JP5302637B2 - Discharge lamp - Google Patents

Discharge lamp Download PDF

Info

Publication number
JP5302637B2
JP5302637B2 JP2008293252A JP2008293252A JP5302637B2 JP 5302637 B2 JP5302637 B2 JP 5302637B2 JP 2008293252 A JP2008293252 A JP 2008293252A JP 2008293252 A JP2008293252 A JP 2008293252A JP 5302637 B2 JP5302637 B2 JP 5302637B2
Authority
JP
Japan
Prior art keywords
discharge
gas
discharge vessel
pressure
illuminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008293252A
Other languages
Japanese (ja)
Other versions
JP2010123276A5 (en
JP2010123276A (en
Inventor
剛 小林
誠 安田
仁志 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2008293252A priority Critical patent/JP5302637B2/en
Publication of JP2010123276A publication Critical patent/JP2010123276A/en
Publication of JP2010123276A5 publication Critical patent/JP2010123276A5/ja
Application granted granted Critical
Publication of JP5302637B2 publication Critical patent/JP5302637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge Lamp (AREA)

Description

本発明は、エキシマ光を放射する放電ランプに関し、特に、放電容器内に塩素、クリプトンの放電ガスを封入する放電ランプに関する。   The present invention relates to a discharge lamp that emits excimer light, and more particularly to a discharge lamp in which a discharge gas such as chlorine or krypton is sealed in a discharge vessel.

エキシマランプでは、一対の電極が発光管の軸方向に沿って対向配置され、キセノンなどの希ガスとハロゲンガスを混合させた高圧ガスが発光管内に封入される。放電空間外部に設けられた電極間に数kWの高電圧を印加すると、放電容器を介在させた電極間で誘電体バリア放電が生じ、エキシマ光(紫外光)が発光管外部に放射される。   In an excimer lamp, a pair of electrodes are arranged to face each other along the axial direction of the arc tube, and a high-pressure gas in which a rare gas such as xenon and a halogen gas are mixed is sealed in the arc tube. When a high voltage of several kW is applied between the electrodes provided outside the discharge space, dielectric barrier discharge occurs between the electrodes with the discharge vessel interposed therebetween, and excimer light (ultraviolet light) is emitted outside the arc tube.

放電用ガスとして塩素(Cl)とクリプトン(Kr)の混合ガスを放電容器内に封入し、クリプトンクロライドエキシマ分子によって波長222nmの紫外光を放射するエキシマランプも知られている(特許文献1参照)。そこでは、塩素濃度とガス封入圧力を調整することによって、発光効率の改善が図られている。
特開平7−288110号公報
There is also known an excimer lamp in which a mixed gas of chlorine (Cl) and krypton (Kr) is enclosed in a discharge vessel as a discharge gas, and ultraviolet light having a wavelength of 222 nm is emitted by krypton chloride excimer molecules (see Patent Document 1). . Here, the luminous efficiency is improved by adjusting the chlorine concentration and the gas filling pressure.
JP 7-288110 A

塩素とクリプトンの混合ガスを封入する場合、塩素濃度、ガス封入圧力のわずかな違いによって光照度が大きく変化し、最も発光効率の高い塩素濃度、ガス封入圧力に設定する必要がある。しかしながら、塩素濃度、ガス封入圧力の違いによって放電状態も変化し、照度を上げる条件とは必ずしも一致しない。したがって、照度を上げることだけを目的に塩素濃度、ガス圧力を設定しても、今度は放電状態が安定せず、照度一定を維持することが難しい。   When a mixed gas of chlorine and krypton is sealed, the illuminance changes greatly due to a slight difference in chlorine concentration and gas charging pressure, and it is necessary to set the chlorine concentration and gas charging pressure with the highest luminous efficiency. However, the discharge state also changes depending on the difference in chlorine concentration and gas filling pressure, which does not necessarily match the conditions for increasing the illuminance. Therefore, even if the chlorine concentration and the gas pressure are set only for the purpose of increasing the illuminance, the discharge state is not stabilized this time and it is difficult to maintain a constant illuminance.

本発明は、塩素とクリプトンの混合ガスを使用するとき、照度が高く、かつ安定した放電によって照度一定を維持可能な放電ランプであり、少なくとも塩素とクリプトンを含むガスが封入される放電容器と、前記放電容器の表面に軸方向に沿って配置される電極とを備える。   The present invention is a discharge lamp having a high illuminance and capable of maintaining a constant illuminance by stable discharge when using a mixed gas of chlorine and krypton, and a discharge vessel in which a gas containing at least chlorine and krypton is enclosed; An electrode disposed along the axial direction on the surface of the discharge vessel.

