latter case associated with high voltage potential.
  • both electrodes are on the inner wall of the discharge vessel arranged, at least one of the two electrodes is completely covered with a dielectric layer. Should the lamp go with bipolar voltage pulses are operated, both electrodes are corresponding dielectric coated.
  • both variants arise during operation a discharge level, which is located within the discharge vessel between extends both electrodes. There are a large number of individual discharges at this level lined up side by side along the electrodes that are in the Borderline transition into a kind of curtain-like discharge form. To the To increase the luminance of the lamp, more levels of discharge within of the discharge vessel are generated.
  • the lamp has three or more electrodes. With three electrodes, two discharge levels can already be created generate that have a common electrode. Preferably this is the (temporary) cathode and unipolar voltage pulses the other two electrodes are connected as anodes.
  • four electrodes can be either two independent discharge levels or realize three discharge levels with a common electrode, depending on whether the four electrodes as two cathodes and two anodes or are connected as a cathode and three anodes. In principle, you can in this way also generate more than three discharge levels. However the number of electrode strips required for this in practice Due to space constraints.
  • the electrodes are advantageously oriented so that in Cross section looks at the perpendicular bisectors of the respective discharge planes cut the phosphor layer. This ensures that UV (ultraviolet) radiation maximum of the discharge level on the phosphor layer falls.
  • a second way according to the invention to solve the above-mentioned problem suggests at least one electrode inside the wall of the Arrange discharge vessel.
  • the following is such an electrode shortened also referred to as "vessel wall electrode”.
  • the associated counter electrode up to a maximum of the entire inside diameter can be used as the stroke distance.
  • the advantage of this The solution is that even when operating with bipolar voltage pulses additional dielectric is required.
  • the effective one for unloading the dielectric layer is namely through a part of the vessel wall itself formed by the part of the wall that the electrode in Covered towards the inside of the discharge vessel.
  • the thickness of the effective dielectric layer is determined here by the depth at which the electrode is embedded in the vessel wall. That's why it is also required the electrode, e.g.
  • the fluorescent lamp according to the second solution in principle the same features as the fluorescent lamp according to the first solution.
  • the inner wall electrode is replaced by the vessel wall electrode.
  • both solutions can also be combined, i.e. at least one electrode each is both on the inner wall and inside arranged the vessel wall. Furthermore, one or more can also in this case Electrodes arranged on the outer wall of the discharge vessel his.
  • tubular discharge vessel can also be curved.
  • discharge direction is substantially perpendicular to the lamp longitudinal axis runs, almost any shape can be realized, in particular also circular, without affecting the discharge.
  • an inert gas in particular xenon, or an inert gas mixture.
  • FIGs 1a and 1b show the longitudinal or cross section of an aperture fluorescent lamp 1 for OA applications in a schematic representation.
  • the Lamp 1 consists essentially of a tubular discharge vessel 2 with a circular cross section and a first and a second strip-shaped electrode 3,4.
  • the inner wall of the discharge vessel 2 has a phosphor layer 6 with the exception of a rectangular aperture 5 on.
  • the discharge vessel 2 is at its first end with one from the vessel shaped dome 7 and gas-tight at its second end by means of plugs 8 locked.
  • the plug 8 is gas-tight with the inner wall by means of glass solder 9 connected to the end of the vessel.
  • Inside the discharge vessel 2 is xenon with a filling pressure of 21.3 kPa (160 torr).
  • the first electrode 3 provided as an anode is designed as a metal foil strip, on the outer wall of the discharge vessel 2 parallel to Pipe longitudinal axis is arranged.
  • the other electrode intended as a cathode 4 consists of a conductive silver strip arranged diametrically to the anode, the liquid state with the help of a cannula on the inner wall of the discharge vessel 2 was applied and then baked (Inner wall electrode).
  • the layer thickness is approx. 10 ⁇ m.
  • the cathode 4 is in a bushing area 10 between the plug 8 and the Inner wall of the second end of the discharge vessel 2 gas-tight led to the outside and there goes into an external power supply 11 about. In this way, the cathode 4, its associated implementation 10 and associated external power supply 11 as functional different sub-areas of a single common, track-like Structure trained.
  • the glass solder 9 enables in this area 10 the gas-tight passage of the cathode 4.
  • the respective width of the anode and cathode strips is 0.9 mm and 0.8 mm, respectively.
  • the outer diameter of the tubular discharge vessel 2 made of glass is approximately 9 mm with a wall thickness of approximately 0.5 mm.
  • the width and the length of the aperture 5 are approximately 6.5 mm and 255 mm, respectively.
  • the phosphor layer 6 is a three-band phosphor. It consists of a mixture of the blue component BaMgAl 10 O 17 : Eu, the green component LaPO 4 : Ce, Tb and the red component (Y, Gd) BO 3 : Eu.
  • FIGs 2 to 5 are further cross sections of an inventive Fluorescent lamp, similar to the lamp shown in Figure 1a, with and without Aperture is shown schematically. They differ from one another in essentially through the electrode configuration. The same characteristics designated with the same reference numerals.
  • the lamp in FIG. 2 has a first and a second inner wall electrode 12.4 on. Since both electrodes are located inside the discharge vessel 2 are located, the first electrode 12 is covered with a dielectric layer 13 (unilaterally dielectric discharge). This is in the unipolar pulsed operation according to US-PS 5,604,410 provided as an anode.
  • the lamp in FIG. 3 has two outer wall electrodes 3a, 3b and one Inner wall electrode 4.
  • the outer wall electrodes 3a, 3b are as the anode and the inner wall electrode 4 is provided as the cathode. Consequently, two are formed in the pulsed operation according to US Pat. No. 5,604,410 Layers with single discharges that are dielectrically impeded from one side (not ) Shown.
  • a first level of discharge extends between the cathode strips 4 and the first anode strip 3a.
  • the other level of discharge extends between the cathode strip 4 and the second Anode strips 3b.
  • the electrodes 3a, 3b, 4 are viewed in cross section arranged at the corner points of an imaginary isosceles triangle.
  • the lamp in FIG. 4 has four inner wall electrodes 14a-14d. Each of the inner wall electrodes 14a-14d is covered with a dielectric layer 15a-15d. A first 14a of the four electrodes 14a-14d is provided for a first polarity of a supply voltage, while the three other electrodes 14b-14d are provided for the second polarity. In pulsed operation, a total of three discharge levels are formed, namely between the first electrode 14a and one of the three remaining electrodes 14b-14d. Since the discharge is dielectrically impeded on both sides, operation is not only possible with unipolar voltage pulses but also with bipolar voltage pulses.
  • the inner wall of the discharge vessel 2 is provided with a reflection double layer 16 made of Al 2 O 3 and TiO 2 .
  • a phosphor layer 6 is applied to the reflection double layer 16.
  • the reflection double layer 16 reflects the light generated by the phosphor layer 6. In this way, the luminance of the aperture 5 is increased.
  • the lamp in FIG. 5 has two outer wall electrodes 3a, 3b and one Vessel wall electrode 4.
  • the vessel wall electrode 4 consists of a Wire made of Vacovit® (from Vacuumschmelze GmbH) with a diameter of approx. 100 ⁇ m, which is melted into the vessel wall. Since here as well as in Figure 4 all electrodes are dielectrically impeded, is next unipolar and bipolar pulse operation possible.
  • the inner wall of the discharge vessel 2 is with a Phosphor layer 17, i.e. she knows unlike the previous ones Do not illuminate an aperture.
  • the lamp of Figure 5 is for automotive lighting provided, for example, depending on the phosphor as brake light or flashing light.
  • FIG. 6 shows a lighting system for OA devices.
  • the aperture fluorescent lamp 1 from FIG. 1 additionally points at its second end a base 18.
  • the base 18 consists essentially of a Socket pot 19 and two connecting pins 20a, 20b.
  • the base pot 19 is primarily used to hold the lamp 1.
  • the outer wall electrode 3 and the inner wall electrode 4 or the outer power supply section 11 with connected to the two pins 20a, 20b (not shown).
  • the connector pins 20a, 20b are in turn connected via electrical lines 21a, 21b the two poles 22a and 22b of a pulse voltage source 23 connected.
  • the pulse voltage source 23 supplies a series of unipolar voltage pulses with a repetition frequency of 66 kHz.
  • the pulse duration is approx. 1.1 ⁇ s each.
  • FIG. 7 shows the luminance L in cd / m 2 measured by the aperture as a function of the time-averaged electrical power P in W.
  • the measurement curve 24 relates to an illumination system according to FIG. 6 with the operating parameters specified there. As can be seen, approximately 40,000 cd / m 2 are achieved with a power of almost 20 W.
  • a comparable conventional lamp according to the teaching of US Pat. No. 5,117,160 delivers only 20,000 cd / m 2 with the same electrical power. The lamp according to the invention consequently produces twice the luminance with the same electrical power; this corresponds to a 100% increase over the prior art.
  • the measurement curve 25 is obtained by replacing the lamp according to FIG. 1 with the lamp according to FIG. 3, ie a lamp with two instead of only one anode strips. Two discharge levels thus arise during operation (see also description of FIG. 3). As can be seen, from an electrical power of approx. 10 W, even higher luminance levels are achieved than with the measurement curve 24. With a power of 20 W, just under 50,000 cd / m 2 can be achieved. This corresponds to 2.5 times the luminance compared to the state of the art or an increase of 150%.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PCT No. PCT/DE98/01061 Sec. 371 Date Dec. 18, 1998 Sec. 102(e) Date Dec. 18, 1998 PCT Filed Apr. 16, 1998 PCT Pub. No. WO98/49712 PCT Pub. Date Nov. 5, 1998A fluorescent lamp (1) having a tubular discharge vessel (2), filled with inert gas, and a fluorescent layer (6) has elongated electrodes (3; 4; 12; 14a-14d) arranged parallel to the longitudinal axis of the tubular discharge vessel (2), at least one electrode (4; 12; 14a-14d) being arranged on the inner wall of the discharge vessel (2). The tubular discharge vessel (2) is sealed in a gas-tight fashion at one or at both ends with a stopper (8) and by means of solder (9), the at least one inner wall electrode (4) being guided to the outside in a gas-tight fashion through the solder (9). Alternatively or also in addition, at least one electrode (16) is arranged inside the wall of the discharge vessel (2). Up to a maximum of the entire inside diameter can be used as striking distance, depending on the positioning of the associated counterelectrode(s). High luminous densities are achieved because of the large and, at the same time, constant striking distance along the discharge tube. The lamp is provided for a pulsed, dielectrically impeded discharge.