例えば、電極の配置される内管の外周面に外管を溶着させるよって一体化させた単管状放電容器であり、少なくとも一方の電極が前記放電容器の管壁内に埋め込まれている。   For example, it is a single tubular discharge vessel integrated by welding an outer tube to the outer peripheral surface of the inner tube in which the electrode is disposed, and at least one electrode is embedded in the tube wall of the discharge vessel.

本発明では、塩素の濃度をM(%)、前記ガスの封入圧力をP(kPa)とするとき、M−P座標系において、塩素濃度、ガスの封入圧力(M、P)は、(0.5,7)、(0.5,13)、(1,20)、(2,33)、(2,7)を頂点とする領域内の値に定められることを特徴とする。ただし、ここでの「領域内」には、これら頂点および頂点を結ぶ線上も含まれるものとする。   In the present invention, when the chlorine concentration is M (%) and the gas filling pressure is P (kPa), the chlorine concentration and the gas filling pressure (M, P) are (0) in the MP coordinate system. .5,7), (0.5,13), (1,20), (2,33), and (2,7) are defined as values in the region. However, it is assumed that “in the region” here includes the vertices and the line connecting the vertices.

あるいは、別の表現をすれば、塩素濃度M、ガス圧力Pは、以下の式をみたすことを特徴とする。

7≦P≦13M+7 (1.0≦M≦2.0)
7≦P≦14M+6 (0.5≦M≦1.0) ・・・・(1)
Alternatively, in other words, the chlorine concentration M and the gas pressure P satisfy the following equations.

7 ≦ P ≦ 13M + 7 (1.0 ≦ M ≦ 2.0)
7 ≦ P ≦ 14M + 6 (0.5 ≦ M ≦ 1.0) (1)

本発明では、塩素、クリプトンのガス封入時に得られる波長222nmのエキシマ光の照度が高く、かつ照度一定が維持される塩素濃度と封入圧力の範囲を見出した。すなわち、従来のように発光効率を向上させた塩素濃度、封入圧力ではなく、照度および放電状態の両方が優れた塩素濃度、ガス封入圧力の範囲を見出している。   In the present invention, the inventors have found a range of chlorine concentration and sealing pressure at which the illuminance of excimer light having a wavelength of 222 nm obtained at the time of gas sealing of chlorine and krypton is high and the illuminance is kept constant. That is, the present inventors have found a range of chlorine concentration and gas filling pressure that are excellent in both illuminance and discharge state, instead of chlorine concentration and filling pressure with improved luminous efficiency as in the prior art.

エキシマ光を放射するランプでは、グロー放電が軸方向に沿って電極全体に渡って生じ、安定した放電状態が維持されることによって、照度一定が保たれる。このような安定した放電状態を実現するための塩素濃度、ガス封入圧力を一概に定めることはできず、塩素濃度、あるいはガス封入圧力を単に増加、減少することでは明らかにできず、その塩素濃度、ガス封入圧力の適切な値は考慮されたことがなかった。   In a lamp that emits excimer light, glow discharge is generated over the entire electrode along the axial direction, and a stable discharge state is maintained, so that the illuminance is kept constant. The chlorine concentration and gas filling pressure for realizing such a stable discharge state cannot be determined in general, and it cannot be clarified by simply increasing or decreasing the chlorine concentration or gas filling pressure. Appropriate values for gas charging pressure have never been considered.

一方、波長222nmのエキシマ光の照度は、塩素濃度、封入圧力によって変化し、塩素濃度を所定の範囲で照度が高くなり、一方でガス封入圧力を上げると照度が高くなる傾向も見られる。しかしながら、照度の高い塩素濃度、ガス封入圧力に近づけば放電状態が安定するわけではなく、放電安定もしくは照度アップの一方を達成できるように塩素濃度、封入圧力を探っても、その両方を獲得することはできない。   On the other hand, the illuminance of excimer light having a wavelength of 222 nm varies depending on the chlorine concentration and the filling pressure, and the illuminance increases when the chlorine concentration is within a predetermined range, while the illuminance tends to increase when the gas filling pressure is increased. However, the discharge state does not become stable if the illuminance is high and the gas charging pressure is approached, and even if the chlorine concentration and the charging pressure are searched so that either stable discharge or high illuminance can be achieved, both are obtained. It is not possible.

本発明では、放電状態、照度の組み合わせと塩素濃度、封入圧力の組み合わせの関係性を初めて導き出し、両者を満たす塩素濃度と封入圧力の範囲を明らかにした。これにより、従来にはない高出力、かつ照度一定の放電ランプを実現することができる。   In the present invention, the relationship between the discharge state, the combination of illuminance and the combination of the chlorine concentration and the filling pressure was first derived, and the range of the chlorine concentration and the filling pressure satisfying both was clarified. Thereby, it is possible to realize a discharge lamp having a high output and a constant illuminance which is not present.

特に、塩素濃度M(%)が0.5〜1.0の範囲にあり、ガスの封入圧力P(kPa)が13〜20の範囲にある場合、照度が高く、放電状態が安定したランプを実現することができる。例えば、塩素濃度0.5%、封入圧力13kPaに設定するのがよい。   In particular, when the chlorine concentration M (%) is in the range of 0.5 to 1.0 and the gas sealing pressure P (kPa) is in the range of 13 to 20, a lamp with high illuminance and stable discharge state is used. Can be realized. For example, it is preferable to set the chlorine concentration to 0.5% and the sealing pressure to 13 kPa.

本発明によれば、クリプトンと塩素を含む放電用ガスを封入する放電ランプにおいて、照度が高く、かつ照度の安定した放電ランプを実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the discharge lamp which encloses the discharge gas containing krypton and chlorine, it is possible to realize a discharge lamp having high illuminance and stable illuminance.

以下では、図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態である放電ランプの径方向の概略的断面図である。図2は、放電ランプの軸方向の概略的断面図である。   FIG. 1 is a schematic sectional view in the radial direction of a discharge lamp according to the present embodiment. FIG. 2 is a schematic sectional view in the axial direction of the discharge lamp.

放電ランプ10は、石英製の単管状放電容器12を備え、放電容器12は内管14と内管14を覆う外管16によって構成されている(図2参照)。内管14の外周面14Sには、電極18A、18Bがランプ軸方向に沿って対向配置されている。   The discharge lamp 10 includes a single tubular discharge vessel 12 made of quartz, and the discharge vessel 12 includes an inner tube 14 and an outer tube 16 that covers the inner tube 14 (see FIG. 2). Electrodes 18A and 18B are arranged on the outer peripheral surface 14S of the inner tube 14 so as to face each other along the lamp axis direction.

電極18A、18Bはモリブデンなどによる帯状金属箔であり、封止工程によって弧状になっている。外管16は内管14に溶着しており、外管14と内管16が一体となって放電容器12として構成されている。これにより、電極18A、18Bは放電容器12の管壁内に埋設され、放電空間15内部に電極18A、18Bが配置されない。   The electrodes 18A and 18B are strip-shaped metal foils made of molybdenum or the like, and are arc-shaped by a sealing process. The outer tube 16 is welded to the inner tube 14, and the outer tube 14 and the inner tube 16 are integrated to form the discharge vessel 12. Accordingly, the electrodes 18A and 18B are embedded in the tube wall of the discharge vessel 12, and the electrodes 18A and 18B are not disposed inside the discharge space 15.

電極18A、18Bの端部には、外部に延びる給電線19A、19Bが、互いに軸方向反対側に接続されている。給電線19A、19Bは、エキシマランプ10の外部に設置された交流高電圧電源(図示せず)に接続されており、給電線19A、19Bを介してエキシマランプ10に電力が供給される。   Feed lines 19A and 19B extending to the outside are connected to opposite ends in the axial direction at the ends of the electrodes 18A and 18B. The feed lines 19A and 19B are connected to an AC high voltage power supply (not shown) installed outside the excimer lamp 10, and power is supplied to the excimer lamp 10 through the feed lines 19A and 19B.

内管14内部に形成される放電空間15には、放電ガスが封入されている。放電ガスは、クリプトン(Kr)、塩素(Cl)を含む高圧ガスであり、放電中にエキシマ分子を生じさせ、波長222nmのエキシマ光を放射させる。後述するように、塩素の濃度(%)、ガス圧力(kPa)は所定の範囲内に定められている。電極18A、18Bに電圧を印加すると、放電空間15内ではグロー状放電が電極18、18B間全体に渡って発生する。放電によって生じた光は放電容器12を透過し、外部に放射される。   A discharge gas is sealed in the discharge space 15 formed in the inner tube 14. The discharge gas is a high-pressure gas containing krypton (Kr) and chlorine (Cl), generates excimer molecules during discharge, and emits excimer light having a wavelength of 222 nm. As will be described later, the concentration (%) of chlorine and the gas pressure (kPa) are set within a predetermined range. When a voltage is applied to the electrodes 18A and 18B, a glow discharge is generated in the discharge space 15 over the entire area between the electrodes 18 and 18B. Light generated by the discharge passes through the discharge vessel 12 and is emitted to the outside.

次に、図3〜図6を用いて、塩素濃度、放電ガスの封入圧力の範囲について説明する。ここでは、塩素濃度、封入圧力の組み合わせがそれぞれ異なる上記単管状放電ランプを複数個制作し、各放電ランプについて波長222nmの光の照度、および放電状態を測定している。   Next, the range of the chlorine concentration and the discharge pressure of the discharge gas will be described with reference to FIGS. Here, a plurality of the single tubular discharge lamps having different combinations of chlorine concentration and sealing pressure are produced, and the illuminance of light having a wavelength of 222 nm and the discharge state are measured for each discharge lamp.