Description

Technisches GebietTechnical field

Die Erfindung geht aus von einer Leuchtstofflampe gemäß dem Oberbegriff des Anspruchs 1. Außerdem betrifft die Erfindung ein Verfahren zu ihrem Betrieb gemäß dem Oberbegriff des Anspruchs 11.The invention is based on a fluorescent lamp according to the preamble of claim 1. The invention also relates to a method for its Operation according to the preamble of claim 11.

Es handelt sich dabei um Leuchtstofflampen, bei denen entweder die Elektroden einer Polarität oder alle Elektroden, d.h. beiderlei Polarität, mittels einer dielektrischen Schicht von der Entladung getrennt sind (einseitig bzw. zweiseitig dielektrisch behinderte Entladung). Derartige Elektroden werden im folgenden auch verkürzend als "dielektrische Elektroden" bezeichnet.These are fluorescent lamps, in which either the electrodes one polarity or all electrodes, i.e. both polarities, by means of a dielectric layer are separated from the discharge (one-sided or double-sided dielectric discharge). Such electrodes are hereinafter also abbreviated as "dielectric electrodes".

Die dielektrische Schicht kann durch die Wandung des Entladungsgefäßes selbst gebildet sein, indem die Elektroden außerhalb des Entladungsgefäßes, etwa auf der Außenwandung, angeordnet sind. Ein Vorteil dieser Ausführung mit äußeren Elektroden ist, daß keine gasdichten Stromdurchführungen durch die Wandung des Entladungsgefäßes geführt werden müssen. Allerdings ist die Dicke der dielektrischen Schicht - ein wichtiger Parameter, der unter anderem die Zündspannung und die Brennspannung der Entladung beeinflußt - im wesentlichen durch die Anforderungen an das Entladungsgefäß, insbesondere dessen mechanische Festigkeit, festgelegt. Da die Höhe der erforderlichen Versorgungsspannung mit der Dicke der dielektrischen Schicht zunimmt, ergeben sich unter anderem folgende Nachteile. In erster Linie muß die für den Betrieb des Flachstrahlers vorgesehene Spannungsversorgung auf den höheren Spannungsbedarf ausgelegt werden. Dies ist in der Regel mit Mehrkosten und größeren Außenabmessungen verbunden. Außerdem sind höhere Sicherheitsvorkehrungen zum Berührungsschutz erforderlich. Schließlich können unerwünscht hohe elektromagnetische Abstrahlungen problematisch werden.The dielectric layer can through the wall of the discharge vessel itself be formed by the electrodes outside the discharge vessel, are arranged on the outer wall. An advantage of this version with external electrodes is that there are no gas-tight feedthroughs must be passed through the wall of the discharge vessel. However, the thickness of the dielectric layer - an important parameter, which among other things the ignition voltage and the burning voltage of the discharge influenced - essentially by the requirements for the discharge vessel, especially its mechanical strength. Since the Height of the required supply voltage with the thickness of the dielectric Layer increases, there are the following disadvantages. In First of all, the power supply provided for the operation of the flat radiator must be used can be designed for the higher voltage requirements. This is usually associated with additional costs and larger external dimensions. There are also higher safety precautions to protect against contact required. Finally, undesirably high electromagnetic Radiations become problematic.

Andererseits kann die dielektrische Schicht auch in Gestalt einer zumindest teilweisen Umhüllung oder Schicht mindestens einer innerhalb des Entladungsgefäßes angeordneten Elektrode realisiert sein. Das hat den Vorteil, daß die Dicke der dielektrischen Schicht auf die Entladungseigenschaften hin optimiert werden kann. Allerdings erfordern innere Elektroden gasdichte Stromdurchführungen. Dadurch sind zusätzliche Fertigungsschritte erforderlich, was die Herstellung in der Regel verteuert.On the other hand, the dielectric layer can also be at least in the form of a partial cladding or layer of at least one within the discharge vessel arranged electrode can be realized. That has the advantage, that the thickness of the dielectric layer depends on the discharge properties can be optimized. However, inner electrodes require gas-tight Current feedthroughs. As a result, additional manufacturing steps are required which usually makes the production more expensive.

Des weiteren handelt es sich insbesondere um Leuchtstofflampen mit rohrförmigem, beidseitig verschlossenem Entladungsgefäß, dessen Innenwandung zumindest teilweise mit einem Leuchtstoff beschichtet ist.Furthermore, it is in particular fluorescent lamps with a tubular, Discharge vessel closed on both sides, its inner wall is at least partially coated with a phosphor.

Derartige Lampen werden insbesondere in Geräten für die Büroautomation (OA = Office Automation), z.B. Farbkopierer und -scanner, für die Signalbeleuchtung, z.B. als Brems- und Richtungsanzeigelicht in Automobilen, für die Hilfs beleuchtung, z.B. der Innenbeleuchtung von Automobilen, sowie für die Hintergrundbeleuchtung von Anzeigen, z.B. Flüssigkristallanzeigen, als sogenannte "Edge Type Backlights" eingesetzt.Such lamps are lighting especially in equipment for office automation (OA = O ffice A utomation), such as color copiers and scanners, for the signal light, for example as brake and turn signal light in automobiles, for the auxiliary, such as the interior lighting of motor vehicles, and for the backlighting of displays, for example liquid crystal displays, is used as so-called "edge type backlights".

In diesen technischen Anwendungsfeldern sind sowohl besonders kurze Anlaufphasen, aber auch möglichst temperaturunabhängige Lichtströme erforderlich. Deshalb enthalten diese Lampen kein Quecksilber. Vielmehr sind diese Lampen üblicherweise mit Edelgas, vorzugsweise Xenon, bzw. Edelgasmischungen gefüllt. In these technical fields of application, both are particularly short Start-up phases, but also light currents that are as independent of temperature as possible required. That is why these lamps do not contain mercury. Much more are these lamps usually with noble gas, preferably xenon, or Noble gas mixtures filled.

Für die genannten Anwendungen ist sowohl eine hohe Leuchtdichte als auch eine über die Länge der Lampe gleichmäßige Leuchtdichte notwendig. Zur Erhöhung der Leuchtdichte werden die Lampen für den OA-Einsatz üblicherweise mit einer Apertur entlang der Längsachse versehen. Um die Leuchtdichte weiter zu steigern, genügt es nicht, die in bisherige Systeme eingekoppelte Leistung zu erhöhen, da die Belastung einer Lampe für einen dauerhaften und zuverlässigen Betrieb nicht beliebig gesteigert werden kann. Erschwerend kommt hinzu, daß bei den bisher in Kopiergeräten und Scannern eingesetzten Systemen die Effizienz der Entladung mit zunehmender Leistungseinkopplung abnimmt.For the applications mentioned, both a high luminance and uniform luminance over the length of the lamp is also necessary. To increase the luminance, the lamps are used for OA usually provided with an aperture along the longitudinal axis. To the Increasing luminance further is not enough in previous systems coupled power increase because the load of a lamp for one permanent and reliable operation cannot be increased arbitrarily can. To make matters worse, the previously in the copiers and Systems used by scanners increase the efficiency of the discharge Power coupling decreases.

Stand der TechnikState of the art

Aus der Schrift US 5,117,160 ist bereits eine Edelgas-Entladungslampe für OA-Geräte bekannt. Auf der Außenfläche der Wand eines rohrförmigen Entladungsgefäßes sind zwei streifenförmige Elektroden entlang der Lampenlängsachse angeordnet. Die Lampe wird mit Wechselspannung bei einer bevorzugten Frequenz zwischen 20 kHz und 100 kHz betrieben. Im Betrieb wird die 147 nm Xenon-Linie angeregt. Nachteilig ist eine unter anderem aus Gründen des Berührungsschutzes erforderliche, nicht vollständig transparente Schutzschicht, welche sowohl die Elektrodenstreifen als auch die restliche Lampenoberfläche bedeckt. Ohne diese Schutzschicht wären die abwechselnd auf Hochspannungspotential (z.B. ca. 1600 V) liegenden Elektroden nämlich frei zugänglich. Außerdem hat die Schutzschicht noch die Funktion, parasitäre Oberflächengleitentladungen zu unterbinden. Weitere Nachteilen resultieren aus den zum Betrieb mit Außenelektroden notwendigen relativ hohen Brennspannungen. Damit verbunden sind zum einen nämlich unerwünscht hohe elektromagnetische Abstrahlungen. Zum anderen muß ein elektronisches Vorschaltgerät auf die zum Betreiben der Lampe erforderlichen relativ hohen Brennspannungen ausgelegt sein, was seine Herstellung in der Regel verteuert. Schließlich ist die mit der verwendeten Betriebsweise erzielbare Nutzstrahlungseffizienz und folglich die resultierende Leuchtdichte relativ gering.A noble gas discharge lamp for is already known from the document US Pat. No. 5,117,160 OA devices known. On the outer surface of the wall of a tubular Discharge vessel are two strip-shaped electrodes along the longitudinal axis of the lamp arranged. The lamp comes with an AC voltage preferred frequency operated between 20 kHz and 100 kHz. Operational the 147 nm xenon line is excited. One disadvantage is one not completely transparent due to protection against accidental contact Protective layer covering both the electrode strips and the remaining lamp surface covered. Without this protective layer, they would be electrodes alternately at high voltage potential (e.g. approx. 1600 V) namely freely accessible. The protective layer also has that Function to prevent parasitic surface discharge. Further Disadvantages result from those necessary for operation with external electrodes relatively high burning voltages. Are connected to it on the one hand namely undesirably high electromagnetic radiation. On the other hand must have an electronic ballast to operate the lamp required relatively high operating voltages to be designed, what its Manufacturing usually more expensive. After all, the one used Operating mode achievable radiation efficiency and consequently the resulting Luminance relatively low.