電源に関しては、交流200Vを整流し、スイッチングによって矩形波形に変換し、1:18のトランスで昇圧した電圧をランプに印加している。また、点灯周波数(kHz)は100以下に設定されている。   As for the power source, AC 200V is rectified, converted into a rectangular waveform by switching, and a voltage boosted by a 1:18 transformer is applied to the lamp. The lighting frequency (kHz) is set to 100 or less.

図3は、塩素濃度と封入圧力の組み合わせをプロットした図である。図4は、照度および放電状態の評価を表で示した図である。図5は、ガス封入圧力と波長222nmの光の照度(mW/cm)との関係を示したグラフである。そして、図6は、塩素濃度と波長222nmの光の照度との関係を示したグラフである。 FIG. 3 is a plot of combinations of chlorine concentration and sealing pressure. FIG. 4 is a table showing the evaluation of illuminance and discharge state. FIG. 5 is a graph showing the relationship between the gas filling pressure and the illuminance (mW / cm 2 ) of light having a wavelength of 222 nm. FIG. 6 is a graph showing the relationship between the chlorine concentration and the illuminance of light having a wavelength of 222 nm.

図5では、塩素濃度(%)を所定濃度にしたとき、封入圧力の違いによる照度(mW/cm)の変化を表している。図5における「*印」は塩素濃度5.0%、「菱形印」は塩素濃度2.0%、「四角印」は塩素濃度1.0%、「三角印」は塩素濃度0.5%、そして「丸印」は塩素濃度0.2%を示す。 FIG. 5 shows a change in illuminance (mW / cm 2 ) due to a difference in sealing pressure when the chlorine concentration (%) is set to a predetermined concentration. In FIG. 5, “*” indicates a chlorine concentration of 5.0%, “rhombus” indicates a chlorine concentration of 2.0%, “square” indicates a chlorine concentration of 1.0%, and “triangle” indicates a chlorine concentration of 0.5%. "Circle" indicates a chlorine concentration of 0.2%.

一方、図6では、封入圧力(kPa)を所定値に定めたとき、塩素濃度の違いによる照度(mW/cm)の変化を表している。図6における「*印」は封入圧力33kPa、「菱形印」は封入圧力27kPa、「四角印」は封入圧力20kPa、「三角印」は封入圧力13kPa、そして「丸印」は封入圧力7kPaを示す。 On the other hand, FIG. 6 shows a change in illuminance (mW / cm 2 ) due to a difference in chlorine concentration when the sealing pressure (kPa) is set to a predetermined value. In FIG. 6, “*” indicates an enclosure pressure of 33 kPa, “diamond” indicates an enclosure pressure of 27 kPa, “square” indicates an enclosure pressure of 20 kPa, “triangle” indicates an enclosure pressure of 13 kPa, and “circle” indicates an enclosure pressure of 7 kPa. .

図5に示すように、塩素濃度が1.0%以内の場合、封入圧力(kPa)が高くなるほど概して照度は増加する。一方、塩素濃度が1.0%以内では比較的照度が大きいことが明らかである。したがって、塩素濃度1.0%以内で封入圧力を高めることによって波長222nmの光の照度をできるだけ大きくすることが可能である。   As shown in FIG. 5, when the chlorine concentration is within 1.0%, the illuminance generally increases as the enclosed pressure (kPa) increases. On the other hand, it is clear that the illuminance is relatively large when the chlorine concentration is within 1.0%. Therefore, it is possible to increase the illuminance of light having a wavelength of 222 nm as much as possible by increasing the sealing pressure within a chlorine concentration of 1.0%.

しかしながら、封入圧力を高めるほど放電状態が安定せず、特に塩素濃度が小さいとそのことが顕著になることが図4に示されている。図4では、「塩素濃度、封入圧力」の組み合わせに対する「照度、放電状態」の性能を段階的に評価している。   However, it is shown in FIG. 4 that the discharge state is not stabilized as the sealing pressure is increased, and that this becomes remarkable particularly when the chlorine concentration is small. In FIG. 4, the performance of “illuminance, discharge state” with respect to the combination of “chlorine concentration, sealing pressure” is evaluated step by step.

ここでは、照度の評価を左側、放電状態の評価を右側に示している。照度の評価については、5mW/cm未満を「×印」、5mW/cm以上〜10mW/cm未満を「三角印」、10mW/cm以上〜15mW/cm未満を「○印」、15mW/cm以上を「二重丸印」で表す。 Here, the evaluation of illuminance is shown on the left side, and the evaluation of the discharge state is shown on the right side. For evaluation of illuminance, 5mW / cm 2 less than the "×" mark, less than 5mW / cm 2 or more ~10mW / cm 2 "triangle", 10mW / cm 2 or more ~15mW / cm 2 less than the "○ mark" 15 mW / cm 2 or more is represented by “double circle”.