Aus der US-PS 5,604,410 ist außerdem bekannt, daß sich die Effizienz von dielektrisch behinderten Entladungen mit Hilfe eines auf die speziellen Verhältnisse (Schlagweite, Elektrodenkonfiguration, Elektrodengeometrie und Fülldruck) angepaßten Pulsbetriebes (gepulste, dielektrisch behinderte Entladung) gegenüber den mit Wechselspannung angeregten dielektrisch behinderten Entladungen (siehe US-PS 5,117,160) deutlich steigern läßt.From US-PS 5,604,410 it is also known that the efficiency of dielectrically disabled discharges with the help of a special conditions (Stroke distance, electrode configuration, electrode geometry and Filling pressure) adapted pulse operation (pulsed, dielectric impeded discharge) compared to the dielectrically handicapped excited with AC voltage Discharges (see US Pat. No. 5,117,160) can be increased significantly.

Ferner ist in der US-PS 5,604,410 eine rohrförmige Entladungslampe mit kreisförmigem Querschnitt, mit einer streifenförmigen Außenelektrode und einer stabförmigen Innenelektrode offenbart. Die stabförmige Innenelektrode ist mit Hilfe zweier bügelförmiger Stromzuführungen azentrisch in der Nähe der Innenwandung und parallel zur Längsachse des Entladungsgefäßes angeordnet. Die beiden Stromzuführungen sind über je eine Quetschung, die mittels Tellereinschmelzung mit dem Entladungsgefäß gasdicht verbunden ist, nach außen geführt. Die Außenelektrode ist diametral gegenüberliegend auf der Außenwandung fixiert. Nachteilig sind die relativ aufwendige und folglich teuere Konstruktion für die Befestigung des metallischen Elektrodenstabs im Innern der Lampe sowie die beiden Quetschungen. Außerdem muß der metallische Innenelektrodenstab relativ dick ausgeführt sein, um die notwendige Steifigkeit zu gewährleisten. Andernfalls besteht die Gefahr, daß der Innenelektrodenstab durchhängt und folglich die Schlagweite entlang der Elektroden nicht ausreichend konstant ist. Ein gespannter Draht als Innenelektrode würde das Problem nicht lösen, da dieser sich während des Lampenbetriebs erwärmt und damit erst recht durchhängt. Aus diesen Gründen benötigt die genannte Lampe einen relativ großen Durchmesser, was aber einer Verwendung für bestimmte Zwecke, insbesondere für die Büroautomation und die Signalbeleuchtung bei Automobilen, entgegensteht.Furthermore, a tubular discharge lamp is included in US Pat. No. 5,604,410 circular cross-section, with a strip-shaped outer electrode and a rod-shaped inner electrode is disclosed. The rod-shaped inner electrode is eccentric in the with the help of two bow-shaped power supplies Close to the inner wall and parallel to the longitudinal axis of the discharge vessel arranged. The two power supplies are each one Crushing by means of melting the plate with the discharge vessel is connected gastight, led to the outside. The outer electrode is diametrical fixed opposite on the outer wall. They are disadvantageous relatively complex and consequently expensive construction for the attachment of the metallic electrode rod inside the lamp as well as the two bruises. In addition, the metallic inner electrode rod must be relatively thick be carried out to ensure the necessary rigidity. Otherwise there is a risk that the inner electrode rod will sag and consequently the stroke length along the electrodes is not sufficiently constant. A strained wire as the inner electrode would not solve the problem because this heats up during lamp operation and therefore even more so sags. For these reasons, the lamp mentioned needs a relative large diameter, but what a use for certain purposes, especially for office automation and signal lighting in automobiles, opposes.

Darstellung der ErfindungPresentation of the invention

Es ist Aufgabe der vorliegenden Erfindung, die genannten Nachteile zu beseitigen und eine Leuchtstofflampe gemäß dem Oberbegriff des Anspruchs 1 mit verbesserter Leuchtdichte bereitzustellen.It is an object of the present invention to eliminate the disadvantages mentioned and a fluorescent lamp according to the preamble of claim 1 to provide with improved luminance.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.This object is achieved by the characterizing features of claim 1 solved. Particularly advantageous configurations can be found in the dependent ones Claims.

Ferner wird diese Aufgabe auch durch die kennzeichnenden Merkmale des Anspruchs 4 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den davon abhängigen Ansprüchen.Furthermore, this task is also characterized by the characteristics of Claim 4 solved. Particularly advantageous configurations can be found in the dependent claims.

Die Grundidee der Erfindung beruht auf der Erkenntnis, daß einerseits die Schlagweite der gepulsten, dielektrisch behinderten Entladung für eine hohe elektrische Leistungseinkopplung möglichst groß sein soll. Andererseits soll die Anordnung sämtlicher Elektroden auf der Außenwandung des Entladungsgefäßes und die damit verbundenen Nachteile vermieden werden. Außerdem ist für die gepulste, dielektrisch behinderte Entladung eine möglichst konstante Schlagweite längs des Entladungsrohres anzustreben. Dies ist deshalb wichtig, um im Betrieb gleiche Zündbedingungen für alle Einzelentladungen (siehe dazu US-PS 5,604,410) entlang der Elektroden zu gewährleisten. Dadurch ist nämlich sichergestellt, daß sich die Einzelentladungen entlang der gesamten Elektrodenlänge aufgereiht ausbilden (ausreichende elektrische Eingangsleistung vorausgesetzt) und folglich eine Grundvoraussetzung zur Erzielung einer hohen und homogenen Leuchtdichte der Lampe erfüllt ist. The basic idea of the invention is based on the knowledge that on the one hand the Impact range of the pulsed, dielectric barrier discharge for a high electrical power input should be as large as possible. On the other hand, should the arrangement of all electrodes on the outer wall of the discharge vessel and the associated disadvantages are avoided. In addition, one is possible for the pulsed, dielectric barrier discharge To strive for a constant stroke length along the discharge tube. This is therefore important to ensure the same ignition conditions for all individual discharges during operation (see US Pat. No. 5,604,410) along the electrodes. This ensures that the individual discharges Form lined up along the entire length of the electrode (assuming sufficient electrical input power) and consequently one Basic requirement for achieving a high and homogeneous luminance the lamp is satisfied.

Ein erster erfindungsgemäßer Weg zur Lösung dieser Problematik schlägt vor, mindestens eine oder auch alle Elektroden auf der Innenwandung des Entladungsgefäßes anzuordnen. Im folgenden wird eine derartige Elektrode verkürzend auch als "Innenwandungselektrode" bezeichnet. Durch dieses Konzept kann, je nach Positionierung der zugehörigen Gegenelektrode(n), bis zu maximal der gesamte Innendurchmesser als Schlagweite genutzt werden. Ein Vorteil ist unter anderem die gute thermische Ankopplung der Elektroden über das Gefäßmaterial nach außen. Dadurch ist gewährleistet, daß sich die Innenwandelektroden auch im Dauerbetrieb nicht von der Innenwandung ablösen. Folglich bleibt die Schlagweite konstant.A first way according to the invention to solve this problem suggests before, at least one or all of the electrodes on the inner wall of the Arrange discharge vessel. The following is such an electrode abbreviated as "inner wall electrode". Because of this Depending on the positioning of the associated counter electrode (s), the concept can up to a maximum of the entire inner diameter can be used as a striking distance. One advantage is the good thermal coupling of the Electrodes over the vascular material to the outside. This ensures that the inner wall electrodes do not move from the inner wall even in continuous operation peel off. As a result, the stroke length remains constant.

Die Innenwandungselektrode ist als elektrisch leitfähiger, gegebenenfalls "linienartiger" Streifen - ähnlich einer elektrischen Leiterbahn - ausgebildet und parallel zur Längsachse des rohrförmigen Entladungsgefäßes orientiert. Der Streifen kann z.B. in Form von flüssigem Leitsilber o.ä. auf die Innenwand aufgetragen werden. Anschließend wird der Streifen verfestigt, z.B. durch Einbrennen. Die Innenwandungselektrode ist zusätzlich auch als Durchführung inklusive äußerer Stromzuführung weitergebildet. Dazu ist das rohrförmige Entladungsgefäß zumindest an einem seiner beiden Enden mit einem Stopfen verschlossen, der mittels Lot, z.B. Glaslot, gasdicht mit der Innenwandung des Gefäßendes verbunden ist. Die Innenwandungselektrode ist durch das Lot hindurch gasdicht nach außen geführt, d.h. die Innenwandungselektrode geht im Breich des Lotes in eine Durchführung und außerhalb des Gefäßes schließlich in eine äußere Stromzuführung über. Auf diese Weise sind Innenwandungselektrode, deren zugehörige Durchführung und zugehörige äußere Stromzuführung als jeweils funktionell unterschiedliche Teilbereiche einer einzigen gemeinsamen, leiterbahnähnlichen Struktur ausgebildet. Diese Struktur stellt einen Schlüssel zur Realisierung der Innenwandungselektrode dar. Dieses Konzept läßt sich nämlich auf einfach Weise und mit relativ wenigen Komponenten realisieren und ist darüber hinaus gut automatisierbar.The inner wall electrode is considered to be electrically conductive, if necessary "Line-like" strips - similar to an electrical conductor track - formed and oriented parallel to the longitudinal axis of the tubular discharge vessel. The strip can e.g. in the form of liquid conductive silver or similar on the inner wall be applied. The strip is then solidified, e.g. by baking. The inner wall electrode is also as Implementation further trained including external power supply. Is to the tubular discharge vessel at least at one of its two ends sealed with a stopper which is soldered, e.g. Glass solder, gas-tight with the inner wall of the vessel end is connected. The inner wall electrode is guided gas-tight to the outside through the solder, i.e. the inner wall electrode goes into an implementation in the range of the solder and finally into an external power supply outside the vessel. On in this way are inner wall electrode, their associated implementation and associated external power supply as functionally different Sub-areas of a single common, track-like structure educated. This structure is a key to realizing the inner wall electrode This concept can be simply put Realize wisely and with relatively few components and is about it easy to automate.

Um mechanische Spannungen durch unterschiedliche Wärmeausdehnungen gering zu halten und um die Gasdichtheit auch im Dauerbetrieb zu gewährleisten, sind die Materialien für Glaslot und Entladungsgefäß aufeinander abgestimmt. Außerdem ist die Dicke der Leiterbahn (Elektrode, Durchführung, Stromzuführung) so dünn gewählt, daß einerseits die Wärmespannungen gering bleiben und daß andererseits die im Betrieb erforderlichen Stromstärken realisiert werden können.Mechanical stresses caused by different thermal expansions to keep it low and to ensure gas tightness even in continuous operation, are the materials for glass solder and discharge vessel on top of each other Voted. In addition, the thickness of the conductor track (electrode, bushing, Power supply) chosen so thin that on the one hand the thermal voltages remain low and that, on the other hand, those required in operation Current strengths can be realized.

Dabei kommt einer ausreichend hohen Stromtragfähigkeit der Leiterbahn insofern eine besondere Bedeutung zu, als die für derartige Lampen angestrebten hohen Lichtstärken letztendlich hohe Stromstärken bedingen. Nochmals verschärft wird diese Problematik bei der bevorzugten gepulsten Betriebsweise der Entladung, da während der relativ kurzen Dauer der repetitiven Wirkleistungseinkopplung besonders hohe Ströme in den Leiterbahnen fließen. Nur so ist es möglich, auch ausreichend hohe mittlere Wirkleistungen einzukoppeln und dadurch im zeitlichen Mittel die gewünschte hohe Lichtstärke zu erzielen.This results in a sufficiently high current carrying capacity of the conductor track of particular importance in so far as those aimed for such lamps high light intensities ultimately require high current intensities. This problem is further exacerbated in the preferred pulsed mode Operating mode of the discharge, since during the relatively short duration of the repetitive Active power coupling particularly high currents in the conductor tracks flow. This is the only way to achieve sufficiently high medium-sized ones Coupling active power and thereby the desired on average to achieve high light intensity.

Um die vorgenannte hohe Stromtragfähigkeit zu gewährleisten, wird für die mindestens eine Innenwandelektrode eine relativ dicke Leiterbahn verwendet. Eine zu geringe Leiterbahndicke birgt nämlich die Gefahr der Rißbildung aufgrund lokaler Überhitzung der Leiterbahn. Die Erwärmung der Leiterbahn durch den ohmschen Anteil des Leiterbahnstromes ist umso höher, je geringer der Querschnitt der Leiterbahn ist. Der Breite der Leiterbahnen sind aber aus Platzgründen Grenzen gesetzt, insbesondere bei sehr schlanken Lampen mit relativ kleinen Durchmessern. Deshalb werden eher schmale, dafür aber eher dicke Leiterbahnen angestrebt, um das Problem der Rißbildung aufgrund von Wärmeentwicklung durch hohe Stromdichten in den Leiterbahnen zu lösen. Typische Dicken für Leitsilberstreifen liegen im Bereich von ca. 5 µm bis ca. 50 µm, bevorzugt im Bereich von ca. 5,5 µm bis ca. 30 µm, besonders bevorzugt im Bereich von ca. 6 µm bis ca. 15 µm.To ensure the aforementioned high current carrying capacity, at least one inner wall electrode uses a relatively thick conductor track. Too small a conductor path carries the risk of cracking due to local overheating of the conductor track. The warming of the Conductor path through the ohmic part of the conductor path current is the higher, the smaller the cross section of the conductor track. The width of the conductor tracks there are limits due to space constraints, especially in the case of very slim lamps with relatively small diameters. Therefore, sooner narrow, but rather thick conductor tracks are aimed at to solve the problem of Cracking due to heat generation due to high current densities in to solve the conductor tracks. Typical thicknesses for conductive silver strips are in the Range from approx. 5 µm to approx. 50 µm, preferably in the range from approx. 5.5 µm to approx. 30 µm, particularly preferably in the range from approx. 6 µm to approx. 15 µm.

Des weiteren sind erfindungsgemäß eine oder mehrere weitere Elektroden auf der Außenwandung oder ebenfalls auf der Innenwandung angeordnet sein. Außerdem weist zumindest ein Teil der Innenwandung eine Leuchtstoffschicht auf. Für OA-Anwendungen bleibt lediglich eine streifenförmige Apertur unbeschichtet. Zusätzlich kann unterhalb der Leuchtstoffschicht eine oder mehrere Reflexionsschichten für sichtbares Licht, z.B. aus Al2O3 und/oder TiO2, aufgebracht sein. Dadurch wird gegebenenfalls verhindert, daß ein Teil des von der Leuchtstoffschicht emittierten Lichts durch die Gefäßwand transmittiert wird. Vielmehr wird das Licht durch Reflexion bzw. Mehrfachreflexion im wesentlichen auf die Apertur gelenkt und folglich dort die Leuchtdichte erhöht. Alternativ kann die Leuchtstoffschicht auch selbst zusätzlich als Reflexionsschicht mitbenutzt werden, indem die Leuchtstoffschicht ausreichend dick aufgebracht wird.Furthermore, according to the invention, one or more further electrodes are arranged on the outer wall or also on the inner wall. In addition, at least part of the inner wall has a phosphor layer. For OA applications, only a strip-shaped aperture remains uncoated. In addition, one or more reflection layers for visible light, for example made of Al 2 O 3 and / or TiO 2 , can be applied below the phosphor layer. This may prevent some of the light emitted by the phosphor layer from being transmitted through the vessel wall. Rather, the light is essentially directed onto the aperture by reflection or multiple reflection, and consequently the luminance is increased there. Alternatively, the phosphor layer itself can also additionally be used as a reflection layer, in that the phosphor layer is applied sufficiently thick.

In einer ersten einfachen Ausführung weist die Leuchtstofflampe zwei Elektroden auf, wobei je eine streifenförmige Elektrode auf der Außen- bzw. Innenwandung angeordnet ist. Falls die Lampe für den Betrieb mit bipolaren Spannungspulsen vorgesehen ist, ist die Innenwandungselektrode zusätzliche vollständig mit einer dielektrischen Schicht bedeckt. Für den Betrieb mit unipolaren Spannungspulsen ist diese beidseitige dielektrische Behinderung nicht unbedingt erforderlich (siehe dazu US-PS 5,604,410). Um Berührungssicherheit zu gewährleisten, ist im letzteren Fall die Innenwandungselektrode mit Hochspannungspotential verbunden.In a first simple embodiment, the fluorescent lamp has two electrodes on, each with a strip-shaped electrode on the outer and inner wall is arranged. If the lamp is for use with bipolar Voltage pulses is provided, the inner wall electrode is additional completely covered with a dielectric layer. For use with This double-sided dielectric impedance is unipolar voltage pulses not absolutely necessary (see US Pat. No. 5,604,410). Security of touch To ensure the inner wall electrode in the latter case associated with high voltage potential.

In einer Variante sind beide Elektroden auf der Innenwandung des Entladungsgefäßes angeordnet, wobei mindestens eine der beiden Elektroden vollständig mit einer dielektrischen Schicht bedeckt ist. Soll die Lampe mit bipolaren Spannungspulsen betrieben werden, sind beide Elektroden entsprechend dielektrisch beschichtet.In one variant, both electrodes are on the inner wall of the discharge vessel arranged, at least one of the two electrodes is completely covered with a dielectric layer. Should the lamp go with bipolar voltage pulses are operated, both electrodes are corresponding dielectric coated.

Aufgrund der zwei Elektroden entsteht bei beiden Varianten im Betrieb je eine Entladungsebene, die sich innerhalb des Entladungsgefäßes zwischen beiden Elektroden erstreckt. In dieser Ebene sind eine Vielzahl von Einzelentladungen nebeneinander entlang der Elektroden aufgereiht, die im Grenzfall in eine Art vorhangähnliche Entladungsform übergehen. Um die Leuchtdichte der Lampe zu erhöhen, können weitere Entladungsebenen innerhalb des Entladungsgefäßes erzeugt werden. Dazu weist die Lampe drei oder mehr Elektroden auf. Mit drei Elektroden lassen sich bereits zwei Entladungsebenen erzeugen, die eine gemeinsame Elektrode haben. Vorzugsweise ist dies bei unipolaren Spannungspulsen die (temporäre) Kathode und die beiden anderen Elektroden sind als Anoden geschaltet. Mit vier Elektroden lassen sich entweder zwei unabhängige Entladungsebenen oder aber drei Entladungsebenen mit einer gemeinsamen Elektrode realisieren, je nach dem, ob die vier Elektroden als zwei Kathoden und zwei Anoden oder aber als eine Kathode und drei Anoden geschaltet sind. Im Prinzip lassen sich auf diese Weise auch mehr als drei Entladungsebenen erzeugen. Allerdings sind der dazu notwendigen Anzahl von Elektrodenstreifen in der Praxis aus Platzgründen gewisse Grenzen gesetzt.Due to the two electrodes, both variants arise during operation a discharge level, which is located within the discharge vessel between extends both electrodes. There are a large number of individual discharges at this level lined up side by side along the electrodes that are in the Borderline transition into a kind of curtain-like discharge form. To the To increase the luminance of the lamp, more levels of discharge within of the discharge vessel are generated. The lamp has three or more electrodes. With three electrodes, two discharge levels can already be created generate that have a common electrode. Preferably this is the (temporary) cathode and unipolar voltage pulses the other two electrodes are connected as anodes. With four electrodes can be either two independent discharge levels or realize three discharge levels with a common electrode, depending on whether the four electrodes as two cathodes and two anodes or are connected as a cathode and three anodes. In principle, you can in this way also generate more than three discharge levels. However the number of electrode strips required for this in practice Due to space constraints.