一方、放電状態の評価は、フィラメント状放電を「×印」、弱い筋状放電を「三角印」、グロー状の放電を「丸印」で表す。雷のように強い筋が生じるフィラメント状放電の場合、電極の一部でしか放電が発生しておらず、電極全体に渡って均一な放電が生じていない。すなわち、放電が安定しない。一方、グロー放電状態の場合、電極全体で放電が生じている。弱い筋状放電はその中間状態であり、照度一定の条件として最低限満足される放電状態とみなせる。   On the other hand, the evaluation of the discharge state is represented by “×” for filamentous discharge, “triangle” for weak streak discharge, and “round” for glow discharge. In the case of filamentary discharge in which strong streaks such as thunder are generated, discharge is generated only in a part of the electrode, and uniform discharge is not generated over the entire electrode. That is, the discharge is not stable. On the other hand, in the glow discharge state, discharge occurs in the entire electrode. The weak streak discharge is an intermediate state, and can be regarded as a discharge state that is at least satisfied as a condition of constant illuminance.

図4に示すように、照度、放電状態がある程度良好な塩素濃度、封入圧力の組み合わせが存在する一方で、照度が高くて放電状態が悪く、あるいは放電状態が良好で照度が低い塩素濃度、封入圧力の組み合わせ、さらには照度、放電状態ともに悪い組み合わせが存在する。   As shown in FIG. 4, while there is a combination of illuminance and discharge state with a certain level of good chlorine concentration and sealing pressure, the illuminance is high and the discharge state is poor, or the discharge state is good and the illuminance is low and the irradiance is low. There is a combination of pressures, and also a combination of bad illuminance and discharge state.

そこで、実験した濃度、封入圧力をプロットした図3と、図4の照度、放電状態の評価を見比べてみると、照度、放電状態の両方がある程度良好な範囲が見出される。ここでは、照度が「三角印」、「丸印」、もしくは「二重丸印」(すなわち5mW/cm以上)であり、かつ放電状態が「三角印」もしくは「丸字」(すなわち弱い筋状放電かグロー放電状態)である塩素濃度、封入圧力の組み合わせを、照度、放電状態両方の条件を満たすものと判断している。 Therefore, comparing FIG. 3 plotting the experimental concentration and sealing pressure with the evaluation of the illuminance and the discharge state in FIG. 4, a range in which both the illuminance and the discharge state are good to some extent is found. Here, the illuminance is “triangle mark”, “circle mark”, or “double circle mark” (that is, 5 mW / cm 2 or more), and the discharge state is “triangle mark” or “round character” (that is, weak stripes). It is determined that the combination of the chlorine concentration and the enclosed pressure, which is a state discharge or a glow discharge state, satisfies the conditions of both the illuminance and the discharge state.

図4に示すように、塩素濃度が2.0%を超えると照度、放電状態の両方を満たすことができず、一方、図3に示す直線L1、L3を超える塩素濃度、封入圧力でも照度、放電状態の両方を満足することができない。したがって、塩素濃度をM(%)、封入圧力をP(kPa)としたとき、(M、P)=(0.5,7)、(0.5,13)、(1,20)、(2,33)、(2,7)を頂点する領域AR内に定められた塩素濃度M、封入圧力Pであれは、照度、放電状態の両方を満足することができる。   As shown in FIG. 4, when the chlorine concentration exceeds 2.0%, it is impossible to satisfy both the illuminance and the discharge state. On the other hand, the chlorine concentration exceeding the straight lines L1 and L3 shown in FIG. Both discharge states cannot be satisfied. Therefore, when the chlorine concentration is M (%) and the sealing pressure is P (kPa), (M, P) = (0.5,7), (0.5,13), (1,20), ( 2, 33), the chlorine concentration M and the sealing pressure P determined in the area AR that apex (2, 7) can satisfy both the illuminance and the discharge state.

あるいは塩素濃度Mと封入圧力Pの条件を別の形で規定すると、封入圧力Pは以下の式を満たせばよい。

7≦P≦13M+7 (1.0≦M≦2.0)
7≦P≦14M+6 (0.5≦M≦1.0) ・・・・(2)

ただし、(2)式の右辺は直線L1、L3を表す。塩素濃度0.5〜2.0%の範囲において、図3に示す直線L1、L3以下、L2以上の範囲であればよい。
Alternatively, if the conditions of the chlorine concentration M and the sealing pressure P are defined in different forms, the sealing pressure P may satisfy the following expression.