Falls die Lampe für OA-Anwendungen vorgesehen und folglich mit einer Apertur versehen ist, sind die Elektroden vorteilhaft so orientiert, daß im Querschnitt betrachtet die Mittelsenkrechten der jeweiligen Entladungsebenen die Leuchtstoffschicht schneiden. Dadurch ist sichergestellt, daß das UV-(Ultraviolett)Abstrahlmaximum der Entladungsebene auf die Leuchtstoffschicht fällt.If the lamp is intended for OA applications and therefore with a Aperture is provided, the electrodes are advantageously oriented so that in Cross section looks at the perpendicular bisectors of the respective discharge planes cut the phosphor layer. This ensures that UV (ultraviolet) radiation maximum of the discharge level on the phosphor layer falls.

Ein zweiter erfindungsgemäßer Weg zur Lösung der oben genannten Problematik schlägt vor, mindestens eine Elektrode innerhalb der Wand des Entladungsgefäßes anzuordnen. Im folgenden wird eine derartige Elektrode verkürzend auch als "Gefäßwandelektrode" bezeichnet. Auch hier kann, je nach Positionierung der zugehörigen Gegenelektrode(n), bis zu maximal der gesamte Innendurchmesser als Schlagweite genutzt werden. Der Vorteil dieser Lösung ist, daß auch bei Betrieb mit bipolaren Spannungspulsen kein zusätzliches Dielektrikum erforderlich ist. Die für die Entladung wirksame dielektrische Schicht wird hier nämlich durch einen Teil der Gefäßwand selbst gebildet und zwar durch den Teil der Wand, der die Elektrode in Richtung zum Innern des Entladungsgefäßes bedeckt. Die Dicke der wirksamen dielektrischen Schicht wird hier durch die Tiefe festgelegt, in welcher die Elektrode in die Gefäßwand eingelassen ist. Deshalb ist es allerdings auch erforderlich, die Elektrode, z.B. in Form eines geraden Drahtes, sehr gleichmäßig in die Gefäßwand einzulassen. Es ist also darauf zu achten, daß die Dicke der Bedeckung der Elektrode durch das Gefäßmaterial (Dielektrikum!) über die Rohrlänge möglichst konstant ist. Andernfalls resultieren nämlich längs der Innenwandungselektrode unterschiedliche Schichtdicken des wirksamen Dielektrikums und folglich eine unerwünschte und ungleichförmige Entladungsstruktur mit geringerer Effizienz für die Nutzstrahlungserzeugung. Ansonsten weist die Leuchtstofflampe gemäß der zweiten Lösung im Prinzip die gleichen Merkmale auf wie die Leuchtstofflampe gemäß der ersten Lösung. Insbesondere sind auch sämtliche dort genannten Varianten denkbar, wobei lediglich die Innenwandungselektrode durch die Gefäßwandelektrode ersetzt ist.A second way according to the invention to solve the above-mentioned problem suggests at least one electrode inside the wall of the Arrange discharge vessel. The following is such an electrode shortened also referred to as "vessel wall electrode". Here too, depending after positioning the associated counter electrode (s), up to a maximum of the entire inside diameter can be used as the stroke distance. The advantage of this The solution is that even when operating with bipolar voltage pulses additional dielectric is required. The effective one for unloading the dielectric layer is namely through a part of the vessel wall itself formed by the part of the wall that the electrode in Covered towards the inside of the discharge vessel. The thickness of the effective dielectric layer is determined here by the depth at which the electrode is embedded in the vessel wall. That's why it is also required the electrode, e.g. in the form of a straight wire, very much evenly let into the vessel wall. It is therefore important to ensure that the thickness of the covering of the electrode by the vessel material (Dielectric!) Over the tube length is as constant as possible. Otherwise result namely different along the inner wall electrode Layer thicknesses of the effective dielectric and consequently an undesirable and non-uniform discharge structure with lower efficiency for the Useful radiation. Otherwise, the fluorescent lamp according to the second solution in principle the same features as the fluorescent lamp according to the first solution. In particular, everyone is there too mentioned variants conceivable, only the inner wall electrode is replaced by the vessel wall electrode.

Schließlich können auch beide Lösungen kombiniert werden, d.h. mindestens je eine Elektrode ist sowohl auf der Innenwandung als auch innerhalb der Gefäßwand angeordnet. Ferner kann auch in diesem Fall eine oder mehrere Elektroden auf der Außenwandung des Entladungsgefäßes angeordnet sein. Finally, both solutions can also be combined, i.e. at least one electrode each is both on the inner wall and inside arranged the vessel wall. Furthermore, one or more can also in this case Electrodes arranged on the outer wall of the discharge vessel his.

Das rohrförmige Entladungsgefäß kann gerade aber auch gebogen sein. Da die Entladungsrichtung im wesentlichen senkrecht zu Lampenlängsachse verläuft, können nahezu beliebige Formen realisiert werden, insbesondere auch kreisförmige, ohne daß die Entladung davon beeinträchtigt wird.However, the tubular discharge vessel can also be curved. There the discharge direction is substantially perpendicular to the lamp longitudinal axis runs, almost any shape can be realized, in particular also circular, without affecting the discharge.

Innerhalb des Entladungsgefäßes befindet sich eine Gasfüllung, bestehend aus einem Edelgas, insbesondere Xenon, oder einem Edelgasgemisch.There is a gas filling inside the discharge vessel from an inert gas, in particular xenon, or an inert gas mixture.

Beschreibung der ZeichnungenDescription of the drawings

Im folgenden soll die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert werden. Es zeigen:

Fig. 1a
einen Längsschnitt durch eine erfindungsgemäße Leuchtstofflampe mit Apertur und mit einer Außen- und einer Innenwandungselektrode,
Fig. 1b
einen Querschnitt durch die Leuchtstofflampe aus Figur 1a,
Fig. 2
einen Querschnitt durch eine Leuchtstofflampe mit zwei Innenwandungselektroden,
Fig. 3
einen Querschnitt durch eine Leuchtstofflampe mit einer Innenwandungs- und zwei Außenwandungselektroden,
Fig. 4
einen Querschnitt durch eine Leuchtstofflampe mit vier Innenwandungselektroden,
Fig. 5
einen Querschnitt durch eine Leuchtstofflampe mit einer Gefäßwand- und zwei Außenwandungselektroden,
Fig. 6
ein Beleuchtungssystem mit Apertur-Leuchtstofflampe und Impulsspannungs quelle,
Fig. 7
Meßkurven der Lampe aus Figur 1 bzw. Figur 3.
The invention will be explained in more detail below with the aid of several exemplary embodiments. Show it:
Fig. 1a
2 shows a longitudinal section through a fluorescent lamp according to the invention with an aperture and with an outer and an inner wall electrode,
Fig. 1b
3 shows a cross section through the fluorescent lamp from FIG. 1a,
Fig. 2
3 shows a cross section through a fluorescent lamp with two inner wall electrodes,
Fig. 3
3 shows a cross section through a fluorescent lamp with an inner wall and two outer wall electrodes,
Fig. 4
3 shows a cross section through a fluorescent lamp with four inner wall electrodes,
Fig. 5
3 shows a cross section through a fluorescent lamp with one vessel wall and two outer wall electrodes,
Fig. 6
a lighting system with an aperture fluorescent lamp and a pulse voltage source,
Fig. 7
Measurement curves of the lamp from FIG. 1 or FIG. 3.

Die Figuren 1a und 1b zeigen den Längs- bzw. Querschnitt einer Apertur-Leuchtstofflampe 1 für OA-Anwendungen in schematischer Darstellung. Die Lampe 1 besteht im wesentlichen aus einem röhrförmigen Entladungsgefäß 2 mit kreisförmigem Querschnitt sowie einer ersten und einer zweiten streifenförmigen Elektrode 3,4. Die Innenwandung des Entladungsgefäßes 2 weist mit Ausnahme einer rechteckigen Apertur 5 eine Leuchtstoffschicht 6 auf. Das Entladungsgefäß 2 ist an seinem ersten Ende mit einer aus dem Gefäß geformten Kuppel 7 und an seinem zweiten Ende mittels Stopfen 8 gasdicht verschlossen. Der Stopfen 8 ist mittels Glaslot 9 gasdicht mit der Innenwandung des Gefäßendes verbunden. Innerhalb des Entladungsgefäßes 2 befindet sich Xenon mit einem Fülldruck von 21,3 kPa (160 Torr).Figures 1a and 1b show the longitudinal or cross section of an aperture fluorescent lamp 1 for OA applications in a schematic representation. The Lamp 1 consists essentially of a tubular discharge vessel 2 with a circular cross section and a first and a second strip-shaped electrode 3,4. The inner wall of the discharge vessel 2 has a phosphor layer 6 with the exception of a rectangular aperture 5 on. The discharge vessel 2 is at its first end with one from the vessel shaped dome 7 and gas-tight at its second end by means of plugs 8 locked. The plug 8 is gas-tight with the inner wall by means of glass solder 9 connected to the end of the vessel. Inside the discharge vessel 2 is xenon with a filling pressure of 21.3 kPa (160 torr).

Die erste, als Anode vorgesehene Elektrode 3 ist als Metallfolienstreifen ausgebildet, der auf der Außenwandung des Entladungsgefäßes 2 parallel zur Rohrlängsachse angeordnet ist. Die andere, als Kathode vorgesehene Elektrode 4 besteht aus einem diametral zur Anode angeordneten Leitsilberstreifen, der in flüssigem Zustand mit Hilfe einer Kanüle auf die Innenwandung des Entladungsgefäßes 2 aufgetragen und anschließend eingebrannt wurde (Innenwandungselektrode). Die Schichtdicke beträgt ca. 10 µm. Die Kathode 4 ist in einem Durchführungsbereich 10 zwischen dem Stopfen 8 und der Innenwandung des zweiten Endes des Entladungsgefäßes 2 hindurch gasdicht nach außen geführt und geht dort in eine äußere Stromzuführung 11 über. Auf diese Weise sind die Kathode 4, deren zugehörige Durchführung 10 und zugehörige äußere Stromzuführung 11 als jeweils funktionell unterschiedliche Teilbereiche einer einzigen gemeinsamen, leiterbahnähnlichen Struktur ausgebildet. Das Glaslot 9 ermöglicht in diesem Durchführungsbereich 10 die gasdichte Durchführung der Kathode 4. The first electrode 3 provided as an anode is designed as a metal foil strip, on the outer wall of the discharge vessel 2 parallel to Pipe longitudinal axis is arranged. The other electrode intended as a cathode 4 consists of a conductive silver strip arranged diametrically to the anode, the liquid state with the help of a cannula on the inner wall of the discharge vessel 2 was applied and then baked (Inner wall electrode). The layer thickness is approx. 10 µm. The cathode 4 is in a bushing area 10 between the plug 8 and the Inner wall of the second end of the discharge vessel 2 gas-tight led to the outside and there goes into an external power supply 11 about. In this way, the cathode 4, its associated implementation 10 and associated external power supply 11 as functional different sub-areas of a single common, track-like Structure trained. The glass solder 9 enables in this area 10 the gas-tight passage of the cathode 4.

Die jeweilige Breite des Anoden- und Kathodenstreifens beträgt 0,9 mm bzw. 0,8 mm. Der Außendurchmesser des aus Glas bestehenden rohrförmigen Entladungsgefäßes 2 beträgt ca. 9 mm bei einer Wandstärke von ca. 0,5 mm. Die Breite und die Länge der Apertur 5 betragen ca. 6,5 mm bzw. 255 mm. Bei der Leuchtstoffschicht 6 handelt es sich um einen Dreibandenleuchtstoff. Er besteht aus einer Mischung der Blaukomponente BaMgAl10O17:Eu, der Grünkomponente LaPO4:Ce,Tb und der Rotkomponente (Y,Gd)BO3:Eu. Die resultierenden Farbkoordinaten betragen x = 0,395 und y = 0,383, d.h. es wird weißes Licht erzeugt.The respective width of the anode and cathode strips is 0.9 mm and 0.8 mm, respectively. The outer diameter of the tubular discharge vessel 2 made of glass is approximately 9 mm with a wall thickness of approximately 0.5 mm. The width and the length of the aperture 5 are approximately 6.5 mm and 255 mm, respectively. The phosphor layer 6 is a three-band phosphor. It consists of a mixture of the blue component BaMgAl 10 O 17 : Eu, the green component LaPO 4 : Ce, Tb and the red component (Y, Gd) BO 3 : Eu. The resulting color coordinates are x = 0.395 and y = 0.383, ie white light is generated.

In den Figuren 2 bis 5 sind weitere Querschnitte einer erfindungsgemäßen Leuchtstofflampe, ähnlich wie der in Figur 1a gezeigten Lampe, mit und ohne Apertur schematisch dargestellt. Sie unterscheiden sich untereinander im wesentlichen durch die Elektrodenkonfiguration. Dabei sind gleiche Merkmale mit gleichen Bezugsziffern bezeichnet.In Figures 2 to 5 are further cross sections of an inventive Fluorescent lamp, similar to the lamp shown in Figure 1a, with and without Aperture is shown schematically. They differ from one another in essentially through the electrode configuration. The same characteristics designated with the same reference numerals.

Die Lampe in Figur 2 weist eine erste und eine zweite Innenwandungselektrode 12,4 auf. Da sich beide Elektroden innerhalb des Entladungsgefäßes 2 befinden, ist die erste Elektrode 12 mit einer dielektrischen Schicht 13 bedeckt (einseitig dielektrisch behinderte Entladung). Diese ist im unipolar gepulsten Betrieb gemäß der US-PS 5,604,410 als Anode vorgesehen.The lamp in FIG. 2 has a first and a second inner wall electrode 12.4 on. Since both electrodes are located inside the discharge vessel 2 are located, the first electrode 12 is covered with a dielectric layer 13 (unilaterally dielectric discharge). This is in the unipolar pulsed operation according to US-PS 5,604,410 provided as an anode.

Die Lampe in Figur 3 weist zwei Außenwandungselektroden 3a,3b und eine Innenwandungselektrode 4 auf. Die Außenwandungselektroden 3a,3b sind als Anoden und die Innenwandungselektrode 4 ist als Kathode vorgesehen. Folglich bilden sich im gepulsten Betrieb gemäß der US-PS 5,604,410 zwei Ebenen mit einseitig dielektrisch behinderten Einzelentladungen aus (nicht dargestellt). Eine erste Entladungsebene erstreckt sich zwischen dem Kathodenstreifen 4 und dem ersten Anodenstreifen 3a. Die andere Entladungsebene erstreckt sich zwischen dem Kathodenstreifen 4 und dem zweiten Anodenstreifen 3b. Die Elektroden 3a,3b,4 sind im Querschnitt betrachtet an den Eckpunkten eines gedachten gleichschenkeligen Dreiecks angeordnet.The lamp in FIG. 3 has two outer wall electrodes 3a, 3b and one Inner wall electrode 4. The outer wall electrodes 3a, 3b are as the anode and the inner wall electrode 4 is provided as the cathode. Consequently, two are formed in the pulsed operation according to US Pat. No. 5,604,410 Layers with single discharges that are dielectrically impeded from one side (not ) Shown. A first level of discharge extends between the cathode strips 4 and the first anode strip 3a. The other level of discharge extends between the cathode strip 4 and the second Anode strips 3b. The electrodes 3a, 3b, 4 are viewed in cross section arranged at the corner points of an imaginary isosceles triangle.

Die Lampe in Figur 4 weist vier Innenwandungselektroden 14a-14d auf. Jede der Innenwandungselektroden 14a-14d ist mit einer dielektrischen Schicht 15a-15d bedeckt. Eine erste 14a der vier Elektroden 14a-14d ist für eine erste Polarität einer Versorgungsspannung vorgesehen, während die drei anderen Elektroden 14b-14d für die zweite Polarität vorgesehen sind. Im gepulsten Betrieb bilden sich somit insgesamt drei Entladungsebenen aus und zwar jeweils zwischen der ersten Elektrode 14a und je einer der drei restlichen Elektroden 14b-14d. Da es sich hier um eine beidseitig dielektrisch behinderte Entladung handelt, ist nicht nur der Betrieb mit unipolaren Spannungspulsen sondern ebenso mit bipolaren Spannungspulsen möglich. Die Innenwandung des Entladungsgefäßes 2 ist mit Ausnahme der Apertur 5 mit einer Reflexionsdoppelschicht 16 aus Al2O3 und TiO2 versehen. Auf der Reflexionsdoppelschicht 16 ist eine Leuchtstoffschicht 6 aufgebracht. Die Reflexionsdoppelschicht 16 reflektiert das von der Leuchtstoffschicht 6 erzeugte Licht. Auf diese Weise wird die Leuchtdichte der Apertur 5 erhöht.The lamp in FIG. 4 has four inner wall electrodes 14a-14d. Each of the inner wall electrodes 14a-14d is covered with a dielectric layer 15a-15d. A first 14a of the four electrodes 14a-14d is provided for a first polarity of a supply voltage, while the three other electrodes 14b-14d are provided for the second polarity. In pulsed operation, a total of three discharge levels are formed, namely between the first electrode 14a and one of the three remaining electrodes 14b-14d. Since the discharge is dielectrically impeded on both sides, operation is not only possible with unipolar voltage pulses but also with bipolar voltage pulses. With the exception of aperture 5, the inner wall of the discharge vessel 2 is provided with a reflection double layer 16 made of Al 2 O 3 and TiO 2 . A phosphor layer 6 is applied to the reflection double layer 16. The reflection double layer 16 reflects the light generated by the phosphor layer 6. In this way, the luminance of the aperture 5 is increased.

Die Lampe in Figur 5 weist zwei Außenwandungselektroden 3a,3b und eine Gefäßwandelektrode 4 auf. Die Gefäßwandelektrode 4 besteht aus einen Draht aus Vacovit® (Fa. Vakuumschmelze GmbH) mit einem Durchmesser von ca. 100 µm, der in die Gefäßwand eingeschmolzen ist. Da hier ebenso wie in Figur 4 sämtliche Elektroden dielektrisch behindert sind, ist neben dem unipolaren auch der bipolare Impulsbetrieb möglich. Die Innenwandung des Entladungsgefäßes 2 ist über dem gesamten Umfang mit einer Leuchtstoffschicht 17 versehen, d.h. sie weißt im Unterschied zu den vorherigen Lampen keine Apertur auf. Die Lampe aus Figur 5 ist für die Automobilbeleuchtung vorgesehen und zwar je nach Leuchtstoff beispielsweise als Bremslicht oder Blinklicht. The lamp in FIG. 5 has two outer wall electrodes 3a, 3b and one Vessel wall electrode 4. The vessel wall electrode 4 consists of a Wire made of Vacovit® (from Vacuumschmelze GmbH) with a diameter of approx. 100 µm, which is melted into the vessel wall. Since here as well as in Figure 4 all electrodes are dielectrically impeded, is next unipolar and bipolar pulse operation possible. The inner wall of the discharge vessel 2 is with a Phosphor layer 17, i.e. she knows unlike the previous ones Do not illuminate an aperture. The lamp of Figure 5 is for automotive lighting provided, for example, depending on the phosphor as brake light or flashing light.