7 ≦ P ≦ 13M + 7 (1.0 ≦ M ≦ 2.0)
7 ≦ P ≦ 14M + 6 (0.5 ≦ M ≦ 1.0) (2)

However, the right side of equation (2) represents straight lines L1 and L3. In the range of the chlorine concentration of 0.5 to 2.0%, it may be in the range of the straight lines L1, L3 or less and L2 or more shown in FIG.

特に、領域AR内でも塩素濃度Mが0.5〜1.0の範囲にあり圧力が13〜20kPaのとき、照度が大きく、かつ放電状態も安定している。   Particularly in the area AR, when the chlorine concentration M is in the range of 0.5 to 1.0 and the pressure is 13 to 20 kPa, the illuminance is large and the discharge state is stable.

このように、塩素とクリプトンを放電ガスとして封入し、エキシマ光を放射する放電ランプにおいて、塩素濃度と放電ガスの封入圧力を(0.5,7)、(0.5,13)、(1,20)、(2,33)、(2,7)を頂点とする領域AR内の範囲で設定することにより、波長222nmの光の照度が高く、かつ照度一定となる。   Thus, in a discharge lamp in which chlorine and krypton are sealed as a discharge gas and excimer light is emitted, the chlorine concentration and the pressure of the discharge gas are set to (0.5, 7), (0.5, 13), (1 , 20), (2, 33), and (2, 7) are set in a range within the area AR having the vertex, the illuminance of light having a wavelength of 222 nm is high and the illuminance is constant.

電極の配置に関しては、軸に対して対称的に対向配置させるだけでなく、中心線に対して線対称になるように配置してもよい(例えば断面ハの字形状)。また、内管の両側面をあらかじめ平らに削り、平板状の電極を配置するようにしてもよい。あるいは、一方の電極を放電容器の管壁内に埋設する一方、他方の帯状電極(あるいは網状電極)を外管の外周面に設けるように構成してもよい。   Regarding the arrangement of the electrodes, the electrodes may be arranged so as to be symmetrical with respect to the center line as well as symmetrically opposed to the axis (for example, a cross-sectional shape of a letter C). Further, both side surfaces of the inner tube may be cut in advance and flat electrodes may be disposed. Alternatively, one electrode may be embedded in the tube wall of the discharge vessel, while the other strip electrode (or mesh electrode) may be provided on the outer peripheral surface of the outer tube.

また、放電容器12の両端部分に、外管で内管を覆う真空状態の内部空間を形成し、絶縁破壊をより確実に抑えるように構成してもよい。さらに、軸方向に光を放出するように、放電容器12の端部に射出窓を設けてもよい。放電容器の構造としては、二重管式のエキシマランプを適用し、また、高電圧を印加させるようにしてもよい。   Further, a vacuum internal space that covers the inner tube with the outer tube may be formed at both end portions of the discharge vessel 12 so as to more reliably suppress dielectric breakdown. Further, an emission window may be provided at the end of the discharge vessel 12 so as to emit light in the axial direction. As the structure of the discharge vessel, a double tube excimer lamp may be applied, and a high voltage may be applied.

放電容器のガラスの脆化保護、ガラスと封入ガスの反応を防止するため、放電容器の内面にアルミナ膜、チタニア膜、マグネシア膜などの保護膜を形成してもよい。封入ガスにハロゲンを含める場合、フッ化マグネシウム膜を形成するのがよい。また、塩素とクリプトン以外のガスを封入してもよい。   A protective film such as an alumina film, a titania film, or a magnesia film may be formed on the inner surface of the discharge vessel in order to protect the glass of the discharge vessel from embrittlement and to prevent reaction between the glass and the enclosed gas. When halogen is included in the sealing gas, a magnesium fluoride film is preferably formed. Further, a gas other than chlorine and krypton may be enclosed.

放電容器、外管の材質、形状は任意に構成することができ、楕円形状、四角形状など円筒形状以外の形状に構成してもよく、また、所定のエキシマ光を外部へ透過させるような材質で構成すればよい。また、複数のランプを用いて広範囲に照射するように構成してもよい。   The material and shape of the discharge vessel and the outer tube can be arbitrarily configured, and may be configured in a shape other than a cylindrical shape such as an elliptical shape or a quadrangular shape, or a material that transmits predetermined excimer light to the outside. What is necessary is just to comprise. Moreover, you may comprise so that it may irradiate in a wide range using a some lamp | ramp.