Die Figur 6 zeigt ein Beleuchtungssystem für OA-Vorrichtungen. Die Apertur-Leuchtleuchtstofflampe 1 aus Figur 1 weist an ihrem zweiten Ende zusätzlich einen Sockel 18 auf. Der Sockel 18 besteht im wesentlichen aus einem Sockeltopf 19 sowie zwei Anschlußstiften 20a,20b. Der Sockeltopf 19 dient primär der Aufnahme der Lampe 1. Außerdem sind im Innern des Sockeltopfes 19 die Außenwandungselektrode 3 und die Innenwandungselektrode 4 bzw. der äußere Stromzuführungsabschnitt 11 (vgl. Figur 1) mit den beiden Anschlußstiften 20a,20b verbunden (nicht dargestellt). Die Anschlußstifte 20a,20b sind ihrerseits über elektrische Leitungen 21a,21b mit den beiden Polen 22a bzw. 22b einer Impulsspannungsquelle 23 verbunden.FIG. 6 shows a lighting system for OA devices. The aperture fluorescent lamp 1 from FIG. 1 additionally points at its second end a base 18. The base 18 consists essentially of a Socket pot 19 and two connecting pins 20a, 20b. The base pot 19 is primarily used to hold the lamp 1. In addition, inside the Base pot 19, the outer wall electrode 3 and the inner wall electrode 4 or the outer power supply section 11 (see FIG. 1) with connected to the two pins 20a, 20b (not shown). The connector pins 20a, 20b are in turn connected via electrical lines 21a, 21b the two poles 22a and 22b of a pulse voltage source 23 connected.

Die Impulsspannungsquelle 23 liefert eine Folge von unipolaren Spannungspulsen mit einer Wiederholfrequenz von 66 kHz. Die Pulsdauer beträgt jeweils ca. 1,1 µs.The pulse voltage source 23 supplies a series of unipolar voltage pulses with a repetition frequency of 66 kHz. The pulse duration is approx. 1.1 µs each.

In der Figur 7 ist die durch die Apertur gemessene Leuchtdichte L in cd/m2 als Funktion der zeitlich gemittelten elektrischen Leistung P in W dargestellt. Die Meßkurve 24 bezieht sich auf ein Beleuchtungssystem gemäß Figur 6 mit den dort spezifizierten Betriebsparametern. Wie zu erkennen ist, werden bei einer Leistung von knapp 20 W ca. 40.000 cd/m2 erzielt. Eine vergleichbare konventionelle Lampe gemäß der Lehre der US-PS 5,117,160 liefert hingegen bei der gleichen elektrischen Leistung lediglich 20.000 cd/m2. Die erfindungsgemäße Lampe erzeugt folglich bei gleicher elektrischer Leistung die doppelte Leuchtdichte; das entspricht einer Steigerung gegenüber dem Stand der Technik um 100 %.FIG. 7 shows the luminance L in cd / m 2 measured by the aperture as a function of the time-averaged electrical power P in W. The measurement curve 24 relates to an illumination system according to FIG. 6 with the operating parameters specified there. As can be seen, approximately 40,000 cd / m 2 are achieved with a power of almost 20 W. A comparable conventional lamp according to the teaching of US Pat. No. 5,117,160, on the other hand, delivers only 20,000 cd / m 2 with the same electrical power. The lamp according to the invention consequently produces twice the luminance with the same electrical power; this corresponds to a 100% increase over the prior art.

Die Meßkurve 25 ergibt sich durch Ersetzen der Lampe gemäß Figur 1 durch die Lampe gemäß Figur 3, d.h. einer Lampe mit zwei statt nur einem Anodenstreifen. Im Betrieb entstehen somit zwei Entladungsebenen (siehe auch Beschreibung zu Figur 3). Wie zu erkennen ist, werden ab einer elektrischen Leistung von ca. 10 W noch höhere Leuchtdichten als bei der Meßkurve 24 erzielt. Bei einer Leistung von 20 W werden schließlich knapp 50.000 cd/m2 erzielt. Das entspricht der 2,5-fachen Leuchtdichte gegenüber dem Stand der Technik oder einer Steigerung um 150 %.The measurement curve 25 is obtained by replacing the lamp according to FIG. 1 with the lamp according to FIG. 3, ie a lamp with two instead of only one anode strips. Two discharge levels thus arise during operation (see also description of FIG. 3). As can be seen, from an electrical power of approx. 10 W, even higher luminance levels are achieved than with the measurement curve 24. With a power of 20 W, just under 50,000 cd / m 2 can be achieved. This corresponds to 2.5 times the luminance compared to the state of the art or an increase of 150%.

Diese Ergebnisse dokumentieren die vorteilhafte Wirkung der Erfindung.These results document the advantageous effect of the invention.

Die Erfindung beschränkt sich nicht auf die angegebenen Ausführungsbeispiele. Insbesondere sind auch Kombinationen von Merkmalen unterschiedlicher Ausführungsbeispiele eingeschlossen.The invention is not limited to the exemplary embodiments specified. In particular, combinations of features are different Embodiments included.

Claims (12)

  1. Fluorescent lamp (1) having an at least partially transparent closed, tubular discharge vessel (2) which is filled with a gas filling, has a round cross-section and is made from an electrically nonconducting material, which discharge vessel (2) has on its inner wall at least partially a layer of a fluorescent material or mixture of fluorescent materials (6), and having elongated electrodes (3; 4; 12; 14a-14d) arranged parallel to the longitudinal axis of the tubular discharge vessel (2), at least the electrodes which are dedicated to the same operating polarity being separated by a dielectric (2; 13; 15a-15d) from the interior of the discharge vessel, characterized in that
    at least one electrode (4; 12; 14a-14d) is arranged on the inner wall of the discharge vessel (2),
    the at least one inner wall electrode (4; 12; 14a-14d) is additionally further constructed as a feedthrough (10) and the latter, in turn, is further constructed as an external supply lead (11), that is to say that each inner wall electrode (4), the associated feedthrough (10) thereof and associated external supply lead (11) are constructed in each case as functionally differing subregions of a unilateral common structure (4, 10, 11) resembling a conductor track.
  2. Fluorescent lamp according to Claim 1, characterized in that the tubular discharge vessel (2) is sealed in a gas-tight fashion at one or at both ends with a stopper (8) and by means of solder (9), the at least one inner wall electrode (4) being guided to the outside in a gas-tight fashion through the solder (9), that is to say that the inner wall electrode (4) merges into a feedthrough (10) in the region of the solder (9) and, finally, into an external supply lead (11) outside the vessel (2).
  3. Fluorescent lamp according to Claim 1, characterized in that the inner wall electrode(s) (12; 14a-14d) is (are) covered additionally (in each case) with a dielectric layer (13; 15a-15d).
  4. Fluorescent lamp (1) having an at least partially transparent closed, tubular discharge vessel (2) which is filled with a gas filling, has a round cross-section and is made from an electrically nonconducting material, which discharge vessel (2) has on its inner wall at least partially a layer of a fluorescent material or mixture of fluorescent materials (17), and having elongated electrodes (3a; 3b; 16) arranged parallel to the longitudinal axis of the tubular discharge vessel (2), at least the electrodes which are dedicated to the same operating polarity being separated by a dielectric (2) from the interior of the discharge vessel, characterized in that at least one electrode (16) is arranged inside the wall of the discharge vessel (2).
  5. Fluorescent lamp having the features of Claims 1 and 4.
  6. Fluorescent lamp according to one or more of the preceding claims, characterized in that the number of the electrodes of one polarity (4; 14a; 16) is different from the number of the electrodes of the other polarity (3a,3b; 14b-14d).
  7. Fluorescent lamp according to one or more of the preceding claims, characterized in that the inner wall of the discharge vessel (2) has an aperture (5) which is excepted from the fluorescent layer (6) and, if appropriate, a reflective layer (16).
  8. Fluorescent lamp according to Claim 7, characterized in that the electrodes are arranged asymmetrically with respect to the aperture (5).
  9. Fluorescent lamp according to Claim 8, characterized in that at least one electrode pair of differing polarity (3,5; 4,12; 3a,4; 14a,14d) is arranged in such a way that seen in cross-section the mid-vertical on the connecting line of an electrode pair (3,5; 4,12; 3a,4; 14a,14d) intersects the fluorescent layer (6), that is to say meets the inner wall outside the aperture (5).
  10. Fluorescent lamp according to one or more of the preceding claims, characterized in that the width of the electrodes is less than 2 mm, in particular less than 1 mm.
  11. Method for operating a fluorescent lamp according to one or more of the preceding claims, characterized in that the fluorescent lamp (1) is connected to an electric pulsed voltage source (23) which supplies voltage pulses separated from one another by pauses.
  12. Method according to Claim 11, characterized by the following operating parameters:
    a repetition frequency of the voltage pulses of higher than 60 kHz
    a pulse duration of the voltage pulses of less than 2 µs.
EP98931925A 1997-04-30 1998-04-16 Fluorescent lamp Expired - Lifetime EP0922297B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19718395A DE19718395C1 (en) 1997-04-30 1997-04-30 Fluorescent lamp and method of operating it
DE19718395 1997-04-30
PCT/DE1998/001061 WO1998049712A1 (en) 1997-04-30 1998-04-16 Fluorescent lamp