本実施形態である放電ランプの径方向の概略的断面図である。It is a schematic sectional drawing of the radial direction of the discharge lamp which is this embodiment. 放電ランプの軸方向の概略的断面図である。It is a schematic sectional drawing of the axial direction of a discharge lamp. 塩素濃度と封入圧力の組み合わせをプロットした図である。It is the figure which plotted the combination of chlorine concentration and enclosure pressure. 照度および放電状態の評価を表で示した図である。It is the figure which showed the evaluation of illumination intensity and the discharge state by the table | surface. ガス封入圧力と波長222nmの光の照度(mW/cm)との関係を示したグラフである。It is the graph which showed the relationship between gas enclosure pressure and the illumination intensity (mW / cm < 2 >) of the light of wavelength 222nm. 塩素濃度と波長222nmの光の照度との関係を示したグラフである。It is the graph which showed the relationship between chlorine concentration and the illumination intensity of the light of wavelength 222nm.

符号の説明Explanation of symbols

10 エキシマランプ
12 放電容器
14 内管
14S 内管の外周面
15 放電空間
16 外管
18A、18B 電極


DESCRIPTION OF SYMBOLS 10 Excimer lamp 12 Discharge vessel 14 Inner tube 14S Outer peripheral surface of inner tube 15 Discharge space 16 Outer tube 18A, 18B Electrode


Claims (5)

少なくとも塩素ガスとクリプトンガスを含む混合ガスが封入される放電容器と、
前記放電容器の軸方向に沿って配置される電極とを備え、
前記放電容器が、筒状内管の外周面に筒状外管を溶着させることによって一体化させた単管状放電容器であり、
少なくとも一方の電極が、前記内管の外周面に配置されて前記放電容器の管壁内に埋め込まれていて、
前記混合ガスにおける前記塩素ガスの容量濃度をM(%)、前記混合ガスの封入圧力をP(kPa)とするとき、
前記塩素ガスの容量濃度、前記混合ガスの封入圧力(M、P)は、(0.5,7)、(0.5,13)、(1,20)、(2,33)、(2,7)を頂点とする領域内の値に定められることを特徴とする放電ランプ。
A discharge vessel in which a mixed gas containing at least chlorine gas and krypton gas is enclosed;
An electrode disposed along the axial direction of the discharge vessel,
The discharge vessel is a single tubular discharge vessel integrated by welding a cylindrical outer tube to the outer peripheral surface of the cylindrical inner tube;
At least one electrode is disposed on the outer peripheral surface of the inner tube and embedded in the tube wall of the discharge vessel;
When the volume concentration of the chlorine gas in the mixed gas is M (%) and the sealed pressure of the mixed gas is P (kPa),
The volume concentration of the chlorine gas and the sealed pressure (M, P) of the mixed gas are (0.5, 7), (0.5, 13), (1, 20), (2, 33), (2 , 7) is determined to be a value in a region having a vertex.
少なくとも塩素ガスとクリプトンガスを含む混合ガスが封入される放電容器と、
前記放電容器の軸方向に沿って配置される電極対を備え、
前記放電容器が、筒状内管の外周面に筒状外管を溶着させることによって一体化させた単管状放電容器であり、
少なくとも一方の電極が、前記内管の外周面に配置されて前記放電容器の管壁内に埋め込まれていて、
前記混合ガスにおける前記塩素ガスの容量濃度をM(%)、前記混合ガスの封入圧力をP(kPa)とするとき、
前記塩素ガスの容量濃度M、前記混合ガスの封入圧力Pは、以下の式をみたすことを特徴とする放電ランプ。

7≦P≦13M+7 (1.0≦M≦2.0)
7≦P≦14M+6 (0.5≦M≦1.0)
A discharge vessel in which a mixed gas containing at least chlorine gas and krypton gas is enclosed;
An electrode pair disposed along the axial direction of the discharge vessel;
The discharge vessel is a single tubular discharge vessel integrated by welding a cylindrical outer tube to the outer peripheral surface of the cylindrical inner tube;
At least one electrode is disposed on the outer peripheral surface of the inner tube and embedded in the tube wall of the discharge vessel;
When the volume concentration of the chlorine gas in the mixed gas is M (%) and the sealed pressure of the mixed gas is P (kPa),
A discharge lamp characterized in that the chlorine gas volume concentration M and the mixed gas sealing pressure P satisfy the following equations.

7 ≦ P ≦ 13M + 7 (1.0 ≦ M ≦ 2.0)
7 ≦ P ≦ 14M + 6 (0.5 ≦ M ≦ 1.0)
前記塩素ガスの容量濃度M(%)が0.5〜1.0の範囲にあり、前記混合ガスの封入圧力P(kPa)が13〜20の範囲にあることを特徴とする請求項1乃至2のいずれかに記載の放電ランプ。   The volume concentration M (%) of the chlorine gas is in the range of 0.5 to 1.0, and the sealed pressure P (kPa) of the mixed gas is in the range of 13 to 20. The discharge lamp according to any one of 2 above. 前記放電ランプは、波長222nmのエキシマ光を放射することを特徴とする請求項1乃至2のいずれかに記載の放電ランプ。   The discharge lamp according to claim 1, wherein the discharge lamp emits excimer light having a wavelength of 222 nm. 前記領域が、前記塩素ガスの容量濃度、前記混合ガスの封入圧力の組合せをプロットした図において定められる領域であることを特徴とする請求項1に記載の放電ランプ。   2. The discharge lamp according to claim 1, wherein the region is a region defined in a diagram in which a combination of a capacity concentration of the chlorine gas and an enclosure pressure of the mixed gas is plotted.
JP2008293252A 2008-11-17 2008-11-17 Discharge lamp Active JP5302637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008293252A JP5302637B2 (en) 2008-11-17 2008-11-17 Discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008293252A JP5302637B2 (en) 2008-11-17 2008-11-17 Discharge lamp

Publications (3)

Publication Number Publication Date
JP2010123276A JP2010123276A (en) 2010-06-03
JP2010123276A5 JP2010123276A5 (en) 2011-11-10
JP5302637B2 true JP5302637B2 (en) 2013-10-02

Family

ID=42324461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008293252A Active JP5302637B2 (en) 2008-11-17 2008-11-17 Discharge lamp

Country Status (1)

Country Link
JP (1) JP5302637B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5144475B2 (en) * 2008-11-17 2013-02-13 株式会社オーク製作所 Excimer lamp
JP7327932B2 (en) * 2018-12-14 2023-08-16 ウシオ電機株式会社 UV irradiation device
JP2020099524A (en) * 2018-12-21 2020-07-02 ウシオ電機株式会社 Ultraviolet light irradiation device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69210113T2 (en) * 1991-07-01 1996-11-21 Philips Patentverwaltung High pressure glow discharge lamp
JP3171004B2 (en) * 1994-04-15 2001-05-28 ウシオ電機株式会社 Dielectric barrier discharge lamp
JP3168848B2 (en) * 1994-10-25 2001-05-21 ウシオ電機株式会社 Dielectric barrier discharge lamp device
JP3228090B2 (en) * 1995-09-20 2001-11-12 ウシオ電機株式会社 Dielectric barrier discharge lamp
DE19613502C2 (en) * 1996-04-04 1998-07-09 Heraeus Noblelight Gmbh Durable excimer emitter and process for its manufacture
DE19718395C1 (en) * 1997-04-30 1998-10-29 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Fluorescent lamp and method of operating it
JP2000173554A (en) * 1998-12-01 2000-06-23 Md Komu:Kk Dielectric barrier discharge lamp
FR2890232A1 (en) * 2005-08-23 2007-03-02 Saint Gobain COPLANAR DISCHARGE PLANE LAMP AND USES THEREFOR
JP5074248B2 (en) * 2008-03-14 2012-11-14 株式会社オーク製作所 Excimer lamp

Also Published As

Publication number Publication date
JP2010123276A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
JP5307029B2 (en) Discharge lamp
JP4977019B2 (en) Dielectric barrier discharge lamp with integrated multi-functional means
HU182651B (en) Method for operating miniature high-pressure metal-vapour discharge lamp and miniature high-pressure lamp arrangement
JP5428957B2 (en) Discharge lamp for vehicle and discharge lamp device for vehicle
WO2010100935A1 (en) Vehicle discharge lamp, vehicle discharge lamp device, lighting circuit combined type vehicle discharge lamp device, and lighting circuit
JP5371166B2 (en) Unit having high-pressure discharge lamp and ignition antenna
JP4681668B2 (en) Foil seal lamp
JP5302637B2 (en) Discharge lamp
JP4544204B2 (en) External electrode type discharge lamp and its lamp device
JP4580246B2 (en) Ultraviolet light source lighting device and ultraviolet irradiation device
JP4407474B2 (en) Excimer lamp
JP2009059645A (en) Discharge lamp lighting device
JP6557011B2 (en) Excimer lamp
JP2021051937A (en) Barrier discharge lamp and UV irradiation unit
JP2014049280A (en) Excimer lamp
JP5640998B2 (en) Excimer lamp
JP6303946B2 (en) Noble gas fluorescent lamp
JP2006286384A (en) Discharge lamp for automobile
US9330897B2 (en) Mercury-free discharge lamp
JP6007656B2 (en) Excimer lamp
US7746000B2 (en) Discharge bulb
JP2010049983A (en) Metal halide lamp and headlight for automobile
JP2000040494A (en) Discharge lamp, discharge lamp lighting method, discharge lamp lighting device, and lighting system
KR20200031035A (en) Barrier discharge lamp
CN105390366A (en) Long arc-type electric-discharge lamp

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Ref document number: 5302637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250