Publications (2)

Publication Number Publication Date
EP0922297A1 EP0922297A1 (en) 1999-06-16
EP0922297B1 true EP0922297B1 (en) 2002-03-06

Family

ID=7828304

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98931925A Expired - Lifetime EP0922297B1 (en) 1997-04-30 1998-04-16 Fluorescent lamp

Country Status (12)

Country Link
US (1) US6097155A (en)
EP (1) EP0922297B1 (en)
JP (1) JP2000513872A (en)
KR (1) KR100375616B1 (en)
CN (1) CN1165959C (en)
AT (1) ATE214201T1 (en)
CA (1) CA2259365C (en)
DE (2) DE19718395C1 (en)
ES (1) ES2174454T3 (en)
HU (1) HUP0100194A3 (en)
TW (1) TW419704B (en)
WO (1) WO1998049712A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1519407A3 (en) * 2003-08-06 2007-08-15 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH UV radiator with tubular discharge vessel

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19905219A1 (en) 1998-09-30 2000-08-31 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flat lighting device
EP1111656A4 (en) * 1999-06-07 2007-03-28 Toshiba Lighting & Technology Discharge tube, discharge tube device and image reader
DE19933405A1 (en) * 1999-07-21 2001-03-29 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Elongated light source
DE19936865A1 (en) 1999-08-05 2001-02-15 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Gas discharge lamp and associated manufacturing process
DE19951873A1 (en) * 1999-10-28 2001-05-03 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp
DE10014407A1 (en) * 2000-03-24 2001-09-27 Philips Corp Intellectual Pty Low pressure gas discharge lamp
DE10026913A1 (en) * 2000-05-31 2001-12-06 Philips Corp Intellectual Pty Gas discharge lamp with fluorescent layer
DE10048986A1 (en) 2000-09-27 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielectric barrier discharge lamp
DE10048410A1 (en) * 2000-09-29 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielectric barrier discharge lamp
DE10048409A1 (en) * 2000-09-29 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with capacitive field modulation
DE10133326A1 (en) * 2001-07-10 2003-01-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielectric barrier discharge lamp with ignition aid
DE10140355A1 (en) * 2001-08-17 2003-02-27 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with ignition aid
DE10140356A1 (en) * 2001-08-17 2003-02-27 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Tubular discharge lamp with ignition aid
DE10147961A1 (en) * 2001-09-28 2003-04-10 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Igniting, operating dielectric barrier discharge lamp involves applying ignition voltage between sub-electrodes to ignite auxiliary discharge at gap between sub-electrodes during ignition
US6946794B2 (en) 2001-11-22 2005-09-20 Matsushita Electric Industrial Co., Ltd. Light source device and image reader
KR20030044481A (en) * 2001-11-30 2003-06-09 삼성전자주식회사 Cold cathode fluorescent tube type lamp and liquid crystal display device using the same
EP1329944A3 (en) * 2001-12-14 2009-11-04 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric barrier discharge lamp with starting aid
EP1328007A1 (en) 2001-12-14 2003-07-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric barrier discharge lamp with starting aid.
KR100846462B1 (en) * 2002-05-23 2008-07-17 삼성전자주식회사 Fluorescent lamp for backlight
DE10312720A1 (en) * 2003-03-21 2004-09-30 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric barrier discharge lamp with crimp seal
DE10313956A1 (en) * 2003-03-27 2004-10-07 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Coupling element for elongated lamps and lighting system with this coupling element
DE102004008747A1 (en) * 2004-02-23 2005-09-08 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric barrier discharge lamp
DE102005034505A1 (en) 2005-07-20 2007-02-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit arrangement with transformerless converter with choke for the pulsed operation of dielectric barrier discharge lamps
CN101438376B (en) * 2006-05-12 2010-07-07 夏普株式会社 Cold cathode lamp, illuminating device for display comprising same, and display
DE102006033872A1 (en) * 2006-07-21 2008-01-24 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric barrier discharge lamp with glass wall
DE202007004236U1 (en) * 2007-03-22 2007-06-14 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric barrier discharge lamp with ignition aid
WO2009078249A1 (en) * 2007-12-17 2009-06-25 Orc Manufacturing Co., Ltd. Discharge lamp
JP5302637B2 (en) * 2008-11-17 2013-10-02 株式会社オーク製作所 Discharge lamp
JP5271762B2 (en) * 2009-03-13 2013-08-21 株式会社オーク製作所 Discharge lamp

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778765A (en) * 1980-11-05 1982-05-17 Toshiba Corp Fluorescent glow discharge lamp
US4797594A (en) * 1985-04-03 1989-01-10 Gte Laboratories Incorporated Reprographic aperture lamps having improved maintenance
JPS61250957A (en) * 1985-04-26 1986-11-08 Toshiba Corp Fluorescent lamp
US5117160C1 (en) * 1989-06-23 2001-07-31 Nec Corp Rare gas discharge lamp
US4978888A (en) * 1989-07-18 1990-12-18 Thomas Electronics Incorporated Thick-film integrated flat fluorescent lamp
JPH0711949B2 (en) * 1989-12-20 1995-02-08 東芝ライテック株式会社 Fluorescent lamp and lamp device using the same
JP2729100B2 (en) * 1990-03-16 1998-03-18 日本電気ホームエレクトロニクス株式会社 Rare gas discharge lamp
JPH0426047A (en) * 1990-05-21 1992-01-29 Toshiba Lighting & Technol Corp Noble gas discharge lamp
CA2059209C (en) * 1991-02-01 1997-05-27 William J. Council Rf fluorescent lighting
KR930008163B1 (en) * 1991-04-02 1993-08-26 삼성전관 주식회사 Discharge tube
JP3532578B2 (en) * 1991-05-31 2004-05-31 三菱電機株式会社 Discharge lamp and image display device using the same
DE4311197A1 (en) * 1993-04-05 1994-10-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method for operating an incoherently radiating light source
JPH0745234A (en) * 1993-07-28 1995-02-14 Toshiba Lighting & Technol Corp External electrode discharge lamp and lamp built in equipment
JP3025414B2 (en) * 1994-09-20 2000-03-27 ウシオ電機株式会社 Dielectric barrier discharge lamp device
JP3082638B2 (en) * 1995-10-02 2000-08-28 ウシオ電機株式会社 Dielectric barrier discharge lamp
JP3133265B2 (en) * 1997-02-07 2001-02-05 スタンレー電気株式会社 Fluorescent lamp
JP3218561B2 (en) * 1997-06-27 2001-10-15 スタンレー電気株式会社 Fluorescent lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1519407A3 (en) * 2003-08-06 2007-08-15 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH UV radiator with tubular discharge vessel

Also Published As

Publication number Publication date
ATE214201T1 (en) 2002-03-15
DE59803262D1 (en) 2002-04-11
WO1998049712A1 (en) 1998-11-05
EP0922297A1 (en) 1999-06-16
CA2259365C (en) 2007-01-09
US6097155A (en) 2000-08-01
KR20000022412A (en) 2000-04-25
TW419704B (en) 2001-01-21
CN1225748A (en) 1999-08-11
DE19718395C1 (en) 1998-10-29
HUP0100194A2 (en) 2001-05-28
KR100375616B1 (en) 2003-04-18
HUP0100194A3 (en) 2001-06-28
CN1165959C (en) 2004-09-08
ES2174454T3 (en) 2002-11-01
CA2259365A1 (en) 1998-11-05
JP2000513872A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
EP0922297B1 (en) Fluorescent lamp
EP0912991B1 (en) Flat fluorescent light for background lighting and liquid crystal display device fitted with said flat fluorescent light
EP0824761B1 (en) Process for operating a discharge lamp
EP0895653B1 (en) Electric radiation source and irradiation system with this radiation source
WO1994023442A1 (en) Process for operating an incoherently emitting radiation source
EP0912990A2 (en) Gas discharge lamp with dielectrically impeded electrodes
EP1984936A1 (en) High-pressure discharge lamp
EP1004137B1 (en) Discharge lamp with dielectrically impeded electrodes
EP0912992B1 (en) Flat light emitter
EP1050066B1 (en) Discharge lamp with dielectrically inhibited electrodes
EP1063682B1 (en) Method for driving a discharge lamp
EP1417699B1 (en) Discharge lamp with starting aid
EP1276137B1 (en) Dielectric-barrier discharge lamp with starting aid
EP0968521B1 (en) Flat spotlight with discharge separated by a dielectric layer and device for the electrodes into the leading discharge area
EP0990262B1 (en) Discharge lamp with dielectrically impeded electrodes
DE10140356A1 (en) Tubular discharge lamp with ignition aid
DE10331510A1 (en) Short arc discharge lamp for light source device, includes conductive component(s) having tip spaced a distance from second electrode which is greater than the distance between two electrodes
DE19711891A1 (en) Flat panel gas discharge visible light emitter
DE10016736A1 (en) Gas-discharge lamp with capacitive coupling structure, uses three-layer sequence of ceramic foil and platinum paste.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20000718

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 01J 61/78 A, 7H 01J 61/80 B, 7H 01J 61/067 B, 7H 01J 61/36 B, 7H 01J 65/04 B

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 214201

Country of ref document: AT

Date of ref document: 20020315

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59803262

Country of ref document: DE

Date of ref document: 20020411

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020517

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2174454

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040420

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070210

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100512

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100407

Year of fee payment: 13

Ref country code: IT

Payment date: 20100427

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100419

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100408

Year of fee payment: 13

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20110430

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111101

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59803262

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111101

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110416

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110417

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59803262

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130418

Year of fee payment: 16

Ref country code: DE

Payment date: 20130419

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130515

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59803262

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59803262

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140416

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140416

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59803262

Country of ref document: DE

Effective date: 20141101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430